
COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE

TERM REWRITING

CYNTHIA KOP AND JAKOB GRUE SIMONSEN

Department of Computer Science, Copenhagen University
e-mail address: {kop,simonsen}@di.ku.dk

Abstract. Constructor rewriting systems are said to be cons-free if, roughly, constructor
terms in the right-hand sides of rules are subterms of the left-hand sides; the computational
intuition is that rules cannot build new data structures. In programming language research,
cons-free languages have been used to characterize hierarchies of computational complexity
classes; in term rewriting, cons-free first-order TRSs have been used to characterize P.

We investigate cons-free higher-order term rewriting systems, the complexity classes
they characterize, and how these depend on the type order of the systems. We prove that,
for every K ≥ 1, left-linear cons-free systems with type order K characterize EKTIME if
unrestricted evaluation is used (i.e., the system does not have a fixed reduction strategy).

The main difference with prior work in implicit complexity is that (i) our results hold
for non-orthogonal TRSs with no assumptions on reduction strategy, (ii) we consequently
obtain much larger classes for each type order (EKTIME versus EXPK−1TIME), and (iii)
results for cons-free term rewriting systems have previously only been obtained for K = 1,
and with additional syntactic restrictions besides cons-freeness and left-linearity.

Our results are among the first implicit characterizations of the hierarchy E = E1TIME (
E2TIME (· · · . Our work confirms prior results that having full non-determinism (via over-
lapping rules) does not directly allow for characterization of non-deterministic complexity
classes like NE. We also show that non-determinism makes the classes characterized highly
sensitive to minor syntactic changes like admitting product types or non-left-linear rules.

1. Introduction

In [15], Jones introduces cons-free programming : working with a small functional program-
ming language, cons-free programs are exactly those where function bodies cannot contain
use of data constructors (the “cons” operator on lists). Put differently, a cons-free program
is read-only : data structures cannot be created or altered, only read from the input; and any
data passed as arguments to recursive function calls must thus be part of the original input.

The interest in such programs lies in their applicability to computational complexity: by
imposing cons-freeness, the resulting programs can only decide the sets in a proper subclass
of the Turing-decidable sets; indeed are said to characterize the subclass. Jones shows that
adding further restrictions such as type order or enforcing tail recursion lowers the resulting

Supported by the Marie Sk lodowska-Curie action “HORIP”, program H2020-MSCA-IF-2014, 658162 and
by the Danish Council for Independent Research Sapere Aude grant “Complexity via Logic and Algebra”.

c© C. Kop and J.G. Simonsen
Creative Commons

1

2 C. KOP AND J.G. SIMONSEN

expressiveness to known classes. For example, cons-free programs with data order 0 can
decide exactly the sets in PTIME, while tail-recursive cons-free programs with data order 1
can decide exactly the sets in PSPACE. The study of such restrictions and the complexity
classes characterized is a research area known as implicit complexity and has a long history
with many distinct approaches (see, e.g., [4, 5, 6, 7, 8, 13, 18]).

Rather than a toy language, it is tantalizing to consider term rewriting instead. Term
rewriting systems have no fixed evaluation order (so call-by-name or call-by-value can be
introduced as needed, but are not required); and term rewriting is natively non-deterministic,
allowing distinct rules to be applied (“functions to be invoked”) to the same piece of syntax,
hence could be useful for extensions towards non-deterministic complexity classes. Implicit
complexity using term rewriting has seen significant advances using a plethora of approaches
(e.g. [1, 2, 3]). Most of this research has, however, considered fixed evaluation orders (most
prominently innermost reduction), and if not, then systems which are either orthogonal, or
at least confluent (e.g. [2]). Almost all of the work considers only first-order rewriting.

The authors of [11] provide a first definition of cons-free term rewriting without con-
straints on evaluation order or confluence requirements, and prove that this class—limited to
first-order rewriting—characterizes PTIME. However, they impose a rather severe partial
linearity restriction on the programs. This paper seeks to answer two questions: (i) what
happens if no restrictions beyond left-linearity and cons-freeness are imposed? And (ii)
what if we consider higher-order term rewriting? We obtain that Kth-order cons-free term
rewriting exactly characterizes EKTIME. This is surprising because in Jones’ rewriting-like
language, Kth-order programs characterize EXPK−1TIME: surrendering both determinism
and evaluation order thus significantly increases expressivity. Our results are comparable to
work in descriptive complexity theory (roughly, the study of logics characterizing complexity
classes) where the non-deterministic classes NEXPK−1TIME in the exponential hierarchy
are exactly the sets axiomatizable by ΣK formulas in appropriate query logics [19, 12].

2. Preliminaries

2.1. Computational Complexity. We presuppose introductory working knowledge of
computability and complexity theory (see, e.g., [14]). Notation is fixed below.

Turing Machines (TMs) are tuples (I, A, S, T) where I ⊇ {0, 1} is a finite set of initial
symbols; A ⊇ I ∪ { } is a finite set of tape symbols with /∈ I the special blank symbol;
S ⊇ {start, accept, reject} is a finite set of states; and T is a finite set of transitions
(i, r, w, d, j) with i ∈ S \ {accept, reject} (the original state), r ∈ A (the read symbol),
w ∈ A (the written symbol), d ∈ {L, R} (the direction), and j ∈ S (the result state). We also

write this transition as i
r/w d
===⇒ j. All machines in this paper are deterministic: every pair

(i, r) with i ∈ S \ {accept, reject} is associated with exactly one transition (i, r, w, d, j).
Every Turing Machine in this paper has a single, right-infinite tape.

A valid tape is a right-infinite sequence of tape symbols with only finitely many not
. A configuration of a TM is a triple (t, p, s) with t a valid tape, p ∈ N and s ∈ S. The

transitions T induce a binary relation ⇒ between configurations in the obvious way.

Definition 1. Let I ⊇ {0, 1} be a set of symbols. A decision problem is a set X ⊆ I+.

A TM with input alphabet I decides X ⊆ I+ if for any string x ∈ I+, we have x ∈ X iff
(x1 . . . xn . . . , 0, start)⇒∗ (t, i, accept) for some t, i, and (x1 . . . xn . . . , 0, start)⇒∗

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 3

(t, i, reject) otherwise (i.e., the machine halts on all inputs, ending in accept or reject

depending on whether x ∈ X). If f : N −→ N is a function, a (deterministic) TM runs in time

λn.f(n) if, for each n ∈ N \ {0} and each x ∈ In, we have (x . . . , 0, start)⇒≤f(n) (t, i, s)

for some s ∈ {accept, reject}, where⇒≤f(n) denotes a sequence of at most f(n) transitions.

We categorize decision problems into classes based on the time needed to decide them.

Definition 2. Let f : N −→ N be a function. Then, TIME (f(n)) is the set of all S ⊆ I+

such that there exist a > 0 and a deterministic TM running in time λn.a · f(n) that decides
S (i.e., S is decidable in time O(f(n))). Note that by design, TIME (·) is closed under O.

Definition 3. For K,n ≥ 0, let exp0
2(n) = n and expK+1

2 (n) = 2exp
K
2 (n) = expK2 (2n).

For K ≥ 1 define: EKTIME ,
⋃
a∈N TIME

(
expK2 (an)

)
.

Observe in particular that E1TIME =
⋃
a∈N TIME

(
exp1

2(an)
)

=
⋃
a∈N TIME (2an) = E

(where E is the usual complexity class of this name, see e.g., [20, Ch. 20]). Note also that

for any d,K ≥ 1, we have (expK2 (x))d = 2d·exp
K−1
2 (x) ≤ 2exp

K−1
2 (dx) = expK2 (dx). Hence, if P

is a polynomial with non-negative integer coefficients and the set S ⊆ {0, 1}+ is decided by
an algorithm running in TIME

(
P (expK2 (an))

)
for some a ∈ N, then S ∈ EKTIME.

By the Time Hierarchy Theorem [21], E = E1TIME (E2TIME (E3TIME (· · · . The
union

⋃
K∈N EKTIME is the set ELEMENTARY of elementary-time computable languages.

We will also sometimes refer to EXPKTIME ,
⋃
a,b∈N TIME

(
expK2 (anb)

)
.

2.2. Applicative term rewriting systems. Unlike first-order term rewriting, there is no
single, unified approach to higher-order term rewriting, but rather a number of different
co-extensive systems with distinct syntax; for an overview of basic issues, see [22]. For
the present paper, we have chosen to employ applicative TRSs with simple types, as (a)
the applicative style and absence of explicitly bound variables allows us to present our
examples—in particular the “counting modules” of § 4—in the most intuitive way, and (b)
this particular variant of higher-order rewriting is syntactically similar to Jones’ original
definition using functional programming. However, our proofs do not use any features
of ATRS that preclude using different formalisms; for a presentation using simply-typed
rewriting with explicit binders, we refer to the conference version of this paper [16].

Definition 4 (Simple types). We assume given a non-empty set S of sorts. Every ι ∈ S is a
type of order 0. If σ, τ are types of order n and m respectively, then σ ⇒ τ is a type of order
max(n+ 1,m). Here ⇒ is right-associative, so σ ⇒ τ ⇒ π should be read σ ⇒ (τ ⇒ π).

We additionally assume given disjoint sets F of function symbols and V of variables,
each equipped with a type. This typing imposes a restriction on the formation of terms:

Definition 5 (Terms). The set T (F ,V) of terms over F and V consists of those expressions
s such that s : σ can be derived for some type σ using the following clauses: (a) a : σ for
(a : σ) ∈ F ∪ V, and (b) s t : τ if s : σ ⇒ τ and t : σ.

Clearly, each term has a unique type. A term has base type if its type is in S, and has
functional type otherwise. We denote Var(s) for the set of variables occurring in a term
s and say s is ground if Var(s) = ∅. Application is left-associative, so every term may be
denoted a s1 · · · sn with a ∈ F ∪ V. We call a the head of this term. We will sometimes
employ vector notation, denoting a s1 · · · sn simply as a ~s when no confusion can arise.

4 C. KOP AND J.G. SIMONSEN

Example 6. We will often use extensions of the signature Flist, given by:

0 : symb 1 : symb [] : list ; : symb⇒ list⇒ list

Terms are for instance 1 : symb and ; 0 (; 1 []) : list, as well as (; 0) : list ⇒ list.
However, we will always denote ; in a right-associative infix way and only use it fully applied;
thus, the second of these terms will be denoted 0;1;[] and the third will not occur. Later
extensions of the signature will often use additional constants of type symb.

The notion of substitution from first-order rewriting extends in the obvious way to
applicative rewriting, but we must take special care when defining subterms.

Definition 7 (Substitution, subterms and contexts). A substitution is a type-preserving
map from V to T (F ,V) that is the identity on all but finitely many variables. Substitutions
γ are extended to arbitrary terms s, notation sγ, by replacing each variable x by γ(x). The
domain of a substitution γ is the set consisting of those variables x such that γ(x) 6= x.

We say t is a subterm of s, notation s� t, if (a) s = t, or (b) s� t, where s1 s2 � t if
s1 � t or s2 � t. In case (b), we say t is a strict subterm of s.

Note that s1 is not considered a subterm of s1 s2; thus, in a term f x1 · · ·xn the only
strict subterms are x1, . . . , xn; the term f x1 · · ·xn−1 (for instance) is not a subterm. The
reason for this arguably unusual definition is that the restrictions on rules we will employ do
not allow us to ever isolate the head of an application. Therefore, such “subterms” would
not be used, and are moreover problematic to consider due to their higher type order.

Example 8. Let succ : list⇒ list be added to Fbits of Example 6. Then succ (0;1;[])�
1;[], but not succ (0;1;[]) � succ. An example substitution is γ := [xs := y;1;zs] (which is
the identity on all variables but xs), and for s = succ (0;xs) we have sγ = succ (0;y;1;zs).

At last we are prepared to define the reduction relation.

Definition 9 (Rules and rewriting). A rule is a pair `→ r of terms in T (F ,V) with the
same type such that Var(r) ⊆ Var(`). A rule `→ r is left-linear if every variable occurs at
most once in `. Given a set R of rules, the reduction relation →R on T (F ,V) is given by:

`γ →R rγ for any `→ r ∈ R and substitution γ
s t →R s′ t if s→R s′
s t →R s t′ if t→R t′

Let →+
R denote the transitive closure of →R and →∗R the transitive-reflexive closure.

We say that s reduces to t if s→∗R t. A term s is in normal form if there is no t such that
s→R t, and t is a normal form of s if s→∗R t and t is in normal form. An applicative term
rewriting system, abbreviated ATRS is a pair (F ,R) and its type order (or just order) is
the maximal order of any type declaration in F .

Example 10. Let Fcount = Flist∪{succ : list⇒ list} be the signature from Example 8.
We consider the ATRS (Fcount,Rcount) with the following rules:

(A) succ [] → 1;[] (B) succ (0;xs) → 1;xs
(C) succ (1;xs) → 0;(succ xs)

This is a first-order ATRS, implementing the successor function on a binary number expressed
as a bit string with the least significant digit first. For example, 5 is represented by 1;0;1;[],
and indeed succ (1;0;1;[])→R 0;(succ (0;1;[]))→R 0;1;1;[], which represents 6.

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 5

Example 11. We may also define counting as an operation on functions. We let Fhocount
contain a number of typed symbols, including 0, 1 : symb, o : nat and s : nat⇒ nat as well
as set : (nat ⇒ symb) ⇒ nat ⇒ symb ⇒ nat ⇒ symb. This is a second-order signature
with unary numbers o, s o, s (s o), . . . , which allows us to represent the bit strings from
before as functions in nat⇒ symb: a bit string b0 . . . bn−1 corresponds to a function which
reduces si o to bi for 0 ≤ i < n and to 0 for i ≥ n. Let Rhocount consist of the rules below;
types can be derived from context. The successor of a “bit string” F is given by fsucc F o.

(D) ifeq o o x y → x (M) neg → 1

(E) ifeq (s n) o x y → y (N) neg 1 → 0

(F) ifeq o (s m) x y → y (O) nul n → 0

(G) ifeq (s n) (s m) x y → ifeq n m x y
(H) set F n x m → ifeq n m x (F m)
(I) flip F n → set F n (neg (F n))
(J) fsucc F n → fsucchelp (F n) (flip F n) n
(K) fsucchelp 0 F n → F
(L) fsucchelp 1 F n → fsucc F (s n)

Rules (I)–(L) have a functional type nat⇒ symb. The function nul represents bit strings
0 . . . 0, and if F represents b0 . . . bn−1 then set F (si o) x represents b0 . . . bi−1xbi+1 . . . bn−1.
The number 5 is for instance represented by t := set (set nul o 1) (s2 o) 1. We easily see that
(**) t o→∗R 1 and t (s o)→∗R 0. Intuitively, fsucc operates on 1 . . . 10bi+1 . . . bn−1 by flipping
bits until some 0 is encountered, giving 0 . . . 01bi+1 . . . bn−1. Using (**), fsucc t o →R
fsucchelp (t o) (flip t o) o→∗R fsucchelp 1 (set t o (neg 1)) o→∗R fsucc (set t o 0) (s o)
→∗R fsucchelp 0 (set (set t o 0) (s o) 1) (s o)→R set (set t o 0) (s o) 1; writing u for
this term, we can confirm that u (si o)→∗R 1 if only if i = 1 or i = 2: u represents 6.

For the problems we will consider, a key notion is that of data terms.

Definition 12. We fix a partitioning of F into two disjoint sets, D of defined symbols and C
of constructor symbols, such that f ∈ D for all f ~̀→ r ∈ R. A term ` is a pattern if (a) ` is a
variable, or (b) ` = c `1 · · · `m with c : σ1 ⇒ . . .⇒ σm ⇒ ι ∈ C for ι ∈ S and all `i patterns.
A data term is a pattern without variables, and the set of all data terms is denoted DA. A
term f `1 · · · `n of base type, with f ∈ D and all `i ∈ DA data terms is called a basic term.
Note that all non-variable patterns—which includes all data terms—also have base type.

We will particularly consider left-linear constructor rewriting systems.

Definition 13. A constructor rewriting system is an ATRS such that all rules have the
form f `1 · · · `k → r with f ∈ D and all `i patterns. It is left-linear if all rules are left-linear.

Left-linear constructor rewriting systems are very common in the literature on term
rewriting. The higher-order extension of patterns where the first-order definition merely
requires constructor terms corresponds to the typical restrictions in functional programming
languages, where constructors must be fully applied. However, unlike functional programming
languages, we allow for overlapping rules, and do not impose an evaluation strategy.

Example 14. The ATRSs from Examples 10 and 11 are left-linear constructor rewriting
systems. In Example 10, C = Flist and D = {succ}. If a rule 0;[] → [] were added to
Rcount, it would no longer be a constructor rewriting system as this would force ; to be in D,
conflicting with rules (B) and (C). A rule such as equal n n→ 1 would break left-linearity.

6 C. KOP AND J.G. SIMONSEN

2.3. Deciding problems using rewriting. Like Turing Machines, an ATRS can decide a
set S ⊆ I+ (where I is a finite set of symbols). Consider ATRSs with a signature F = CI ∪D
where CI = {[] : list, ; : symb⇒ list⇒ list, true : bool, false : bool} ∪ {a : symb | a ∈
I}. There is an obvious correspondence between elements of I+ and data terms of sort list;
if x ∈ I+, we write x for the corresponding data term.

Definition 15. An ATRS accepts S ⊆ I+ if there is a designated defined symbol decide :
list⇒ bool such that, for every x ∈ I+ we have decide x→∗R true iff x ∈ S. The ATRS
decides S if moreover decide x→∗R false iff x /∈ S.

While Jones considered programs deciding decision problems, in this paper we will
consider acceptance—a property reminiscent of the acceptance criterion of non-deterministic
Turing machines—because term rewriting is inherently non-deterministic unless further
constraints (e.g., orthogonality) are imposed. Thus, an input x is “rejected” by a rewriting
system if there is no reduction to true from decide x. As evaluation is non-deterministic,
there may be many distinct reductions starting from decide x.

With an eye on future extensions in functional complexity—where the computational
complexity of functions, rather than sets, is considered—our definitions and lemmas will more
generally consider programs which reduce an arbitrary basic term to a data term. However,
our main theorems consider only programs with main symbol decide : list⇒ bool.

3. Cons-free rewriting

As we aim to find groups of programs which can handle restricted classes of Turing-computable
problems, we will impose certain limitations. We limit interest to the left-linear constructor
TRSs from § 2.2, but impose the additional restriction that they must be cons-free.

Definition 16. A rule `→ r is cons-free if for all r � s: if s has the form c s1 · · · sn with
c ∈ C, then s ∈ DA or `� s. A left-linear constructor ATRS is cons-free if all its rules are.

Definition 16 corresponds largely to the definitions of cons-freeness in [11, 15]. In a
cons-free system, it is not possible to build new non-constant data, as we will see in § 3.1.

Example 17. The ATRSs from Examples 10 and 11 are not cons-free; in the first case
due to rules (B) and (C), in the second due to rule (F). To some extent, we can repair the
second case, however: by counting down rather than up. To be exact, we let n be a fixed
number, assume that sn 0 is given as input to the ATRS, and represent a number as a finite
bitstring b0 . . . bn−1 with the most significant digit first—in contrast to Example 11, where
we used essentially infinite bitstrings b0 . . . bn−1000 . . . with the least significant digit first.

We can reuse most of the previous rules, but replace the (non-cons-free) rule (L) by:

(L.1) fsucchelp 1 F o → F (L.2) fsucchelp 1 F (s n) → fsucc F n

Now a function F represents b0 . . . bn−1 if F reduces si o to bi for 0 ≤ i < n; since we only
consider n bits, F may reduce to anything given data not of this form. Then fsucc F (sn o)
reduces to a function representing the successor of F , modulo 2n (1 . . . 1 is reduced to 0 . . . 0).

Remark 18. The limitation to left-linear constructor systems is standard, but also necessary :
if either restriction is dropped, our limitation to cons-free systems becomes meaningless, and
we retain a Turing-complete language. This will be discussed in detail in § 7.2.

As the first two restrictions are necessary to give meaning to the third, we will consider
the limitation to left-linear constructor ATRSs implicit in the notion “cons-free”.

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 7

3.1. Properties of Cons-free Term Rewriting. As mentioned, cons-free term rewriting
cannot create new non-constant data terms. This means that the set of data terms that
might occur during a reduction starting in some basic term s are exactly the data terms
occurring in s, or those occurring in the right-hand side of some rule. Formally:

Definition 19. Let (F ,R) be a fixed constructor ATRS. For a given term s, the set Bs
contains all data terms t such that (i) s� t, or (ii) r � t for some rule `→ r ∈ R.

Bs is a set of data terms, is closed under subterms and, since we have assumed R to be
fixed, has a linear number of elements in the size of s. The property that no new data is
generated by reducing s is formally expressed by the following result:

Definition 20 (B-safety). Let B ⊆ DA be a set which (i) is closed under taking subterms,
and (ii) contains all data terms occurring as a subterm of the right-hand side of a rule in R.
A term s is B-safe if for all t with s� t: if t has the form c t1 · · · tm with c ∈ C, then t ∈ B.

Lemma 21. If s is B-safe and s→R t, then t is B-safe.

Proof. By induction on the form of s; the result follows trivially by the induction hypothesis
if the reduction does not take place at the head of s, leaving only the base case s =
f (`1γ) · · · (`kγ) s1 · · · sn →R rγ s1 · · · sn = t for some rule f `1 · · · `k → r ∈ R, substitution
γ and n ≥ 0. All subterms u of t are (a) subterms of some si, (b) subterms of rγ or (c) the
term t itself, so suppose u = c t1 · · · tm with c ∈ C and consider the three possible situations.

In case (a), u ∈ B by B-safety of s.
In case (b), either γ(x) � u for some x, or u = r′γ for some r � r′ /∈ V. In the first

case, x ∈ Var(`i) for some i and—since `i is a pattern—a trivial induction on the form
of `i shows that `γ � γ(x) � u, so again u ∈ B by B-safety of s = `γ. In the second case,
if r′ = x r1 · · · rn′ with x ∈ V and n > 0 then s � γ(x) as before, so γ(x) ∈ DA (because
γ(x) must have a constructor as its head), which imposes n = 0; contradiction. Otherwise
r′ = c r1 · · · rn, so by definition of cons-freeness, either u = r′ ∈ B or s� `iγ � r′γ = u.

In case (c), n = 0 because, following the analysis above, rγ ∈ B.

Thus, if we start with a basic term f s1 · · · sn, any data terms occurring in a reduction
f ~s→∗R t (directly or as subterms) are in Bf ~s. This insight will be instrumental in § 5.

Example 22. By Lemma 21, functions in a cons-free ATRS cannot build recursive data.
Therefore it is often necessary to “code around” a problem. Consider the task of finding the
most common bit in a given bit string. A typical solution employs a rule like majority cs→
cmp (count0 cs) (count1 cs). Now, however, we cannot define count functions which may
return arbitrary terms of the form si o. Instead we use subterms of the input as a measure
of size, representing a number i by a list of length i.

majority cs → count cs cs cs
count (0;xs) ys (b;zs) → count xs ys zs cmp [] zs → 1

count (1;xs) (b;ys) zs → count xs ys zs cmp (y;ys) [] → 0

count [] ys zs → cmp ys zs cmp (y;ys) (z;zs) → cmp ys zs

(The signature extends Flist, but is otherwise omitted as types can easily be derived.)

Through cons-freeness, we obtain another useful property: we do not have to consider
constructors which take functional arguments.

8 C. KOP AND J.G. SIMONSEN

Lemma 23. Given a cons-free ATRS (F ,R) with F = D ∪ C, let Y = {c : σ ∈ C |
order(σ) > 1}. Define F ′ := F \ Y , and let R′ consist of those rules in R not using any
element of Y in either left- or right-hand side. Then (a) all data terms and B-safe terms
are in T (F ′, ∅), and (b) if s is a basic term and s→∗R t, then t ∈ T (F ′, ∅) and s→∗R′ t.
Proof. Since data terms have base type, and the subterms of data terms are data terms, we
have (a). Thus B-safe terms can only be matched by rules in R′, so Lemma 21 gives (b).

3.2. A larger example. So far, all our examples have been deterministic. To show the
possibilities, we consider a first-order cons-free ATRS that solves the Boolean satisfiability
problem (SAT). This is striking because, in Jones’ language in [15], first-order programs
cannot do this unless P = NP, even if a non-deterministic choose operator is added [10].
The crucial difference is that we, unlike Jones, do not employ a call-by-value strategy.

Given n boolean variables x1, . . . , xn and a boolean formula ψ ::= ϕ1 ∧ · · · ∧ ϕm, the
satisfiability problem considers whether there is an assignment of each xi to > or ⊥ such that
ψ evaluates to >. Here, each clause ϕi has the form ai,1 ∨ · · · ∨ ai,ki , where each literal ai,j is
either some xp or ¬xp. We represent this decision problem as a string over I := {0, 1,#, ?}:
the formula ψ is represented by E ::= b1,1 . . . b1,n#b2,1 · · ·2,n # . . .#bm,1 . . . bm,n#, where for
each i, j: bi,j is 1 if xj is a literal in ϕi, bi,j is 0 if ¬xj is a literal in ϕi, and bi,j is ? otherwise.

Example 24. The satisfiability problem for (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) is encoded as E :=
10?#?10#. Encoding this string as a data term, we obtain E = 1;0;?;#;?;1;0;#;[].

Defining CI as done in § 2.3 and assuming other declarations clear from context, we
claim that the system in Figure 1 can reduce decide E to true if and only if ψ is satisfiable.

// Rules using a, b stand for several rules once: a, b range over {0, 1, ?} (but not #).

equal (#;xs) (#;ys) → true equal (#;xs) (a;ys) → false

equal [] ys → false equal (a;xs) (#;ys) → false

equal (a;xs) (b;ys) → equal xs ys
either xs yss → xs skip (#;xs) → xs
either xs yss → yss skip (a;xs) → skip xs

decide cs → assign cs [] [] cs
assign (#;xs) yss zss cs → main yss zss cs
assign (a;xs) yss zss cs → assign xs (either xs yss) zss cs
assign (a;xs) yss zss cs → assign xs yss (either xs zss) cs

main yss zss (?;xs) → main yss zss xs
main yss zss (0;xs) → membtest yss zss xs (equal zss xs) (equal yss xs)
main yss zss (1;xs) → membtest yss zss xs (equal yss xs) (equal zss xs)
main yss zss (#;xs) → false

main yss zss [] → true

membtest yss zss xs true b → main yss zss (skip xs)
membtest yss zss xs b true → main yss zss xs

Figure 1: A cons-free first-order ATRS solving the satisfiability problem.

In this system, we follow some of the same ideas as in Example 22. In particular, any list
of the form bi+1; . . . ;bn;# . . . with each bj ∈ {0, 1, ?} is considered to represent the number i
(with #; . . . representing n). The rules for equal are defined so that equal s t tests equality

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 9

of these numbers, not the full lists. The key idea new to this example is that we use terms
not in normal form to represent a set of numbers. Fixing n, a set X ⊆ {1, . . . , n} is encoded
as a pair (yss, zss) of terms such that, for i ∈ {1, . . . , n}: yss→∗R xs for a representation
xs of i if and only if i ∈ X, and zss→∗R xs for a representation xs of i if and only if i /∈ X.

These pairs (yss,zss) are constructed using the symbol either, which is defined by a
pair of overlapping rules: either s1 (either s2 (. . . (either sn−1 sn) . . .)) reduces to each
si. We can use such terms as we do—copying and passing them around without reducing to
normal form—because we do not use call-by-value or similar strategies: the ATRS may be
evaluated using, e.g., outermost reduction. While we can use other strategies, any evaluation
which reduces yss or zss too eagerly just ends in an irreducible, non-data state.

Now, an evaluation starting in decide E first non-deterministically constructs a “set”X—
represented as (yss, zss)—containing those boolean variables assigned true: decide E→∗R
main yss zss E. Then, the main function goes through E, finding for each clause a literal that
is satisfied by the assignment. Encountering bi,j 6= ?, we determine if j ∈ X by comparing
both a reduct of yss and of zss to j. If yss→∗R “j” then j ∈ X, if zss→∗R “j” then j /∈ X;
in either case, we continue accordingly. If the evaluation state is incorrect, or if yss or zss
are both reduced to some other term, the evaluation gets stuck in a non-data normal form.

Note: variable namings are indicative of their use: in an evaluation starting in decide E,
the variables xs and ys are always instantiated by data term lists, and cs by E; variables
yss and zss are instantiated by terms of type list which do not need to be in normal form.

Example 25. To determine satisfiability of (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3), we reduce decide E,
where E = 10?#?10#. First, we build a valuation. The assign rules are non-deterministic,
but a possible reduction is decide E →∗R main s t E, where s = either 0?#?10# [] and

t = either #?10# (either ?#?10# []). Since n = 3, 0?#?10# represents 1 while #?10#
and ?#?10# represent 3 and 2 respectively. Thus, we have [x1 := >, x2 := ⊥, x3 := ⊥].

Then the main loop recurses over the problem. Since s reduces to a term 0?# . . . and t to
both # . . . and ?# . . . we have main s t E = main s t 10?#?10#→∗R main s t (skip 10#?10#)

→∗R main s t ?10#: the first clause is confirmed since x1 := >, so it is removed and the loop
continues with the second clause. Next, the loop passes over those variables whose assignment
does not contribute to the clause, until the clause is confirmed due to x3: main s t ?01#→R
main s t 01#→∗R main s t 1#→∗R main s t (skip #)→R main s t []→R true.

Due to non-determinism, the term in Example 25 could also have been reduced to false,
by selecting a different valuation. This is not problematic: by definition, the ATRS accepts
the set of satisfiable formulas if: decide E→∗R true if and only if E is a satisfiable formula.

4. Simulating EkTIME Turing machines

We now show how to simulate Turing Machines by cons-free rewriting. For this, we use
an approach very similar to that by Jones [15]. Fixing a machine (I, A, S, T), we let
C := CA ∪ {s : state | s ∈ S} ∪ {fail : state, L : direction, R : direction, action :
symb⇒ direction⇒ state⇒ trans}; we denote B for the symbol corresponding to ∈ A.
We will introduce defined symbols and rules such that, for any string E = c1 . . . cn ∈ I+:

• decide E→∗R true iff (c1 . . . cn . . . , 0, start)⇒∗ (t, i, accept) for some t, i;
• decide E→∗R false iff (c1 . . . cn . . . , 0, start)⇒∗ (t, i, reject) for some t, i.

While decide E may have other normal forms, only one normal form will be a data term.

10 C. KOP AND J.G. SIMONSEN

4.1. Core simulation. The idea of the simulation is to represent non-negative integers as
terms and let tape n p reduce to the symbol at position p on the tape at the start of the nth

step, while state n p returns the state of the machine at time n, provided the tape reading
head is at position p. If the reading head is not at position p at time n, then state n p should
return fail instead; this allows us to test the position of the reading head. As the machine
is deterministic, we can devise rules to compute these terms from earlier configurations.

Finding a suitable representation of integers is the most intricate part of this simulation,
where we may need higher-order functions and non-deterministic rules. Therefore, let us
first assume that this can be done. Then, for a Turing machine which is known to run in
time bounded above by λn.P (n), we define the ATRS in Figure 2 (further elaboration is
given as “comments” in the ATRS). As before, the rules are constructed such that, in an
evaluation of decide E, the variable cs can always be assumed to be instantiated by E.

4.2. Counting. The goal, then, is to represent numbers and define rules to do four things:

• calculate [P (|cs|)] or an overestimation (as the TM cannot move from its final state);
• test whether a “number” represents 0;
• given [n], calculate [n−1], provided n > 0—so it suffices to determine [max(n−1, 0)];
• given [p], calculate [p+ 1], provided p+ 1 ≤ P (|cs|) as transition cs [n] [p]→R NA

when n < p and [n] never increases—so it suffices to determine [min(p+ 1, P (|cs|))].
These calculations all occur in the right-hand side of a rule containing the initial input list
cs on the left, which they can therefore use (for instance to recompute P (|cs|)).

Rather than representing a number by a single term, we will use tuples of terms (which
are not terms themselves, as ATRSs do not admit pair types). To illustrate this, suppose we
represent each number n by a pair (n1, n2). Then the predecessor and successor function
must also be split, e.g. pred1 cs n1 n2 →∗R n′1 and pred2 cs n1 n2 →∗R n′2 for (n′1, n

′
2) some

tuple representing n− 1. Thus, for instance the last get rule becomes:

get cs (x;xs) i1 i2 → ifelsesymb (zero i1 i2) x (get xs (pred1 cs i1 i2) (pred2 cs i1 i2)

Following Jones [15], we use the notion of a counting module which provides an ATRS
with a representation of a counting function and a means of computing. Counting modules
can be composed, making it possible to count to greater numbers. Due to the laxity of term
rewriting, our constructions are technically quite different from those of [15].

Definition 26 (Counting Module). Write F = C ∪D for the signature in Figure 2. For P a
function from N to N, a P -counting module of order K is a tuple Cπ ::= (~σ,Σ, R,A, 〈·〉)—
where π is the name we use to refer to the counting module—such that:

• ~σ is a sequence of types σ1 ⊗ · · · ⊗ σa where each σi has order at most K − 1;
• Σ is a Kth-order signature disjoint from F , which contains designated symbols
zeroπ : list⇒ σ1 ⇒ . . .⇒ σa ⇒ bool and, for 1 ≤ i ≤ a, symbols prediπ, succ

i
π :

list⇒ σ1 ⇒ . . .⇒ σa ⇒ σi and seediπ : list⇒ σi (and may contain others);
• R is a set of cons-free (left-linear constructor-)rules f `1 · · · `k → r with f ∈ Σ, each
`i ∈ T (C,V) and r ∈ T (C ∪ Σ,V);
• for every string cs ⊆ I+, Acs ⊆ {(s1, . . . , sa) ∈ T (C ∪ Σ)a | sj : σj for 1 ≤ j ≤ a};
• for every string cs, 〈·〉cs is a surjective mapping from Acs to {0, . . . , P (|cs|)− 1};
• the following properties on Acs and 〈·〉cs are satisfied:

– (seed1π cs, . . . , seed
a
π cs) ∈ Acs and 〈(seed1π cs, . . . , seedaπ cs)〉cs = P (|cs|)− 1;

and for all (s1, . . . , sa) ∈ Acs with 〈(s1, . . . , sa)〉cs = m:

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 11

– (pred1π cs ~s, . . . , pred
a
π cs ~s) and (succ1π cs ~s, . . . , succ

a
π cs ~s) are in Acs;

– 〈(pred1π cs ~s, . . . , predaπ cs ~s)〉cs = max(m− 1, 0);
– 〈(succ1π cs ~s, . . . , succaπ cs ~s)〉cs = min(m+ 1, P (|cs|)− 1);
– zeroπ cs ~s→∗R true iff m = 0 and zeroπ cs ~s→∗R false iff m > 0;
– if each si →∗R ti and (t1, . . . , ta) ∈ Acs, then also 〈(t1, . . . , ta)〉cs = m.

// Determine the transition taken at time [n] given input cs, provided the tape
// reading head is at position [p] at time [n]; if not, reduce to NA instead.

transition cs [n] [p] → transitionhelp (state cs [n] [p]) (tape cs [n] [p])
transitionhelp fail x → NA

transitionhelp s r → action w d t Jfor all s
r/w d
===⇒ t ∈ T K

transitionhelp s x → end s Jfor s ∈ {accept, reject}K
// Determine the state at time [n] given input cs, provided the tape reading head
// is at position [p] at time [n] (which happens if it is at position [p− 1], [p] or
// [p+ 1] at time [n− 1] and the right action is taken); if not, reduce to fail.
state cs [n] [p] → ifelsestate [n = 0] (state0 cs [p]) (statex cs [n− 1] [p])
state0 cs [p] → ifelsestate [p = 0] start fail

statex cs [n] [p] → statey (transition cs [n] [p− 1]) (transition cs [n] [p])
(transition cs [n] [p+ 1])

statey (action x R q) a e → q statey NA (action x d q) e → fail

statey (action x L q) a e → fail statey NA NA (action x L q) → q
statey (end q) a e → fail statey NA NA (action x R q) → fail

statey NA (end q) e → q statey NA NA (end q) → fail

// Determine the tape symbol at position [p] at time [n] given input cs, which is
// tape cs [n− 1] [p] unless the transition at time [n− 1] occurred at position [p].

tape cs [n] [p] → ifelsesymb [n = 0] (inputtape cs [p])
(tapex cs [n− 1] [p])

tapex cs [n] [p] → tapey cs [n] [p] (transition cs [n] [p])
tapey cs [n] [p] (action x d q) → x

tapey cs [n] [p] NA → tape cs [n] [p]
tapey cs [n] [p] (end q) → tape cs [n] [p]

inputtape cs [p] → ifelsesymb [p = 0] B (get cs cs [p− 1])
get cs [] [i] → B

get cs (x;xs) [i] → ifelsesymb [i = 0] x (get cs xs [i− 1])
// We simulate the TM’s outcome by testing whether the state at time [P (|cs|)] is
// accept or reject, allowing for any reader head position in {[P (|cs|)], . . . , [0]}.

decide cs → findanswer cs fail [P (|cs|)] [P (|cs|)]
findanswer cs fail [n] [p] → findanswer cs (state cs [n] [p]) [n] [p− 1]

findanswer cs accept [n] [p] → true

teststate cs reject [n] [p] → false

// Rules for an if-then-else statement (which is not included by default).
ifelseι true y z → y Jfor all ι ∈ {state, symb}K

ifelseι false y z → z Jfor all ι ∈ {state, symb}K

Figure 2: Simulating a deterministic Turing Machine running in λx.P (x) time.

12 C. KOP AND J.G. SIMONSEN

It is not hard to see how we would use a P -counting module in the ATRS of Figure 2;
this results in a Kth-order system for a Kth-order module. Note that number representations
(s1, . . . , sa) are not required to be in normal form: even if we reduce ~s to some tuple ~t, the
result of the zero test cannot change from true to false or vice versa. As the algorithm
relies heavily on these tests, we may safely assume that terms representing numbers are
reduced in a lazy way—as we did in § 3.2 for the arguments s and t of main.

To simplify the creation of counting modules, we start by observing that succπ can be
expressed in terms of seedπ, predπ and zeroπ, as demonstrated in Figure 3 (which also
introduces an equality test, which will turn out to be useful in Lemma 30). In practice,
succπ cs [n] counts down from [P (|cs|)− 1] to some [m] with n = m− 1.

equalπ cs n1 . . . na m1 . . .ma → ifelsebool (zeroπ cs ~n) (zeroπ cs ~m)
(ifelsebool (zeroπ cs ~m) false

(equalπ cs (pred1π cs ~n) . . . (predaπ cs ~n)
(pred1π cs ~m) . . . (predaπ cs ~m)

))
succiπ cs n1 . . . na → succ2iπ cs n1 . . . na (seed1 cs) . . . (seeda cs)

succ2iπ cs n1 . . . na m1 . . .ma → ifelseσi (zeroπ cs ~m) (seedi cs) (succ3iπ
cs ~n mi (pred1π cs ~m) . . . (predaπ cs ~m))

succ3iπ cs n1 . . . na mi m
′
1 . . .m

′
a → ifelseσi (equalπ cs n1 . . . na m

′
1 . . .m

′
a) mi

(succ2iπ cs n1 . . . na m
′
1 . . .m

′
a)

ifelseτ true y z → y
ifelseτ false y z → z

}
Jfor τ ∈ {bool, σ1, . . . , σa}K

Figure 3: Expressing succπ in terms of seedπ, predπ and zeroπ.

Remark 27. Observant readers may notice that the rule for equalπ is non-terminating:
equalπ cs [0] [0] can be reduced to a term containing equalπ cs [0] [0] as a subterm,
as the ifelse rules are not prioritised over other rules. Following Definition 15, this is
unproblematic: it suffices if there is a terminating evaluation from decide x to true if
x ∈ S; it is not necessary for all evaluations to terminate.

Example 28. We design a (λn.n+ 1)-counting module that represents numbers as (terms
reducing to) subterms of the input list cs. Formally, we let Clin := (list,Σ, R,A, 〈·〉) where
Acs = {s ∈ T (Σ ∪ C) | s : list ∧ s has a unique normal form, which is a subterm of cs} and
〈s〉cs = the number of ; operators in the normal form of s. R consists of the rules below
along with the rules in in Figure 3, and Σ consists of the defined symbols in R.

seed1lin cs → cs pred1lin cs [] → [] zero1lin cs [] → true

pred1lin cs (x;xs) → xs zero1lin cs (x;xs) → false

The counting module of Example 28 is very simple, but does not count very high: using
it with Figure 2, we can simulate only machines operating in n− 1 steps or fewer. However,
having the linear module as a basis, we can define composite modules to count higher:

Lemma 29. If there exist a P -counting module Cπ and a Q-counting module Cρ, both of
order at most K, then there is a (λn.P (n) ·Q(n))-counting module Cπ·ρ of order at most K.

Proof. Fixing cs and writing N := P (|cs|) and M := Q(|cs|), a number i in {0, . . . , N ·M−1}
can be seen as a unique pair (n,m) with 0 ≤ n < N and 0 ≤ m < M , such that i = n ·M+m.

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 13

Then seed, pred and zero can be expressed using the same functions on n and m. Write
Cπ ::= (σ1⊗ · · · ⊗ σa,Σπ, Rπ,Aπ, 〈·〉π) and Cρ ::= (τ1⊗ · · · ⊗ τb,Σρ, Rρ,Aρ, 〈·〉ρ); we assume
Σπ and Σρ are disjoint (wlog by renaming). Then numbers in n ∈ {0, . . . , N} are represented
in Cπ by tuples (u1, . . . , ua) of length a, and numbers in m ∈ {0, . . . ,M} are represented in
Cρ by tuples (v1, . . . , vb) of length b. We will represent n ·M +m by (u1, . . . , ua, v1, . . . , vb).
Formally, Cπ·ρ := (σ1⊗ · · · ⊗σa⊗ τ1⊗ · · · ⊗ τb,Σπ ∪Σρ ∪Σ, Rπ ∪Rρ ∪R,Aπ·ρ, 〈·〉π·ρ), where:

• Aπ·ρ = {(u1, . . . , ua, v1, . . . , vb) | (u1, . . . , ua) ∈ Aπ ∧ (v1, . . . , vb) ∈ Aρ},
• 〈(u1, . . . , ua, v1, . . . , vb)〉π·ρcs = 〈(u1, . . . , ua)〉πcs ·Q(|cs|) + 〈(v1, . . . , vb)〉ρcs,
• Σ consists of the defined symbols in Rπ ∪Rρ ∪R, where R is given by Figure 4.

// N ·M − 1 = (N − 1) ·M + (M − 1), which corresponds to the pair (N − 1,M − 1);
// that is, the tuple (seed1π cs, . . . , seed

a
π cs, seed

1
ρ cs, . . . , seed

b
ρ cs).

seediπ·ρ cs → seediπ cs Jfor 1 ≤ i ≤ aK
seediπ·ρ cs → seedi−aρ cs Jfor a+ 1 ≤ i ≤ a+ bK

// (n,m) represents 0 iff both n and m are 0.

zeroπ·ρ cs u1 . . . ua v1 . . . vb → ifelsebool (zeroπ cs u1 . . . ua) (zeroρ cs v1 . . . vb)
false

// (n,m)− 1 results in (n,m− 1) if m > 0, otherwise in (n− 1,M − 1).

prediπ·ρ cs u1 . . . ua v1 . . . vb → ptestiπ·ρ cs (zeroρ v1 . . . vb) u1 . . . ua v1 . . . vb
Jfor 1 ≤ i ≤ a+ bK

ptestiπ·ρ cs false ~u ~v → ui Jfor 1 ≤ i ≤ aK
ptestiπ·ρ cs false ~u ~v → predi−aρ cs ~v Jfor a+ 1 ≤ i ≤ a+ bK
ptestiπ·ρ cs true ~u ~v → prediπ cs ~u Jfor 1 ≤ i ≤ aK
ptestiπ·ρ cs true ~u ~v → seedi−aρ cs ~v Jfor a+ 1 ≤ i ≤ a+ bK

Figure 4: Rules for the product counting module Cπ·ρ (Lemma 29)

Lemma 29 is powerful because it can be used iteratively. Starting from the counting
module from Example 28, we can thus define a first-order (λn.(n+ 1)a)-counting module
Clin···lin for any a. To reach yet higher numbers, we follow the ideas from Example 11 and
define counting rules on binary numbers represented as functional terms F : ~σ ⇒ bool.

Lemma 30. If there is a P -counting module Cπ of order K, then there is a (λn.2P (n))-
counting module Cp[π] of order K + 1.

Proof. Write N := P (|cs|) and let Cπ = (σ1 ⊗ · · · ⊗ σa,Σ, R,A, 〈·〉π). We define the 2P -

counting module Cp[π] as (σ1 ⇒ . . .⇒ σa ⇒ bool,Σp[π], Rp[π],H, 〈·〉p[π]), where:

• Hcs contains terms q : ~σ ⇒ bool representing a bitstring b0 . . . bN−1 as follows:
q s1 · · · sn reduces to true if (s1, . . . , sn) represents a number i in Cπ such that
bi = 1 and to false if it represents i with bi = 0. Formally, Hcs is the set of all
q ∈ T (Σp[π] ∪ C, ∅) of type σ1 ⇒ . . .⇒ σa ⇒ bool, where:

– for all (s1, . . . , sa) ∈ Acs: q s1 · · · sa reduces to true or false, but not both;
– for all (s1, . . . , sa), (t1, . . . , ta) ∈ Acs: if 〈(~s)〉πcs = 〈(~t)〉πcs—so they represent the

same number i—then q s1 · · · sa and q t1 · · · ta reduce to the same boolean value.
For q ∈ Hcs and i < N , we can thus say either q · [i]→∗

Rp[π] true or q · [i]→∗
Rp[π] false.

14 C. KOP AND J.G. SIMONSEN

• Let 〈q〉p[π]cs =
∑N−1

i=0 {2N−i−1 | q s1 · · · sa →∗R true for some (s1, . . . , sa) with
〈(s1, . . . , sa)〉πcs = i}. That is, q represents the number given by the bitstring b0 . . . bN
with bN the least significant digit (where bi = 1 if and only if q · [i]→∗

Rp[π] true).

• Σp[π] = Σ ∪ Σ′ and Rp[π] = R ∪R′, where Σ′ contains all new symbols in R′, and R′

contains the rules below along with rules for equalπ and succp[π] following Figure 3.

// seed cs results in a bitstring that is 1 at all bits. We let seedp[π] cs be a normal form:
// a term of type σ1 ⇒ . . .⇒ σa ⇒ bool which maps all [i] to true.

seedp[π] cs k1 . . . ka → true

// A bitstring represents 0 if all its bits are set to 0. To test this, we count down in Cπ and
// evaluate F [N − 1], F [N − 2], . . . , F [0] to see whether any results in false.

zerop[π] cs F → zero′p[π] cs (seed1π cs) . . . (seed
a
π cs) F

zero′p[π] cs k1 . . . ka F → ifelsebool (F k1 · · · ka) false
(ifelsebool (zeroπ cs k1 . . . ka) true

(zero′p[π] cs (pred1π cs
~k) . . . (predaπ cs

~k) F)
)

// The predecessor function follows a similar approach to Examples 11 and 17: we flip bi
// for i = N−1, N−2, . . . until bi = 1 (thus replacing b0 . . . bi−110 . . . 0 by b0 . . . bi−101 . . . 1).

predp[π] cs F → predtestp[π] cs (zerop[π] F) cs F

predtestp[π] cs true F → F

predtestp[π] cs false F → predhelpp[π] cs F (seed1π cs) . . . (seed
a
π cs)

predhelpp[π] cs F
~k → checkbitp[π] cs (F ~k) (flipp[π] cs F

~k) ~k

checkbitp[π] cs true F ~k → F

checkbitp[π] cs false F ~k → predhelpp[π] cs F (pred1π cs
~k) . . . (predaπ cs

~k)

flipp[π] cs F
~k ~n → ifelsebool (equalπ cs

~k ~n) (not (F ~n)) (F ~n)

not true → false

not false → true

Combining Example 28 with Lemmas 29 and 30, we can define a (λn. expK−12 ((n+ 1)b))-
counting module Cp[...[p[lin···lin]]...] of type order K for any K, b ≥ 1. As the ATRSs of
Figure 2 and the modules are all non-overlapping, we thus recover one side of Jones’ result:
any problem in EXPK−1TIME is decided using a deterministic Kth-order cons-free ATRS.

Remark 31. The construction used here largely follows the one in [15]. Differences mostly
center around the different formalisms: on the one hand Jones’ language did not support
pattern matching or constructors like action; on the other, we had to code around the lack
of pairs. Our notion of a counting module is more complex—restricting the way tuples of
terms may be reduced—to support the non-deterministic modules we will consider below.

4.3. Counting higher. In ATRSs, we can do better than merely translating Jones’ result.
By exploiting non-determinism much like we did in § 3.2, we can count up to 2n+1 − 1 using
only a first-order ATRS, and obtain the jump in expressivity promised in the introduction.

Lemma 32. There is a first-order (λn.2n+1)-counting module.

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 15

Proof. Intuitively, we represent a bitstring b0 . . . bN by a pair of non-normalized terms
(yss, zss), such that yss →∗ [a list of length i] iff bi = 1 and zss →∗ [a list of length i] iff
bi = 0. Formally, we let Ce := (list⊗ list,Σ, R,A, 〈·〉), where:

• Acs contains all pairs (yss, zss) such that (a) all normal forms of yss or zss are
subterms of cs, and (b) for each u� cs either yss→∗R u or zss→∗R u, but not both.
• Writing cs = cN ; . . . ;c1;[], we let csi = ci; . . . c1;[] for 1 ≤ i ≤ N . Let 〈(yss, zss)〉cs =∑N

i=0{2N−i | yss→∗R csi}; then 〈(yss, zss)〉cs is the number with bit representation
b0 . . . bN (most significant digit first) where bi = 1 iff yss→∗R csi, iff zss 6→∗R csi.
• Σ consists of the defined symbols introduced in R, which we construct below.

We include the rules from Figure 3, the rules for seed1lin, pred1lin and zero1lin from
Example 28—to handle the data lists—and iftelist defined similar to other ifte rules.

As in § 3.2, we use non-deterministic selection functions to construct (yss, zss):

either n xss → n either n xss → xss ⊥ → ⊥
The symbol ⊥ will be used for terms which do not reduce to any data (the ⊥ → ⊥ rule
serves to force ⊥ ∈ D). As discussed in Remark 27, non-termination by itself is not an issue.
For the remaining functions, we consider bitstring arithmetic. First, 2N+1 − 1 corresponds
to the bitstring where each bi = 1, so yss reduces to all subterms of cs:

seed1e cs → all cs (seed1lin cs) ⊥
seed2e cs → ⊥

all cs n xss → iftelist (zero1lin cs n) (either n xss)
(all cs (pred1lin cs n) (either n xss))

(The use of seed1lin cs where simply cs would have sufficed may seem overly verbose, but is
deliberate because it will make the results of § 6 easier to present.)

In order to define zeroe, we must test the value of all bits in the bitstring. This is done
by forcing an evaluation from yss or zss to some data term. This test is constructed in
such a way that both true and false results necessarily reflect the state of yss and zss;
any undesirable non-deterministic choices lead to the evaluation getting stuck.

eqLen [] [] → true eqLen [] (y;ys) → false

eqLen (x;xs) (y;ys) → eqLen xs ys eqLen (x;xs) [] → false

bitset n yss zss → checkreducts (eqLen n yss) (eqLen n zss)
checkreducts true b → true

checkreducts b true → false

Then zeroe cs yss zss simply tests whether the bit is unset for each sublist of cs.

zeroe cs yss zss → zo cs (seed1lin cs) yss zss
zo cs n yss zss → iftebool (bitset n yss zss) false

(iftebool (zero1lin cs n) true (zo cs (pred1lin cs n) yss zss))

For the predecessor function, we again replace b0 . . . bi−1b10 . . . 0 by b0 . . . bi−101 . . . 1. To do
so, we fully rebuild yss and zss. We first define a helper function copy to copy b0 . . . bi−1:

copy cs n yss zss false → addif (bitset n yss zss) n
(copy cs (pred1lin cs n) yss zss (zerolin cs n))

copy cs n yss zss true → ⊥
addif true n xss → either n xss

addif false n xss → xss

16 C. KOP AND J.G. SIMONSEN

Then, for all i, copy cs csmax(i−1,0) yss zss [i = 0] reduces to those csj with 0 ≤ j < i where
bj = 1, and copy cs csmax(i−1,0) zss yss [i = 0] reduces to those with bj = 0. This works
because yss and zss are complements. To define pred, we first handle the zero case:

pred1e cs yss zss → iftelist (zeroe cs yss zss) yss (pr1 cs (seed1lin cs) yss zss)
pred2e cs yss zss → iftelist (zeroe cs yss zss) zss (pr2 cs (seed1lin cs) yss zss)

Then pr cs csN yss zss flips the bits bN , bN−1, . . . until an index is encountered where
bi = 1; this last bit is flipped, and the remaining bits are copied:

pr1 cs n yss zss → iftelist (bitset n yss zss)
(copy cs (pred1lin cs n) yss zss (zerolin cs n))
(either n (pr1 cs (pred1lin cs n) yss zss))

pr2 cs n yss zss → iftelist (bitset n yss zss)
(either n (copy cs (pred1lin cs n) zss yss (zerolin cs n)))
(pr2 cs (pred1lin cs n) yss zss)

Note that, unlike Lemma 30, Lemma 32 cannot be used directly to define composite
modules: the rules for eqLen rely on the specific choice of the underlying counting module
Clin. They cannot be replaced by an equalslin check, because the crucial property is
that—like in § 3.2—the bitset functionality relies on evaluating yss and zss to some
normal form. Nevertheless, even without composing we obtain additional power:

Theorem 33. Any decision problem in EKTIME is accepted by a Kth-order cons-free ATRS.

Proof. Following the construction in Figure 2, it suffices to find a Kth-order counting module
counting up to expK2 (a · n) where n is the size of the input and a a fixed positive integer.
Lemma 32 gives a first-order λn.2n+1-counting module, and by iteratively using Lemma 29
we obtain λn.(2n+1)a = λn.2a(n+1) for any a. Iteratively applying Lemma 30 on the result
gives a Kth-order λn.expK2 (a · (n+ 1))-counting module.

5. Finding normal forms

In the previous section we have seen that every function in EKTIME can be implemented
by a cons-free Kth-order ATRS. Towards a characterization result, we must therefore show
the converse: that every function accepted by a cons-free Kth-order ATRS is in EKTIME.

To achieve this goal, we will now give an algorithm running in TIME
(
expK2 (a · n)

)
that,

on input any basic term in a fixed ATRS of order K, outputs its set of data normal forms.
A key idea is to associate terms of higher-order type to functions. For a given set B of

data terms (a shorthand for a set Bs following Definition 19), we let:

JιKB = P({s | s ∈ B ∧ s : ι}) for ι ∈ S (so JιKB is a set of subsets of B)

Jσ ⇒ τKB = JτKJσKB
B (so the set of functions from JσKB to JτKB)

We will refer to the elements of each JσKB as term representations. Intuitively, an
element of JιKB represents a set of possible reducts of a term s : ι, while an element of
Jσ ⇒ τKB represents the function defined by a functional term s : σ ⇒ τ . Since each
JσKB is finite, we can enumerate its elements. In Algorithm 35 below, we build functions
Confirmed0,Confirmed1, . . . , each mapping statements f A1 · · ·Am ; t to a value in {>,⊥}.
Intuitively, Confirmedi[f A1 · · ·Am ; t] denotes whether, in step i in the algorithm, we have
confirmed that f s1 · · · sm has normal form t, where each Aj represents the corresponding sj .

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 17

To achieve this, we will use two helper definitions. First:

Definition 34. For a defined symbol f : σ1 ⇒ . . .⇒ σm ⇒ ι ∈ D, rule ρ : f `1 · · · `k → r ∈ R,
variables xk+1 : σk+1, . . . , xm : σm not occurring in ρ and A1 ∈ Jσ1KB, . . . , Am ∈ JσmKB, let

the mapping associated to ρ, ~x and f ~A be the function η on domain {`j | 1 ≤ j ≤ k ∧ `j ∈
V} ∪ {xk+1, . . . , xm} such that η(`j) = Aj for j ≤ k with `j ∈ V, and η(xj) = Aj for j > k.

Second, the algorithm employs a function NF i for all i, mapping a term s : σ and a
mapping η as above to an element of JσKB (which depends on Confirmedi). Intuitively, if δ
is a substitution such that each η(x) represents δ(x), then NF i(s, η) represents the term sδ.

Algorithm 35.
Input: A basic term s = g s1 · · · sM .
Output: The set of data normal forms of s. Note that this set may be empty.

Set B := Bs. For all f : σ1 ⇒ . . . ⇒ σm ⇒ ι ∈ D with ι ∈ S, all A1 ∈ Jσ1KB, . . . , Am ∈
JσmKB, all t ∈ JιKB, let Confirmed0[f A1 · · ·Am ; t] := ⊥. For all such f, ~A, t and all i ∈ N:

• if Confirmedi[f ~A; t] = >, then Confirmedi+1[f ~A; t] := >;
• otherwise, for all ρ : f `1 · · · `k → r ∈ R and fresh variables xk+1 : σk+1, . . . , xm : σm,

all substitutions γ on domain Var(f ~̀)\{~̀} such that `jγ ∈ Aj whenever `j /∈ V , let η

be the mapping associated to ρ, ~x and f ~A. Test whether t ∈ NF i((r xk+1 · · ·xm)γ, η).

Let Confirmedi+1[f ~A; t] be > if there are ρ, γ where this test succeeds, ⊥ otherwise.

Here, NF i(t, η) ∈ JτKB is defined recursively for B-safe terms t : τ and functions η mapping
all variables x : σ in Var(t) to an element of JσKB, as follows:

• if t is a data term, then NF i(t, η) := {t};
• if t = f t1 · · · tm with f : σ1 ⇒ . . . ⇒ σm ⇒ ι ∈ D (for ι ∈ S), then NF i(t, η) is the

set of all u ∈ B such that Confirmedi[f NF i(t1, η) · · · NF i(tm, η) ; u] = >;
• if t = f t1 · · · tn with f : σ1 ⇒ . . . ⇒ σm ⇒ ι ∈ D (for ι ∈ S) and n < m, then
NF i(t, η) := the function mapping An+1, . . . , Am to the set of all u ∈ B such that
Confirmedi[f NF i(t1, η) · · · NF i(tn, η) An+1 · · ·Am ; u] = >;
• if t = x t1 · · · tn with n ≥ 0 and x a variable, then NF i(t, η) := η(x)(NF i(t1, η), . . . ,
NF i(tn, η)); so also NF i(t) = η(t) if t is a variable.

When Confirmedi+1[f ~A; t] = Confirmedi[f ~A; t] for all statements, the algorithm ends;
we let I := i+ 1 and return {t ∈ B | ConfirmedI [g {s1} · · · {sM}; t] = >}.

This is well-defined because a non-variable pattern `j necessarily has base type, which
means Aj is a set. As D, B and all JσiKB are all finite, and the number of positions at which

Confirmedi is > increases in every step, the algorithm always terminates. The intention is
that ConfirmedI reflects rewriting for basic terms. This result is stated formally in Lemma 38.

Example 36. Consider the majority ATRS of Example 22, with starting term s =
majority (1;0;[]). Then Bs = {1, 0, 1;0;[], 0;[], []}. We have JsymbKB = {∅, {0}, {1}, {0, 1}}
and JlistKB is the set containing all eight subsets of {1;0;[], 0;[], []}. Thus, there are 8 · 2
statements of the form majority A; t, 83 · 2 statements of the form count A1 A2 A3 ; t
and 82 · 2 of the form cmp A1 A2 ; t; in total, 1168 statements are considered in each step.

We consider one statement in the first step, determining Confirmed1[cmp {0;[]} {0;[], []};
0]. There are two viable combinations of a rule and a substitution: cmp (y;ys) (z;zs) →
cmp ys zs with substitution γ = [y := 0, ys := [], z := 0, zs := []] and cmp (y;ys) [] → 0

18 C. KOP AND J.G. SIMONSEN

with substitution γ = [y := 0, ys := []]. Consider the first. As there are no functional
variables, η is empty and we need to determine whether 0 ∈ NF1(cmp [] [], ∅). This fails,
because Confirmed0[ξ] = ⊥ for all statements ξ. However, the check for the second rule,
0 ∈ NF1(0, ∅), succeeds. Thus, we mark Confirmed1[cmp {0;[]} {0;[], []}; 0] = >.

Before showing correctness of Algorithm 35, we see that it has the expected complexity.

Lemma 37. If (F ,R) has type order K, then Algorithm 35 runs in TIME
(
expK2 (a · n)

)
for some a.

Proof. Write N := |B|; N is linear in the size of the only input, s (R and F are not considered
input). We claim: if K, d ∈ N are such that σ has at most order K, and the longest sequence

σ1 ⇒ . . .⇒ σn ⇒ ι occurring in σ has length n+ 1 ≤ d, then card(JσKB) ≤ expK+1
2 (dK ·N).

(Proof of claim.) Proceed by induction on the form of σ. Observe that P(B) has
cardinality 2N , so for ι ∈ S also card(JιKB) ≤ 2N = exp1

2(d
0 ·N). For the induction step,

write σ = σ1 ⇒ . . .⇒ σn ⇒ ι with n < d and each σj having order at most K − 1. We have:

card(JσKB) = card((· · · (JιKJσnKB
B)Jσn−1KB · · ·)Jσ1KB) = card(JιKB)card(JσnKB)···card(Jσ1KB)

≤ 2ˆ(N · card(JσnKB) · · · card(Jσ1KB)) ≤ 2ˆ(N · expK2 (dK−1 ·N) · · · expK2 (dK−1 ·N))
= 2ˆ(N · expK2 (dK−1 ·N)n) ≤ 2ˆ(expK2 (dK−1 ·N · n+N)) (by induction on K ≥ 1)

= expK+1
2 (n · dK−1 ·N +N) ≤ expK+1

2 (d · dK−1 ·N) = expK+1
2 (dK ·N) (n+ 1 ≤ d)

(End of proof of claim.)
Since, in a Kth-order ATRS, all arguments types have order at most K − 1, we thus

find d (depending solely on F) such that all sets JσKB in the algorithm have cardinality
≤ expK2 (dK−1 · N). Writing a for the maximal arity in F , there are therefore at most

|D| · expK2 (dK−1 ·N)a ·N ≤ |D| · expK2 ((dK−1 · a+ 1) ·N) distinct statements f ~A; t.
Writing m := dK−1 · a+ 1 and X := |D| · expK2 (m ·N), we thus find: the algorithm has

at most I ≤ X + 2 steps, and in each step i we consider at most X statements ϕ where
Confirmedi[ϕ] = ⊥. For every applicable rule, there are at most (2N)a different substitutions
γ, so we have to test a statement t ∈ NF i((r ~x)γ, η) at most X · (X+2) · |R| ·2aN times. The
exact cost of calculating NF i((r ~x)γ, η) is implementation-specific, but is certainly bounded
by some polynomial P (X) (which depends on the form of r). This leaves the total time cost
of the algorithm at O(X · (X + 1) · 2aN · P (X)) = P ′(expK2 (m ·N)) for some polynomial P ′

and constant m. As EKTIME is robust under taking polynomials, the result follows.

5.1. Algorithm correctness. The one remaining question is whether our algorithm accu-
rately simulates rewriting. This is set out in Lemma 38.

Lemma 38. Let g : ι1 ⇒ . . . ⇒ ιM ⇒ ι ∈ D and s1 : ι1, . . . , sM : ιM , t : ι be data terms.
Then ConfirmedI [g {s1} · · · {sM}; t] = > if and only if g s1 · · · sM →∗R t. (Here, I is the
point at which the algorithm stops progressing, as defined in the last line of Algorithm 35.)

A key understanding for Lemma 38 is that algorithm 35 traces semi-outermost reductions:

Definition 39. A reduction s →∗R t is semi-outermost if either s = t, or it has the form
s = f s1 · · · sn →∗R f (`1γ) · · · (`kγ) sk+1 · · · sm →R (rγ) sk+1 · · · sm →∗R t, the sub-reductions
si →∗R `iγ and (rγ) sk+1 · · · sm →∗R t are semi-outermost, and sj = `jγ whenever `j ∈ V.

Proof Idea of Lemma 38. By postponing reductions at argument positions until needed, we
can safely assume that any reduction in a cons-free ATRS is semi-outermost. Then, writing
s ≈ A to indicate that s is “represented” by A, we prove by induction:

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 19

• if sj ≈ Aj for 1 ≤ j ≤ m, then ConfirmedI [f A1 · · ·Am ; t] iff f s1 · · · sm →∗R t;
• if δ and η have the same domain, and both δ(x) ≈ η(x) for all x and tj ≈ Aj for

1 ≤ j ≤ n, then t ∈ NFI(s, η)(A1, . . . , An) iff (sδ) t1 · · · tn →∗R t.
Lemma 38 is then obtained as an instance of the former statement.

To translate this intuition to a formal proof we must overcome three difficulties: to
translate an arbitrary reduction into a semi-outermost one, to associate terms to term
representations, and to find an ordering to do induction on (as, in practice, neither induction
on the algorithm nor on reduction lengths works very well with the definition of NF i). The
first challenge would be easily handled by an induction on terms if→R were terminating, but
that is not guaranteed. To solve this issue, we will define a terminating relation corresponding
to →R. This will also be very useful for the latter two challenges.

Definition 40 (Labeled system). Let Flab := C∪{fi : σ | f : σ ∈ D∧i ∈ N}. For s ∈ T (F ,V)
and i ∈ N, let labeli(s) be s with all instances of any defined symbol f replaced by fi. For
t ∈ T (Flab,V), let ‖t‖ be t with all symbols fi replaced by f. Then, let

Rlab = {fi+1 → fi | f ∈ D ∧ i ∈ N} ∪ {fi+1 `1 · · · `k → labeli(r) | f `1 · · · `k → r ∈ R ∧ i ∈ N}

Note that constructor terms are unaffected by labeli and ‖ · ‖. The ATRS (Flab,Rlab) is
both non-deterministic and infinite in its signature and rules, but can be used as a reasoning
tool because data normal forms correspond between the labeled and unlabeled system:

Lemma 41. For all f : σ1 ⇒ . . .⇒ σm ⇒ ι ∈ D and data terms s1, . . . , sm, t:

f s1 · · · sm →∗R t if and only if fi s1 · · · sm →∗Rlab
t for some i

Proof. The if direction is trivial, as u→Rlab v clearly implies that ‖u‖ →R ‖v‖ or ‖u‖ = ‖v‖.
For the only if direction, note that u→R v implies labeli+1(u)→∗Rlab

labeli(v) for any i, by
using the labeled rule fi+1 `1 · · · `k → labeli(r) if the step u →R v uses rule f `1 · · · `k → r
and using the labeled rules gi+1 → gi to lower the labels of all other symbols in u.

Despite the label decrease, termination of →Rlab is non-obvious due to variable copying.
For example, a pair of rules f1 (c F)→ F, g2 x→ f1 x x with the constructor c : (ι⇒ ι)⇒ ι
is non-terminating through the term f1 (c g2) (c g2). In our setting, such rules can be
assumed not to occur by Lemma 23, however. Thus, we indeed obtain:

Lemma 42. There is no infinite →∗Rlab
reduction.

Proof. We use a computability argument reminiscent of the one used for the computability
path ordering [9] (CPO does not apply directly due to our applicative term structure). First,
we define computability by induction on types: (a) s : ι ∈ S is computable if s is terminating:
there is no infinite →∗Rlab

-reduction starting in s; (b) s : σ ⇒ τ is computable if s t is
computable for all computable t : σ. Note that (I) every computable term is terminating and
(II) if s is computable and s→Rlab t, then t is computable. Also, (III), if `γ is computable
for a pattern `, then γ(x) is computable for all x ∈ Var(`): if x has base type then γ(x) is a
subterm of a terminating term by (I), otherwise (by Lemma 23) ` = x and γ(x) = `γ.

We first observe: every variable, constructor symbol and defined symbol f0 is computable:
let a : σ1 ⇒ . . .⇒ σm ⇒ ι be such a symbol; computability follows if a s1 · · · sm is terminating
for all computable s1 : σ1, . . . , sm : σm. We use induction on (s1,sm) (using the product
extension of →Rlab , which is well-founded on computable terms by (I)) and conclude with
(II) and the induction hypothesis since a s1 · · · sm can only be reduced by reducing some si.

20 C. KOP AND J.G. SIMONSEN

Next we see: every defined symbol fi is computable, by induction on i. For f0 we are done;
for fi+1 : σ1 ⇒ . . .⇒m⇒ ι we must show termination of fi+1 s1 · · · sm for computable ~s. We
are done if every reduct is terminating. By induction on ~s by →Rlab as before, we are done
for reduction steps inside any sj . Also fi s1 · · · sm is computable as i < i+1. This leaves only
head reductions fi+1 s1 · · · sm →Rlab (labeli(r)γ) sk+1 · · · sm for some f `1 · · · `k → r ∈ R with
each sj = `jγ. Certainly (labeli(r)γ) sk+1 · · · sm is terminating if labeli(r)γ is computable.
We prove this by a third induction on r, observing that each γ(x) is computable by (III):

Write r = a r1 · · · rn with x ∈ V ∪ F . Then labeli(r)γ = u (labeli(r1)γ) · · · (labeli(rn)γ)
with u = γ(a) or u ∈ C or u = gi; using the observations above and the first induction
hypothesis, u is computable in all cases. By the third induction hypothesis, also each
labeli(rj)γ is computable, so labeli(r)γ is a base-type application of computable terms.

Thus we obtain (a slight variation of) the first step of the proof intuition:

Lemma 43. If s →∗Rlab
t ∈ DA and s is B-safe, then s →∗Rlab

t by a semi-outermost
reduction.

Proof. By induction on s using →Rlab ∪�. If s = t we are done, otherwise (by B-safety) s =
fi s1 · · · sn with fi not occurring in t. Thus, a head step must be done: s = fi s1 · · · sn →∗Rlab

fi (`1γ) · · · (`kγ) s′k+1 · · · s′n →Rlab (rγ) sk+1′ · · · s′n for some rule fi `1 · · · `k ∈ R, substitution
γ and s′k+1, . . . , s

′
n such that si →∗Rlab

`iγ for 1 ≤ i ≤ k and si →∗Rlab
s′i for k < i ≤ n.

Now let δ := [x := γ(x) | x occurs as a strict subterm of some `j]∪[`j := sj | 1 ≤ j ≤ k∧`j
is a variable]. Since all variables occurring in a pattern `j are subterms of `j , clearly s→∗Rlab

fi (`1δ) · · · (`kδ) sk+1 · · · sn →Rlab (rδ) sk+1 · · · sn →∗Rlab
fi (`1γ) · · · (`kγ) s′k+1 · · · s′n →∗Rlab

t.
Then sj = `jδ if `j is a variable, and by Lemma 21 and the induction hypothesis (� part for
each sj and →Rlab part otherwise), all relevant sub-reductions are semi-outermost.

The second difficulty of the proof idea is in the way terms are associated with term
representations. Within the algorithm, a single term can have multiple representations; for
example, a term s which reduces to true and false is represented both by {false} and
{true, false}. This is necessary, because different normal forms are derived at different times,
and may depend on each other; for example, in an ATRS {or true x→ true, or false x→
x, f→ false, f→ or f true, g→ h}, we need to use that NF1(f) = {false} to obtain
NF2(f) = {true, false}. To reflect these levels, we will continue to use labeled terms:

Definition 44. Let ≈ be the smallest relation such that s ≈ A if we can write s = labeli(t)δ
and A = NF i(t, η) for some i, t, δ, η such that δ and η have the same domain and each
δ(x) ≈ η(x). Here, NF i := NFI if i > I.

The final challenge of the proof idea, the induction, can be handled in the same way: we
will use induction on labeled terms using →∗Rlab

. Thus, we are ready for the formal proof:

Proof of Lemma 38. Writing Confirmedi := ConfirmedI for all i > I, we will see, for all

relevant i ∈ N, f ∈ D, u, ~s ∈ T (Flab,V), t ∈ B, and term representations ~A,D:

(A): if sj ≈ Aj for 1 ≤ j ≤ m, then Confirmedi[f A1 · · ·Am ; t] if and only if q :=
fi s1 · · · sm →∗Rlab

t by a semi-outermost reduction;
(B): if sj ≈ Aj for 1 ≤ j ≤ m and u ≈ D, then t ∈ D(A1, . . . , Am) if and only if

q := u s1 · · · sm →∗Rlab
t by a semi-outermost reduction.

This proves the lemma because, for data terms sj , a trivial induction on the definition of ≈
shows that sj ≈ Aj iff Aj = {sj}. Thus: g s1 · · · sM →∗R t if and only if gi s1 · · · sM →∗Rlab

t

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 21

for some i (Lemma 41), if and only if the same holds with a semi-outermost reduction
(Lemma 43), if and only if Confirmedi[g {s1} · · · {sM} ; t] = > for some i (A). Since
Confirmedi[ξ] implies ConfirmedI [ξ] for all i, we have the required equivalence.

We prove (A) and (B) together by a mutual induction on q, oriented with →Rlab ∪�.

(A), only if case. Suppose Confirmedi[f A1 · · ·Am ; t] = >, and each sj ≈ Aj . Then

i > 0, and if Confirmedi−1[f A1 · · ·Am ; t] = >, then the induction hypothesis yields
q →Rlab fi−1 s1 · · · sm →∗Rlab

t by the rule fi → fi−1, so we are done.
Otherwise, there exist a rule f `1 · · · `k → r ∈ R, variables xk+1, . . . , xm and a substi-

tution γ on domain Var(f ~̀) \ {~̀} such that (a) `jγ ∈ Aj for all non-variable `j and (b)
t ∈ NF i−1((r xk+1 · · ·xm)γ, η) where η maps each variable `j to Aj , and xj to Aj for j > k.

By part (B) of the induction hypothesis—since q� sj—(a) implies that (c) sj →∗Rlab
`jγ

by a semi-outermost reduction for all non-variable `j . Now, if we let δ := [`j := sj | 1 ≤ j ≤
k ∧ `j ∈ V] ∪ [xj := sj | k < j ≤ m] we have δ(x) ≈ η(x) for all x. This gives:

q = fi s1 · · · sm →∗Rlab
(fi `1 · · · `k xk+1 · · ·xm)γδ (by (c) and definition of δ)

→Rlab (labeli−1(r) xk+1 · · ·xm)γδ (by the labeled rule for f `1 · · · `k → r)
= labeli−1((r xk+1 · · ·xm)γ)δ

Since at least one step is done and labeli−1(v)δ ≈ NF i−1(v, η) for the B-safe term v =
(r xk+1 · · ·xm)γ, we can use induction hypothesis (B) on observation (b) to derive that
q →∗Rlab

labeli−1((r xk+1 · · ·xm)γ)δ →∗Rlab
t. This reduction is semi-outermost.

(A), if case. Suppose q = fi s1 · · · sm →∗Rlab
t by a semi-outermost reduction. Since t cannot

still contain fi, this is not the empty reduction, so either

q = fi s1 · · · sm →Rlab fi−1 s1 · · · sm →∗Rlab
t

in which case induction hypothesis (A) gives Confirmedi−1[f A1 · · ·Am ; t] = >, or

q = fi s1 · · · sm →∗Rlab
(fi `1 · · · `k xk+1 · · ·xm)γ →Rlab labeli−1(r xk+1 · · ·xm)γ →∗Rlab

t

for some rule f `1 · · · `k → r ∈ R, substitution γ and fresh variables xk+1, . . . , xm. Here,
γ(xj) = sj for all j > k and γ(`j) = sj for those `j which are variables. By induction
hypothesis (B), `jγ ∈ Aj whenever `j is not a variable. Splitting γ := γ1] γ2—where γ1 has
domain {x | x occurs in some non-variable `j} and γ2 has the remainder—and writing η2 :=
[`j := Aj | 1 ≤ j ≤ k∧`j is a variable]∪ [xj := Aj | k < j ≤ m], we have γ2(x) ≈ η2(x) for all
x in the shared domain. Therefore labeli−1(r xk+1 · · ·xm)γ = (labeli−1(r xk+1 · · ·xm)γ1)γ2 ≈
NF i−1((r xk+1 · · ·xm)γ1, η2), and we obtain t ∈ NF i−1((r xk+1 · · ·xm)γ1, η2) by IH (B).

Thus, in either case, Confirmedi[f A1 · · ·Am ; t] = > follows immediately.

(B), both cases. We prove (B) by an additional induction on the definition of u ≈ D.
Observe that u ≈ D implies that u = labeli(v)δ and D = NF i(v, η) for some v, i, δ, η such
that each δ(x) ≈ η(x). Consider the form of the B-safe term v.

• If v ∈ DA, then m = 0 and t ∈ D = NF i(v, η) iff t = v = labeli(v) = u.
• If v = f v1 · · · vn with f ∈ D, then denote Cj := NF i(vj , η) for 1 ≤ j ≤ n; we have

t ∈ D(A1, . . . , Am) iff Confirmedi[f C1 · · ·Cn A1 · · ·Am ; t] = >. By case (A), this
holds iff q = (labeli(v)δ) s1 · · · sm = fi (labeli(v1)δ) · · · (labeli(vn)δ) s1 · · · sm →∗Rlab

t.

• If v = x v1 · · · vn with x ∈ V, then denote Cj := NF i(vj , η) for 1 ≤ j ≤ n; then
clearly labeli(vj)δ ≈ Cj . We observe that, on the one hand,

D(A1, . . . , Am) = NF i(v, η)(A1, . . . , Am) = (η(x)(C1, . . . , Cn))(A1, . . . , Am)
= η(x)(C1, . . . , Cn, A1, . . . , Am)

22 C. KOP AND J.G. SIMONSEN

And on the other hand,

q = (labeli(v)δ) s1 · · · sm = δ(x) (labeli(v1)δ) · · · (labeli(vn)δ) s1 · · · sm
As δ(x) ≈ η(x) is used in the derivation of u ≈ D, the second induction hypothesis
gives the desired equivalence.

And from Lemmas 37 and 38 together we obtain:

Theorem 45. Any decision problem accepted by a cons-free Kth-order ATRS is in EKTIME.

Proof. By Lemma 38, decision problems accepted by a cons-free Kth-order ATRS are decided
by Algorithm 35; by Lemma 37, this algorithm operates within

⋃
a∈N TIME

(
expK2 (an)

)
.

5.2. Characterization result. Combining Theorems 33 and 45 we thus find:

Corollary 46. A decision problem X is in EKTIME iff there is a Kth-order cons-free ATRS
which accepts X: the class of cons-free ATRSs with order K characterizes EKTIME.

Remark 47. There are many similarities between the algorithm and correctness proof
presented here and those in Jones’ work, most pertinently the use of memoization. We have
chosen to use a methodology which suits better with the semantics of term rewriting than
the derivation trees of [15], for example by enumerating all possible reductions beforehand
rather than using caching, but this makes little practical difference. We have also had to
make several changes for the non-determinism and different evaluation strategy. For example
the step to semi-outermost reductions is unique to this setting, and the term representations
are different than they must be in the deterministic (or call-by-value) cases.

6. Pairing

Unlike our applicative term rewriting systems, Jones’ minimal language in [15] includes
pairing. While not standard in term rewriting, some styles of higher-order rewriting also
admit pairs. We consider whether this feature affects expressivity of the considered systems.

Definition 48. An Applicative Pairing Term Rewriting System (APTRS) is defined following
the definitions for ATRSs in § 2.2, with the following changes:

• In Definition 4 (simple types): if σ, τ are types of order n,m, then also σ × τ is a
type of order max(n,m); the pairing constructor × is considered right-associative.
• In Definition 5 (terms): terms are expressions typable by clauses (a), (b), (c), where

(c) is: (s, t) : σ×τ if s : σ and t : τ . Pairing is right-associative, so (s, t, u) = (s, (t, u)).
• In Definition 12 (patterns, data and basic terms): a term ` is a pattern if (a), (b) or

(c) holds, where (c) is ` = (`1, `2) with `1 and `2 both patterns.

The last item is used to define constructor APTRSs as before.

Cons-freeness for left-linear constructor APTRSs is unaltered from Definition 16; however,
pairing is not a constructor, so may occur freely in both sides of rules. Lemmas 21 and 23 go
through unmodified, but constructors can have a product type of order 0 as argument type.

In a deterministic setting, pairing makes no difference: a function f : (σ× τ)⇒ π can be
replaced by a function f : σ ⇒ τ ⇒ π with two arguments, and a function f : π ⇒ (σ× τ) by
two functions f1 : π ⇒ σ and f2 : π ⇒ τ . We exploited this when defining counting modules
(in [15], a number is represented by a single term, which may have product type). However,
when allowing non-deterministic choice, pairing does increase expressivity—alarmingly so.

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 23

Lemma 49. Suppose counting modules are defined over APTRSs. If there is a first-order
P -counting module Cπ = (σ ⊗ τ,Σπ, Rπ, Aπ, 〈·〉π), then there is a first-order (λn.2P (n)−1)-

counting module C(ππ) = ((σ × τ)⊗ (σ × τ),Σ(ππ), R(ππ), A(ππ), 〈·〉(ππ)).

Proof. By using pairing, the ideas of Lemma 32 can be used to create a composite module.
We will use almost the same rules, but replace the underlying module Clin by Cπ. We say
s 7→ i if there is (t, u) ∈ Aπcs such that s→∗R (t, u) and 〈(t, u)〉πcs = i. A bitstring b0 . . . bN is
represented by a pair (yss, zss) such that yss 7→ i iff bi = 1 and zss 7→ i iff bi = 0.

• A(ππ)
cs contains all pairs (yss, zss) where
– for all 0 ≤ i < P (n): either yss 7→ i or zss 7→ i, but not both;
– if yss→∗R (u, v) then there is (u′, v′) ∈ Aπcs such that yss→∗R (u′, v′)→∗R (u, v)

(thus, any pair which yss reduces to is a number in Cπ, or a reduct thereof);
– if zss→∗R (u, v) then there is (u′, v′) ∈ Aπcs such that zss→∗R (u′, v′)→∗R (u, v).

• 〈(s, t)〉(ππ)cs =
∑P (|cs|)−1

i=0 {2|cs|−i | s 7→ i}. So 〈(s, t)〉(ππ)cs is the number with bitstring
b0 . . . bP (|cs|)−1 where bi = 1 iff s 7→ i, iff t 67→ i (with b0 the most significant digit).

• Σ(ππ) consists of the defined symbols introduced in R(ππ), which we construct below.

The rules for the module closely follow those in Lemma 32, except that:

• calls to seed1lin, zerolin and pred1lin are replaced by seedπ, zeroπ and predπ
respectively, where these symbols are supported by rules such as zeroπ cs (s, t)→
zeroπ cs s t and predπ cs (s, t)→ (pred1π cs s t, pred

2
π cs s t);

• calls eqLen n q are replaced by eqBase cs n q, and the rules for eqLen replaced by
eqBase cs (n1, n2) (m1,m2)→ equalπ cs n1 n2 m1 m2. Just like a call to eqLen n q
forces a reduction from q to a data term, a call to eqBase cs n q forces q to be
reduced to a pair—but not necessarily to normal form.

With these rules, indeed seed1(ππ) cs is in A(ππ)
cs , as is pred1(ππ) cs n if n ∈ Aπcs. Moreover,

we can check that the requirements on reduction are satisfied.

Thus, by starting with Ce and repeatedly using Lemma 49, we can reach arbitrarily
high exponential bounds (since 22

n−1 ≥ 2n). Following the reasoning of § 4, we thus have:

Corollary 50. Every set in ELEMENTARY is accepted by a cons-free first-order APTRS.

The key reason for this explosion in expressivity is that, by matching on a pattern
(x, y), a rule forces a partial evaluation. Recall that, in a cons-free ATRS (without pairing),
we can limit interest to semi-outermost reductions, where sub-reductions f s1 · · · sn →∗R
f u1 · · ·un = `γ →R rγ have si = ui or ui ∈ DA for all i: we can postpone an evaluation at
an argument position if it is not to a data term. By allowing a wider range of terms than
just the elements of B to carry testable information, expressivity increases accordingly.

We strongly conjecture that it is not possible to accept sets not in ELEMENTARY,
however. A proof might use a variation of Algorithm 35, where Jσ × τKB = {(A,B) | A ∈
JσKB ∧B ∈ JτKB}: the size of this set is exponential in the sizes of JσKB and JτKB, leading to

a limit of the form expa·n
b

2 depending on the types used. However, we do not have the space
to prove this properly, and the result does not seem interesting enough to warrant the effort.

Yet, product types are potentially useful. We can retain them while suitably constraining
expressivity, by imposing a new restriction.

24 C. KOP AND J.G. SIMONSEN

Definition 51. An APTRS is product-cons-free if it is cons-free and for all rules f `1 · · · `k →
r and subterms r � (r1, r2): each ri has a form (a) (s, t), (b) c s1 · · · sn with c ∈ C, or (c)
x ∈ V such that x 6= `j for any j (so x occurs below a constructor or pair on the left).

In a product-cons-free APTRS, any pair which is created is necessarily a data term.
Lemma 49 does not go through in a product-cons-free APTRS (due to the rules for predπ and

seedπ), but we do obtain a milder increase in expressivity: from EKTIME to EXPKTIME.

Lemma 52. Suppose counting modules are defined over product-cons-free APTRSs. Then

for all a ≥ 0, b > 0, there is a first-order (λn.2a·(n+1)b)-counting module Cexp〈a,b〉.

Proof. As in Ce from Lemma 32, we will represent a number with bitstring b0 . . . bN by two
terms yss and zss, such that yss 7→ i iff bi = 1 and zss 7→ i iff bi = 0. However, where in
Lemma 32 we say s 7→ i if s reduces to a data term list of length i, here we say s 7→ i if s
reduces to a data term of type listb+1 which represents i as in Lemma 29.

Formally: Write |xs| for the length of a data term list xs, so the number of ; symbols
occurring in it. Let Base be the set of all data terms (u0, . . . , ub) : listb+1 such that (a)
|u0| < a and (b) for 0 < i ≤ b: |ui| ≤ |cs|. We say that (u0, . . . , ub) ∈ Base base-represents

k ∈ N if k =
∑b

i=0 |ui| · (|cs|+ 1)b−i. (This follows the same idea as Lemma 29.) For a term
s, we say s 7→ k if s reduces by →R to an element of Base which base-represents k.

Now let Cexp〈a,b〉 := (listb+1,Σexp〈a,b〉, Rexp〈a,b〉,Aexp〈a,b〉, 〈·〉exp〈a,b〉), where:

• Aexp〈a,b〉
cs contains all (yss, zss) such that (a) all normal forms of yss or zss are in

Base, and (b) for all 0 ≤ i < a · (|cs|+ 1)b: either yss 7→ i or zss 7→ i, but not both.

• 〈(s, t)〉exp〈a,b〉cs =
∑N

i=0{2N−i | s 7→ i}, where N = a · (|cs|+ 1)b − 1.

• Σexp〈a,b〉 consists of the defined symbols introduced in Rexp〈a,b〉, which are those in
Lemma 32 with seed1lin, zerolin, pred

1
lin and eqLen replaced by seedbase, zerobase,

predbase and eqBase respectively, along with the following supporting rules:

seedbase cs → (0; . . . ;0;[], cs, . . . , cs)
Jwith |0; . . . ;0;[]| = a− 1K

zerobase cs ([], . . . , []) → true

zerobase cs (xs0, . . . , xsi−1, y;ys, [], . . . , []) → false Jfor 0 ≤ i ≤ bK
predbase cs ([], . . . , []) → ([], . . . , [])

predbase (c;zs) (xs0, . . . , xsi−1, y;ys, [], . . . , []) → (xs0, . . . , xsi−1, ys, c;zs, . . . , c;zs)
Jfor 0 ≤ i ≤ bK

eqBase ([], . . . , []) ([], . . . , []) → true

eqBase (xs0, . . . , xsi−1, y;ys, [], . . . , []) (zs0, . . . , zsi−1, [], [], . . . , []) → false

eqBase (xs0, . . . , xsi−1, [], [], . . . , []) (zs0, . . . , zsi−1, y;ys, [], . . . , []) → false

eqBase (xs0, . . . , xsi−1, y;ys, [], . . . , []) (zs0, . . . , zsi−1, n;ns, [], . . . , []) →
eqBase (xs0, . . . , xsi−1, ys, [], . . . , []) (zs0, . . . , zsi−1, ns, [], . . . , [])

This module functions as the ones from Lemmas 32 and 49. Note that in the rules for
predbase, we expanded the variable cs representing the input list to keep these rules product-
cons-free. By using c;zs, the list is guaranteed to be normalized (and non-empty).

Thus, combining Lemmas 52 and 30 with the rules of Figure 2, we obtain:

Corollary 53. Any decision problem in EXPKTIME is accepted by a Kth-order product-
cons-free APTRS.

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 25

By standard results, EKTIME (EXPKTIME for all K ≥ 1, hence the addition of
pairing materially increases expressivity. Conversely, we have:

Theorem 54. Any set accepted by a Kth-order product-cons-free APTRS is in EXPKTIME.

Proof. Following the proof of Lemma 37, the complexity of Algorithm 35 is polynomial in
the cardinality of the largest JσKB used. The result follows by letting Jι1× · · · × ιnKB contain
subsets of Bn—which we can do because the only pairs occurring in a reduction are data.

Formally, let (F ,R) be a product-cons-free APTRS. We first prove that any pair
occurring in a reduction s→∗R t with s basic, is a data term. Let a term s be product-B-safe
if s is B-safe and s � (s1, s2) implies (s1, s2) ∈ DA for all s1, s2. We observe: (**) if s is
product-B-safe and s→R t, then t is product-B-safe. B-safety of t follows by Lemma 21 and
for any t � (t1, t2): if not s � (t1, t2), then there are ` → r ∈ R, substitution γ and r1, r2
such that s� `γ and r � (r1, r2) and (t1, t2) = (r1, r2)γ. By definition of product-cons-free,
each ri is a pair—so riγ is data by induction on the size of r—or has the form c ~s—so riγ is
a data term by B-safety of t—or is a variable x such that γ(x) ∈ DA by product-B-safety of
s. Thus, (r1, r2) is a pair of two data terms, and therefore data itself.

Thus, we can safely assume that the only product types that occur have type order 0,
and remove constructors or defined symbols using higher order product types.

Next, we adapt Algorithm 35. We denote all types of order 0 as ι1 × · · · × ιn (ignoring
bracketing) and let Jι1× · · ·× ιnKB = P({(s1, . . . , sn) | si ∈ B∧ ` si : ιi for all i}). Otherwise,
the algorithm is unaltered. Let b be the longest length of any product type occurring in F . As

P(Bb) has cardinality 2N
b
, the reasoning in Lemma 37 gives card(JσKB) ≤ expK+1

2 (dK ·N b)
for a type of order k, which results in TIME

(
expK2 (a · nb)

)
for the algorithm. Lemma 41

goes through unmodified, Lemma 42 goes through if we define (s, t) to be computable if
both s and t are, and Lemma 38 by using product-B-safety instead of B-safety in case (B).

Thus we obtain:

Corollary 55. A decision problem X is in EXPKTIME if and only if there is a Kth-order
product-cons-free APTRS which accepts X.

7. Altering ATRSs

As demonstrated in § 6, the expressivity of cons-free term rewriting is highly sensitive in the
presence of non-determinism: minor syntactical changes have the potential to significantly
affect expressivity. In this section, we briefly discuss three other groups of changes.

7.1. Strategy. In moving from functional programs to term rewriting, we diverge from
Jones’ work in two major ways: by allowing non-deterministic choice, and by not imposing a
reduction strategy. Jones’ language in [15] employs call-by-value reduction. A close parallel
in term rewriting is to consider innermost reductions, where a step `γ →R rγ may only
be taken if all strict subterms of `γ are in normal form. Based on results by Jones and
Bonfante, and our own work on call-by-value programs, we conjecture the following claims:

(1) confluent cons-free ATRSs of order K, with innermost reduction, characterize
EXPK−1TIME; here, EXP0TIME = P, the sets decidable in polynomial time

(2) cons-free ATRSs of order 1, with innermost reduction, characterize P
(3) cons-free ATRSs of order> 1, with innermost reduction, characterize ELEMENTARY

26 C. KOP AND J.G. SIMONSEN

(1) is a direct translation of Jones’ result on time complexity from [15] to innermost
rewriting. (2) translates Bonfante’s result [10], which states that adding a non-deterministic
choice operator to Jones’ language does not increase expressivity in the first-order case. (3)
is our own result, presented (again for call-by-value programs) in [17]. The reason for the
explosion is that we can define a similar counting module as the one for pairing in Lemma 49.

Each result can be proved with an argument similar to the one in this paper: for one
direction, a TM simulation with counting modules; for the other, an algorithm to evaluate
the cons-free program. While the original results admit pairing, this adds no expressivity as
the simulations can be specified without pairs. We believe that the proof is easily changed
to accommodate innermost over call-by-value reduction, but have not done this formally.

Alternatively, we may consider outermost reductions steps, where rules are always
applied at the highest possible position in a term. Outermost reductions are semi-outermost,
but may behave differently in the presence of overlapping rules; for example, given rules
f 0→ true and f x→ false, an outermost evaluation would have to reduce f (0 + 0) to
false, while in a semi-outermost evaluation we could also have f (0 + 0)→R f 0→R true.
We note that the ATRS from Figure 2 and all counting modules evaluate as expected using
outermost reduction and that Theorem 45 does not consider evaluation strategy. This gives:

Corollary 56. A decision problem X is in EKTIME if and only if there is a Kth-order
cons-free ATRS with outermost reduction which accepts X.

7.2. Constructor ATRSs and left-linearity. Recall that we have exclusively considered
left-linear constructor ATRSs. One may wonder whether these restrictions can be dropped.

The answer, however, is no. In the case of constructor ATRSs, this is easy to see: if we
do not limit interest to constructor ATRSs—so if, in a rule f `1 · · · `k → r the terms `i are
not required to be patterns—then “cons-free” becomes meaningless, as we could simply let
D := F . Thus, we would obtain a Turing-complete language already for first-order ATRSs.

Removing the requirement of left-linearity similarly provides full Turing-completeness.
This is demonstrated by the first-order cons-free ATRS in Figure 5 which simulates an
arbitrary TM on input alphabet I = {0, 1}. A tape x0 . . . xn . . . with the reading head at
position i is represented by three parameters: xi−1:: . . . ::x0 and xi and xi+1:: . . . ::xn. Here,
the “list constructor” :: is a defined symbol, ensured by a rule which never fires. To split a
“list” into a head and tail, the ATRS non-deterministically generates a new head and tail
using two calls to rndtape (whose only shared reducts are fully evaluated “lists”), and uses
a non-left-linear rule to compare their combination to the original “list”.

7.3. Variable binders. A feature present in many styles of higher-order term rewriting
is λ-abstraction; e.g., a construction such as λx.f x. Depending on the implementation,
admitting λ-abstraction in cons-free ATRSs may blow up expressivity, or not affect it at all.

First, consider ATRSs with λ-abstractions used only in the right-hand sides of rules.
Then all abstractions can be removed by introducing fresh function symbols, e.g., by replacing
a rule f (c y)→ g (λx.h x y) by the two rules f (c y)→ g (fhelp y) and fhelp y x→ h x y
(where fhelp is a fresh symbol). Since the normal forms of basic terms are not affected by
this change, this feature adds no expressivity.

Second, some variations of higher-order term rewriting require that function symbols
are always assigned to as many arguments as possible; abstractions are the only terms of

COMPLEXITY HIERARCHIES AND HIGHER-ORDER CONS-FREE TERM REWRITING 27

rndtape x → [] rnd → 0

rndtape x → rnd :: rndtape x rnd → 1

⊥::t → t rnd → B

translate (0;xs) → 0 :: (translate xs)
translate (1;xs) → 1 :: (translate xs)

translate [] → B :: (translate [])
translate [] → []
equal xl xl → true

start cs → run start [] B (translate cs)
run s xl r yl → shift t xl w yl d) Jfor every transition s

r/w d
===⇒ tK

shift s xl c yl d → shift1 s xl c yl d rnd (rndtape 0) (rndtape 1)
shift1 s xl c yl d b t t → shift2 s xl c yl d b t Jfor every b ∈ {O, I, B}K
shift2 s xl c yl R z t → shift3 s (c :: xl) z t (equal yl (z :: t))
shift2 s xl c yl L z t → shift3 s t z (c :: yl) (equal xl (z :: t))
shift3 s xl c yl true → run s xl c yl

Figure 5: A first-order non-left-linear ATRS that simulates a given Turing machine

functional type. Clearly, this does not increase expressivity as it merely limits the number of
programs (with λ-abstraction) that we can specify. Nor does it lower expressivity: the results
in this paper go through in such a formalism, as demonstrated in [16]. It does, however,
require some changes to the definition of a counting module.

Finally, if abstractions are allowed in the left-hand sides of rules, then the same problem
arises as in Lemma 49: we can force a partial evaluation, and use this to define (λn. expK2 (n))-
counting modules for arbitrarily high K without increasing type orders. This is because a
rule such as f (λx.Z) matches a term f (λx.0), but does not match f (λx.g x 0) because
of how substitution works in the presence of binders. A full exposition of this issue would
require a more complete definition of higher-order term rewriting with λ-abstraction, so is
left as an exercise to interested readers. A restriction such as fully extended rules may be
used to bypass this issue; we leave this question to future work.

8. Conclusions

We have studied the expressive power of cons-free higher-order term rewriting, and seen that
restricting data order results in characterizations of different classes. We have shown that
pairing dramatically increases this expressive power—and how this can be avoided by using
additional restrictions—and we have briefly discussed the effect of other syntactical changes.
The main results are displayed in Figure 6.

P C
confluent cons-free ATRSs

EXPK−1TIME (translated from [15])
with call-by-value reduction

cons-free ATRSs EKTIME (Corollary 46)

product-cons-free APTRSs EXPKTIME (Corollary 56)

cons-free APTRSs (so with pairing) ≥ ELEMENTARY (Corollary 50)

Figure 6: Overview: systems P with type order K characterize the class C.

28 C. KOP AND J.G. SIMONSEN

8.1. Future work. We see two major, natural lines of further inquiry, that we believe will
also be of significant interest in the general—non-rewriting related—area of implicit complex-
ity. Namely (I), the imposition of further restrictions, either on rule formation, reduction
strategy or both that, combined with higher-order rewriting will yield characterization of
non-deterministic classes such as NP, or of sub-linear time classes like LOGTIME. And (II),
additions of output. While cons-freeness does not naturally lend itself to producing output,
it is common in implicit complexity to investigate characterizations of sets of computable
functions, e.g. the polytime-computable functions on integers, rather than decidable sets.
This could for instance be done by allowing the production of constructors of specific types.

References

[1] M. Avanzini, N. Eguchi, and G. Moser. A new order-theoretic characterisation of the polytime computable
functions. In APLAS, volume 7705 of LNCS, pages 280–295, 2012.

[2] M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime computability. In
RTA, volume 6 of LIPIcs, pages 33–48, 2010.

[3] M. Avanzini and G. Moser. Polynomial path orders. Logical Methods in Computer Science, 9(4), 2013.
[4] P. Baillot. From proof-nets to linear logic type systems for polynomial time computing. In TLCA, volume

4583 of LNCS, pages 2–7, 2007.
[5] P. Baillot and U. Dal Lago. Higher-Order Interpretations and Program Complexity. In CSL, volume 16

of LIPIcs, pages 62–76, 2012.
[6] Patrick Baillot, Marco Gaboardi, and Virgile Mogbil. A polytime functional language from light linear

logic. In ESOP, volume 6012 of LNCS, pages 104–124, 2010.
[7] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime functions. Compu-

tational Complexity, 2:97–110, 1992.
[8] S. Bellantoni, K. Niggl, and H. Schwichtenberg. Higher type recursion, ramification and polynomial time.

Annals of Pure and Applied Logic, 104(1–3):17–30, 2000.
[9] F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering: The end of a quest. In CSL,

volume 5213 of LNCS, pages 1–14, 2008.
[10] G. Bonfante. Some programming languages for logspace and ptime. In AMAST, volume 4019 of LNCS,

pages 66–80, 2006.
[11] D. de Carvalho and J. Simonsen. An implicit characterization of the polynomial-time decidable sets by

cons-free rewriting. In RTA-TLCA, volume 8560 of LNCS, pages 179–193, 2014.
[12] Lauri Hella and Jos Mara Turull-Torres. Computing queries with higher-order logics. Theoretical

Computer Science, 355(2):197 – 214, 2006.
[13] M. Hofmann. Type systems for polynomial-time computation, 1999. Habilitationsschrift.
[14] N. Jones. Computability and Complexity from a Programming Perspective. MIT Press, 1997.
[15] N. Jones. The expressive power of higher-order types or, life without CONS. Journal of Functional

Programming, 11(1):55–94, 2001.
[16] C. Kop and J. Simonsen. Complexity hierarchies and higher-order cons-free rewriting. In FSCD, volume 52

of LIPIcs, pages 23:1–23:18, 2016.
[17] C. Kop and J. Simonsen. The power of non-determinism in higher-order implicit complexity. In ESOP,

volume 10201 of LNCS, pages 668–695, 2017.
[18] L. Kristiansen and K. Niggl. On the computational complexity of imperative programming languages.

Theoretical Computer Science, 318(1–2):139–161, 2004.
[19] Gabriel M. Kuper and Moshe Y. Vardi. On the complexity of queries in the logical data model. Theoretical

Computer Science, 116(1):33 – 57, 1993.
[20] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[21] M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2006.
[22] F. van Raamsdonk. Higher-order rewriting. In Term Rewriting Systems, Chapter 11, pages 588–667.

Cambridge University Press, 2003.

	1. Introduction
	2. Preliminaries
	2.1. Computational Complexity
	2.2. Applicative term rewriting systems
	2.3. Deciding problems using rewriting

	3. Cons-free rewriting
	3.1. Properties of Cons-free Term Rewriting
	3.2. A larger example

	4. Simulating EkTIME Turing machines
	4.1. Core simulation
	4.2. Counting
	4.3. Counting higher

	5. Finding normal forms
	5.1. Algorithm correctness
	5.2. Characterization result

	6. Pairing
	7. Altering ATRSs
	7.1. Strategy
	7.2. Constructor ATRSs and left-linearity
	7.3. Variable binders

	8. Conclusions
	8.1. Future work

	References

