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Abstract
Higher-order rewriting is a framework in which one can write higher-order programs and study their
properties. One such property is termination: the situation that for all inputs, the program eventually
halts its execution and produces an output. Several tools have been developed to check whether
higher-order rewriting systems are terminating. However, developing such tools is difficult and can
be error-prone. In this paper, we present a way of certifying termination proofs of higher-order
term rewriting systems. We formalize a specific method that is used to prove termination, namely
the polynomial interpretation method. In addition, we give a program that processes proof traces
containing a high-level description of a termination proof into a formal Coq proof script that can be
checked by Coq. We demonstrate the usability of this approach by certifying higher-order polynomial
interpretation proofs produced by Wanda, a termination analysis tool for higher-order rewriting.
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1 Introduction

Automatically proving termination is an important problem in term rewriting, and numerous
tools have been developed for this purpose, such as AProVE [10], NaTT [35], MatchBox [33],
Mu-Term [12], SOL [13], TTT2 [21] and Wanda [16], which compete against each other in
an annual termination competition [11]. Aside from basic (first-order) term rewriting, this
includes tools analyzing for instance string, conditional, and higher-order rewriting.

Developing termination tools is a difficult and error-prone endeavor. On the one hand,
the termination techniques that are implemented may contain errors. This is particularly
relevant in higher-order term rewriting, where the proofs are often very intricate due to
partial application, type structure, beta-reduction, and techniques often not transferring
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23:2 Certifying Higher-Order Polynomial Interpretations

perfectly between different formalisms of higher-order rewriting. Hence, it should come as no
surprise that errors have been found even in published papers on higher-order rewriting. On
the other hand, it is very easy for a tool developer to accidentally omit a test whether some
conditions to apply specific termination techniques are satisfied, or to incorrectly translate a
method between higher-order formalisms.

To exacerbate this issue, termination proofs are usually complex and technical in nature,
which makes it hard to assess the correctness of a prover’s output by hand. Not only do many
benchmarks contain hundreds of rules, modern termination tools make use of various proof
methods that have been developed for decades. Indeed, a single termination proof might, for
instance, make use of a combination of dependency pairs [3, 9, 19], recursive path orders [5, 20],
rule removal, and multiple kinds of interpretations [8, 18, 23, 34]. This makes bugs very
difficult to find.

Hence, there is a need to formally certify the output of termination provers, ideally
automatically. There are two common engineering strategies to provide such certification. In
the first, one builds the certifier as a library in a proof assistant along with tools to read the
prover’s output and construct a formal proof, which we call proof script. The proof script
is then verified by a proof assistant. Examples of this system design are the combinations
Cochinelle/CiME3 [7] and CoLoR/Rainbow [6]. In the second, the formalization includes
certified algorithms for checking the correctness of the prover’s output. This allows for the
whole certifier to be extracted, using code extraction, and be used as a standalone program.
Hence, the generation of proof scripts by a standalone tool is not needed in this approach,
but it comes with a higher formalization cost. IsaFoR/CeTA [28] utilizes this approach.

When it comes to higher-order rewriting, however, the options are limited. Both
Cochinelle [7] and IsaFoR/CeTA [28] only consider first-order rewriting. CoLoR/Rainbow [6]
does include a formalization of an early definition of HORPO [20]. Since here we use a
different term formalism compared to that of [20], our results are not directly compatible.
See for instance [2, 25] for more formalization results in rewriting.

In this paper, we introduce a new combination Nijn/ONijn for the certification of higher-
order rewriting termination proofs. We follow the first aforementioned system design: Nijn is
a Coq library providing a formalization of the underlying higher-order rewriting theory and
ONijn is a proof script generator that given a minimal description of a termination proof
(which we call proof trace), outputs a Coq proof script. The proof script then utilizes results
from Nijn for checking the correctness of the traced proof. The schematic below depicts the
basic steps to produce proof certificates using Nijn/ONijn.

Figure 1 Nijn/ONijn schematics

While Nijn is the certified core part of our tool since it is checked by Coq, the proof script
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generation implemented in OCaml (ONijn) is not currently certified and must be trusted. For
this reason, we deliberately keep ONijn as simple as possible and no checking or computation
is done by it. The only task delegated to ONijn is that of parsing the proof trace given
by the termination prover to a Coq proof script. Additionally, checking the correctness of
polynomial termination proofs in Coq is an inherently incomplete task, since it would require
a method to solve inequalities over arbitrary polynomials, which is undecidable in general.

Contributions The main contribution of this paper can be summarized as follows:
we provide a formalization of higher-order algebraic functional systems (Definition 2.6);
a formal proof of the interpretation method using weakly monotonic algebras (Theo-
rem 3.11);
a formalization of the higher-order polynomial method (Theorem 4.7);
a tactic that automatically solves the constraints that arise when using the higher-order
polynomial method (Section 4.3);
an OCaml program that transforms the output of a termination prover into a Coq script
that represents the termination proof (Section 5).

Technical Overview. This paper orbits Nijn, a Coq library formalizing higher-order rewrit-
ing [31]. The formalization is based on intensional dependent type theory extended with two
axioms: function extensionality and uniqueness of identity proofs [14]. Currently, the termi-
nation criterion formalized in the library is the higher-order polynomial method, introduced
in [8]. The tool coqwc counts the following amount of lines of code:

spec proof comments
5497 1985 272 total

The higher-order interpretation method roughly works as follows. First, types are
interpreted as well-ordered structures (Definition 3.3), compositionally. For instance, we
interpret base types as natural numbers (with the usual ordering). Then we interpret a
functional type A ⇒ B as the set of weakly monotonic functions from LAM to LBM where LAM,
LBM denote the interpretations of A, B respectively. The second step is to map inhabitants
of a type A to elements of LAM, which is expressed here by Definition 3.9.

This interpretation, called extended monotonic algebras in [8], alone does not suffice for
termination. To guarantee termination, we interpret both term application (Definition 4.6)
and function symbols as strongly monotonic functionals. In addition, terms must be inter-
preted in such a way that the rules of the system are strictly oriented, i.e., JℓK > JrK, for all
rules ℓ → r. This means that whenever a rewriting is fired in a term, the interpretation of
that term strictly decreases. As such, termination is guaranteed. Here we use termination
models (Definition 3.10) to collect these necessary conditions.

The main result establishing the correctness of this technique in the higher-order case
is expressed by Theorem 3.11. To the reader familiar with the interpretation method in
first-order rewriting, Theorem 4.7 would be no surprise. It is essentially the combination of
the Manna–Ness criterion with higher-order polynomials and the additional technicalities
that are needed for the higher-order case.

2 The Basics of Higher-Order Rewriting in Coq

In this section, we introduce the basic constructs needed to formalize algebraic functional
systems (AFSs) like types, contexts, variables, terms, and rewriting rules. We end the section
with an exposition on how to express termination constructively in Coq.

CVIT 2016
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2.1 Terms and Rewrite Rules
Let us start by defining simple types.

▶ Definition 2.1 (ty). Simple types over a type B are defined as follows:
Inductive ty (B : Type) : Type :=
| Base : B → ty B
| Fun : ty B → ty B → ty B.

Elements of B are called base types. Every inhabitant b : B gives rise to a simple type
Base b and if A1, A2 are simple types then so is Fun A1 A2. We write A1 −→ A2 for Fun A1 A2.

We need (variable) contexts in order to type terms that may contain free variables.
Conceptually, a context is a list of variables with their respective types. For instance,
[x0 : A0; . . . ; xn : An] is the context with variables x0 of type A0, . . . , xn of type An. However,
we use nameless variables in our development, so we do not keep track of their names.
Consequently, a context is represented by a list of types. Then we only consider the list
[A0, . . . , An]. However, we still need to refer to the free variables in terms. In order to do so,
we represent them through indexing positions in the context. For instance, in the context
[A0; . . . ; An] we have n + 1 position indexes 0, 1, . . . , n, which we use as variables.

▶ Definition 2.2 (con). The type of variable contexts over a type B is defined as follows.
Inductive con (B : Type) : Type :=
| Empty : con B
| Extend : ty B → con B → con B.

We write • for Empty and A ,, C for Extend A C.

▶ Definition 2.3 (var). We define the type var C A of variables of type A in context C as
Inductive var {B : Type} : con B → ty B → Type :=
| Vz : forall {C : con B} {A : ty B}, var (A ,, C) A
| Vs : forall {C : con B} {A1 A2 : ty B}, var C A2 → var (A1 ,, C) A2.

Let us consider an example of a context and some variables. Suppose that we have a
base type denoted by b. Then we can form the context Base b ,, Base b −→ Base b ,, Empty.
In this context, we have two variables. The first one, which is Vz, has type Base b, and the
second variable, which is Vs Vz, has type Base b −→ Base b, The context that we discussed
corresponds to [x0 : b; x1 : b −→ b]. The variable Vz represents x0, while Vs Vz represents x1.

In Definition 2.4 below we define the notion of well-typed terms-in-context which consists
of those expressions such that there is a typing derivation. We use dependent types to ensure
well-typedness of such expressions. The type of terms depends on a simple type A : ty B
(which represents the object-level type of the expression) and context C : con B that carries
the types of all free variables in the term. We also need to type function symbols. Hence, we
require a type F : Type of function symbols and ar : F → ty B, which maps f : F to a simple
type ar f.

▶ Definition 2.4 (tm). We define the type of well-typed terms as follows
Inductive tm {B : Type} {F : Type} (ar : F → ty B) (C : con B) : ty B → Type :=
| BaseTm : forall (f : F), tm ar C (ar f)
| TmVar : forall {A : ty B}, var C A → tm ar C A
| Lam : forall {A1 A2 : ty B}, tm ar (A1 ,, C) A2 → tm ar C (A1 −→ A2)
| App : forall {A1 A2 : ty B}, tm ar C (A1 −→ A2) → tm ar C A1 → tm ar C A2.

https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Types.html#ty
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Contexts.html#con
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Contexts.html#var
https://nmvdw.github.io/Nijn/html/Nijn.Syntax.Signature.Terms.html#tm
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For every function f : F we have a term BaseTm f of type ar f. Every variable v gives
rise to a term TmVar v. For λ-abstractions, given a term s : tm ar (A1 ,, C) A2, there is a
term λ s : tm ar C (A1 −→ A2), namely Lam s. The last constructor represents term appli-
cation. If we have a term s : tm ar C (A1 −→ A2) and a term t : tm ar C A1, we get a term
s · t : tm ar C A2, which is defined to be App s t.

While it may be more cumbersome to write down terms using de Bruijn indices, it does
have several advantages. Most importantly, it eliminates the need for α-equivalence, so that
determining equality between terms is reduced to a simple syntactic check.

Our notion of rewriting rules deviates slightly from the presentation in [8]. Mainly, we do
not impose the pattern restriction on the left-hand side of rules nor that free variables on
the right-hand side occur on the left-hand side. This choice simplifies the formalization effort
because when defining a concrete TRS, one does not need to check this particular condition.
Note that in IsaFoR [28] the same simplification is used

▶ Definition 2.5 (rewriteRule). The type of rewrite rules is defined as follows:

Record rewriteRule {B : Type} {F : Type} (ar : F → ty B) :=
make_rewrite {

vars_of : con B ;
tar_of : ty B ;
lhs_of : tm ar vars_of tar_of ;
rhs_of : tm ar vars_of tar_of }.

The context vars_of carries the variables used in the rule, and the type tar_of is used to
guarantee that both the lhs_of and rhs_of are terms of the same type.

▶ Definition 2.6 (afs). The type of algebraic functional systems is defined as follows

Record afs (B : Type) (F : Type) :=
make_afs { arity : F → ty B ; list_of_rewriteRules : list (rewriteRule arity) }.

As usual, every AFS induces a rewrite relation on the set of terms, which we denote by ∼>.
The formal definition is found in RewritingSystem.v. The rewrite relation ∼> is defined to
be the closure of the one-step relation under transitivity and compatibility with the term
constructors. In Coq, we use an inductive type to define this relation. Each rewrite step
is represented by a constructor. More specifically, we have a constructor for rewriting the
left-hand and the right-hand side of an application, we have a constructor for β-reduction,
and we have a constructor for the rewrite rules of the AFS.

▶ Example 2.7 (map_afs). Let us encode Rmap in Coq. It is composed of two rules:
map F nil → nil and map F (cons x xs) → cons (F x) (map F xs). We start with base types.

Inductive base_types := TBtype | TList.
Definition Btype : ty base_types := Base TBtype.
Definition List : ty base_types := Base TList.

The abbreviations Btype and List is to smoothen the usage of the base types. There are
three function symbols in this system:

Inductive fun_symbols := TNil | TCons | TMap.

The arity function map_ar maps each function symbol in fun_symbols to its type.

CVIT 2016
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Definition map_ar f : ty base_types
:= match f with

| TNil ⇒ List
| TCons ⇒ Btype −→ List −→ List
| TMap ⇒ (Btype −→ Btype) −→ List −→ List
end.

So, TNil is a list and given an inhabitant of Btype and List, the function symbol TCons gives
a List. Again we introduce some abbreviations to simplify the usage of the function symbols.
Definition Nil {C} : tm map_ar C _ := BaseTm TNil.
Definition Cons {C} x xs : tm map_ar C _ := BaseTm TCons · x · xs.
Definition Map {C} f xs : tm map_ar C _ := BaseTm TMap · f · xs.

The first rule, map F nil → nil, is encoded as the following Coq construct:
Program Definition map_nil :=

make_rewrite
(_ ,, •) _
(let f := TmVar Vz in Map · f · Nil)
Nil.

Notice that we only defined the pattern of the first two arguments of make_rewrite, leaving
the types in the context (_ ,, •) and the type of the rule unspecified. Coq can fill in these
holes automatically, as long as we provide a context pattern of the correct length. In this
particular rewrite rule, there is only one free variable. As such, the variable TmVar Vz refers
to the only variable in the context. In addition, we use iterated let-statements to imitate
variable names. For every position in the context, we introduce a variable in Coq, which we
use in the left- and right-hand sides of the rule. This makes the rules more human-readable.
Indeed, the lhs map F nil of this rule is represented as Map · f · Nil in code. The second rule
for map is encoded following the same ideas.
Program Definition map_cons :=

make_rewrite
(_ ,, _ ,, _ ,, •) _
(let f := TmVar Vz in let x := TmVar (Vs Vz) in let xs := TmVar (Vs (Vs Vz)) in
Map · f · (Cons · x · xs))
(let f := TmVar Vz in let x := TmVar (Vs Vz) in let xs := TmVar (Vs (Vs Vz)) in
Cons · (f · x) · (Map · f · xs)).

Putting this all together, we obtain an AFS, which we call map_afs.
Definition map_afs := make_afs map_ar (map_nil :: map_cons :: nil).

2.2 Termination
Strong normalization is usually defined as the absence of infinite rewrite sequences. Such a
definition is sufficient in a classical setting where the law of excluded middle holds. However,
we work in a constructive setting, and thus we are interested in a stronger definition.
Therefore, we need a constructive predicate, formulated positively, which implies there are
no infinite rewrite sequences. This idea is captured by the following definition

▶ Definition 2.8 (WellfoundedRelation.v). The well-foundedness predicate for a
relation R is defined as follows

https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Relations.WellfoundedRelation.html
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Inductive isWf {X : Type} (R : X → X → Type) (x : X) : Prop :=
| acc : (forall (y : X), R x y → isWf R y) → isWf R x.

A relation is well-founded if the well-foundedness predicate holds for every element.

Definition Wf {X : Type} (R : X → X → Type) :=
forall (x : X), isWf R x.

Note that this definition has been considered numerous times before, for example in [4]
and in CoLoR [6]. An element x is well-founded if all y such that R x y are well-founded. Note
that if there is no y such that R x y, then x is vacuously well-founded. From the rewriting
perspective, this definition properly captures the notion of strong normalization. Indeed, a
term s is strongly normalizing iff every s′ such that s rewrites to s′ is strongly normalizing.

Well-foundedness contradicts the existence of infinite rewrite sequences, even in a con-
structive setting. As such, it indeed gives a stronger condition.

▶ Proposition 2.9 (no_infinite_chain). If R is well-founded, then there is no infinite
sequence s0, s1, . . . such that R(sn, sn+1), for all n.

Next, we define strong normalization using well-founded predicates.

▶ Definition 2.10 (is_SN). An algebraic functional system is strongly normalizing if
for every context C and every type A the rewrite relation for terms of type A in context C is
well-founded. We formalize that as follows:

Definition isSN {B F : Type} (X : afs B F) : Prop :=
forall (C : con B) (A : ty B), Wf (fun (t1 t2 : tm X C A) ⇒ t1 ∼> t2).

3 Higher-Order Interpretation Method

In this section, we formalize the method of weakly monotonic algebras for algebraic functional
systems. We proceed by providing type-theoretic semantics for the syntactic constructions
introduced in the last section and a sufficient condition for which such semantics can be used
to establish strong normalization.

3.1 Interpreting types and terms
In weakly monotonic algebras, types are interpreted as sets along with a well-founded
ordering and a quasi-ordering [8, 24]. For that reason, we start by defining compatible
relations. Intuitively, these are the domain for our semantics.

▶ Definition 3.1 (CompatibleRelation.v). Compatible relations are defined as follows

Record CompatRel := {
carrier :> Type ;
gt : carrier → carrier → Prop ;
ge : carrier → carrier → Prop }.

We write x > y and x >= y for gt x y and ge x y respectively.

The record CompatRel consists of the data needed to express compatibility between > and >=.
The conditions it needs to satisfy, are in the type class isCompatRel, defined below.
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Class isCompatRel (X : CompatRel) := {
gt_trans : forall {x y z : X}, x > y → y > z → x > z ;
ge_trans : forall {x y z : X}, x >= y → y >= z → x >= z ;
ge_refl : forall (x : X), x >= x ;
compat : forall {x y : X}, x > y → x >= y ;
ge_gt : forall {x y z : X}, x >= y → y > z → x > z ;
gt_ge : forall {x y z : X}, x > y → y >= z → x > z }.

Note that the field gt_trans in isCompatRel follows from compat and ge_gt. The type nat
of natural numbers with the usual orders is a first example of data that satisfies isCompatRel.
We denote this one by nat_CompatRel. This type class essentially models the notion of
extended well-founded set introduced in [18]. An extended well-founded set is a set
together with compatible orders >, ≥ such that > is well-founded and ≥ is a quasi-ordering.
This compatibility requirement corresponds to the axiom compat in the type class isCompatRel.
However, since we do not require > to be well-founded in this definition, we instead call it a
compatible relation. More specifically, X is a compatible relation if it is of type CompatRel
and satisfies the constraints in the type class isCompatRel.

In order to interpret simple types (Definition 2.1), we start by fixing a type B : Type of
base types and an interpretation semB : B → CompatRel such that each semB b is a compatible
relation. Whenever semB satisfies such property we call it an interpretation key for B. We
interpret arrow types as functional compatible relations, i.e., compatible relations such that
the inhabitants of their carrier are functional. The class of functionals we are interested in is
that of weakly-monotone maps.

▶ Definition 3.2 (MonotonicMaps.v). Weakly monotone maps are defined as follows
Class weakMonotone {X Y : CompatRel} (f : X → Y) :=

map_ge : forall (x y : X), x >= y → f x >= f y.

Record weakMonotoneMap (X Y : CompatRel) :=
make_monotone {

fun_carrier :> X → Y ;
is_weak_monotone : weakMonotone fun_carrier }.

The class weakMonotone says when a function is weakly monotonic, and an inhabitant of the
record weakMonotoneMap consists of a function together with proof of its weak monotonicity.
Then we define fun_CompatRel which is of type CompatRel and represents the functional
compatible relations from X to Y. It is defined as follows:
Definition fun_CompatRel (X Y : CompatRel) : CompatRel :={|

carrier := weakMonotoneMap X Y ;
gt f g := forall (x : X), f x > g x ;
ge f g := forall (x : X), f x >= g x |}.

In what follows, we write X →wm Y for fun_CompatRel X Y. The semantics for a type is
parametrized by an interpretation key semB. It is defined as follows:

▶ Definition 3.3 (sem_Ty). Assume A : ty B and semB is an interpretation key for B. Then
Fixpoint sem_Ty (A : ty B) : CompatRel :=

match A with
| Base b ⇒ semB b
| A1 → A2 ⇒ sem_Ty A1 →wm sem_Ty A2
end.

https://nmvdw.github.io/Nijn/html/Nijn.Prelude.Orders.MonotonicMaps.html
https://nmvdw.github.io/Nijn/html/Nijn.Interpretation.OrderInterpretation.html#sem_Ty
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We also show how to interpret contexts, and to do so, we need to interpret the empty context
and context extension. For those, we define the unit and product of compatible relations.

▶ Definition 3.4 (Examples.v). The unit and product compatible relations:
Definition unit_CompatRel :
CompatRel := {|

carrier := unit ;
gt _ _ := False ;
ge _ _ := True |}.

Definition prod_CompatRel (X Y : CompatRel) :
CompatRel := {|

carrier := X ∗ Y ;
gt x y := fst x > fst y ∧ snd x > snd y ;
ge x y := fst x >= fst y ∧ snd x >= snd y |}.

Note that unit_CompatRel is the compatible relation on the type with only one ele-
ment, for which the ordering is trivial. In addition, prod_CompatRel is the compatible
relation on the product, for which we compare elements coordinate-wise. We write X ∗ Y for
prod_CompatRel X Y.

▶ Definition 3.5 (sem_Con). Contexts are interpreted as follows

Fixpoint sem_Con (C : con B) : CompatRel :=
match C with
| • ⇒ unit_CompatRel
| A ,, C ⇒ sem_Ty A ∗ sem_Con C
end.

Next, we give semantics to variables and terms. The approach we use here is slightly
different from what is usually done in higher-order rewriting. In [8, 18, 24], for instance,
context information is lifted to the meta-level and variables are interpreted using the notion
of valuations. In contrast, in our setting, the typing context lives at the syntactic level
and variables are interpreted as weakly monotonic functions. Consequently, to every term
t : tm C A, we assign a map from sem_Con C to sem_Ty A. In the remainder, we need the
following weakly monotonic functions.

▶ Definition 3.6 (Examples.v). We define the following weakly monotonic functions.
Given y : Y, we write const_wm y : X →wm y for the constant function.
Given f : X →wm Y and g : Y →wm Z, we define g ◦wm f : X →wm Z to be their composition.
We have the first projection fst_wm : X ∗ Y →wm X, which sends a pair (x , y) to x, and
the second projection snd_wm : X ∗ Y →wm Y, which sends (x , y) to y.
Given f : X →wm Y and g : X →wm Z, we have a function 〈 f , g 〉 : X →wm (Y ∗ Z). For
x : X, we define 〈 f , g 〉 x to be (f x , g x).
Given f : Y ∗ X →wm Z, we get λwm f : X →wm (Y →wm Z). For every x : X and y : Y, we
define λwm f y x to be f (y , x).
Given f : X →wm (Y →wm Z) and x : X →wm Y, we obtain f ·wm x : X →wm Z, which sends
every a : X to f a (x a).
Given x : X, we have a weakly monotonic function apply_el_wm x : (X →wm Y) →wm Y which
sends f : X →wm Y to f x.

Recall that variables are represented by positions in a context which in turn is interpreted
as a weakly monotonic product (Definition 3.5). This allows us to interpret the variable at a
position in a context as the corresponding interpretation of the type in that position.

▶ Definition 3.7 (sem_Var). We interpret variables with the following function
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Fixpoint sem_Var {C : con B} {A : ty B} (v : var C A) : sem_Con C →wm sem_Ty A
:= match v with

| Vz ⇒ fst_wm
| Vs v ⇒ sem_Var v ◦wm snd_wm
end.

We need the following data in order to provide semantics to terms. An arity function
ar : F → ty B, together with its interpretation semF : forall (f : F), sem_Ty (ar f), and an
application operator given by

semApp : forall (A1 A2 : ty B), (sem_Ty A1 →wm sem_Ty A2) ∗ sem_Ty A1 →wm sem_Ty A2

to interpret term application.

▶ Remark 3.8. A first, but incorrect, guess to interpret application would have been by
interpreting the application of f : sem_Ty A1 →wm sem_Ty A2 to x : sem_Ty A1 by f x. However,
there is a significant disadvantage of this interpretation. Ultimately, we want to deduce
strong normalization from the interpretation, and the main idea is that if we have a rewrite
x ∼> x’, then we have semTm x > semTm x’. This requirement would not be satisfied if we
interpret application of our terms as actual applications as functions. Indeed, if we have
x < x’, then one is not guaranteed that we also have f x < f x’, because f is only weakly
monotone.

There are two ways to deal with this. One way is by interpreting function types as strictly
monotonic maps [18]. In this approach, this interpretation of application is valid. However,
it comes at a price, because the interpretation of lambda abstraction becomes more difficult.

Another approach, which we use here, is also used in [8]. We add a parameter to our
interpretation method, namely semApp, which abstractly represents the interpretation of
application. To deduce strong normalization in this setting, we add requirements about
semApp in Section 3.2. As a result, in concrete instantiations of this method, we need to
provide an actual definition for semApp. We see this in Section 4.2.

▶ Definition 3.9 (sem_Tm). Given a function semF : forall (f : F), sem_Ty (ar f), the seman-
tics of terms is given by

Fixpoint sem_Tm {C : con B} {A : ty B} (t : tm ar C A) : sem_Con C →wm sem_Ty A :=
match t with
| BaseTm f ⇒ const_wm (semF f)
| TmVar v ⇒ sem_Var v
| λ f ⇒ λwm (sem_Tm f)
| f · t ⇒ semApp _ _ ◦wm 〈sem_Tm f , sem_Tm t 〉
end.

Notice that we could have chosen a fixed way of interpreting application. We follow the
same approach used by Fuhs and Kop [8] in our formalization and leave semApp abstract.
This choice is essential if we want to use the interpretation method for both rule removal
and the dependency pair approach. See [15, Chapters 4 and 6] for more detail.

3.2 Termination Models for AFSs
Now we have set up everything that is necessary to define the main notion of this section:
termination models. From a termination model of an algebraic functional system, one obtains
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an interpretation of the types and terms. In addition, every rewrite rule is ‘satisfied’ in this
interpretation.

▶ Definition 3.10 (Interpretation). Let R be an algebraic functional system with base
type B and function symbols F. A termination model of R consists of

an interpretation key semB;
a function semF : forall (f : F), sem_Ty (ar f);
a function

semApp : forall (A1 A2 : ty B), (sem_Ty A1 →wm sem_Ty A2) ∗ sem_Ty A1 →wm sem_Ty A2

such that the following axioms are satisfied
each semB b is well-founded and inhabited;
if f > f’, then semApp _ _ (f , x) > semApp _ _ (f’ , x);
if x > x’, then semApp _ _ (f , x) > semApp _ _ (f , x’) ;
we have semApp _ _ (f , x) >= f x for all f and x;
for every rewrite rule r, substitution s, and element x, we have

semTm (lhs r [ s ]) x > semTm (rhs r [ s ]) x.

Whereas the left-hand side of every rewrite rule is greater than its right-hand side, this
does not hold for β-reduction in our interpretations. Since rewrite sequences can contain
both rewrite rules and β-reduction, such sequences are not guaranteed to strictly decrease.
As such, we need more to actually conclude strong normalization, and we follow the method
used by Kop [15]. More specifically, Kop uses rule removal to show that strong normalization
follows from the strong normalization of β-reduction, which is a famous theorem proven by
Tait [27]. The strong normalization of β-reduction has been formalized numerous times and
an overview can be found in [1]. Now we deduce the main theorem of this section.

▶ Theorem 3.11 (afs_is_SN_from_Interpretation). Let R be an algebraic functional
system. If we have a termination model of X, then X is strongly normalizing.

4 The Higher-Order Polynomial Method

4.1 Polynomials
In this section, we instantiate the material of Section 3 to a concrete instance, namely the
polynomial method [8]. For that reason, we define the notation of higher-order polynomial.

▶ Definition 4.1 (Polynomial.v). We define the type base_poly of base polynomials and
poly of higher-order polynomials by mutual induction as follows:

Inductive base_poly {B : Type}
: con B → Type :=

| P_const : forall {C : con B},
nat → base_poly C

| P_plus : forall {C : con B},
(P1 P2 : base_poly C) → base_poly C

| P_mult : forall {C : con B},
(P1 P2 : base_poly C)→ base_poly C

| from_poly : forall {C : con B} {b : B},
poly C (Base b) → base_poly C

with poly {B : Type} : con B → ty B → Type :=
| P_base : forall {C : con B} {b : B},

base_poly C →poly C (Base b)
| P_var : forall {C : con B} {A : ty B},

var C A → poly C A
| P_app : forall {C : con B} {1A 2A : ty B},

poly C (1A −→2 A)→
poly C 1A→
poly C 2A

| P_lam : forall {C : con B} {1A 2A : ty B},
poly (1A ,, C) 2A → poly C (1A −→2 A).
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We can make expressions of base polynomials using P_const (constants), P_plus (addition),
and P_mult (multiplication). In addition, from_poly takes an inhabitant of poly C (Base b)
and returns a base polynomial in context C. Using P_base, we can turn a base polynomial into
a polynomial of any base type. The constructors, P_var, P_app, and P_lam, are remniscent of
the simply typed lambda calculus. We get variables from P_var, λ-abstraction from P_lam,
and application from P_app. Note that combining from_poly and P_var, we can use variables
in base polynomials.

Let us make some remarks about the design choices we made and how they affected the
definition of polynomials. One of our requirements is that we are able to add and multiply
polynomials on different base types. This is frequently used in actual examples, such as
Example 4.2. Function symbols might use arguments from different base types, and we would
like to use both of them in polynomial expressions.

One possibility would have been to only work with the type poly and to add a constructor

P_plus : forall {C : con B} (b1 b2 : B),
poly C (Base b1) → poly C (Base b2) → poly C (Base b1)

However, we refrained from doing so: if we were to use P_const, then the elaborator would
be unable to determine the actual type if we do not tell the base type explicitly. Instead, we
used a type of base polynomials that does not depend on the actual base type. This is the
role of base_poly, which only depends on the variables being used. We can freely add and
multiply inhabitants of base_poly, and if we were to use a constant, then we do not explicitly
need to mention the base type. In addition, we are able to transfer between base_poly and
poly C (Base b), and that is what P_base and from_poly enable us to do.

Note that our definition of higher-order polynomials is rather similar to the one given by
Fuhs and Kop [8, Definition 4.1]. They define a set Pol(X), which consists of polynomial
expressions, and for every type A a set PolA(X). The set PolA(X) is defined by recursion: for
base type, it is the set of polynomials over X and for function types A1 −→ A2, it consists of
expressions Λ(y : A1).P where P is a polynomial of type A2 using an extra variable y : A1.
Our base_poly C and poly C A correspond to Pol(X) and PolA(X) respectively. However,
there are some differences. First of all, Fuhs and Kop require variables to be fully applied,
whereas we permit partially applied variables. Secondly, Fuhs and Kop define polynomials in
such a way that for every two base types b1, b2 the types Polb1(X) and Polb2(X) are equal.
This is not the case in our definition: instead we use constructors from_poly and P_base to
relate base_poly C and poly C (Base b).

In the polynomial method, the interpretation key sends every base type to nat_CompatRel,
and in what follows, we write J C Kcon and J A Kty for the interpretation of contexts and
types respectively. Note that every polynomial P : poly C A gives rise to a weakly monotonic
function sem_poly P : J C Kcon →wm J A Kty and that every base polynomial P : base_poly C
gives rise to sem_base_poly P : JC Kcon →wm nat_CompatRel. These two functions are defined
using mutual recursion and every constructor is interpreted in the expected way: sem_poly.

In order to actually use base_poly C and poly C A, we provide convenient notations for
operations on polynomials. More concretely, we define notations +, ∗, and ·P that represent
addition, multiplication, and application respectively. These operations must be overloaded
since we need to be able to add polynomials of different types. To do so, we similarly use
type classes to MathClasses [26]. For details, we refer the reader to the formalization.

▶ Example 4.2 (map_fun_poly). We continue with Example 2.7 and provide a polynomial
interpretation to the system map_afs as follows:

Definition map_fun_poly fn_symbols : poly •(arity trs fn_symbols) :=

https://nmvdw.github.io/Nijn/html/Nijn.TerminationTechniques.PolynomialMethod.Polynomial.html#sem_poly
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match fn_symbols with
| Tnil ⇒ to_Poly (P_const 3)
| Tcons ⇒ λP λP let y1 := P_var Vz in

to_Poly (P_const 3 + P_const 2 ∗ y1)
| Tmap ⇒ λP let y0 := P_var (Vs Vz) in λP let G1 := P_var Vz in

to_Poly (P_const 3 ∗ y0 + P_const 3 ∗ y0 ∗ (G1 ·P (y0)))
end.

Informally, the interpretation of nil is the constant 3. The interpretation of cons is the
function that sends y1 : N to 3 + 2y1, and map is interpreted as the function that sends y0 : N
and G1 : N →wm N to 3y0 + 3y0G1(y0).

4.2 Polynomial Interpretation
Using polynomials, we deduce strong normalization under certain circumstances using Theo-
rem 3.11. Suppose that for all function symbols f we have a polynomial J : poly • (arity X f),
and now we need to provide the interpretation for application. Following Fuhs and Kop [8],
we use a general method to interpret application. We start by constructing a minimal element
in the interpretation of every type.

▶ Definition 4.3 (min_el_ty). For every simple type A we define a minimal element of
J A Kty as follows
Fixpoint min_el_ty (A : ty B) : minimal_element JA Kty

:= match A with
| Base _ ⇒ nat_minimal_element
| A1 −→ A2 ⇒ min_el_fun_space (min_el_ty A2)
end.

Here nat_minimal_element is defined to be 0, and min_el_fun_space (min_el_ty A2) is the
constant function on (min_el_ty A2).

In order to define the semantics of application, we need several operations involving
J A Kty. First, we consider lower value functions.

▶ Definition 4.4 (lvf). We define the lower value function as follows
Fixpoint lvf {A : ty B} : J A Kty →wm nat_CompatRel :=

match A with
| Base _ ⇒ id_wm
| A1 −→ A2 ⇒ lvf ◦wm apply_el_wm (min_el_ty A1)

end.

Note that we construct lvf directly as a weakly monotonic function. In addition, we reuse
the combinators defined in Definition 3.6. As such, we do not need to prove separately that
this function is monotonic.

In Kop and Fuhs [8], this definition is written down in a different, but equivalent, way.
Instead of defining lvfA recursively, they look at full applications, which would be more
complicated in our setting. More specifically, since we are working with simple types, we must
have that A = A1 −→ . . . −→ An −→ B. Then they define lvfA(f) := f(⊥A1 , . . . , ⊥An),
where ⊥A is the minimum element of the interpretation of A. Next, we define two addition
operations on J A Kty.

▶ Definition 4.5 (plus_ty_nat). Addition of natural numbers and elements on J A Kty is
defined as follows
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Fixpoint plus_ty_nat {A : ty B} : JA Kty ∗ nat_CompatRel →wm JA Kty
:= match A with

| Base _ ⇒ plus_wm
| A1 −→ A2 ⇒

let f := fst_wm ◦wm snd_wm in
let x := fst_wm in
let n := snd_wm ◦wm snd_wm in
λwm (plus_ty_nat ◦wm 〈f ·wm x , n 〉)

end.

The function plus_ty_nat allows us to add arbitrary natural numbers to elements of the
interpretation of types. Note that there are two cases in Definition 4.5. First of all, the type A
could be a base type. In that case, we are adding two natural numbers, and we use the usual
addition operation. In the second case, we are working with a functional type A1 −→ A2.
The resulting function is defined using pointwise addition with the relevant natural number.
Now we have everything in place to define the interpretation of application.

▶ Definition 4.6 (p_app). Application is interpreted as the following function

Definition p_app {A1 A2 : ty B}
: J A1 −→ A2 Kty ∗ J A1 Kty →wm J A2 Kty
:= let f := fst_wm in

let x := snd_wm in
plus_ty_nat ◦wm 〈f ·wm x , lvf ◦wm x 〉.

If both A1 and A2 are base types, then p_app (f , x) reduces to f x + x. Note that p_app
satisfies the requirements from Theorem 3.11. Hence, we obtain the following.

▶ Theorem 4.7 (poly_Interpretation). Let R be an AFS. Suppose that for every function
symbol f we have a polynomial p_fun_sym f such that for all rewrite rules l ∼> r in R we
have semTm l x > semTm r x for all x. Then R has a termination model.

4.3 Constraint Solving Tactic
Notice that in order to formally verify a proof of termination of a system using Theorem 4.7,
we need to provide a polynomial interpretation and show that JℓK > JrK holds for all rules
ℓ → r. This will introduce inequality proof goals into the Coq context that must be solved.

▶ Example 4.8. Let us consider a concrete example. We use the polynomials given in
Example 4.2 to show strong normalization of Example 2.7. This example introduces two
inequalities, one for each rule. Let G0 : N →wm N be weakly monotonic. For rule map_nil, we
need to prove that for all G0, the constraint 12 + G0(0) + 9G0(3) > 3 holds. For the second
rule, map_cons, the constraint is: 12 + 4y0 + 12y1 + G0(0) + (3y0 + 9y1 + 9)G0(3 + y0 + 3y1) >

3 + y0 + 12y1 + 3G0(0) + G0(y0) + 9y1G0(y1), for all y0, y1 ∈ N and G0.

Finding witnesses for such inequalities is tedious, and we would like to automate this
task. For that reason, we developed a tactic (solve_poly) that automatically solves the
inequalities coming from Theorem 4.7. Essentially, this tactic tries to mimic how one would
solve those goals in a pen-and-paper proof, and the same method is used by Wanda.

▶ Example 4.9. We show how to solve the constraint arising from map_cons mentioned
in Example 4.8. The first step is to find matching terms on both sides of the inequality
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and subtract them. In our example, 3 + y0 + 12y1 + G0(0) occurs on both sides, and after
subtraction, we obtain the following constraint:

9 + 3y0 + 9y1 + (3y0 + 9y1 + 9)G0(3 + y0 + 3y1) > 2G0(0) + G0(y0) + 9y1G0(y1).

The second step is combining the arguments for the higher-order variable G0 use its mono-
tonicity. Note that each of 0, y0, and y1 is lesser than or equal to 3 + y0 + 3y1, because they
are natural numbers. Since G0 is weakly monotonic, we get

2G0(0) + G0(y0) + 9y1G0(y1) ≤ (9y1 + 3)G0(3 + y0 + 3y1).

Now we can simplify our original constraint to

9 + 3y0 + 9y1 + (3y0 + 9y1 + 9)G0(3 + y0 + 3y1) > (9y1 + 3)G0(3 + y0 + 3y1).

Since 3y0 + 9y1 + 9 ≥ 9y1 + 3, we have

(3y0 + 9y1 + 9)G0(3 + y0 + 3y1) ≥ (9y1 + 3)G0(3 + y0 + 3y1).

This is sufficient to conclude that the constraints for map_cons are satisfied.

The tactic solve_poly (solve_poly) follows the steps described above. Note that we use the
tactic nia, which is a tactic in Coq that can solve inequalities and equations in nonlinear
integer arithmetic. More specifically, solve_poly works as follows:

First, we generate a goal for every rewrite rule, and we destruct the assumptions so that
each variable in the context is either a natural number or a function.
For every variable f that has a function type, we look for pair (x, y) such that f(x) on
the left hand side and f(y) occurs on the right-hand side. We try using nia whether we
can prove x < y from our assumptions. If so, we add x < y to the assumptions, and
otherwise, we continue.
The resulting goals with the extra assumptions are solved using nia.

Note that solve_poly is not complete, because nia is incomplete. As such, if a proof
using this tactic is accepted by Coq, then that proof is correct. However, if the proof is not
accepted, then it does not have to be the case that the proof is false. With the material
discussed in this section, we can write down the polynomials given in Example 4.2, and the
tactic is able to verify strong normalization.

5 Generating Proof Scripts

In this section, we discuss the practical aspects of our verification framework. In principle
one can manually encode rewrite systems as Coq files and use the formalization we provide
to verify their own termination proofs. However, this is cumbersome to do. Indeed, in
Example 2.7 we used abbreviations to make the formal description of Rmap more readable.
A rewrite system with many more rules would be difficult to encode manually. Additionally,
to formally establish termination we also need to encode proofs. We did this in Example 4.2.
The full formal encoding of Rmap and its termination proof is found in the file Map.v.

5.1 Proof traces for polynomial interpretation
This difficulty of manual encoding motivates the usage of proof traces. A proof trace is a
human-friendly encoding of a TRS and the essential information needed to reconstruct the
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termination proof as a Coq script. Let us again consider Rmap as an example. The proof
trace for this system starts with YES to signal that we have a termination proof for it. Then
we have a list encoding the signature and the rules of the system.

YES
Signature: [

cons : a -> list -> list ;
map : list -> (a -> a) -> list ;
nil : list

]
Rules: [

map nil F => nil ;
map (cons X Y) G => cons (G X) (map Y G)

]

Notice that the free variables in the rules do not need to be declared nor their typing
information provided. Coq can infer this information automatically. The last section of the
proof trace describes the interpretation of each function symbol in the signature.

Interpretation: [
J(cons) = Lam[y0;y1].3 + 2*y1;
J(map) = Lam[y0;G1].3*y0 + 3*y0 * G1(y0);
J(nil) = 3

]

We can fully reconstruct a formal proof of termination for Rmap, which uses Theorem 4.7,
with the information provided in the proof trace above. The full description of proof traces
can be found in [29], the API for ONijn. Proof traces are not Coq files. So we need to
further compile them into a proper Coq script. The schematics in Figure 1 describe the steps
necessary for it. We use ONijn to compile proof traces to Coq script. It is invoked as follows:

onijn path/to/proof/trace.onijn -o path/to/proof/script.v

Here, the first argument is the file path to a proof trace file and the -o option requires the file
path to the resulting Coq script. The resulting Coq script can be verified by Nijn as follows:

coqc path/to/proof/script.v

Instructions on how to locally install ONijn/Nijn can be found at [29].

5.2 Verifying Wanda’s Polynomial Interpretations
It is worth noticing that the termination prover is abstract in our certification framework.
This means that we are not bound to a specific termination tool. So we can verify any
termination tool that implements the interpretation method described here and can output
proof traces in ONijn format.

Since Wanda [16] is a termination tool that implements the interpretation method in [8],
it is our first candidate for verification. We added to Wanda the runtime argument --formal
so it can output proof traces in ONijn format. In [16] one can find details on how to invoke
Wanda. For instance, we illustrate below how to run Wanda on the map AFS.

./wanda.exe -d rem --formal Mixed_HO_10_map.afs
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The setting -d rem sets Wanda to disable rule removal. The option --formal sets Wanda to
only use polynomial interpretations and output proofs to ONijn proof traces. Running Wanda
with these options gives us the proof trace we used for Rmap above. The latest version of
Wanda, which includes this parameter, is found at [17].

The table below describes our experimental evaluation on verifying Wanda’s output with
the settings above. The benchmark set consists of those 46 TRSs that Wanda outputs
YES while using only polynomial interpretations and no rule removal. The time limit for
certification of each system is set to 60 seconds.

The experiment was run in a machine with M1 Pro 2021 processor with 16GB of RAM.
Memory usage of Nijn during certification ranges from 400MB to 750MB. We provide the
experimental benchmarks at https://github.com/deividrvale/nijn-coq-script-generation.

Wanda Nijn/ONijn
Technique # YES Pct. Avg. Time # Certified Perc. Avg. Time
Poly, no rule removal 46 23% 0.07s 46 100% 4.06s

Table 1 Experimental Results

Hence, we can certify all TRSs proven SN by Wanda using only polynomial interpretations.

6 Conclusions and Future Work

We presented a formalization of the polynomial method in higher-order rewriting. This
not only included the basic notions, such as algebraic functional systems, but also the
interpretation method and the instantiation of this method to polynomials. In addition, we
showed how to generate Coq scripts from the output of termination provers. This allowed us
to certify their output and construct a formal proof of strong normalization. We also applied
our tools to a concrete instance, namely to check the output of Wanda.

There are numerous ways to extend this work. First, one could formalize more techniques
from higher-order rewriting, such as tuple interpretations [18] and dependency pairs [19,
22]. One could also integrate HORPO into our framework [20]. Second, in the current
formalization, the interpretation of application is fixed for every instance of the polynomial
method. One could also provide the user with the option to select their own interpretation.
Third, currently, only Wanda is integrated with our work. This could be extended so that
there is direct integration for other tools as well.
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