
Tuple Interpretations for Higher-Order Complexity1

Cynthia Kop2

Department of Software Science, Radboud University Nijmegen, The Netherlands3

Deivid Vale4

Department of Software Science, Radboud University Nijmegen, The Netherlands5

Abstract6

We present a style of algebra interpretations for many-sorted and higher-order term rewriting based7

on interpretations to tuples; intuitively, a term is mapped to a sequence of values identifying for8

instance its evaluation cost, size and perhaps other values. This could give a more fine-grained9

notion of the complexity of a term or TRS than notions such as runtime or derivational complexity.10

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting11

Keywords and phrases Complexity, higher-order term rewriting, many-sorted term rewriting, poly-12

nomial interpretations, weakly monotonic algebras13

Funding The authors are supported by the NWO TOP project “ICHOR”, NWO 612.001.803/7571.14

1 Introduction15

In the study of complexity of term rewriting systems, it is common to consider termination16

techniques: if a TRS can be proved terminating by a certain technique, this typically implies17

a specific bound on the number of steps that may be needed to reduce a term in that TRS18

to normal form (see, e.g., [2, 4, 5, 7]). Some approaches (e.g., [5, 7]) consider interpretations19

of terms s. Interpretations impose a natural bound on reduction length for given terms.20

By their nature, interpretations to natural numbers do not tend to give tight bounds.21

Consider for example the term rewriting system implementing addition, which is given22

by the rules add(x, 0) → x and add(x, s(y)) → s(add(x, y)). An interpretation would need23

to be monotonic, and have J`K > JrK for both rules. This leads to for instance: J0K = 0,24

Js(x)K = JxK + 1 and Jadd(x, y)K = JxK + 2 · JyK + 1. With these choices, we indeed have:25

Jadd(x, 0)K = JxK + 1 > JxK = JxK
Jadd(x, s(y))K = JxK + 2 · JyK + 2 > JxK + 2 · JyK + 1 = Js(add(x, y))K26

But Jadd(sn(0), sm(0))K = n+ 2m+ 1, even though only n+m+ 1 steps can be done before27

reaching normal form. This is because the interpretation captures not only the reduction28

cost, but also the size of the normal form. This is not problematic for the example above,29

because the result is still linear runtime complexity. However, for exponential bounds, the30

consequences are more severe: consider O(2n) versus O(23n) = O(8n). And particularly31

when considering higher-order term rewriting, exponential bounds are often very relevant.32

The situation could be improved by splitting interpretations into separate cost and size33

components, as was done for conditional rewriting in [6]. For instance, in the example above we34

could take Jadd(x, y)Ksize = JxKsize+JyKsize and Jadd(x, y)Kcost = JxKcost+JyKcost+JyKsize+1.35

More generally, we could interpret terms to tuples of arbitrary size. This essentially generalises36

matrix interpretations [7] as well, by mapping terms to a vector but not imposing restrictions37

on the shape of interpretation functions. This could be particularly useful for many-sorted and38

higher-order term rewriting systems, where the choice of tuple length may be type-dependent.39

The present short paper explores the ideas above. It documents work in progress with40

the aim to help establish a more fine-grained notion of complexity for term rewriting—which41

captures both time, space and perhaps other properties such as the shape of normal forms.42

The technique we develop may also be useful for resource analysis of higher-order programs.43

https://orcid.org/0000-0002-6337-2544
https://orcid.org/0000-0003-1350-3478

2 Tuple Interpretations for Higher-Order Complexity

2 Preliminaries: many-sorted and higher-order term rewriting44

We assume familiarity with first-order term rewriting. In many-sorted rewriting, all function45

symbols have a sequence of input sorts, and an output sort; and terms must be well-typed.46

I Example 1. The TRS R+, for arithmetic and lists, has six function symbols: 0 :: nat,47

nil :: list, s :: nat=⇒nat, add :: nat× nat=⇒nat, mult :: nat× nat=⇒nat, dList :: list→ list, and48

cons :: nat× natlist→ natlist. It is given by rules of sort nat and list, as follows:49

add(x, 0)→ x d(0)→ 050

add(x, s(y))→ s(add(x, y)) d(s(x))→ s(s(d(x)))51

mult(x, 0)→ 0 dList(nil)→ nil52

mult(x, s(y))→ add(x,mult(x, y)) dList(cons(x, q))→ cons(d(x), dList(q))53
54

For higher-order rewriting, we use a formalism where function symbols take a sequence55

of simple types as input (i.e., generated from a set B of sorts and a right-associative binary56

type constructor ⇒) and a sort as output; term formation allows for function application57

(f(s1, . . . , sm) : ι if f : σ1 × · · · × σm=⇒ι is a symbol and each si : σi), as well as application58

(i.e., if s : σ⇒τ and t : σ than s t : τ) and λ-abstraction as in the simply-typed λ-calculus.59

The β-reduction rule (λx.s) t→ s[x := t] is always included in the reduction relation →R.60

I Example 2. LetRfold be the higher-order TRS with symbols nil :: list, cons :: nat× list=⇒list,61

map :: (nat⇒nat)× list=⇒list and foldl :: (nat⇒nat⇒nat)× nat× list=⇒nat and rules:62

foldl(f, z, nil)→ z map(f, nil)→ nil63

foldl(f, z, cons(x, q))→ foldl(f, (f z x), q) map(f, cons(x, q))→ cons(f x,map(f, q))64
65

3 First-Order type-based interpretation66

It is common in the rewriting literature to use termination proofs to assess the difficulty of67

rewriting a term to a normal form [2, 5]. For example, in [5], Hofbauer gives a first upper-68

bound for the derivational complexity of first-order TRS’s with polynomial interpretation as69

termination proofs. This technique has been extended to other termination proofs as well [2].70

Polynomial interpretations are a form of algebra interpretations:71

I Definition 3 (adapted from [8]). An algebra A for many-sorted first-order terms consists72

of a mapping from each sort ι ∈ B to a well-founded set (Aι, >ι,≥ι) together with an73

interpretation function J which assigns to each f :: ι1 × · · · × ιm=⇒κ ∈ F a monotonic74

function Jf ∈ Aι1 → · · · → Aιm → Aκ (monotonic: Jf(. . . , x, . . .) > Jf(. . . , y, . . .) if x > y).75

If α is a mapping from variables of sort ι to Aι, term interpretation is defined recursively76

with JxKJ
α = α(x) and Jf(s1, . . . , sm)KJ

α = Jf(Js1KJ
α , . . . , JsmKJ

α). We usually omit α and J77

and just write JsK. Termination follows if J`KJ
α > JrKJ

α for all α and a fixed J .78

If each Aι = N, then JsK gives a worst-case boundary on the number of rewriting steps79

starting from s (as observed in the introduction); this can be used to bound the number of80

steps starting from an arbitrary term of size n, depending on the shape of the interpretation.81

As an alternative, we consider interpretations with Aι = NKι . We let (n1, . . . , nKι) ≥82

(n′
1, . . . , n

′
Kι

) if each ni ≥ n′
i, and (n1, . . . , nKι) > (n′

1, . . . , n
′
Kι

) if n1 > n′
1 and each ni ≥ n′

i.83

For example, we let Anat = N2 and Alist = N3. Intuitively, the first component in both cases84

indicates “cost”: the number of steps needed to reduce a term to normal form. The second85

component of Anat represents the size of the natural number, and the second and third86

component of Alist represent the list length and maximum element size respectively.87

C. Kop and D. Vale 3

I Example 4. Consider the signature of Example 1. We set its interpretation as follows88

below, where sc is syntactic sugar for JsK1 (the cost component of s), ss and sl are JsK2 (the89

size or length component) and sm is JsK3 (the component for maximum element size).90

J0K = 〈0, 1〉 JnilK = 〈0, 0, 0〉
Js(x)K = 〈xc, xs + 1)〉 Jcons(x, q)K = 〈xc + qc, ql + 1,max(xs, qm)〉
Jd(x)K = 〈1 + xc + xs, 2 · xs〉 JdList(q)K = 〈1 + qc + ql · (2 + qm), ql, 2 · qm〉

Jadd(x, y)K = 〈1 + xc + yc + ys, xs + ys〉
Jmult(x, y)K = 〈1 + xc + yc + xs · (2 + xc + xs · ys), xs · ys〉

91

We can easily check that J`K > JrK for all rewrite rules `→ r; that is, there is a strict decrease92

in the “cost” component and a weak decrease (with ≥) in the others. For example:93

JdList(cons(x, q))K
= 〈1 + (xc + qc) + (ql + 1) · (2 + max(xs, qm)), ql + 1, 2 ·max(xs, qm)〉
= 〈3 + xc + qc + max(xs, qm) + ql · (2 + max(xs, qm)), ql + 1, 2 ·max(xs, qm)〉
> 〈2 + xc + qc + xs + ql · (2 + qm), ql + 1,max(2 · xs, 2 · qm)〉
= 〈(1 + xc + xs) + (1 + qc + ql · (2 + qm)), ql + 1,max(2 · xs, 2 · qm)〉
= Jcons(d(x), dList(q))K

94

Note that our interpretation method has some similarities with matrix interpretations [3], as95

each term is associated to an n-tuple. However, the interpretation function is not restricted96

to linear multivariate polynomials, allowing interpretations such as those for cons and mult.97

Tuple interpretations give information on more than just the cost of evaluating a term.98

I Example 5 (Bounds for arithmetic). We have JdList(cons(s3(0), cons(s1(0), nil)))K = 〈11, 2, 6〉.99

Given the way the interpretation was constructed, this implies that an evaluation to normal100

form takes at most 11 steps, and the normal form has length at most 2 and a greatest element101

at most s6(0). The cost component is not tight: it only takes 8 steps to evaluate the term102

(11 is the maximum number of steps to evaluate dList(q) for any constructor-list q of length103

2 and with greatest element s3(0)). The other two values are tight.104

4 Higher-order type-based interpretations105

In first-order term rewriting, the complexity of a TRS is often measured as runtime or106

derivational complexity: both measures are parametrised by the size of an initial term. This107

is not a good measure for terms with immediate subterms of higher-order type: the behaviour108

of such subterms on given arguments should be considered, as the next example shows.109

I Example 6. ConsiderR+∪Rfoldl. The evaluation cost of a term foldl(F, t, q) depends almost110

completely on the behaviour of the functional subterm F , and not only on its evaluation cost.111

If F is λx.λy.d(x)—so a size-increasing term—evaluating foldl(F, t, q) takes exponentially112

many steps, even though d runs in linear steps and F is executed only |q| times. Thus,113

higher-order rewriting in particular is a natural place to separate cost and size.114

Algebra interpretations for higher-order rewriting were defined in [8]. Essentially, the115

interpretations of Definition 3 are extended by letting Aσ⇒τ be the set of weakly monotonic116

functions from Aσ to Aτ (that is, f(. . . , x, . . .) ≥τ f(. . . , y, . . .) if x ≥σ y), with >σ⇒τ117

and ≥σ⇒τ being point wise comparisons. While the author of [8] and followup work used118

N for Aι (with ι ∈ B), the method needs no modification when tuple interpretations are119

used instead. For elements of Aι⇒σ, we moreover limit interest to functions f such that120

always f(x1, x2 . . . , xn)i = f(x′
1, x2, . . . , xn)i for i > 1; that is, the size, length and “greatest121

element” components do not depend on the cost component (but may depend on each other).122

4 Tuple Interpretations for Higher-Order Complexity

I Example 7. Let Anat = N2 and Alist = N3 as before, and assume cons and nil are interpreted123

as in Example 4. We can use the following interpretation for map:124

Jmap(f, q)K = 〈 1 + qc + 2 · ql + (ql + 1) · JfK(qc, qm)1, ql, JfK(qc, qm)2 〉125

This expresses that the list length is retained (as the length component is just ql), the greatest126

element of the result map is bounded by the value of f on the greatest element of q, and127

the evaluation cost is mostly expressed by a linear number of f steps. For Jmap(λx.d(x), q)K128

we obtain 〈1 + qc + 2 · ql + (ql + 1) · (1 + qc + qm), ql, 2 · qm〉. This is slightly larger than129

JdList(q)K (which evaluates to the same term), but has a similar order of magnitude.130

For foldl, we can use an interpretation like the one below, where Qg,h,a,m : N2 → N2 is131

defined as follows: Qg,h,a,m(c, s) = 〈c+ a+ g(c, s, a,m), h(s,m)〉; the superscript denotes132

repeated function application (e.g., Q3(x) = Q(Q(Q(x)))) and + indicates placewise addition.133

Jfoldl(f, z, q)K = 〈1 + ql + qc, 0〉+ JfK(〈0, 0〉) +Qql
g,h,qc,qmmax

(JzK)134

Where g := λxc, xs, yc, ys.JfK(〈xc, xs〉 , 〈yc, ys〉)1 and h := λxs, ys.JfK(〈0, xs〉 , 〈0, ys〉)2 (re-135

spectively, the cost and size parts of JfK. This is much harder to read, but can still be used136

to gain an idea of the complexity for specific (groups of) instantiations of f .137

5 Discussion138

This paper aims to start a line of research for termination and complexity analysis of139

higher-order term rewriting. We abandon the classical notions of derivational and runtime140

complexity that are often used for this task, since these do not naturally match the behaviour141

of higher-order terms. We separate cost and size (and other structural properties) in our142

analysis, which is a similar idea (but very different angle) to analysis using sized types [1].143

In the future, we plan to further develop the method, and find interpretations to other144

classic higher-order functions that often occur as part of larger systems. We aim to investigate145

properties of the technique, and hope to find connections both in the broader area of146

computational complexity and in the analysis of term rewriting. We are also interested in147

automating the construction of interpretations, and in applications in functional programming.148

References149

1 M. Avanzini and U. Dal Lago. Automating sized-type inference for complexity analysis. In150

Proc. ICFP, ACM, page Article 43, 2017.151

2 M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. FLOPS, volume 4989152

of LNCS, pages 130–146, 2008.153

3 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination154

of term rewriting. JAR, 40:195–220, 2008.155

4 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair156

method. In Proc. IJCAR 08, volume 5195 of LNCS, pages 364–379, 2008.157

5 D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In Proc.158

RTA, volume 355 of LNCS, pages 167–177, 1989.159

6 C. Kop, A. Middeldorp, and T. Sternagel. Complexity of conditional term rewriting. LMCS,160

13(1), 2017.161

7 G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on162

matrix and context dependent interpretations. In Proc. FSTTCS 08, volume 2 of LIPIcs,163

pages 304–315, 2008.164

8 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of165

Utrecht, 1996.166

	Introduction
	Preliminaries: many-sorted and higher-order term rewriting
	First-Order type-based interpretation
	Higher-order type-based interpretations
	Discussion

