
Constrained Term Rewriting tooL ?

Cynthia Kop1 and Naoki Nishida2

1 Institute of Computer Science, University of Innsbruck
2 Graduate School of Information Science, Nagoya University

Abstract. This paper discusses Ctrl, a tool to analyse – both auto-
matically and manually – term rewriting with logical constraints. Ctrl
can be used with TRSs on arbitrary underlying logics, and automat-
ically analyse various properties such as termination, confluence and
quasi-reductivity. Ctrl also offers both a manual and automatic mode
for equivalence tests using inductive theorem proving, giving support for
and verification of “hand-written” term equivalence proofs.

1 Introduction

Given the prevalence of computer programs in modern society, an important
role is reserved for program analysis. Such analysis could take the form of for
instance termination (“will every program run end eventually, regardless of user
input?”), productivity (“will this program stay responsive during its run?”) and
equivalence (“will this optimised code return the same result as the original?”).

In recent years, there have been several results which transform a real-world
program analysis problem into a query about term rewriting systems (TRSs).
Such transformations are used to analyse termination of small, constructed lan-
guages (e.g. [2]), but also real code, like Java Bytecode [13], Haskell [7] or
LLVM [4]. Similar transformations are used to analyse code equivalence in [3,5].

In these works, constraints arise naturally. Where traditional term rewrit-
ing systems generally consider well-founded sets like the natural numbers, more
dedicated techniques are necessary when dealing with for instance integers or
floating point numbers. This is why, typically, extensions of basic term rewriting
are considered, adding a (usually infinite) number of predefined symbols and
rules – for instance including all integers as constant symbols, and rules such as
1+ 0→ 1, 1+ 1→ 2, . . . – along with some way of specifying constraints. The
Logically Constrained Term Rewriting Systems (LCTRSs) from [10] take this a
step further, by not limiting interest to a fixed theory (such as the integers with
standard functions and relations), but rather allowing an arbitrary underlying
theory. This makes it possible to define systems corresponding to (and imme-
diately obtain theoretical results for), e.g., imperative programs with arrays,
or to functional programs with advanced data structures. As observed in [10],
LCTRSs conservatively extend many typical forms of constrained rewriting.

To analyse LCTRSs automatically, we have created the tool Ctrl. Like the
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general LCTRS framework, Ctrl can be equipped with an arbitrary underly-
ing theory, provided an SMT-solver is given to solve its satisfiability and validity
problems. The tool has the functionality to test confluence and quasi-reductivity,
extensive capability to verify termination, and both automatic and manual sup-
port for inductive theorem proving, by which one may prove equivalence of two
different functions. Ctrl participated in the Integer Transition Systems and In-
teger TRS categories of the 2014 termination competition (no corresponding
categories for other theories were present). Ctrl is open-source, and available at:

http://cl-informatik.uibk.ac.at/software/ctrl/

Contribution. Compared to other tools on forms of constrained rewriting
(e.g. AProVE [6]), Ctrl is unique in supporting arbitrary theories. Of the tool’s
many features, only automatic equivalence proving has been presented before [11].

Structure. In this paper, we will consider the various aspects of Ctrl. In Sec. 2,
we start by recalling the definition of LCTRSs. In Sec. 3, we show how these
notions translate to Ctrl, and in Sec. 4 we discuss the problems Ctrl can solve.
The next sections treat the two most sophisticated options: termination (Sec. 5)
and term equivalence (Sec. 6). Experiments and practical usage, where relevant,
are explained in the corresponding sections. Finally, we conclude in Sec. 7.

2 Logically Constrained Term Rewriting Systems

The full definition of LCTRSs is given in [10,11]. We will here explain by example.
In LCTRSs, many-sorted term rewriting is combined with pre-defined func-

tions and values over arbitrary sets, along with constraints to limit reduction.
For example, we might define an LCTRS to calculate the Fibonacci numbers:

fib(n)→ 1 [n ≤ 1] fib(n)→ fib(n− 1) + fib(n− 2) [n > 1]

Here, the integers are added to term rewriting, along with functions for addition,
subtraction and comparison. To be precise, we have the following symbols:

values theory functions TRS functions
true, false : Bool +,− : [Int× Int]⇒ Int fib : [Int]⇒ Int

0, 1,−1, 2, . . . : Int ≤, > : [Int× Int]⇒ Bool

The values and theory functions each have a pre-defined meaning in the un-
derlying theory of the booleans and integers. The TRS functions are used to
define custom functions, like in a functional programming language (although
at the moment, higher-order functions such as map are not permitted), but also
for constructors, which make it possible to define inductive types.

Rewriting is constrained as follows: a rule may only be applied if the variables
in its constraint are all instantiated by values, and the constraint evaluates to
true in the theory. In addition, theory functions occurring inside terms are
evaluated step by step. For example, fib(2+(0+1)) cannot be reduced with the
second rule, as 2+(0+1) is not a value. Instead, fib(2+(0+1))→ fib(2+1)→
fib(3) by two calculation steps, and fib(3)→ fib(3− 1) + fib(3− 2).
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A key feature of LCTRSs is that we do not fix the underlying sets, theory
functions or values, nor their meanings. Predicates, too, are merely functions
mapping to booleans, which could be anything according to need. For instance,
to model an implementation of the strlen function in C, we might use

slen(s)→ u(s, 0) u(s, i)→ err [i < 0 ∨ size(s) ≤ i]
u(s, i)→ ret(i) [0 ≤ i < size(s) ∧ get(s, i) = c0]
u(s, i)→ u(s, i+ 1) [0 ≤ i < size(s) ∧ get(s, i) 6= c0]

and the following signature, where Carr is interpreted as the set {0, . . . , 255}∗
and Int as the set {−215, . . . , 215 − 1}, with addition subject to overflow:

values TRS functions
true, false : Bool slen : [Carr]⇒ X

−32768, . . . , 32768 : Int u : [Carr× Int]⇒ X

c0, c1, . . . , c255 : Char err : X
{}, {0}, {1, 0}, . . . : Carr ret : [Int]⇒ X

It is common to as-
sume that at least all the
usual boolean operators
(∧,∨, not) are present
in Σlogic and have the
standard interpretation.

theory functions
+ : [Int× Int]⇒ Int

≤, <,=, 6= : [Int× Int]⇒ Bool

∨,∧ : [Bool× Bool]⇒ Bool

not : [Bool]⇒ Bool

size : [Carr]⇒ Int

get : [Carr× Int]⇒ Char

Quantifiers are not supported directly, but
can typically be replaced by a theory
function; e.g., turning ∀x ∈ {0, size(a)}
[select(a, x) > 0] into positive(a), with
positive : [IntArray]⇒ Bool a new the-
ory function with the meaning “all ele-
ments of the argument are greater than 0”.

3 Fundamentals

Ctrl is invoked with an input file defining an LCTRS and a query, using the
format in Figure 1. Each of the fields (e.g. SOLVER solver ) can be omitted.

THEORY theory

LOGIC logic

SOLVER solver

SIGNATURE

signature

RULES

rules

QUERY query

Fig. 1: Input File

Ctrl follows the core idea of LCTRSs by not using a pre-
defined theory; instead, theory functions and values are de-
fined in a theory file, which is included using the THEORY

field. The underlying logic is handled by an external SMT-
solver (as given by the SOLVER field), which uses the input
and output format of SMT-LIB (see http://smtlib.cs.

uiowa.edu/). The LOGIC field provides the name of an SMT-
LIB logic following http://smtlib.cs.uiowa.edu/logics.

shtml or any other logic supported by the SMT-solver. For
the fib example of Sec. 2, we would for instance use QF_LIA.

The signature is given by listing TRS function symbols, along with their
type declaration and separated by commas or semi-colons, e.g., err : X ; u :

Carr * Int => X. Type declarations may be omitted (writing, e.g., err, u), in
which case types are derived automatically; if this fails, Ctrl aborts. Rules have
the form term1 -> term2 [constraint] where both term1 and term2 are well-
typed terms on variables and declared symbols (values, theory functions or TRS
functions), and constraint is a term of sort Bool, not containing TRS functions.
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Rules must be separated by semi-colons, and constraints may be omitted. For
example: slen(s) -> u(s,0) ; u(s,i) -> err [i < 0 or size(s) <= i].

Finally, query determines the action Ctrl should take, as detailed in Sec. 4.

INCLUDE theories

DECLARE

signature

WELLFOUNDED names

CHAIN chainings

SMT-TRANSLATIONS

translations

Fig. 2: Theory File

The shape of a theory file is given in Figure 2. The-
ory files, in order to be used, are expected to be in the
theories/ subdirectory in the program folder. A the-
ory can extend another theory (effectively including
all its symbols) using the INCLUDE field, e.g. INCLUDE
ints; it is recommended to include at least core,
which contains symbols like true, false, and, or and
not. The DECLARE field corresponds to SIGNATURE in
an input file; here, all theory functions and values
must be listed, along with their type declaration. The symbols listed after
WELLFOUNDED should all be well-founded relations, i.e. symbols R : [ι× ι]⇒ Bool

such that no infinite sequence s1Rs2R . . . exists; this is used for termination
analysis. CHAIN is used to define syntactic sugar, allowing, e.g., x > y > z to
be shorthand for x > y and y > z. Finally, SMT-TRANSLATIONS allows users
to assign a meaning to custom symbols. That is, if a theory symbol was de-
clared which is not typically supported by SMT-solvers for this theory – such as
positive(a) from the previous section – we may instead express its meaning
as an SMT-term (e.g. (forall ((x Int)) (or (< x 0) (>= x (size a)) (>

(select a x) 0))); of course, in this case the LOGIC must support quantifiers).

Note that Ctrl itself does not know much theory: aside from basic properties
on the core theory (i.e. symbols like and and or) and minor reasoning on integers,
all calculations and validity questions which arise during a program run are
passed to the given SMT-solver (which must be present in the folder from which
Ctrl is invoked), along with the given LOGIC field. This makes it possible to handle
arbitrary theories. If no solver is given, the default SMT-solver called smtsolver
in the program directory is automatically used; this is currently Z3 [1].

To support realistic systems, Ctrl provides three constructions to declare
infinitely many values at once. A declaration !INTEGER : sort causes all integer
symbols to be read as values with sort sort . Similarly, !ARRAY!α, with α the
name of a sort, includes all sequences of the form {a1:...:an} where each ai is
a value of sort α. !MIXED!o!c, with o and c strings, includes all strings of the
form o〈string〉c.3 The string values are passed to the SMT-solver without the
“bracketing” o, c. As it is not needed that each integer/array/string represents
a value, these constructions allow you to support arbitrary types; for instance:

– !INTEGER : Byte (but users should make sure the input file only includes
integers in {0, . . . , 255}, and the SMT-solver only returns such numbers);

– !ARRAY!ARRAY!Int : Matrix (values would be, e.g., {{1,3}:{2:1}});
– !MIXED!"!" : Real (values would be, e.g., "3.14", and passed to the SMT-

solver as 3.14; Ctrl does not assume all values can be represented).

3 However, to avoid ambiguity in the input parser, the brackets and individual strings
in the input file may not use the protected symbols [, , and ;, or spaces.
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To demonstrate how the various fields and constructions are used, the Ctrl down-
load at http://cl-informatik.uibk.ac.at/software/ctrl/ contains both
example input files (in the examples/ folder) and theories (in theories/).

Comment: Instead of an external SMT-solver, users might set the SOLVER

to manual, which indicates that they will manually perform calculations and
satisfiability or validity checks; or to internal, which causes Ctrl to attempt
simplifying formulas with booleans, integers and integer arrays itself before
passing any remaining problems to smtsolver. This gives a speedup by avoid-
ing external calls in many cases. The internal solver is consistent with the
core and ints theories in http://smtlib.cs.uiowa.edu/theories.shtml .

4 Queries

Ctrl is a generic tool for constrained rewriting, designed to solve a variety of
problems (as requested by the QUERY field). We consider the possibilities. Note
that example uses of all queries are available in the Ctrl download.

Simplifying. The literature offers several translations from restricted impera-
tive programs to constrained rewriting (see e.g. [2,12]), enabling the analysis of
imperative languages with rewriting techniques. Initially, this often gives large
and somewhat impractical systems. Ctrl’s simplification module (invoked us-
ing simplification [f1 ... fn]) simplifies such LCTRSs, chaining together
rules and removing unused arguments, but leaving the symbols fi untouched.
For instance, {f(x, y) → g(x, 0) [ϕ], g(x, y) → h(x + y, x, x ∗ y), h(x, 0, y) →
f(x, x) [x < 0]} becomes {f(x, y)→ h(x+ 0, x) [ϕ], h(x, 0)→ f(x, x) [x < 0]}.

Reducing. Ctrl can reduce both terms (using the SMT-solver to test whether
constraints are satisfied and to do calculations), and constrained terms, which
intuitively indicates how groups of terms are reduced, following [11, Sec. 2.1].
For example, fib(n) [n > 3] → fib(n - 1) + fib(n - 2) [n > 3] proves
that all terms fib(s) with s a value > 3 can be reduced as given. Ctrl reduces
(constrained) terms using an innermost strategy to normal form, or until the
SMT-solver simply fails to verify that any specific rule can be applied.4 In a
non-terminating LCTRS, it is possible that evaluation never ends.

Boolean Properties Ctrl tests three properties which apply to the full LCTRS:

– Confluence: ∀s, u, v[(s →∗ u ∧ s →∗ v) ⇒ ∃w[u →∗ w ∧ v →∗ w]]; put
differently, how we reduce a term does not affect the results we can obtain.

– Quasi-reductivity: all irreducible ground terms are built entirely of construc-
tor symbols: values and TRS functions f where no rule f(`)→ r [ϕ] exists.

– Termination: there is no infinite reduction s1 → s2 → s3 → . . ..

All three are undecidable yet commonly studied properties in the world of (un-

4 This failure is not unlikely, as constrained reduction following [11] requires validity
of quantified formulas ∃x[ϕ(x)], which is hard for most solvers. To improve perfor-
mance, Ctrl uses default choices for x; this method is omitted here for space reasons.
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constrained) TRSs. Techniques to verify them often extend naturally to LCTRS.
For confluence, Ctrl tests the sufficient condition of orthogonality [10]. This

property is straightforward to check – testing satisfiability of formulas which are
little more complicated than the rule constraints – yet captures a large and natu-
ral collection of LCTRS, as typical functional programs are orthogonal. LCTRSs
obtained from imperative programs and simplified are usually orthogonal as well,
provided variables are obviously instantiated before they are used.

For quasi-reductivity, Ctrl uses the nameless but powerful algorithm described
in [12]. Termination uses a combination of techniques, described in Sec. 5.

Equivalence. Finally, Ctrl has a module on inductive theorem proving, which
can help a user prove reducibility between two groups of terms, either automat-
ically or in an interactive mode. This is explained in more detail in Sec. 6.

5 Termination

Termination is the property that, regardless of the order and position in which
rules are applied, evaluation of every term ends eventually. Many termination
methods for unconstrained TRSs rely on the dependency pair framework [8], a
powerful approach which enables modular use of many sub-techniques.

While this framework extends naturally to constrained rewriting [9], the or-
dering methods which form a core part unfortunately do not – or rather, they
are useful in theory, but automation fails in the presence of infinitely many
values. Consider for example a TRS with a rule f(x,y) → f(x - 1, y + 2)

[x > 0]. To see that it terminates, we must know that there is no infinite se-
quence x1, x2, . . . where each xi > xi+1 and xi > 0. This we cannot express as a
constraint over integer arithmetic: rather, it requires domain-specific knowledge.

Here, the WELLFOUNDED declaration comes in. Ctrl will test whether arguments
decrease with respect to any given well-founded relation. To handle the example
above, we may introduce a custom symbol >! : [Int×Int]⇒ Bool, and translate
x >! y to x > y ∧ x ≥ 0. Currently, the stronger polynomial interpretations are
limited to the integers, but we intend to generalise this in the near future.

Practical Results. There is no database of LCTRS termination problems,
but there are large collections of integer TRSs (ITRSs) and transition systems
(ITSs) in the termination problem database (see http://termination-portal.

org/wiki/TPDB), both of which can be translated to LCTRSs.5 Figure 3 shows

ITRSs ITSs
Yes 85 371

Maybe 29 455
Timeout 3 396

Time 0.85 6.88

Fig. 3: results on the TPDB

Ctrl’s power on these benchmarks, evaluated with
a 1-minute timeout. Here, Time indicates the aver-
age runtime in seconds, disregarding timeouts. Ctrl
currently has no non-termination functionality.

Ctrl’s apparent weakness on ITSs is partly
caused by the greater size of many benchmarks,
and partly due to non-termination: many of them

5 The translation for integer transition systems uses a variation of Marc
Brockschmidt’s SMT-Pushdown tool at https://github.com/mmjb/SMTPushdown.
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only terminate if you fix a given start symbol. Ctrl proves the stronger property
of termination for all terms. Consequently, it performs somewhat worse than
dedicated tools for ITSs like T2 (http://research.microsoft.com/en-us/
projects/t2/). In addition, neither integer rewriting nor termination are the
main focus of Ctrl: the primary goal is generality. In the future, we hope to add
further termination techniques; both general and theory-specific ones.

6 Equivalence

Finally, equivalence studies the question whether two groups of terms are re-
ducible to each other; this is done in the form of equations s ≈ t [ϕ]. For instance
f(x, y) ≈ g(x, z) [x > y ∧ x > z] is an inductive theorem if for all values x, y, z
such that x > y ∧ x > z holds in the underlying theory, f(x, y)↔∗R g(x, z). In a
confluent, terminating system, this exactly means that they reduce to the same
normal form. If f(x1, . . . , xn) ≈ g(x1, . . . , xn) [ϕ] is an inductive theorem, then
f and g define the same function (under the conditions dictated by ϕ), which
could be used in practice to replace (parts of) functions by optimised variations.

Unfortunately, this is a hard problem to solve automatically, even for quite
simple systems. Ctrl uses rewriting induction [11], a method introduced in [14]
which relies on termination of→R for the induction principle. There are a num-
ber of inference rules to simplify equations, but the key to successful rewriting in-
duction is guessing suitable lemma equations, for which no single obvious method
exists (although many techniques exist to capture certain kinds of systems).

Ctrl offers two ways of testing equivalence: automatic and interactive. In
interactive mode, the user manually chooses inference rules to apply, using Ctrl
to guard applicability of these steps and allowing “auto” steps to do obvious
simplifications. Beside the basic steps, a lemma generation method is included:

ft1(x)→ 1 [x ≤ 0]
ft1(x)→ x ∗ ft1(x− 1) [x > 0]
ft2(x)→ u(x, 1, 1)

u(x, i, z)→ u(x, i+ 1, z ∗ i) [i ≤ x]
u(x, i, z)→ z [i > x]

Goal: ft1(x) ≈ ft2(x) [true]

Fig. 4: Example LCTRS problem.

generalise, which is especially useful for the
LCTRSs obtained from imperative pro-
grams, by focusing on loop counters. Fig-
ure 4 shows an example LCTRS compar-
ing a recursive and iterative calculation of
the factorial function. The Ctrl solution is:
auto, swap, expand, auto, auto, expand,
auto, generalise, expand, auto, auto. To
see these commands in action, download
the tool and run it on examples/ft.ctrs.

The automatic mode requires no user interaction (although lemma equations
can be added in the input file), but combines some heuristics with backtrack-
ing to obtain a proof. Ctrl can automatically handle quite complicated exam-
ples, as evidenced by the results in [11] (http://cl-informatik.uibk.ac.at/
software/ctrl/aplas14/): on 7 groups of manually translated student home-
work programs, Ctrl could automatically prove correctness of two thirds. This
includes array / string functions such as strcpy or summing array elements. To
our knowledge, there are no other provers which can handle systems like Fig. 4.
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7 Conclusions

We have discussed Ctrl, a versatile tool for constrained rewriting. A key focus
of Ctrl is generality : the functionality is not limited to, e.g., linear integer arith-
metic, but supports almost any theory, provided an SMT-solver is available for
it. This makes it possible to use Ctrl in many different settings; once support is
available, we could for instance use it to analyse confluence of oriented mathe-
matical equations over the real number field, termination of functional programs
with mappings as core objects, or equivalence of imperative string functions.

What is more, the techniques themselves are designed with extension in mind,
allowing for more sophisticated techniques to be added in the future. Another
obvious future work (which is already in progress) is to translate reasonable
subsets of certain imperative languages into LCTRSs automatically.

The version of Ctrl used in this work, and evaluation pages for the experi-
mental results on termination and equivalence, are available at:

http://cl-informatik.uibk.ac.at/software/ctrl/lpar15/
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