
An Iterative Path Ordering

Cynthia Kop Femke van Raamsdonk

July 31, 2009

Abstract

In a recursive path ordering with status, terms starting with the
same function symbol are compared by recursively comparing their
arguments, either as sequences, ordered lexicographically, or as multi-
sets, ordered by the multiset extension of the recursive path ordering.
Klop, van Oostrom, and de Vrijer present an iterative approach to the
lexicographic path ordering which uses only the first way of compar-
ing arguments. We extend their approach to include also a comparison
of multisets of arguments. This approach is proved equivalent to the
recursive path ordering with status.

1 Introduction

An important method for proving normalisation of a term rewriting system
is the recursive path ordering (RPO), defined originally by Dershowitz [2].
RPO is a recursively defined relation � on the set of terms, based on a well-
founded ordering on the function symbols. It was demonstrated that RPO is
a reduction ordering, which means that termination of a rewriting relation
is guaranteed if l � r for each of its rewrite rules l→ r.

Many variations and adaptations of RPO have been defined. One of them is
the lexicographic path ordering (LPO) by Kamin and Lévy [3]. The differ-
ence with RPO is in the way two terms with the same root symbol are com-
pared. For RPO, f(s1, . . . , sn) � f(t1, . . . , tn) if the multiset {{s1, . . . , sn}} is
greater than the multiset {{t1, . . . , tn}} in the multiset extension of (the re-
cursive calls of) RPO. For LPO, f(s1, . . . , sn) � f(t1, . . . , tn) if the sequence
[s1, . . . , sn] is greater than the sequence [t1, . . . , tn] in the lexicographic ex-
tension of (the recursive calls of) LPO.

An alternative approach to RPO is presented by Bergstra and Klop [1].
Starting from a well-founded ordering (or more generally a relation) on the
set of function symbols, an auxiliary term rewriting system is defined. This
auxiliary system depends only on the ordering on function symbols, and not
on the term rewriting system that we want to prove terminating (just like an

1

instance of RPO only depends on the ordering on function symbols). Now
the transitive closure →+ of the auxiliary term rewriting system → plays
the role of RPO. That is, if l →+ r in the auxiliary term rewriting system,
then the term rewriting system under consideration is terminating.

The exact relationship between the recursive and iterative approach is stud-
ied by Klop, van Oostrom, and de Vrijer [4]. On the recursive side, they
consider LPO. On the iterative side, an auxiliary term rewriting system Lex
is defined. Its transitive closure is called the iterative lexicographic path or-
dering (ILPO). It is shown that ILPO is well-founded, and that LPO and
ILPO coincide, if we start from a transitive relation on function symbols
(which is the case if we start with an ordering).

The starting point of this note is [4]. We explore the robustness of the itera-
tive approach in the light of the recursive path ordering with status, where
terms starting with the same function symbol are compared by comparing
their arguments either as multisets or as (lexicographically ordered) vec-
tors, depending on the status of the function symbol. Building on the rules
of ILPO, we present an iterative approach for this version of RPO, and go on
to prove that this new system IPO coincides with its recursive counterpart.
Termination is not proved separately here, but results as a consequence of
the wellfoundedness of RPO.

2 Preliminaries

We assume familiarity with first-order term rewriting with the usual no-
tations. In particular, terms are written as s, t, u, v, We do recall the
definitions of the lexicographic and multiset extensions of a relation, which
play an important role in the definition of RPO. For sequences we use the
notation [. . .], and for multisets the notation {{. . .}}.

Definition 1 (lexicographical extension). Given a relation > on terms,
its lexicographical extension >lex on sequences of terms is defined as:
[s1, . . . , sn] >lex [t1, . . . , tm] iff n < m or both n = m and, for some i ≤ n,
s1 = t1, . . . , si−1 = ti−1 and si > ti.

In the remainder, we will only compare sequences of equal length.

Definition 2 (multiset extension). Given a relation > on terms, its multiset
extension >mul on multisets of terms is defined as: X >mul Y iff there
are multisets A,B,C such that X = A] B, Y = A] C, B 6= ∅ and
∀c ∈ C∃b ∈ B[b > c].

It has been proved that if > is a well-founded relation, then so are its lexi-
cographical and multiset extensions.

2

In the literature many variations of the definition of RPO are given. In all
definitions, a relation B on the set of function symbols is “lifted” to a relation
on the set of terms. The requirements on B and the inductive lifting rules
may vary. Here we assume a set of function symbols Σ and a well-founded
ordering B on Σ. We consider RPO with status, which means that comparing
two terms with the same root function symbol is done by comparing the
arguments with either the lexicographic or the multiset extension of (the
recursive calls of) RPO, depending on the “status” of the function symbol.
The status is defined by taking Σ the disjoint union of ΣLEX and ΣMUL.

Definition 3 (RPO). The recursive path ordering (RPO) induced by B is
the relation �rpo generated by the following rules:
s = f(s1, . . . , sn) �rpo t iff:

(RPO1) si �rpo t for some i ∈ {1, . . . , n}, OR

(RPO2) t = g(t1, . . . , tm) AND:

(RPO2a) f B g and s �rpo t1, . . . , s �rpo tm, OR

(RPO2b) f = g ∈ ΣLEX (hence n = m), and [s1, . . . , sn](�rpo

)lex[t1, . . . , tn] and s �rpo t1, . . . , s �rpo tn, OR

(RPO2c) f = g ∈ ΣMUL (hence n = m), and {{s1, . . . , sn}}(�rpo

)mul{{t1, . . . , tn}}.

Since �rpo is wellfounded, a rewrite relation → can be proved terminating
by finding a well-founded ordering B on the set of function symbols that
that l �rpo r for every rewrite rule l→ r.

LPO (the lexicographical path ordering) is the relation obtained without
(RPO2c), taking Σ = ΣLEX. Some variations start with a quasi-order on
function symbols rather than an order, and allow f ∼ g in rules (RPO2b)
and (RPO2c). Instead of using this seemingly more powerful alternative, one
can usually adapt the term rewriting system such that this is not needed.

Now we move on to iterative definitions. We denote by Σ∗ a copy of Σ in
which all function symbols are marked by a ∗. First recall the iterative defi-
nition of LPO as defined in [4]. It makes use of the following term rewriting
system:

Definition 4 (ILPO). Given a finite signature Σ and well-founded ordering
B on Σ, the relation →ilpo on terms over Σ ∪ Σ∗ is the rewrite relation
induced by the following rules:

f(~x) →put f∗(~x)
f∗(~x) →select xi (1 ≤ i ≤ n)
f∗(~x) →copy g(f∗(~x), . . . , f∗(~x)) (f B g)

f∗(~x, g(~y), ~z) →lex f(~x, g∗(~y), l, . . . , l) (l = f∗(~x, g(~y), ~z))

3

It is proved in [4] that the transitive closure→+
ilpo is a well-founded ordering

on the set of unmarked terms. Because it is a rewrite relation, closure under
contexts and substitutions is immediate. Hence →+

ilpo is a reduction order-
ing, and termination of a rewrite relation follows if we can prove l →+

ilpo r
for each of its rewrite rules (for some well-founded relation B on the func-
tion symbols). This is called ILPO-termination. They prove, moreover, that
ILPO-termination coincides with LPO-termination.

3 An iterative path ordering

We want to extend the auxiliary term rewriting system from [4] to include
also the multiset comparison of arguments, so as to provide an alternative
to the definition of RPO with status. To add a multiset extension to the
system, there are different possibilities. We could add a direct rule scheme

f∗(s1, . . . , sn)→bigmul f(t1, . . . , tn)

if there are A,A′ ⊂ {1, . . . , n} such that {{si|i ∈ A}} = {{ti|i ∈ A′}}, and
∀i /∈ A′∃j /∈ A[ti = s∗j].
Alternatively, we could add two rule schemes for smaller steps:

f∗(x1, . . . , xn)→ord f
∗(xπ1 , . . . , xπn)

for any permutation π, and

f∗(~x, g(~y), ~z)→smallmul f([x1|g∗(~y)], . . . , [x|~x||g∗(~y)], g∗(~y), [z1|g∗(~y)], . . . , [z|~z||g∗(~y)])

where [a|b] means either one or the other can be chosen.

We choose to introduce the latter two rules, as these are both conceptually
simpler, and more in the spirit of an iterative approach with small steps.

Definition 5 (IPO). Given a finite signature Σ = ΣMUL] ΣLEX and a
wellfounded order B on Σ. The iterative path order induced by B is the
term rewrite relation →ipo over Σ ∪ Σ∗ defined by the following rules:

f(~x) →put f∗(~x)
f∗(~x) →select xi (1 ≤ i ≤ n)
f∗(~x) →copy g(f∗(~x), . . . , f∗(~x)) (f B g)

f∗(~x, g(~y), ~z) →lex f(~x, g∗(~y), l, . . . , l)
(l = f∗(~x, g(~y), ~z), f ∈ ΣLEX)

f∗(~x, g(~y), ~z) →mul f([x1|g∗(~y)], . . . , g∗(~y), . . . , [zn|g∗(~y)])
(f ∈ ΣMUL)

f∗(~x) →ord f∗(xπ(1), . . . , xπ(n))
(π some permutation, f ∈ ΣMUL)

4

IPO-termination is defined similarly to ILPO-termination: a system is IPO-
terminating if for some well-founded ordering B on the function symbols we
can prove l →+

ipo r for every rewrite rule l → r. We still need to show that
this method is sound but will not do so here; this will be a consequence of
the equivalence of IPO-termination and RPO-termination.

Example 1. Let Σ = {f : 3, g : 1, a : 0} (the number following each term
denotes its arity), R = {f(x, y, g(z))→ f(a, z, x)}. The relation →R is ter-
minating, for choosing g B a we have: f(x, y, g(z))→put f

∗(x, y, g(z))→ord

f∗(g(z), y, x)→mul f(g∗(z), g∗(z), x)→copy f(a, g∗(z), x)→select f(a, z, x).

We use the notation s∗ for s with its root symbol marked, so
(f(s1, . . . , sn))∗ = f∗(s1, . . . , sn). This notation is used only if s is not a
variable, and is not a term with a marked root symbol.

4 Multisets

As a first step towards equivalence of RPO-termination and IPO-termination
we focus on some issues concerning multisets of equal size. At first sight, one
may wonder whether the rewrite rules mul and ord really have the power to
obtain a “multiset extension”. Is the combination of these rules as strong as
the alternative bigmul rule, which implements the idea of a multiset order
more directly? In this section we will see that yes, ord and mul together are
at least as strong as bigmul. In the next section we prove equivalence of
RPO-termination and IPO-termination.

In addition to multiset extensions, we define the minimul extension of a
relation > as follows: X >minimul Y iff there is a multiset A ⊆ X ∩ Y and
some x ∈ X −A such that ∀y ∈ Y −A[x > y], and |X| = |Y |.

Lemma 1. For any transitive relation >, >mul is the transitive closure of
>minimul.

Proof. It is evident that >minimul is contained in >mul and thus, since the lat-
ter is transitive (this is a wellknown result), the transitive closure of >minimul

must also be contained in it. For the other direction, we must see that when-
everX >mul Y there is a sequenceX = Z1 >minimul . . . >minimul Zn = Y . Let
X = A]B, Y = A]C (with ∀c ∈ C∃b ∈ B[b > c]). X and Y have equal size,
and therefore B and C are both non-empty. Find a function g : C → B such
that always g(c) > c; define B1 = g(C), B2 = B \B1. Let B1 = {{b1, . . . , bn}}
(n > 0 since C is nonempty). Now define Z ′1 := A] {{b1, . . . , bn}}, and for
each i < n: Z ′i+1 := (Z ′i − {{bi}})] {{c ∈ C|g(c) = bi}}. Each Z ′i+1 is at least
as large as Z ′i, and Zn = Y . If we define E1 := B2 and always Ei+1 ⊆ Ei,
in such a way that |Ei| = |X| − |Z ′i|, then we can define Zi := Z ′i] Ei and
have Zi >minimul Zi+1 for all i.

5

Lemma 2. Defining > as the relation “s > t if t = s∗”,
{{s1, . . . , sn}} >minimul {{t1, . . . , tn}} iff f∗(~s)→ord · →mul f(~t).

Proof. If f∗(~s)→ord f
∗(~r)→mul f(~t), then {{~s}} = {{~r}} >minimul {{~t}} follows

directly from the definition. For the other direction, suppose {{~s}} >minimul

{{~t}}. There are A,B ⊂ {1, . . . , n} such that {{si|i ∈ A}} = {{ti|i ∈ B}}, and
some k /∈ A such that ∀j ∈ {1, . . . , n} − B[tj = s∗k]. Find a permutation
π of {1, . . . , n} that maps B to A in such a way that sπ(i) = ti for all
i ∈ B (it automatically holds that ti = sπ(π−1(k)) for i /∈ B). It is clear that
f∗(~s)→ord f

∗(sπ(1), . . . , sπ(n))→mul f(~t).

Lemma 3. Defining > as the relation “s > t iff t = s∗”, {{s1, . . . , sn}} >mul

{{t1, . . . , tn}} iff f∗(~s)→bigmul f(~t).

Proof. Evident.

Combining Lemmas 1, 2 and 3, we see that bigmul is a derived rule of IPO.

Theorem 1. s∗ →bigmul t if s(→put · →ord · →mul)+t.
�

5 Equivalence of RPO and IPO

In this section we will prove the equivalence on the set of terms of the
recursive path ordering �rpo and the transitive closure of→ipo. As in [4], we
will need the condition that B is transitive: if this is not required, an easy
counterexample would be the rewrite system A→ C with ABB B C. It is
not provable that A �rpo C, but A→put A

∗ →copy B →put B
∗ →copy C.

We first prove the easy direction of the equivalence: the recursive path or-
dering �rpo is contained in →+

ipo.

Theorem 2. Let s and t be unlabelled terms. If s �rpo t then s is markable
and s∗ →∗ipo t.

Proof. By induction over the definition of �rpo. Checking the rules of rpo we
may always write s = f(s1, . . . , sn) if s �rpo t, so s is markable. To prove the
second clause, commit case distinction over the rule used to derive s �rpo t.

(RPO1) f∗(s1, . . . , sn) →select si. If si = t we are done, otherwise si →put

s∗i →∗ipo t by induction hypothesis.

(RPO2a) f∗(s1, . . . , sn) →copy g(f∗(~s), . . . , f∗(~s)). By the induction hy-
pothesis f∗(~s) →∗ipo ti for all 1 ≤ i ≤ m, so g(f∗(~s), . . . , f∗(~s)) →∗ipo

g(t1, . . . , tm).

6

(RPO2b) By the definition of lexicographical extension, there is i ≤
n such that s1 = t1, . . . , si−1 = ti−1, si �rpo ti. By the induc-
tion hypothesis si is markable and s∗i →∗ipo ti. Also by induc-
tion hypothesis s∗ →∗ipo ti+1, . . . , s

∗ →∗ipo tn. Hence f∗(~s) →lex

f(s1, . . . , si−1, s
∗
i , f
∗(~s), . . . , f∗(~s))→∗ipo f(~t).

(RPO2c) Following the definition of multisets, write {{s1, . . . , sn}} = A]
B, {{t1, . . . , tn}} = A] C. Let ~r be a vector of terms such that ri = ti
if ti ∈ A, ri = s∗j if ti ∈ C and sj ∈ B is a term with sj �rpo ti.
Again writing > for the marking relation, we have {{~s}} >mul {{~r}}, so
by Lemma 3, we have f∗(~s)→bigmul f(~r), which →∗ipo-reduces to f(~t)
by the induction hypothesis. Since bigmul is a derived rule of IPO,
the induction step follows.

The other direction takes a bit more effort; we will use some auxiliary lem-
mas. The fundamental idea is that a reduction can always be done “top-
down”: we start by doing a reduction on the top of the term, and then
steadily work down on its arguments. To this end, it is crucial to see that
marking can always be done at the top:

Lemma 4. If s→∗ipo t and s is unmarked, then either s = t or s∗ →∗ipo t.

Proof. If s 6= t there is some r such that s→ipo r →∗ipo t. Since s is unmarked,
this first step is put, either on the top of the term or in one of its arguments.
We proceed by induction on the depth of the put-step. If the put-step takes
place at the top, we have r = s∗ →∗ipo t, and we are done. If the put-step is
not at the top, we have s = f(s1, . . . , si, . . . , sn) and r = f(s1, . . . , s′i, . . . , sn)
with si →put s

′
i. By the induction hypothesis s∗i →∗ipo s

′
i. If f ∈ ΣMUL then

s∗ →mul f(s1, . . . , s∗i , . . . , sn) →∗ipo r →∗ipo t. If f ∈ ΣLEX then similarly we
have s∗ →lex f(s1, . . . , s∗i , f

∗(~s), . . . , f∗(~s))→∗select f(s1, . . . , s∗i , . . . , sn)→∗ipo

t.

Next, we will transform an IPO-reduction into a so-called normal one. Write
R1 ⇒ R2 for the statement “if we have a reduction sR1t then we also have
the reduction sR2t. Below, we locally use the notation→rule for the topmost
application of rule. An internal step is denoted by →in.

Lemma 5. Assuming transitivity of B, reductions can be manipulated by
the following rules:
→in · →put ⇒ →put · →in (1)
→in · →select ⇒ →select · →=

ipo (2)
→copy · →put · →select ⇒ (3)
→lex · →put · →select ⇒ (→select · →=

put)
= (4)

→ord · →select ⇒ →select (5)
→mul · →put · →select ⇒ →select · →=

put (6)

7

→in · →copy ⇒ →copy · →∗in (7)
→copy · →put · →copy ⇒ →copy · →∗in (8)
→lex · →put · →copy ⇒ →copy · →∗in (9)
→ord · →copy ⇒ →copy · →∗in (10)
→mul · →put · →copy ⇒ →copy · →∗in (11)
→copy · →put · →∗in · →lex ⇒ →copy · →∗in (12)
→copy · →put · →ord ⇒ →copy · →put (13)
→copy · →put · →∗in · →mul ⇒ →copy · →∗in (14)
→in · →ord ⇒ →ord · →in (15)
→ord · →ord ⇒ →ord (16)
→ord · →mul · →put · →ord ⇒ →ord · →mul · →put (17)

For reductions s∗ →∗ipo t with s unmarked, we can also rewrite at the start
of this reduction:
→∗in · →lex ⇒ →lex · →∗in (18)
→lex · →put · →∗in · →lex ⇒ →lex · →∗in (19)
→∗in · →mul ⇒ →mul · →∗in (20)
→n

mul · →put · →∗in · →mul ⇒ →n
mul · →=

mul · →∗in (21)

Proof. Each of these manipulations follows by simply examining the rules
involved. For example, in →lex · →put→select⇒ (→select · →=

put)
=, suppose

s = f∗(~s) →lex f(s1, . . . , s∗j , f
∗(~s), . . .) = f(~r) →put · →select ri. Then either

ri = si (s →select ri), ri = s∗i (s →select · →put ri) or ri = s. Each of these
clauses matches s(→select · →=

put)
=ri (for a relation R, R= is its reflexive

closure).

The only case that uses transitivity of B is the manipulation of copy· →put

· →copy. This case is quite simple for the rest: s = f∗(~s) →copy g(~t) →put

g∗(~t) →copy h(~r). Evidently s →∗ipo ri for each i (as ri = g∗(~t)), and by
transitivity of B, f B h. Validity of the manipulation follows.

The hardest cases are the ones where a mark is added to a subterm,
for example by lex; here we need Lemma 4. Take case 19. This manip-
ulation is only allowed at the start of a reduction, so let s be an un-
marked term such that s∗ = f∗(~s) →lex f(s1, . . . , s∗i , f

∗(~s), . . . , f∗(~s)) →put

· →∗in f∗(~t) →lex f(t1, . . . , t∗j , f
∗(~t), . . . , f∗(~t)) =: f(~r). Either i < j

or i ≥ j, and regardless of that s∗ →+
ipo f∗(~t). Suppose i < j. Then

f(s1, . . . , s∗i , f
∗(~s), . . . , f∗(~s)) →∗in f(t1, . . . , ti, f∗(~t), . . . , f∗(~t)) →∗in−select

f(t1, . . . , tj , f∗(~t), . . . , f∗(~t)) →in−put f(~r). If i ≥ j: s →lex

f(s1, . . . , s∗j , f
∗(~s), . . . , f∗(~s)) →∗in f(t1, . . . , tj−1, s

∗
j , f
∗(~t), . . . , f∗(~t)), which

→∗in-reduces to r because s∗j →∗ipo t
∗
j : either sj = tj , in which case this is

direct, or sj →+
ipo tj , in which case s∗j →∗ipo tj →put t

∗
j .

Definition 6 (normal ipo reduction). A normal ipo reduction s∗ →+
ipo t

with s and t unmarked terms has one of the following four forms:

8

s∗ →select ·(→put · →select)∗t
s∗(→select · →put)∗· →copy · →∗in t
s∗(→select · →put)∗· →lex · →∗in t
s∗(→select · →put)∗· →ord ·(→mul · →put)∗· →mul · →∗in t

Lemma 6. Let s and t be unmarked terms. If s →+
ipo t, then there is a

normal reduction s→+
ipo t.

Proof. By Lemma 4 we can find a reduction s∗ →∗ipo t. First we push each
topmost select step to the start of the reduction (possibly together with the
put step that precedes it), using the first six rules in lemma 5; by induction
over the size of s this is a finite undertaking. Eventually, we have a reduction
s∗ →∗ipo r →∗ipo t, where s∗ →∗ipo r by purely select and put steps, and
r →∗ipo t doesn’t use any topmost select steps. If r = t, the last step in
the former reduction can not be put, so the reduction has the first form.
Otherwise, again by Lemma 4 assume r marked; the reduction s∗ →∗ipo r
has the form (→select · →put)∗.

Now consider the reduction r →∗ipo t; it contains at least one top step since
r is marked. Using Lemma 5 we can ensure that the reduction starts with a
top step and that →in never precedes →put or →ord.

If copy occurs (topmost) anywhere in the reduction, we can “merge” it with
any topmost step that precedes or follows it using rules 8-14 of lemma 5,
possibly combined with rule 7; each merge reduces the number of top steps
in the reduction, and eventually we have a reduction with just one copy
step, at the start: r →copy · →∗in t.
If copy doesn’t occur, then the root symbol of r stays the same throughout
the reduction (discounting marks). If the first step is lex, then so is any
other topstep, and again the steps can be merged, this time using rule 19,
to end up with a reduction r →lex · →∗in t. If the first step is ord, there
has to be a mul step in the reduction (to lose the root mark), and observing
that ord leaves the term unmarked save for the root symbol, use rules 16, 17
(combined with 15) and 21 to remove further ord steps and pull mul steps
forward as well; we eventually have r →ord ·(→mul · →put)∗· →mul · →∗in t.
If the first step is mul, we can precede it with an (empty) ord step to be in
the previous case.

Theorem 3. For unmarked terms s and t: if s→+
ipo t, then s �rpo t if B is

transitive.

Proof. By induction over the size of s first, t second. By Lemmas 4 and 6 we
know that s∗ →∗ipo t with a normal reduction. If the first step in this normal
reduction is select, then we are immediately done if it’s the only step, and
by induction hypothesis if it is followed by put (applying (RPO1) in both

9

cases). If not, the reduction takes the form →copy · →∗in, →copy · →∗in or
→ord ·(→mul · →put)· →mul · →∗in which, by introducing empty ord steps
and combining lemmas 1, 2 and 3, is equivalent to→bigmul. In all three cases,
we can simply apply the induction hypothesis and the corresponding subrule
of (RPO2).1 For example, the copy case: f(~s) �rpo g(~t) because f B g and
by induction f(~s) �rpo ti for all i.

6 Conclusion

We have extended the iterative lexicographic path ordering with two extra
rules and a “status” on the function symbols. The extended system turns
out to be equivalent to rpo with status. As an added bonus, the proof can
be restricted to have an alternative proof of equivalence of ilpo and lpo,
reminiscent of the “wave form” strategy presented in [4].

We have not proved that →+
ipo is wellfounded on unmarked terms, but this

follows as a consequence of the equivalence with→rpo. Alternatively, it could
be proved directly with a simple extension of the proof method in [4], as is
done for example in the higher order variant in [5]. Using the equivalence the
other way around, the proof given here provides a way to derive transitivity
of �rpo.

References

[1] Bergstra and Klop. Algebra of communicating processes. Theoretical
computer science, 37:77–121, 1985.

[2] Nachum Dershowitz. Orderings for term-rewriting systems. In Foun-
dations of Computer Science, 1979., 20th Annual Symposium on, pages
123–131, 1979.

[3] S. Kamin and J-J. Lévy. Two generalizations of the recursive path or-
dering. University of Illinois, 1980.

[4] Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer. Iterative
lexicographic path orders. Lecture Notes in Computer Science, pages
541–554, 2006.

[5] Cynthia Kop and Femke van Raamsdonk. A higher-order iterative path
ordering. In Logic for Programming, Artificial Intelligence, and Reason-
ing, pages 697–711, 2008.

1Although in the case of lex, it requires the observation that s1 �rpo t1, . . . , si−1 �rpo

ti−1, si �rpo ti implies [s1, . . . , sn](�rpo)lex[t1, . . . , tn].

10

