Higher-order inductive theorems via recursor templates

K. Hagens! and C. Kop?

! Radboud University, Nijmegen, Netherlands
kasper.hagens@ru.nl
2 Radboud University, Nijmegen, Netherlands
c.kop@cs.ru.nl

Abstract

Rewriting Induction (RI) is a formal system in term rewriting for proving inductive
theorems. Recently, RI has been extended to higher-order Logically Constrained Term
Rewriting Systems (LCSTRSs), which makes it an interesting tool for program verification
with inductive theorems as an interpretation for program equivalence. A major challenge
when proving inductive theorems with RI is the generation of suitable induction hypothesis,
preferably automatically. Two existing heuristics often fail. Here, we consider another
approach: rather than inventing new heuristics for proving individual cases, we consider
classes of equivalences. This is achieved by introducing templates, describing specific tail
and non-tail recursive programs. Whenever each of the two programs fit into such a
template we can generate an equation which is guaranteed to be an inductive theorem.

1 Introduction

Rewriting Induction (RI) is a method for inductive theorem proving. Recently, it was extended
to higher-order Logically Constrained Term Rewriting Systems (LCSTRSs) [5], making it an
interesting tool for program verification with inductive theorems as interpretation for program
equivalence. The RI proof system is based on well-founded induction, and proving an equation
often requires to introduce another equation, to be used as induction hypothesis. Finding such
an induction hypothesis is known to be a non-trivial problem, and the two existing generalization
methods for RI do not always succeed.

Inspired by [1], we consider another approach: rather than inventing new heuristics for
proving the equivalence of individual program pairs, we consider classes of equivalences. We
introduce tail and non-tail recursors, specifically aimed at describing simple bounded loop
constructions, governed by some binary integer operator. We then introduce templates for
describing specific tail and non-tail recursive programs. Whenever each of the two programs fit
into a template we can generate an equation which is guaranteed to be an inductive theorem.

Induction proofs with RI Figure 1 shows four implementations of the factorial function:
Tail recursive Upward (TU), Tail recursive Downward (TD), Recursive Upward (RU) and Re-
cursive Downward (RD). Figure 2 shows their LCSTRS representation. Provided = > 1, they
all compute z — Hle i. We aim to prove all (g) = 6 program-pairs being equivalent. In
the setting of LCSTRSs the equivalence of, for example, factTU x and factRU x for z > 1 is
expressed by the equation factTU z ~ factRU = [z > 1].

With RI we then prove that this equation is an inductive theorem, meaning that for every
ground substitution v that satisfies [(z > 1)y] = T we have (factTU z)y +3% (factRU z)y.
Here, <+% is the transitive, reflexive closure of -z U <, with —x the rewrite relation
generated by R (and R the set of all rules involved in the definition of factTU and factRU).

A pleasant property of constrained rewriting is that it incorporates primitive data structures
(such as the integers) non-inductively. This in turn is beneficial when it comes to inductive

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

int factTU(int x){ int factTD(int x){
int a = 1; int i = 1; int a = 1;
while (i<=x){ while (x>0){
a = i*a; i = i+1;} a = a*x; x = x-1;}
return a; } return a; }
(a) Tail recursive Upward (b) Tail recursive Downward
int factRD(int x){ int factRU(int x) = R(1, x);
if (x > 0) int R(int i, int x){
return (x*factRD(x-1)); if (i<x)
else return(i*R(i+1, x));
return 1; } else
return x; }

(c) Recursive Downward
(d) Recursive Upward

Figure 1: Four equivalent implementations of = +— []7_; i.

factTUox -ux 1l factTDz —dz 1

uzia—a [i >] dzxa—a [z <0]

uzia—ux (i+1) (ixa) [1<2a] dza—d(z—-1)(axx) [z>0]
(a) Tail recursive Upward (b) Tail recursive Downward

factRD z — 1 [z <1] factRUz - R 1z

factRD z — x * (factRD (x — 1)) [z > 1] Riz—ux [i >z —1]

Riz—ix(R@E+1)z) [i<x-—1]

(c) Recursive Downward (d) Recursive Upward

Figure 2: The LCTRS representations of the programs in Figure 1.

theorem proving, as it allows us to more directly deal with the program definition itself, in-
stead of getting involved in complicated interactions with underlying recursively defined data
structures. As we will see below: when working with integer programs we can use polynomials
over Z to express invariants that we need to generate an induction hypothesis (and we can use
computer algebra systems to find such polynomials [4]).

We briefly try to give some intuition for the role of generalization during the generation of
induction hypotheses in RI proofs, and why this is easier for some equivalences than for others.

Typically, the two existing generalization methods (InGen [2] and matrix invariants [4])
perform well when comparing a tail recursive implementation with a recursive implementation.
The corresponding RI proof is usually generated in two stages, which we will illustrate below
for the equivalence factTU x = factRD z.

Stage 1: FEliminating recursive term. The proof of factTU z ~ factRD z generates an
induction hypothesis u z 1 1 = factRD x, which is applied later in the proof process to
transform the equation u 3 2 = x * (factRD z1) [t > 2A2; =2 —1]intou z 32 =
x*(uxll)r>2Az =ax—1]. This stage did not require any generalization because
uz 11~ factRD x was automatically obtained as a proof goal during the RI process, and
RI always allows us to save a proof goal as an induction hypothesis.

Stage 2: Divergence solving. After eliminating the recursive term, the proof starts to

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

diverge into an infinite repeating process, each time producing a new proof obligation that
we are not able to remove. We only show the first three:

ux32=zxux;21l [z>22Az=2—1]
uxdbrmrxuxz; 32 [zt>3Ax=2—1]
uzb22=zxux1 46 [r>4AN11=1x-1]

None of these equations can be saved as induction hypothesis to remove the succeeding

equation. Fortunately, both generalization methods are able to generate an induction
hypothesisuz i a~ax*xuxzi iy a1 [ii=i—1Az>ii Azy=2—1Aa=aj*xi].

There is, however, no guarantee that comparing a tail recursive with a recursive will always
lead to such a procedure. For example, when trying to prove factTU z =~ factRU z [z > 1] we
are not able to eliminate the recursive term and immediately run into the divergence shown
in Figure 3a. The repeated unfolding of the recursive call R i — i % (R (i + 1) x) makes

ux2l~R1lzx [> 1] ux2l=R1lz [z > 1]
ux32~1x(R2x) [x > 2] ux32=1«x(R2z) [z>2]
urxd6~1%(2x(R3x)) [z > 3] urxdb6~2x(R3z) [x>3
ux524=1x2+x3*(R4z))) [z>4] ux524=6x(R4x) [x>4
(a) Original divergence (b) Processed divergence

Figure 3: Divergence of factTU z = factRU z [z > 1]

it difficult to handle by both generalization methods, as it leads to a divergence where each
equation has a different term shape. Once we turn the divergence into the shape shown in
Figure 3b we can apply the matrix invariants method to generate an induction hypothesis
uzizmax(Rja)[z=axjAni=j+1Aj <z]. InGen is not capable of producing this
induction hypothesis because it is not able to find the crucial invariant z = a * j.

For factRU z ~ factTD z [z > 1] the situation is worse. We obtain a divergence

diiai~R1lz (1=2—1 A ag==z Az >1]
digas~1x(R2ux) ia=2—2 N az=xx(x—1) A x> 2]
digag~1+x(2«(R3xz)) [is=2—-3 A az=z*x(x—1)x(x—2) Ax>3]

This time, we cannot find an induction hypothesis of the shape d i a ~ ax (R j x) [p], where ¢
only contains polynomial arithmetical expressions (we can find an invariant i + j = but this
is not sufficient to obtain an induction hypothesis). We are not able to prove this equation.

For factRU z = factRD z [z > 1] and factTU z = factTD z we encounter similar problems:
the invariants that we can find are not sufficient to generate induction hypothesis.

Recursor templates In section 2 we will introduce recursor templates for LCSTRSs. This
allows us to circumvent the need for executing explicit RI proofs, which as we just motivated
can be quite cumbersome due to the need of finding induction hypotheses. The dirty work only
needs to be done once, when proving the correctness of our templates and the corresponding
inductive theorems. After this, we can check whether a specific example can be matched with
a template and automatically generate a corresponding inductive theorem.

We will show that we can prove all 6 inductive theorems from Figure 2 with recursor tem-
plates. In addition, we will show we can handle higher-order examples as well.

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

1.1 Prerequisites

LCSTRSs [3] are a higher-order rewriting formalism with built-in support for integers and
booleans (or in fact any arbitrary theory such as bitvectors, floating point numbers or integer
arrays) as well as logical constraints to model control flow. This considers applicative higher-
order term rewriting (without A abstractions) and first-order constraints. We will introduce
the minimal necessary prerequisites.

We assume a set of sorts (base types) S; the set T of types is defined by T :=S | T — T.
Here, — is right-associative. Assume a subset Sipeory C S of theory sorts (e.g., int and bool),
and define the theory types by Tiheory = Stheory | Stheory — Tiheory. EVery ¢ € Siheory
corresponds to a non-empty interpretation set Z,. Here, we will use theory sorts bool and int,
with Zpool = {T, L} and Zie = Z (the set of all integers).

We assume a signature ¥ of function symbols and a disjoint set V of variables, and a function
typeof from XUV to T. The set of terms T'(X, V) over ¥ and V are the well-typed expressions
in T, defined by T := X | V | T T. For a term ¢, let Var(t) be the set of variables in ¢. A
term ¢ is ground if Var(t) = . We assume that 3 is the disjoint union Xipeory & Xierms, where
typeof (f) € Tiheory for all f € Eipeory.

BEach f € Eipeory has an interpretation [f] € Zyypeop(r). Here, we will fix Xpeory = {+, —, *}U
{<,<,>,>,=,A\,V,~}U{true, false} U{n | n € Z}, where each of these symbols is typed and
interpreted as expected (e.g. x :: int — int — int is interpreted as multiplication on Z). We use
[f] for prefix or partially applied notation (e.g., [+] y and z + y are the same). Symbols in
Yterms (such as factRD ::int — int) do not have an interpretation since their behavior will be
defined through the rewriting system.

Values are theory symbols of base type, i.e. Val = {v € Eipeory | typeof (v) € Stheory},
which in our setting are true,false and all n. Elements of T'(X;peory, V) are theory terms. A
constraint is a theory term ¢ :: bool, such that typeof(z) € Stheory for all z € Var(y). For
example, we have theory terms x 4+ 3, true and 7 x 0. The latter two are ground. We have
[7 % 0] = 0. An example of a constraint is z xy > 0.

A rewrite rule is an expression ¢ — r [¢]| with typeof (£) = typeof (r), £ = f £1--- €, with
feXand k >0, ¢ a constraint and Var(r) C Var(f) UVar(p). If ¢ = true, we write £ — 7.
We assume familiarity with contexts and substitutions. A substitution 7 respects constraint ¢
if y(Var(yp)) C Valand [py] = T. We define Regre = {f 12 2y ly=Ff a1 ---an] | fE
Stheory \ Val, typeof (f) = t1 — ... — iy, = £}. The reduction relation —g is defined by:

Clly] =r Clry] it £ = 7 [¢] € RUReare and 7 respects ¢

For example, we have a reduction factRD 2 —x 2x (factRD (2—1)) Reatey oy (factRD 1) —»x

2% 1 Reeley 0 Ap equation is a triple s & t [p] with typeof (s) = typeof (t) and ¢ a constraint.

A substitution «y respects s & t [¢] if y respects ¢ and Var(s) UVar(t) C dom(y). An equation
s~ t [p] is an inductive theorem if sy <% ¢y for every ground substitution + that respects it.
Here <+r = =g U <—g, and <} is its transitive, reflexive closure.

RI is a deduction system on proof states, which are pairs of the shape (£, H). Intuitively,
€ is a set of equations, describing all proof goals, and H is the set of induction hypotheses
that have been assumed. At the start £ consists of all equations that we want to prove to
be inductive theorems, and H = §. With a deduction rule we may transform a proof state
(€,H) into another proof state (£/,H’). This is denoted as (€, H) F (&', H'). We write H*
for the reflexive, transitive closure of . If a RI deduction removes every proof goal in £ then
€ only contains inductive theorems. This is expressed the following soudness principle: “If
(E,H) F* (B, H) for some set H, then every equation in £ is an inductive theorem”.

4

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

Template Inductive theorem
Cyyli,a]l = a [i>y] | Coyli,al =tailupfizya
Coyliva] = Coyli+1,fial [i<y] | [z<i<y]

Cryli,al = a [i <z| | Cpyli,a] = taildown fizya
Coyli,a) > Cyyli—1,faid] [i>a] | [z <i<y]

Cy yli] — DJi] [i > y] Cyyli] = recup f i z y Dlz]
Coyli] =i Cpyli+1] [i <yl [r<i<yAz=y+1]

Cy yli] = Dli] [i < z] Cyylt] = recdown f i z y Dl[z]
Cypyli] =i Cyyli—1] [i >] [r<i<yAz=xz-1]

Table 1: Recursor templates and corresponding inductive theorems

2 Recursor templates

We define recursors of type (int — int — int) — int — int — int — int — int as follows

.

tailup fixzya—tailup f (i+1)xy (fia)
taildown f iz y a — taildown f (i — 1) z y (f a 9)

recup fixzya— fi(recup f (i+1) zya)
recdown f iz ya— fi(recdown f (i —1) zya)

&8 8 8 8
IAN AN IA

VAN VAN VAR VAN

ARSI

We furthermore define F fizya — a[i <z Vi > y]forall F € {tailup, taildown, recup, recdown}.

What these recursors have in common is that in each call the iterator i is increased/de-
creased by 1 (executing its recursive call) until it surpasses the lower bound z or upperbound y
(returning accumulator a). The same can be said about the examples in Figure 2. For example,
Figure 2c is equivalent to R = {factRD ¢ — 1 [i < 2], factRD i — i % (factRD (i — 1)) [¢ > 2]},
satisfying this behavior (except that here, we have lower bound x = 2 but no upper bound y).

Let us consider downward recursion more abstractly, using the following template consisting
of two rewrite rules (Figure 2c fits in by taking C, ,[i] = recdown i, f = %, D[i] =1, z = 2).

Cyyli] = DIi] i<
Coylil = i Coyli—1] [i > 1]

With RI we can prove that this template corresponds to the inductive theorem C]
recdown f i z y D[z] [+ < i < yAz = x —1]. For Figure 2c this yields factRD i
recdown [x] i 2 y 1 [2 < i < gy]. The absence of an upper bound in the definition of factRD is
reflected by the corresponding inductive theorem: variable y occurs only on the right-hand side
and in the constraint. We can freely choose any y which satisfies ¢ < y.

Table 1 summarizes the templates and corresponding inductive theorems for all the 4 types
of recursion that we will consider.

~
~
~
~

Example 2.1. By renaming = := y in Figure 2a we obtain the equivalent LCSTRS with rules
factTUy muylluyia—ali>yl,uyia—uy (i+1) (i*xa)[i <y]. The u-rules fit into
the tailup template of Table 1 (take f = x and Cy 4[i,a] = u y ¢ a). This yields an inductive
theorem u y i a ~ tailup [*] i z y a [x < i < y]. Since factTU y —x u y 1 1, we obtain the
inductive theorem factTU y &~ tailup [x] Lz y 1 [z <1 < y].

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

3 Proving inductive theorems with recursor templates

With Table 1 we can automatically generate inductive theorems, relating program definitions
to one of the pre-defined recursors tailup, taildown, recup and recdown. To conclude program
equivalence we in addition need to derive inductive theorems between the recursors themselves.

Lemma 3.1. recdown f y 2 n a~tailup f 2 my a [m <z <y <n]is an inductive theorem.
This lemma is easily proven with RI.

Example 3.1. Variable-renaming the inductive theorem from Example 2.1 yields factTU ¢ ~

tailup [*] 1z ¢ 1 [z <1 < i]. We also deduced factRD i ~ recdown [*] i 2 y 1 [2 < ¢ < y].

Moreover, we easily prove the x-specific equation recdown [*] ¢ 2 y a = recdown [*] ¢ 1 y a, which

gives us
factTU i ~ tailup [*] Lz i 1 [

x

factRD ¢ = recdown [«] i 1y 1 [2

fitting into Lemma 3.1 by substituting [z := 1, m =z, y := i, a := 1, n := y]. We obtain
factTU i = factRD i [x <1 < 2 <4 < y], or equivalently factTU 4 ~ factRD ¢ [i > 2].

The remaining recursor equivalences we can only prove conditionally: under assumption
f = f € X satisfies extra properties (here, we need commutativity /associativity). We collect
our assumptions in a set A of axioms, required to be proven by a RI deduction (A, 0) H* (0, H).

Definition 3.1 (Conditional inductive theorems). Let A be a set of equations (axioms) and &
be a set of equations. We define the conditional inductive theorem A €& as follows: “If there is
a set # and a RI-deduction (A, Q) +* (§,H) then every equation in £ is an inductive theorem.”

For f :: int — int — int € X, we define axiom sets C(f) = {f z y = f y z} and AC(f) =
{fz(fyz)mf(fay z foy~fyazl}

Lemma 3.2. Let f ::int — int — int € . The following are conditional inductive theorems

AC(f)Frecdown fy z naxrecupfamya [m<zAz<yAy<n]

AC(f)Ftaildown f y z na~tailupfamya [m<zAz<yAy<n]
C(f)Ftaildown fyzna~recupfamya [m<zAz<yAy<n]

AC(f) I taildown f i z y a =~ recdown f i z y a

AC(f)Ftailupfixzyamrecupfizya

With RI we easily show (AC(x),0) H* (§,H) for H = 0. Using Lemma 3.2 we derive the
remaining inductive theorems in Figure 2, such as factTD z ~ factTU « [z > 1].

Higher-order equivalences With Lemma 3.1, 3.2 we prove all equivalences from Figure 1.
For higher-order equivalences, however, they no longer suffice. Consider the following higher-
order variants of the LCSTRSs in Figure 2a and Figure 2b, both computing (f,z) — [[;_, f(%)

funfactTU fy—u fyll funfactTD fi—d fil

ufyia—a [i>y] dfia—a [i < 1]

ufyia—ufy@+1) (fi)xa) [i<y] dfia—=df(@E—1)(ax(fi) [i>1]
By Table 1 we obtain funfactTD f i ~ taildown (Aa,i.(f i) xa) i 1y 1[1 < i < y] and
funfactTU f y = tailup (Ai,a.(f i) xa) Lz y 1 [z <1 < y]. Here, A is used as meta-language

6

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

notation. For example, Aa,i.(f) * a denotes a function symbol G; € ¥ defined by Gy a i —
(f i)*a. Note that Lemma 3.2 does not apply: we do not even have Aa,i.(f i)xa = Ai, a.(f i) *a.
However, we can prove the equivalence once we have the following result

Lemma 3.3. Let F ::int — int — int € X. The following are conditional inductive theorems

AC(F) ¢ recdown (Xi,a. (F (f i) a)) y z n a=recup (Niya. (F(fi)a)zmya[m<z<y<n]
C(F) ¥ taildown (Aa,i. (F (f i) a)) y © n a = tailup (Ai,a. (F (f

AC(F) F taildown (Aa,i. (F (f i) a)) i ¢ y a~recdown (Mi,a. (F (fi)a))ixzya

AC(F)t tailup (Mi,a. (F (f i) a)) iz ya=recup (M, a. (F (fi)a))izya

i (F (f 1)

i)a)) zmyam<z<y<n

01 taildown (Aa, i)a))yxna=recup (M,a. (F (fi)a)zmyam<z<y<n]

4 Closing remarks

Constrained rewriting The facility for non-inductively defined primitive data structures
is very specific to constrained rewriting. This made it possible to define recursors and tem-
plates being able to describe integer loops in a manner that is intuitively very close to real-life
programming (where we can also treat the integers as being given for free). The templates
defined here, we cannot define in ordinary higher-order rewriting. We specifically aimed at
loop constructions having an integer counter ¢ which is increased/decreased by 1 in each loop
iteration. In future work we can further extend our existing templates or add new ones, e.g.
generalizing our templates to increases/decreases by some arbitrary number k. We could also
introduce recursors that iterate over lists, obtaining foldl and foldr. However, such recursors we
can already define in ordinary higher-order rewriting.

Related & future work The idea to use templates for inductive theorem proving is not
new. A comparable work for unconstrained first-order rewriting is [1], where the authors define
templates to verify program transformations. In contrast to our approach, equivalence between
templates is proven directly (i.e. no intermediate recursors like tailup are used) using the notion
equivalent term rewriting systems (instead of using RI), which they can prove with specifi-
cally designed transformation rules. It seems that the underlying mechanism is fundamentally
different, because their method assumes confluence (whereas RI relies on termination).

In future work we could investigate if we could benefit from this and other existing work on
program transformations based on term rewriting, such as context moving transformations [6].

Implementation We recently implemented RI for LCSTRSs [5] in Cora (see https://
github.com/hezzel/cora), and we are currently working on implementing the template
method as well.

https://github.com/hezzel/cora
https://github.com/hezzel/cora

Higher-order inductive theorems via recursor templates K. Hagens and C. Kop

References

[1] Y. Chiba, T. Aoto, and Y. Toyama. Program transformation templates for tupling based on term
rewriting. [EICE TRANSACTIONS on Information and Systems, E93-D(5):963-973, 2010.

[2] C.Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained rewriting induction.
ACM Transactions On Computational Logic (TOCL), 18(2):14:1-14:50, 2017.

[3] L. Guo and C. Kop. Higher-order LCTRSs and their termination. In Proc. ESOP 24, volume 14577
of LNCS, pages 331-357, 2024.

[4] K. Hagens and C Kop. Matrix invariants for program equivalence in lctrss. In Proc. WPTE 23,
2023.

[5] K. Hagens and C. Kop. Rewriting induction for higher-order constrained term rewriting systems.
In Proc. LOPSTR 24, volume 14919, pages 202-219, 2024.

[6] K. Sato, K. Kikuchi, T. Aoto, and Y. Toyama. Correctness of context-moving transformations for
term rewriting systems. In Proc. LOPSTR 15, volume 9527 of LNCS, pages 331-345, 2015.

	1 Introduction
	1.1 Prerequisites

	2 Recursor templates
	3 Proving inductive theorems with recursor templates
	4 Closing remarks
	References

