
Submitted to:
PERR 2019

c© C. Fuhs, C. Kop & N. Nishida

Proving Program Equivalence with Constrained Rewriting
Induction and Ctrl

Carsten Fuhs
Birkbeck, University of London, UK

Cynthia Kop
Radboud University, The Netherlands

Naoki Nishida
Nagoya University, Japan

We prove equivalence of imperative programs by an automatic conversion of the functions in the
input program to an equivalent Logically Constrained Term Rewrite System (LCTRS), followed by
constrained rewriting induction (either fully automatically or guided by the user) to analyze equiva-
lence of the corresponding functions in the LCTRS. Our approach is implemented in the tool Ctrl.

Introduction. Total equivalence of two programs P and Q is the property that (a) both P and Q termi-
nate on all inputs (termination) and (b) for the same inputs, the result of P is always the same as the result
of Q (partial equivalence). For termination, one can use existing push-button provers (e.g., [1, 2, 4, 6]).
How to prove property (b) is less obvious. In this abstract, we sketch an approach for proving partial
equivalence of terminating imperative programs P and Q. Concretely, we show that calls to two different
functions fP and fQ will lead to the same result for all possible inputs (possibly for some precondition).

We transform P and Q in an equivalence-preserving way to a Logically Constrained Term Rewrite
Systems (LCTRS) [5]. On this LCTRS, we prove equivalence by rewriting induction [8] with support for
logical constraints. We sketch the approach by example. An extended version of the present abstract with
technical details, correctness proofs, generalization heuristics, further examples, and an experimental
evaluation is available in the journal paper [3].

Motivating Example. Consider the following imperative program (in C syntax, where we consider
int as unbounded integers).

int fibrec(int x) {

if (x <= 0)

return 0;

else if (x == 1)

return 1;

else

return fibrec(x-1) + fibrec(x-2);

}

int fibiter(int x) {

int y = 0, z = 1, t;

for (int i = 1; i <= x; i++) {

t = y + z;

y = z;

z = t;

}

return y;

}
The program provides a recursive and an iterative implementation of the Fibonacci function on nat-

ural numbers (negative inputs are mapped to 0). Both functions are easily proved terminating. Now
we want to prove that for all inputs, the functions fibrec and fibiter return the same results. The
functions can be expressed equivalently by an LCTRS with the following constrained rewrite rules:

(1) fibrec(x) → 0 [x≤ 0]
(2) fibrec(1) → 1
(3) fibrec(x) → plus(fibrec(x−1),fibrec(x−2)) [x≥ 2]
(4) plus(return(x), return(y)) → return(x+ y)



2 Proving Program Equivalence with Constrained Rewriting Induction and Ctrl

(5) fibiter(x) → iter(x,1,0,1)
(6) iter(x, i,y,z) → iter(x, i+1,z,y+ z) [x≥ i]
(7) iter(x, i,y,z) → return(y) [x < i]

Our equivalence claim can be expressed by the equation fibrec(x)≈ fibiter(x) [true]. An attempt to prove
that this equation holds for all x ∈ Z results in a divergence with more and more proof obligations:

iter(n,3,1,2) ≈ plus(iter(m, iter(m,2,1,1)), iter(k, iter(k,1,0,1))) [m = n−1∧ k = n−2]
iter(n,4,2,3) ≈ plus(iter(m, iter(m,3,1,2)), iter(k, iter(k,2,1,1))) [m = n−1∧ k = n−2]
iter(n,5,3,5) ≈ plus(iter(m, iter(m,4,2,3)), iter(k, iter(k,3,1,2))) [m = n−1∧ k = n−2]

The key to a successful proof is our generalization technique [3] which abstracts variable initializations:

iter(n3, i3,z3,z4)≈ plus(iter(n2, i2,z2,z3), iter(n1, i1,z1,z2))
[n2 = n3−1∧n1 = n2−2∧ i3 = i2 +1∧ i2 = i1 +1∧ z3 = z1 + z2∧ z4 = z2 + z3]

This equation can be shown using constrained rewriting induction. This implies equivalence of fibrec
and fibiter. Thus, we can prove equivalence of functions with wildly different time complexities:
fibrec’s running time is exponential in the input value, whereas that of fibiter is linear.

Another interesting example where our approach automatically proves equivalence has a function to
sum up all numbers from 0 to n via a for-loop (linear running time) and a function that immediately
returns n(n+1)/2 (constant running time). Here, equivalence is proved for all non-negative inputs n.

Implementation. In addition to reasoning about integer arithmetic, our implementation Ctrl [6] pro-
vides automation for reasoning about arrays. Ctrl also performs preprocessing to simplify the input
LCTRSs. Reasoning about the underlying constraint theory is performed by the SMT solver Z3 [7].
Ctrl can use a theory that a user specifies by means of SMT-LIB logics such as bitvectors, and thus, we
will apply our approach to more practical programs, e.g., automotive embedded systems written as C
programs with structures and unions.

References
[1] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf & Nir Piterman (2016): T2: Temporal Property

Verification. In: TACAS ’16, pp. 387–393.
[2] Stephan Falke, Deepak Kapur & Carsten Sinz (2011): Termination Analysis of C Programs Using Compiler

Intermediate Languages. In: RTA ’11, pp. 41–50.
[3] Carsten Fuhs, Cynthia Kop & Naoki Nishida (2017): Verifying Procedural Programs via Constrained Rewrit-

ing Induction. ACM Trans. Comput. Log. 18(2), pp. 14:1–14:50.
[4] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Jera

Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski & René
Thiemann (2017): Analyzing Program Termination and Complexity Automatically with AProVE. J. Aut.
Reasoning 58(1), pp. 3–31.

[5] Cynthia Kop & Naoki Nishida (2013): Term Rewriting with Logical Constraints. In: FroCoS ’13, pp. 343–358.
[6] Cynthia Kop & Naoki Nishida (2015): Constrained Term Rewriting tooL. In: LPAR ’15, pp. 549–557. Tool

available at http://cl-informatik.uibk.ac.at/software/ctrl/.
[7] Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: TACAS ’08, pp. 337–340.
[8] Uday S. Reddy (1990): Term Rewriting Induction. In: CADE ’90, pp. 162–177.

http://cl-informatik.uibk.ac.at/software/ctrl/

