Higher Order Termination

Automatable Techniques for Proving Termination of
Higher-Order Term Rewriting Systems

This is a copy of the published thesis, which includes minor updates
and corrections. For the original, please see http://dare.ubvu.vu.
nl/bitstream/handle/1871/39346/dissertation.pdf?sequence=1
or contact the author for a physical copy.

Changes in this work compared to the published version:

* In the definition of S-reduced sub-meta-term (Def. 6.18), the acci-
dentally omitted variable case was added.

* In the definitions of formative reduction and tagged formative re-
duction, a case for 5-reduction was included; this case was always
intended, and omitted only by accident. The corresponding proofs
have been updated accordingly.

* Two reference items which were To Appear at the time of writing
have appeared now, and have been updated.

Cynthia Kop

http://dare.ubvu.vu.nl/bitstream/handle/1871/39346/dissertation.pdf?sequence=1
http://dare.ubvu.vu.nl/bitstream/handle/1871/39346/dissertation.pdf?sequence=1

Higher Order Termination

Copyright © 2012 by Cynthia Kop

Cover design by Melle Wynia

Printed and bound by Wéhrmann Print Service, Zutphen
ISBN: 978-94-6203-164-7

IPA Dissertation Series 2012-14

LI {7
Q.
[#]
= %
£l
[o]
(7]
p z
k4
o J323 R, &
vrije Universiteit amsterdam Uy o 1S

The work reported in this thesis has been carried out at the Vrije Univer-
siteit Amsterdam under the auspices of the research school IPA (Institute
for Programming research and Algorithmics). The research was funded
by the Netherlands Scientific Organisation (NWO).

VRIJE UNIVERSITEIT

Higher Order Termination

Automatable Techniques for Proving Termination of
Higher-Order Term Rewriting Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. L.M. Bouter,
in het openbaar te verdedigen
ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op dinsdag 13 november 2012 om 11.45 uur
in de aula van de universiteit,
De Boelelaan 1105

door

Cynthia Louisa Martina Kop

geboren te Tilburg, Nederland

promotor: prof.dr. JW. Klop
copromotor: dr. F. van Raamsdonk

Acknowledgements

To start off this thesis, I would like to express my gratitude to the many people
who have had an influence on this work, or on my PhD period.

First, and above all, I would like to thank Femke van Raamsdonk, my supervi-
sor and regular co-author. For tons of useful feedback. For patiently helping me
turn my collections of proofs into decent papers. For giving me directions, but
leaving me all the freedom I needed. A supervisor can make or break your PhD
period, and Femke was the best anyone could wish for.

I also thank Jan Willem Klop, my promotor, who regularly dispensed good
advice in our weekly meetings, checked my papers, pointed out flaws and was
overall a great help. Moreover, I thank him and Vincent van Oostrom for all the
suggestions for good terminology.

I would also like to say thank you to Kristoffer Rose, who was my mentor
during my internship at IBM. Both for the many whiteboard sessions, where
we enthusiastically determined features of the CRSX formalism, the complete
willingness to incarnate new ideas and the good planning, and for all the help
while I was there, including picking me up from the train station in the middle
of the night.

Another very important person to mention is Carsten Fuhs. Apart from being
a great friend to wander around foreign cities with, he has also been an invalu-
able help in my work, both as a co-author and a colleague in the field of term
rewriting. In our many discussions on msn and in real life, Carsten has helped
me refine ideas, suggested new directions, pointed out useful literature, warned
me where my terminology deviated from the standard and indicated flaws or dif-
ficulties in my work. It was also he who convinced me to use SAT-encodings for
my termination tool WANDA.

Originally I was not planning to write a tool as part of my PhD, although af-
terwards I am very happy that I did. For the encouragement to do so, I thank Aart
Middeldorp. I also want to thank Cristina Borralleras and Albert Rubio, my op-
ponents in the annual termination competition, who gave me a good motivation
to improve WANDA.

For the lay-out of this thesis, I want to thank Rena Bakhshi, my colleague and
for a long time office mate, who gave me her KIiX style files. Also, Melle Wynia,
my neighbour and friend, who expertly designed the cover.

Over the years, my colleagues at the VU have provided a very pleasant atmo-

vii

sphere to work in, both with lively lunch discussions and by always being willing
to help out with questions such as “how do I do this in BIEX” or “how can I de-
clare travel costs”: Jorg Endrullis, Helle Hansen, Dimitri Hendriks, Wan Fokkink,
Clemens Grabmayer, Jan Willem Klop, Vincent van Oostrom, Andrew Polonsky,
Femke van Raamsdonk, Stefan Vijzelaar, Roel de Vrijer and David Williams. I
also want to express my gratitude to the patient members of the IT helpdesk,
who helped me get my laptop up to scratch (and to set up a replacement) every
few months when it broke again.

Then, I want to thank the many other people, both in the Netherlands and
abroad, who made PhD life so much fun. The members of IPA research school,
with many of whom I've hung around for hours either in a restaurant, swimming
pool or entertainment park, discussing research, life or more mundane topics. On
the risk of missing some important names: Alexandra, David, Felienne, Frank,
Jeroen, Joost, Marijn, Mark, Meivan, Michel, Michiel, Paul, Pedro, Pieter, Sjoerd,
Stephanie. Also the people in Marktoberdorf summer school, who inspired me
both in researchy ways, and with whom I climbed mountains, ate ice cream or
did the algorithm march: Arnar, Carsten, Eduardo, Josef and Willard. And then
there are others, such as Marc, Carsten Otto and Thomas, with whom I socialised
at conferences and twice a year at the term rewriting seminar.

Of course 1 should not forget my non-research friends either, who regularly
provided a healthy distraction from thesis writing or computer science research.
Freek, Ivo and Melle, who would often come for tea or dinner, or the occasional
movie. Alex, Luuk and Ton, for dungeons and dragons, and Agnetha, Mirella and
Ryanne, for parties and visits. And of course the community of Discworld MUD,
who also had a more direct influence by sometimes helping me find the right
English words.

Last but not least, I would like to thank my family, who have been very patient
and supportive, and who have borne admirably with my sudden transformation
into a workaholic in the last few months.

Thank you, everyone!

Contents

1 Introduction 1
2 Algebraic Functional Systems with Meta-variables 9
2.1 CoreDefinitions. e 10
2.2 Algebraic Functional Systems with Meta-variables 12
2.3 Transformations of AFSMs 18
2.4 Reduction Orderings, Reduction Pairs and Rule Removal 29
25 OVeIVIEW ittt et e e e e e e e e e 37
3 Higher-order Formalisms 39
3.1 A History of Higher-order Formalisms 41
3.2 Inductive Data Type Systems 45
3.3 Pattern Higher-order Rewrite Systems 47
3.4 Algebraic Functional Systems 54
3.5 Combinatory Reduction Systems with Extensions 63
3.6 Contraction Schemes 68
3.7 Combinatory Reduction Systems 71
3.8 OVErview i i e e e e e e e e e e e e 74
4 Polynomial Interpretations 75
4.1 Weakly Monotonic Functionals 76
4.2 Strongly Monotonic Functionals 84
4.3 Polynomial Interpretations in the Natural Numbers 86
4.4 OVeIVIEW . . . v v v i ittt e e e e e e e e e 89
5 An Iterative Path Ordering 91
5.1 Existing Path Orderings 92
5.2 The Higher-Order Iterative Path Ordering (HOIPO) 103
5.3 Termination it e 108
54 StarHorpo e 116
5.5 AReduction PairforAFSMs 134
5.6 Function Symbol Transformations 134
5.7 CPOVersus StarHorpo, 138
5.8 Overview 139

6 Dependency Pairs 141

6.1 Background and Related Work 143
6.2 First-Order Dependency Pairs 145
6.3 The Unrestricted Dynamic Dependency Pair approach 152
6.4 FormativeRules. 172
6.5 The Dynamic Dependency Pair Approach for Abstraction-simple
AFSMS o e e e e 180
6.6 Finding a ReductionPair 194
6.7 OVeIVIew e e 203
7 Improving Dependency Pairs 205
7.1 The First-order Dependency Pair Framework 206
7.2 The Dependency Pair Framework 213
7.3 Optimising Collapsing Dependency Pairs 219
7.4 The Dependency Graph 225
7.5 The Subterm Criteriono 229
7.6 UsableRules 231
7.7 Splitting First-order Rules 236
7.8 Static Dependency Pairs, 244
7.9 OVeIVIEW e 252
8 Wanda 253
8.1 Format and Transformations 254
8.2 Proving Non-termination 255
83 RuleRemoval ieee... 257
8.4 The Dependency Pair Framework 258
8.5 Automated Polynomial Interpretations 270
8.6 Automated Path Orderings 280
8.7 ExperimentalResults 295
8.8 Overview 298
9 Conclusions 299
9.1 OVervIEW o it e 299
9.2 Practical Applicationso 300
9.3 Polymorphism. 300
9.4 FutureWork 302
9.5 FinalRemarks, 302
Thesis Summary 303
Bibliography 305
Index 317
Contributions of the Thesis 323

II

Introduction

Or, Why are we doing all this?

Term rewriting systems play an important role in many areas of computer sci-
ence. In essence, they provide an abstract way to define algorithms. The theory
is simple: terms, expressions over a fixed set of symbols, are rewritten according
to a (usually finite) set of rewrite rules. The usage is widespread. There are appli-
cations of term rewriting in logic, program analysis, security, compiler building,
automated theorem proving, process algebra and many more fields. Figure 1.1
lists some extracts of term rewriting systems used in practice.

fs(TL(null, 0g), TL(null, 0g), 0g)
= f5(TL(null, 09), 09, 0g)
(a) Part of a Java
bytecode analysis [103]

dec(enc(z, pk(y)), sk(y)) = =

vs.(a(pk(s))|b(x).c{dec(x, sk(s))))

(b) Asymmetric encryption in the
applied w-calculus [1]

Trans(Refl,z1) = 3
Trans(xi,Refl) = 3
Congr01(Refl) = Refl

(c) Propositional proof
reduction [124]

map :: (a — b) — [a] — [b]
map £ [1 = []
map f (x:xs) = f x :

(d) Part of a Haskell module

map f xs

C[Let[E1, z.Ezx]]] —
(C[E1,m]; C[E2[r],7]5);
C[Var[ri], 2] — (MOVE[ry, r2];);
(e) Register allocation in CRSX

pX =% pBX
pX =° ¢
gB =t ¢

(f) A push-down automaton [100]

Figure 1.1: Examples of term rewriting systems used in practice

As a consequence, the properties of term rewriting systems have been well-
studied. The main topics of research can roughly be divided into two categories:
confluence and normalisation. The question of confluence is whether evaluation
order matters: if s reduces both to ¢ and ¢, is there a term u which both ¢ and
g reduce to? The question of normalisation is whether reduction sequences can
be assumed to be finite. A system is weakly normalising if any term can be re-
duced to a normal form which cannot be reduced any further. A system is strongly
normalising, or terminating, if any reduction sequence is finite. The areas of con-

1

Chapter 1 — Introduction

fluence and normalisation are closely related to each other, for instance because
the combination of confluence and weak normalisation leads to unique normal
forms, and the combination of strong normalisation and local confluence (which
is often easier to prove than confluence) implies full confluence (see e.g. [118]).

As the title suggests, the focus of this thesis is on termination. Apart from
its use in the study of confluence, the study of termination has many practical
and theoretical applications. Obviously it is a good property for a program to
reach a result eventually, regardless of user input. In software for hospitals or
aeroplane control, lives may depend on this. In a cryptography module, security
may depend on this. On the theoretical side, a strongly normalising rewrite
relation yields an induction principle.

Figure 1.1(d) shows part of a Haskell module. The variable £, a function, is recur-
sively applied on the elements of a list. This is typical for higher-order rewriting.
Higher-order term rewriting combines standard, first-order term rewriting with
notions from the (simply-typed) A-calculus. Using higher-order term rewriting
we can represent “function pointers”, and, consequently, handle a variety of prob-
lems which are difficult to treat natively in the first-order setting. The study of
higher-order term rewriting also has various applications. For example, higher-
order rewriting formalisms yield a natural model of functional programming lan-
guages. They are also used for defining compiler specifications of XQuery [108],
and form the underlying model of theorem provers like Coq and Isabelle.

This thesis is devoted to the study of termination in higher-order term rewrit-
ing. Termination analysis forms an important part of the general study of higher-
order rewriting, and plays a role in all of the applications mentioned above. In
particular, this work aims to contribute to several projects:

* furthering the understanding of higher-order rewriting, by providing a com-
mon framework and considering ways to translate termination results be-
tween formalisms;

* investigating the possibilities as well as the limitations of general termina-
tion analysis for higher-order rewriting;

* strengthening the potential power of automated theorem provers such as
Coq, by making it possible to automatically verify validity (which requires
termination) of user-given functions;

* enabling the quick use of termination results by laymen, by providing an
automatic tool.

Scepticism — Objections and Counterarguments. The study of higher-order
termination provides some challenges which are absent in first-order rewriting,
in particular due to the presence of S-reduction. In the higher-order setting, a
rewriting step at the root might create a redex deep inside a term. Moreover,

B-reduction may lead to term explosion; a single step may quadratically increase
the size of a term.

Consequently, it is often not deemed worthwhile to use higher-order term
rewriting; a system that lends itself naturally to higher-order rewriting is instead
modelled as a first-order system and approached with first-order techniques. An
example is the study of termination of Haskell programs [44], where a termina-
tion problem in Haskell is transformed into a first-order term rewriting system.

The most common alternative for higher-order term rewriting systems are
applicative systems. In such systems, types and function variables (which can be
thought of as function pointers) are present, but binders are omitted. When we
are only interested in termination of fixed terms, or terms of a given form, this is
a fine model. But not when we want to prove termination of all terms, including
terms with \-abstractions. Higher-order term rewriting systems can often be con-
verted into an applicative system. However, termination of the resulting system
only implies termination of terms without binders in the original system. This is
discussed in a bit more detail in Section 3.1.

Thus, using applicative systems we can more easily study termination of spe-
cific terms, or termination of all terms without binders. This is sufficient for some
purposes, but not for all. For example, when a number of rewriting rules are
given in an automated theorem prover, it is perfectly likely that user input will
contain binders. When writing a compiler specification in the CRSX-language,
the user-defined program can be seen as a higher-order term. In general, when
studying termination of a module of code which can be seen as a higher-order
term rewriting system, it is advantageous to know that all terms terminate, rather
than just the purely applicative ones (although when the former does not apply,
or cannot easily be derived, the latter may still be of use).

Another question is whether weak normalisation is not sufficient. Is it truly nec-
essary that all reduction sequences terminate, when weak normalisation already
guarantees that a result exists? In practice, however, weak normalisation is
usually not enough; knowing that a result exists is nice, but it is much prefer-
able to be able to find that result. Alternatively, termination using a specific
rewriting strategy is often studied: innermost, outermost, outermost-fair, lazy,
weak. . . Consider for example the following program, which is evidently not ter-
minating (due to the rule for first):

take(0,y) = mnil
take(s(n),z:y) = z:take(n,y)
first(n,m) = take(n,m:first(n,s(m)))

Using a lazy evaluation strategy like in Haskell, no infinite reduction is possible.

In this thesis I will sometimes consider a strategy, but most of the results tar-
get the case where no strategy is used. Since strong normalisation implies weak
normalisation, as well as normalisation using any strategy, the results can be ap-
plied to functional programs in any language which corresponds to higher-order

Chapter 1 — Introduction

term rewriting, whether the language uses lazy evaluation, innermost (which is
common in imperative languages) or something else. Additionally, if we consider
the evaluation strategy as part of the language, it may well be possible to encode
it in the rewrite rules (as is done in [44]).

As a final observation, although it is perhaps easier to study termination be-
haviour in a restricted setting, it is far from impossible to obtain strong results in
the general case. Let us not be intimidated then, and rise to the challenge!

I hope this thesis will go some way towards demonstrating that the additional
challenges of the higher-order setting over the first-order one can be tackled,
and that strong termination techniques are in reach. Many first-order results
extend directly, sometimes in more than one way, to the higher-order case. Other
results, specific to higher-order rewriting, can be derived as well. Of course we
will run into limitations, things we typically cannot do (for instance because
systems of a certain form are usually not terminating) — in which case we know
where dedicated methods for termination analysis with a strategy, or for another
restricted setting, have a task!

Existing Results. Termination analysis for higher-order rewriting has been an
area of research for more than two decades now, although split over many dif-
ferent formalisms (as discussed in Chapter 3.1). Thus, this thesis has a solid
groundwork to build on. The results can be categorised into a number of groups:

General Schema / Computability Closure The general schema is a principle for
defining recursive functions. In the first definition [60], an AFS follows the
general schema if it can be expressed as a system where function symbols
are added iteratively to the language, and their rules either follow a certain
recursive scheme, or only use previously defined symbols.

In later definitions [18, 61], the recursion scheme is given by a computabil-
ity closure, and uses inductive types, which leads to the notion of accessible
subterms. Extending the result to other formalisms, the general schema is
presented for both HRSs and CRSs in [106], and for a generalised formal-
ism (which is very similar to the formalism used in this thesis) in [13]. It
is further improved in [18], and extended to the calculus of constructions
in [15]. In [17] various definitions of the computability closure are dis-
cussed; plain, with inductive types, with matching modulo §/n and with
matching modulo an equational theory.

Recursive Path Ordering Meanwhile, the recursive path ordering known from
first-order termination analysis [27, 30] has been extended to the higher-
order setting in a long line of research. The recursive path ordering is
a reduction ordering: a well-founded, stable and monotonic relation >.
Termination is proved by showing that the rewrite relation is included in >
(which can be done by orienting all rules).

In early definitions, higher-order terms (either in the HRS or AFS for-
malisms) are translated to first-order terms. Since 3-reduction might cause
problems, the thus induced ordering is very weak, so needs to be extended
with cases to deal with sub-constraints g(I) = F(#) with F a variable.
In [94, 95], this is done using an extended subterm relation. The authors
of [97] deal with the higher-order aspect using the notions of dominating a
free variable and critical positions; a weight function is used to relate a func-
tional term to a term headed by a free variable. In [62] a (rather restrictive)
type ordering is introduced to deal with variable-headed subterms.

Later definitions of the higher-order recursive path ordering are defined di-
rectly on higher-order terms. The first of these is available in [63], where
two versions of the recursive path ordering for polymorphic AFSs are de-
fined: a basic version (which is extended to HRSs and CRSs in [106] and
formalised in Coq in [81]), and a version which includes a computability
closure. The journal edition of this paper, [64], includes a type ordering
and accessibility relation, effectively including the general schema into the
recursive path ordering. This definition is further extended to the com-
putability path ordering in [19]. The computability path ordering does
away with the computability closure, instead posing fewer type restrictions
on the relation, and is therefore significantly simpler to use. However, this
later definition does not use polymorphic types.

Weakly Monotonic Algebras Another reduction ordering for higher-order rewrit-
ing is given by weakly monotonic algebras, built on the notion of monotonic
algebras in first-order rewriting. This is explored in particular in [105], for
the HRS-formalism. A more detailed study, and extension to formalisms
with a more sophisticated type system, appears in [104].

First-order polynomial interpretations (an instance of the monotonic alge-
bra approach) are combined with the higher-order recursive path ordering
in a recent paper. [22].

Dependency Pairs The recursion scheme and reduction orderings discussed so
far exhibit some fundamental weaknesses; in particular, that they can only
prove termination of so-called simply terminating systems. In the first-order
setting, the common way to avoid this weakness is to use dependency pairs.
Using dependency pairs, the termination question can be reduced to a se-
ries of constraints, by considering the shape of rules. The resulting con-
straints can then be solved by other techniques, such as a recursive path
ordering or monotonic algebra.

In the higher-order setting, two different generalisations of the dependency
pair approach exist, both for the formalism of HRSs: the dynamic depen-
dency pair approach [112] and the static dependency pair approach [87,
111, 114]. A more elaborate overview of dependency pair results is given
in Chapter 6.1.

Chapter 1 — Introduction

Semantic Path Ordering A second approach to reduce the termination question
to a series of constraints (and handle systems which are not simply termi-
nating) is the monotonic higher-order semantic path ordering [24, 25], based
on a first-order method in [66]. This method generalises the higher-order
recursive path ordering, by considering a well-founded ordering on terms
rather than a precedence on function symbols. To find a suitable well-
founded ordering is the second challenge, for which methods like weakly
monotonic algebra or recursive path ordering may be used.

Type-based Analysis In type-based analysis (also called size-based analysis) func-
tion symbols are assigned a dependent type. The “size” of arguments
which a function symbol can take, as well as its output, are encoded in
its type. For instance, the common addition function add may have a type
nat™ —nat™ —nat™™, indicating that given two input arguments of sizes
at most n and m respectively, the result has size at most n + m.

This idea is first explored in [59], where the authors analyse a small lazy
functional language; sized types are used to analyse termination, produc-
tivity and memory safety. A different early appearance of sized types for
termination analysis is in [50], which proposes an extension of the cal-
culus of constructions. Both [2] and [11] provide a simplification of the
ideas in [50], using a language with an easier type system; any expression
typable in the language is terminating. Various extensions and variations
with different languages and type systems exist, e.g. [3, 128].

These results concern ML-like languages; type-based termination techniques
for higher-order term rewriting first appear in [14], where sized types are
combined with a computability closure in the calculus of constructions.
In [20] a type-based termination criterion is considered for AFSs; a given
AFS terminates if it admits a sized typing which satisfies a number of con-
straints. The author of [109] introduces dependency pairs based on sub-
types rather than subterms, an idea which is further explored in [110].

Semantic Labelling In semantic labelling a term rewriting system is transformed
by adding labels to the function symbols; the labelled system has the same
termination behaviour as the original, and may be easier to handle.

For higher-order rewriting, a first definition of semantic labelling appears
in [52]. In [21] it is demonstrated that both the first-order definition and
the version of [52] can be seen as an instance of type-based termination.

It is worth noting that in this list I restrict attention to styles of higher-order
rewriting with both A-abstractions and higher-order rewrite rules. Results about
termination of various A-calculi (such as [115]) or modularity of first-order rewrit-
ing and typed A-calculus (e.g. [117]), are omitted, as are results concerning
applicative rewriting without binders. The list also does not include research
focused on specific functional programming languages (for instance [44]).

Automation. Almost without exception, the results in this thesis can be used
by a tool, which is demonstrated with the fully automated termination prover
WANDA. This connection goes so far that one could argue that this thesis is
essentially WANDA’s documentation: almost every result given in this thesis has
been implemented,! and every proof step taken by WANDA is justified by some
result presented here.

Thus, WANDA itself should be considered as a fundamental part of this work.
WANDA is completely written by me, and competes in the annual termination
competition [125] since 2010. In 2011, WANDA won the higher-order category.
An in-depth discussion of the features and methods used by WANDA can be found
in Chapter 8.

Thesis Outline. First, in Chapter 2, I will give a brief overview of both first-
order rewriting and the style of higher-order rewriting used in this thesis, AFSMs.
This is followed by a number of transformation results, which provide alternative
ways to present systems in the AFSM formalism, and also some tricks which we
can use in termination proofs. The last part of the chapter explains how reduction
pairs can be used to prove termination of AFSMs.

In Chapter 3, I will follow up on this by discussing the most prominent for-
malisms of higher-order rewriting, and how they relate to the AFSM formalism
used here. It is somewhat ironic, given that one of the reasons to study higher-
order rewriting is to have uniform proofs, that so many different formalisms exist.
Nor is it immediately obvious whether results from one formalism carry over, or
can be adapted, to another. However, as we will see, these frameworks are not as
far apart as may appear at first glance, and all results put forward in this thesis
are applicable to many of the common formalisms.

Then, we will move on to reduction orderings, well-founded ordering rela-
tions which can be used to prove termination of higher-order term rewriting sys-
tems. First, in Chapter 4, we will study polynomial interpretations, an application
of the weakly monotonic algebra approach defined by van de Pol and Schwicht-
enberg [104, 105]. The method here aims for simplicity and automatability
rather than generality, but can easily be extended using the results from [104].

In Chapter 5 we will consider a new variation of the higher-order recursive
path ordering, which was originally defined in [63] and extended further in
e.g. [19]. The version discussed here takes a different starting point, which leads
to a method with very different strengths and weaknesses. As in Chapter 4, the
technique is designed for simplicity.

Chapters 6 and 7 treat the dependency pair approach, a method for proving
termination which involves looking at minimal terms which may lead to an infi-
nite reduction. There are two styles of adapting dependency pairs to higher-order

1A notable exception to this claim of everything being implemented are most of the transfor-
mations in Chapter 3. This is not because it would be hard (it would not be), but because most
formalisms do not have a standard available benchmark database, or even file format. For this rea-
son, their implementation has been postponed.

Chapter 1 — Introduction

rewriting. I will focus on the “dynamic” approach, which has been the object of
my own studies, but also discuss the “static” approach in some detail. Chapter 6
discusses the basic method, while Chapter 7 considers a number of improvements
to strengthen the approach.

Finally, Chapter 8 discusses automation. Most importantly, this includes the
techniques used for the implementation of the results presented in this work in
WANDA. Some methods are generalised from first-order implementation tech-
niques, but there are also several new ideas, adapted for the higher-order defi-
nitions. Moreover, this chapter discusses experimental results on the termination
problem database [126], an independent database used in the annual termination
competition [125].

Note: a bullet-point overview of all contributions of this thesis is given in the
appendix.

Origin of the Chapters. Many of the results in this work have been indepen-
dently published, or accepted for publication by the time of writing. Since the
results for some of the papers have been spread out a bit over the thesis, I will
list here where the individual papers are represented.

[76]1 (A Higher-Order Iterative Path Ordering) This conference paper, written to-
gether with Femke van Raamsdonk and presented at LPAR 2008, forms the
base for Chapter 5 (which, however, is significantly extended).

[75]1 (Simplifying Algebraic Functional Systems) This conference paper, presented
at CAI 2011, is split over Sections 2.3.1, 2.3.2 and 3.4.4. The results pre-
sented here are somewhat less general than in the paper, however, because
unlike this thesis, the paper considers a polymorphic formalism.

[41] (Harnessing First Order Termination Provers Using Higher Order Dependency
Pairs) This conference paper, written together with Carsten Fuhs and pre-
sented at FroCoS 2011, forms the basis of Section 7.7.

[79]1 (Higher Order Dependency Pairs for Algebraic Functional Systems) This con-
ference paper, written together with Femke van Raamsdonk and presented
at RTA 2011, forms the base for Chapter 6 (which, however, is significantly
extended), and Section 7.4.

[80] (Dynamic Dependency Pairs for Algebraic Functional Systems) This journal
paper, written together with Femke van Raamsdonk for the special LMCS
issue of RTA 2011, is an extended version of [79] and contains many results
detailed in Chapters 6 and 7 (although for a simpler formalism).

[42] (Polynomial Interpretations for Higher-Order Rewriting) This conference pa-
per, written together with Carsten Fuhs and presented at RTA 2012, is split
over Chapter 4 and Section 8.5.

Algebraic Functional
Systems with Meta-variables

Or, What is this actually all about?

In this chapter I will present the higher-order term rewriting formalism used
in this thesis. This formalism, Algebraic Functional Systems with Meta-variables
(AFSMs), is designed in such a way that most commonly used (simply-)typed
higher-order formalisms can be embedded into it, so the results from this work
can be used for all of these formalisms. An automated termination prover like
WANDA, which is discussed at length in Chapter 8, could prove termination of
any kind of higher-order term rewriting system simply by translating it into an
AFSM in an input module. These other formalisms, and their transformations
into AFSMs, are discussed in Chapter 3.

Apart from the AFSM formalism itself, this chapter considers a number of
transformations on AFSM. These transformations make it possible to present a
system in a form that is convenient for a given technique. We will also consider,
as preliminaries, the notions of rule removal and reduction pairs.

Chapter Setup. This chapter consists of four parts. Section 2.1 presents the
core principles of first-order term rewriting, simple types and the A-calculus. In
Section 2.2 the AFSM-formalism which is used in this work is defined, and in
Section 2.3 we will see some transformations on AFSMs which reflect and some-
times preserve termination. This will for instance make it possible to swap be-
tween applicative and functional notation, and ignore differences between base
types. Finally, Section 2.4 extends the notion of a reduction pair to AFSMs, and
lays the basis for ordering-based termination proofs.

The techniques discussed in Sections 2.3.1 and 2.3.2 have previously been pub-
lished (for the alternative formalism of AFSs) in [75]. Otherwise, this chapter con-
tains both preliminaries, and several new results.

10

Chapter 2 — Algebraic Functional Systems with Meta-variables

2.1 Core Definitions

Let us first discuss some of the core concepts which underlie (most forms of)
higher-order term rewriting. For more details and examples, see e.g. [10, 118].

2.1.1 First-order Term Rewriting

In first-order term rewriting, terms are built from an infinite set of variables V
and a signature F of function symbols f (disjoint from V). Each function symbol
is equipped with an arity n € N (denoted ar(f) = n), by the following grammar:

To=zx| f(T") (xeV, feF, ar(f)=n)

We typically omit empty argument lists in function applications, writing e.g. 0
instead of 0().

A substitution is a mapping v = [z1 := s1,..., 2, := S,] with finite domain,
where all x; are variables and the s; are terms. The application ¢ of a substi-
tution v to a term ¢ is obtained by replacing each x; in ¢ by s;. For example,
flg(z,y), 2)[x = g(z,2),z := h] = f(g(g(z, 2),y),). The domain of v, denoted
dom(7), is the set {z1,...,2,}.

A context is a term with a single occurrence of a special symbol (J in it, de-
noted C'] or just C. The term C|s] is C[] with the O symbol replaced by s.

A first-order rewrite rule (also just called rewrite rule or rule) is a pair [= r
such that all variables occurring in r also occur in /, and [is not a variable. The
rewrite relation =5 generated by a set of rules R is given by the following clause:

Clly] =r Clry] (I=r € R, ~ asubstitution, C[] a context)

A first-order term rewriting system (TRS) consists of the set of terms over some
signature F together with the relation =. It is usually specified by the pair
(F,R), or just by R (in which case F consists of the symbols occurring in R).

A term s in a given TRS (F,R) is called terminating if there is no infinite
reduction s = t; =g t2 =x ATRS (F,R) is called terminating if all terms
over F are terminating.

Example 2.1. Consider the first-order term rewriting system with signature 7 =
{0, s, add}, arities ar(0) = 0, ar(s) = 1 and ar(add) = 2, and R = {add(z,0) =
x,add(x,s(y)) = s(add(x,y))} (here, the z,y are variables). Then:

add(s(0),s(0)) =x s(add(s(0),0))
=r s(s(0))

This represents a calculation that 1 4+ 1 = 2, as might be expected.

2.1. Core Definitions

11

2.1.2 Simple Types

Higher-order rewriting commonly adds types and binders to first-order term
rewriting. In this work I will only consider simple types. We will briefly discuss
how the results can be extended to a polymorphic type system in Chapter 9.3.

From a given set B of base types, the set 7 of simple types (also just called types)
is constructed by the following grammar:

T=B|(T—=T)

A type of the form o — 7 is functional. Simple types are written as o, 7, p, « and
base types as ¢, k. The — associates to the right, and unnecessary parentheses
are omitted. Thus, every type can be written in the form o; —...—0,, —¢ with ¢
a base type.

Following [63], a type declaration is an expression of the form [o; x ... X
on] — 7 with o1,...,0,,7 € T; such a declaration is said to have arity n.
Type declarations are not types, but are used to assign input and output types
to function symbols, as we will see later. o1, ...,0, are input types and 7 is the
output type. A type declaration [| — 7 is usually just denoted 7.

The order of a type is given by: order(:) = 1if + € B, and order(c — 1) =
max(order(oc)+1, order(r)). Extending this to type declarations, order([o1 x...x
on]| — 1) = max(order(o1) + 1, ..., order(o,) + 1, order(7)).

2.1.3 The \-calculus

In the A-calculus, terms are built from a set V of variables, using A-abstraction
and application, by the following grammar:

Ti=z|(T-T)| (Mz.T) (z€V)

In a term Az.s, the Az construct binds all occurrences of the variable z in s.
A-terms are considered modulo renaming of variables bound by an abstraction
operator (a-conversion). Thus, for instance Az.\y.z - y and Ay.\z.y - z are the
same. Consequently, we can always assume variables in a binder to be fresh. The
set F'V(s) of free variables of s consists of all variables occurring in s which are
not bound by a A\. We say s is closed if FV (s) =). We omit parentheses where
possible, considering application left-associative; a term s - ¢ - ¢ should be read as
(s-t) - q. We also combine abstractions, writing for instance Azy.s for Az.\y.s.

As in the case of first-order rewriting, a substitution is a mapping v = [z :=
S1y...,&y := Sp] With finite domain. However, applying a substitution to a term
does not affect bound variables. To calculate a substitute t[Z := $], choose a
representative of ¢ whose bound variables are not in the domain or range of ~,
and then replace all occurrences of some z; by s;. For example, (Az.(y - z))[y :=
z] = Az.(x - 2).

On the other hand, a context (as before, a term with a single special symbol
O in it), may capture free variables: if C' = Az.0, then Cz] = A\z.z.

12

Chapter 2 — Algebraic Functional Systems with Meta-variables

Terms in the A-calculus are rewritten using the S-reduction rule:
Cl(A\x.s) - t] =5 Cls[z = t]]

A (-redex is an occurrence of (Az.s) - ¢ in a term. The relation =4 is not termi-
nating in general, as is demonstrated by the term w - w, where w = Ax.(z - x); this
term reduces in one step to itself. However, when restricting attention to \-terms
which can be assigned a simple type, termination is guaranteed [115]. That is,
assigning a (simple) type to all variables in V (notation: x : o € V), a A-term s is
terminating if we can derive s : o for some type o using the following clauses:

T:o if z:0€V
s-t:T if s:o—7andt:o
Ae.s:o—T1 if z:o€Vands:T

A term is in S-normal form if it has no -redexes, so cannot be further rewritten
using =-3. The =4 relation is terminating on all typed terms and has unique
normal forms; that is, if s =75 tand s =54 and both ¢ and ¢ are in S-normal
form, then ¢ = ¢. This property is preserved even if typed function symbols are
added to the term formation. The S-normal form of a term s is denoted s 4.

Restricted n-expansion. The relation of restricted n-expansion [5], <, is de-
fined as follows: C[s] <, C[Az.(s-z)]ifx: 0 €V, s: 0—7, and the following
conditions are satisfied:

1. x is a fresh variable;
2. sis not an abstraction \z.s’;
3. sin CJs] is not the left-hand side of an application s - ¢;

By part 3, the head of a subterm s-¢; - - - t,, is not expanded; requirements 2 and 3
together guarantee that <, does not create S-redexes. As demonstrated in [29],
every term s has a unique n-long form s1" which can be found by applying —,
until it is no longer possible. The n-long S-normal form of a term s, denoted sig,
is the unique form that can be found by applying =3 and <, as long as possible.

2.2 Algebraic Functional Systems with Meta-variables

Now we are ready to define the formalism of Algebraic Functional Systems with
Meta-variables, which will be used in this thesis. This formalism is a direct
extension of both Jouannaud’s and Okada’s Algebraic Functional Systems and
Blanqui’s Inductive Data Type Systems, both of which will be discussed in Chap-
ter 3. AFSMs are simply typed, and use both application as in the A-calculus
and function construction as in first-order term rewriting, with meta-variables
for matching as first introduced in Aczel’s Contraction Schemes [4].

2.2. Algebraic Functional Systems with Meta-variables

13

Terms and Meta-terms. To start, let us consider the notion of terms and meta-
terms. This definition includes both typed A-terms and TRS-terms.

Definition 2.2. Let a signature F of function symbols be given, where each
symbol is equipped with a type declaration. Let us also have a set V of variables,
each equipped with a type, and a set M of meta-variables, each equipped with a
type declaration. The set of meta-terms consists of those expressions s such that
s : o can be derived for some type o with the following clauses:

(var) z:0 if z:0€V

(fun) f(s1,...,8,):7 if fifo1 X...xXo0on]—TEF
and $1: 01,...,8, Oy

(abs) Az.s:o—T if x:oe€Vands:7

(app) s-t:7 if s:o—7andt:o

(meta) Z(s1,...,8n):7 i Z:i[oy xX...X0op]—7€EM
and S1 : 01,...,8, : Op

A term is a meta-term without meta-variables, so its type can be derived with-
out clause (meta). A meta-variable application, or shortly meta-application, is
a meta-term of the form Z(s1,...,s,), a functional meta-term is a meta-term
f(s1,...,8n), an application is a meta-term s - t and an abstraction is a meta-term
Az.s. Generally, variables are denoted z, y, z, function symbols are denoted f, g, h
(or using more suggestive notation), meta-variables are denoted Z, XY, F, G
and terms and meta-terms are denoted s, ¢, ¢, u, v, w.

We say that the arity of a function symbol fisnif f : [0y X...x0,] — T € F;
this is shortly denoted ar(f) = n. Let head(s) denote the left-most part of an
application: head(t - ¢) = head(t), and head(s) = s if s is not an application.

In a meta-term Azx.s, the Az construct binds the variable x in s, as in the \-cal-
culus. Only variables can be bound, not meta-variables, and there are no binders
other than A. Variables which occur in a term are called free if they are not bound
by some \. As in the A-calculus, (meta-)terms are considered modulo renaming
of variables bound by an abstraction operator («-conversion). Let FV(s) be the
set of free variables in s and FMV (s) the set of meta-variables of s.

The binary application operator - associates to the left, so a meta-term s - ¢ - r
should be read as (s - t) - r. We often omit multiple As, writing just Azixs ... z,.s
for Ax1.\xo ... Ax,.s. Moreover, we leave out empty argument lists in function
and meta-variable applications, writing e.g. 0 instead of 0().

Comment: The definition of meta-terms in AFSMs is unusual because it
has both application (as in HRSs and AFSs) and meta-variables (as in
CRSs). Intuitively, meta-variables are used for matching in rules, where
variables are used only as binders. Meta-variables replace reasoning
modulo SB-reduction as used in HRSs. Application is used for explicit
(-steps, and to model (partially) applicative systems.

Chapter 2 — Algebraic Functional Systems with Meta-variables

Substitutions. Substitution is defined much like in the (typed) A-calculus, but
with special cases to deal with meta-variables: a substitution is a mapping [a; :=
S1y...,0p := Sy, Where:

e each s; is a term;
e each q; is either a variable or a meta-variable;
* if q; is a variable with qa; : o; € V for some type o;, then s; : 0;;

* if a; is a meta-variable with a; : [01 X ... X 0,,] — 7 € M, then s; has the
form Ay; ... ym.q with ¢ : 7 and each y; a distinct variable of type o;; note
that the “types” of a; and s; are not the same: a; is a meta-variable with a
type declaration, while s; is a term with a type oy —...— 0, — 7.

A substitution replaces the variables and meta-variables in its domain every-
where in the meta-term. When substituting for a meta-variable we additionally
B-reduce the result. For example, if x is a variable and Z a meta-variable,

(- (Ay.s()|z :=Az.(z-a)] = (Az.(2 - a)) - (\y.s(y)), while

Z(\y-sW))Z == Az.(z - a)] = (\y-s(y)) - a.
Formally, for any meta-term s and substitution v = [a1 := s1,...,a, = 8] the
result sy of applying v to s is generated by the following clauses:

* zv =s; if x = a; is a variable;

o Z(t1, .. ytm)y = qly1 == t17v, ..., Ym = tmy] if Z = a; is a meta-variable
and s; = A\y1 ... Ym-q;

o f(tr,. . tm)y = f(t17, ... tmy) for f € F;
* (s-t)y=(s7) (t);

* (Ay.s)y = Ay.(s7) if y does not occur in domain or range of v (using a-
conversion we can rename y if necessary);

* yvy =y if y is a variable but not one of the a;;

* Z(s1,-.-,8n)y = Z(s17,...,8,7) if Z a meta-variable and Z is not one of
the a;.

Note that substitution is well-defined: the step where a meta-term is replaced
uses a second substitution, but this second substitution has no meta-variables in
its domain. If a substitution v is applied to a meta-term s, we usually assume
that the domain of ~ contains all meta-variables in s.

A context is a term C with a single occurrence of a special typed symbol [,
occurring in it. For a term s : ¢ the notation C[s] denotes the term obtained by
replacing [J,, in C by s. Placing a term in a context may capture free variables,
for instance if C' = Az.0,, then C[s(z)] = Az.s(x). Note that a context, being a

2.2. Algebraic Functional Systems with Meta-variables

15

term, may not contain meta-variables. The subterm relation, s > ¢, indicates that
s = C'[t] for some context C'. The strict subterm relation, s>, indicates that s> ¢
and s # ¢ (so the context C' is not empty).

Parallel to contexts, a meta-context is a meta-term C' with a single occurrence
of a special typed symbol [J, occurring in it, which may be filled with a meta-
term of type 0. We say s is a sub-metaterm of ¢ if we can write ¢ = C/[s] for some
meta-context C. Whenever the notation C[] refers to a meta-context rather than
a context, this will always be explicitly stated.

A meta-term is a patternif it does not contain any sub-metaterms Z(s1, ..., Sp)-

t with Z a meta-variable, nor sub-metaterms (Az.s) - ¢, and in sub-metaterms
Z(s1,.-.,8,) with Z a meta-variable, all s; are distinct bound variables. Patterns
will be used as the left-hand sides of rewrite rules.

Rules and Rewriting. A rewrite rule (or just rule) is a pair | = r of meta-terms
such that:

1. [and r have the same type;
2. all meta-variables occurring in r also occur in /;

3. land r are closed (so contain no free variables);

4. [is a pattern;

5. [has the form f(l1,...,0n) - lpy1 -+l with f € Fand m > n > 0.

A set of rules R generates a rewrite relation on terms by the following clauses:
(rule) Cllv] == C[rv] ifl =reR,C acontext, ya
substitution, dom(y) = FMV (1)
(beta) C[(Azx.s)-t] =g C[slx:=t]] ifC isa context

This rewrite relation is denoted by =%. Note that by clause (beta) the j-
reduction relation from the A-calculus is explicitly included in the rewrite re-
lation, for any set of rules. The notation =3 may be used for a rewrite step
using this clause. I will sometimes write s =g ;op t (Or just s =, t if R is
clear from context) to denote a topmost step, that is, a step with either clause
(rule) or (beta), but where C' is an empty context [J,. A headmost step, no-
tation s =j,.q0q t, 1S a reduction at the head of a term, where C has the form
Oy - 81+ 8, (wWithn > 0).

Note that the left-hand side [of a rewrite rule must be a pattern. This restric-
tion guarantees that the rewrite relation is decidable. In fact, to obtain decidabil-
ity of the rewrite relation it is not necessary that / has no subterms (A\z.s) - ¢ or
Z(Z) - t; these restrictions have been included because they make it significantly
easier to obtain results. In Section 3.4, where we study AFSs which do not have
the pattern restriction, we will see that we do not lose expressivity by posing
these limitations.

16

Chapter 2 — Algebraic Functional Systems with Meta-variables

Comment: The rewrite relation =5 is defined as a relation on terms —
so not on meta-terms. The meta-variables of the rules themselves cannot
be rewritten with =x. We could extend the definition to rewrite also
meta-terms — in fact, this will be done in Definition 5.9 — but in such an
extension the rewrite relation is not preserved under substitution.

An Algebraic Functional System with Meta-variables (AFSM) consists of the set of
well-typed terms over some signature F and some set V of variables, together
with the relation =% induced by a set of rewrite rules. It is usually specified by
the pair (F,R), or just by R.

An AFSM (F, R) is terminating if all its terms are terminating, that is, if there
is no infinite reduction sy =% s1 =x ... We say an AFSM has order n if for all
meta-variables Z : o occurring in any rule of the AFSM, the type declaration o
has order < n. In particular, we will occasionally consider second-order AFSMs
with some interest, as many common examples are second order. A rule is called
left-linear if the left-hand side [of the rule is linear. That is, no meta-variable
occurs more than once in /. An AFSM is left-linear if all its rules are left-linear.

Example 2.3. The second-order system (Fpap, Ruap) has the following signature:

nil : 1list,
cons : [nat x list]—1list,
Foap = map : [(nat—nat) x list]—1list
0 : nat
s : [nat]—nat

and it has two rules:

R { map(Az.F(z),nil) = nil }
map map(Az.F(x),cons(X,Y)) = cons(F(X),map(Az.F(z),Y))

An example reduction in this system:

map(Az.s(z), cons(0, cons(s(0),nil))) =R
cons(s(0), map(Az.s(x), cons(s(0),nil))) =R
cons(s(0), cons(s(s(0)),map(A\x.s(z),nil))) =g
cons(s(0), cons(s(s(0)),nil))

This reduction uses both rules. For example in the first step, we use the second
rule with a substitution [F := Az.s(z), X := s(0),Y := nil]. In the last step we
use the first rule. This reduction does not use any [3-steps.

Apart from the full rewrite relation, we could investigate termination of re-
writing with a certain reduction strategy. A reduction strategy essentially defines
a subset of the rewrite relation. Common reduction strategies are, for example,
innermost (s =R innermost ¢ if either s = ;,, t and the direct subterms of s can-
not be reduced with =5, or a direct subterm of s reduces innermost), outermost

2.2. Algebraic Functional Systems with Meta-variables

17

(s =R outermost ¢ if €ither s = ., t or s cannot be top-reduced and one of its di-
rect subterms reduces outermost) and beta-first (s =g beta-first ¢ if €ither s =3 ¢
or s =g t and s is f-normal). In this thesis we will not really study termina-
tion using a strategy (this is implied by full termination anyway), but strategies
sometimes appear naturally, for instance in the transformations of Chapter 3.

Restricted n-expansion. Finally, since we will often use it, let us extend the
definition of restricted n-expansion to deal with meta-variables. Define C[s] <,
C[Az.s - z] for a meta-context C' if s : 0 — 7 and the following conditions are
satisfied:

* z is a fresh variable of type o;
* sisnot an abstraction \x.t or a meta-variable application Z(s1, ..., s,);
* sin C[s] is not the left part of an application;

* sin C[s] is not a direct argument of a meta-variable application (so C is
not Z(ty,...,0y-..ytn)).

This definition differs from the one in Section 2.1 by its treatment of meta-
variables: neither meta-variable applications nor their immediate subterms are
n-expanded. This might be somewhat counter-intuitive for those with a back-
ground in for instance HRSs (see Chapter 3.3): a meta-term of functional type
does not need to be an abstraction. However, on terms the new definition coin-
cides with the old one.

For s a meta-term, consider the following definition of constructs s1"” and s:

* s1"= 3 if s is an abstraction, meta-variable application or base-type term,
stM= Az.(s - x1") otherwise;

« Xz.s = Az.(s17);
Z(s1,...,80) = Z(31,...,5)if Z € M;

© f(s1,08n) = f(s11",. . sn 1) if f € T
e s-t=75-(t1).

Then it is clear that s 1" cannot be n-expanded any further. Moreover, with
induction on the size of s we can see that if s <, ¢, then s17= ¢1"7. Thus, s17 is
the (unique!) normal form of s under restricted n-expansion.

Example 2.4. If Z : [o X (0 —0)] —>a—D is a meta-variableand 0: o,f : 0 —o0
are function symbols, then we have Z(0,f) "= Z(0,f). With an additional
function symbol g : 0—o0— o0 we have (Az.(g-x))-0-01"= (Azy.(g-z-y))-0-0.

18

Chapter 2 — Algebraic Functional Systems with Meta-variables

2.3 Transformations of AFSMs

Since existing techniques are defined on various formalisms, they often use as-
sumptions which are not present in AFSMs, such as the rules being n-expanded,
or function symbols having arity 0. Fortunately, it is often possible to transform
an AFSM to a form which has such properties. Here we shall see the basic trans-
formations; in Chapter 3 we will discuss how these results can be used to relate
AFSMs to other formalisms.

2.3.1 Currying and Uncurrying

First let us consider the status of application. When extending first-order results
it is often convenient to consider the - operator just as a family of binary function
symbols. Unfortunately, this leads to some problems for systems given in an
applicative style. Consider, for example, an applicative version of Example 2.3:

Example 2.5. The “applicative version” of map has symbols which do not take
arguments directly:

nil : 1list,
cons : nat—list—1list,
map : (nat—nat)—list—1list
0 : nat
s : nat—nat

And the following rules:

map - (Az.F(x))-nil = nil
map - (Az.F(x)) - (cons- X -Y) = cons:F(X)- (map- (\z.F(x))-Y)

Translating the application operator to a different function symbol for every type
it occurs with leads to the following system:

@, (Qg(map, Ax.F'(x)),nil) = nil
@1 (Q3(map, A\x.F(x)),@;(Qy(cons, X),Y)) =
@, (@q(cons, F(X)), @ (Qs(map, Az.F(z)),Y))

Typically, methods like the dependency pair approach (Chapter 6) and path or-
derings (Chapter 5) have some trouble when the same symbol occurs over and
over and over. Thus, if we consider application just as a function symbol, these
methods are relatively weak on applicative systems. Systems like the one above
are not far-fetched: functional programming languages like Haskell generally
employ an applicative syntax. We might alternatively consider extending results
from applicative systems; results are available both for typed applicative systems
[129] and untyped ones [47]. However, it would be preferable to deal with both
applicative and functional AFSMs without using separate methods.

2.3. Transformations of AFSMs

19

In first-order rewriting, the question whether properties such as confluence
and rewriting are preserved under currying (presenting a system in an applicative
form) and uncurrying (presenting an applicative system in functional form) is
studied in [56, 65, 67, 113]. In [67] a currying transformation from (functional)
term rewriting systems (TRSs) into applicative term rewriting systems (ATRSs) is
defined; it is demonstrated that a TRS is terminating if and only if its curried form
is. In [56], an uncurrying transformation from ATRSs to TRSs is defined that can
deal with partial application and leading variables, as long as these variables do
not occur in the left-hand side of rewrite rules. This transformation is sound and
complete with respect to termination. Unfortunately, in higher-order rewriting,
these results do not apply due to typing restrictions, and because application is
already a part of term formation. A typical AFSM has both function application
and normal application, which is not the case in first-order or applicative systems.

Thus, a higher-order variation of currying and uncurrying results is needed.
We could go two ways. Usually, we would like to uncurry an applicative system,
transforming a term f - s - ¢ into f(s,t). Such a form is more convenient in for
instance path orderings, or to define argument filterings (see Chapter 6.6.3). On
the other hand, we will have to deal with application anyway, since it is part of
the term formation. To simplify the formalism it might be a good move to curry
terms, making the system entirely applicative.

Transformation 2.6 (Currying) Let R be a set of rules over a signature F, and
define the following mapping on type declarations: cur(fo; X ...0,] —7) =
01— ... — o0, — 7. Next, define the mapping cur from meta-terms over F to
meta-terms over the ‘curried version’ of 7, notation F<"*, as follows:

cur(f)(sl, cey8n)) = f-cur(sy)---cur(sy) (ferF)

cur(z = =z (xeV)
cur(Z(s1,..-,8,)) = Z(cur(sy),...,cur(s,)) (Z €M)
cur(Az.s) = Az.cur(s)

cur(s-t) = cur(s) - cur(t)

The curried version R of the set of rules R consists of the rules cur(l) = cur(r)
for every rule [= r in R.

Note that meta-variable applications are not made applicative; doing so would
cause a pattern to be transformed into a non-pattern.

The curried version of the system (Fpap, Ruap) from Example 2.3 is exactly
the system (Fpap/, Rmap') from Example 2.5. Every term in the original system
corresponds to a unique term in the curried system. Not every curried term
corresponds to a term in the original system. For example, the well-defined
applicative term map - s is not the curried version of a term in Fy.,. However,
due to n-expansion this is not a significant problem. As we will see (in Theorem
2.10), termination of = is equivalent to termination of = xeu.

20

Chapter 2 — Algebraic Functional Systems with Meta-variables

Lemma 2.7. For a term s with symbols in F, and substitution v whose domain
contains all meta-variables in s, let v°** = [z := cur(y(z)) | * € dom(y)]. Then
cur(sy) = cur(s)ysr.

Proof. By induction, first on the number of meta-variables in s, second on its size.

The most interesting case is when s is a meta-application Z(si,...,s,). We
can write v(Z) = Az ...2,.t, and cur(sy) = cur(t[zy := $17,...,Tn = $p7]).
Note that, since the domain of + contains all meta-variables in s, all s;y are
terms. Note also that ¢ is a term, so does not contain meta-variables, while s
does. Consequently, by the first part of the induction hypothesis, cur(sy) =
cur(t)[z; := cur(s1y),...,z, = cur(s,vy)], which by the second part equals
cur(t)[zy := cur(s))y™, ..., oy = cur(s,)y™] = cur(s)y

The other cases are simple. If s is an application or abstraction, we only need
a straightforward application of the induction hypothesis. If s = z € dom(v),
then cur(sy) = cur(y(z)) = v (x) = 7™ = cur(s)y™. If s is a variable x
which does not occur in dom(7), then both sides are just x.

Finally, if s = f(s1,...,8,) With f : [01 X ... X 0,,] — 7 € F, we have
cur(sy) = cur(f(s17,...,%17)) = f - cur(syy)---cur(s;y). By the induction
hypothesis this is equal to f - (cur(sy)y®™) - (cur(s,)y™) = (f - cur(sy)---
cur(sy,))y™ = cur(s)y ™. O

cur

Using Lemma 2.7 we can derive that cur(s) =g cur(t) whenever s =5 t, as
we will do in Theorem 2.10. Consequently, the rewrite relation induced by R is
terminating if the relation induced by R is. For the other direction we need
an “inverse” of the cur relation:

x)=zxifzeV;
Z(81y...,8n)) = Z(uncur(sy),...,uncur(s,)) if Z € M;

Az.s) = Az.uncur(s);

* uncur(f - $1-+8k) = AZpi1...2Tn.f(uncur(sy),...,uncur(sg), Te+1,-- -,
xn) if k < n, where n := ar(f);

e uncur(f - s;---sg) = f(uncur(sy),...,uncur(s,)) - uncur(s,yi)---
uncur(sg) if &k > n = ar(f).

Here ar(f) denotes the arity of f in the signature F; obviously in <" all symbols
have arity 0. This translation affects only parts of a meta-term where a function
symbol is applied to a lower number of arguments than expected by the arity in
the original, functional, signature.

Note that uncur has the following property: for all s, ¢: uncur(s)-uncur(t) =5
uncur(s - t) (where =7 Is the reflexive closure of =3). If s is an (application
headed by an) abstraction, variable or meta-application, both sides are equal, if
s has the form f-s; - - - s, a single = 3 step may be needed (but only if k¥ < ar(f)).

2.3. Transformations of AFSMs

21

Lemma 2.8. Let [be a pattern over a signature F and ~y a substitution over F°**
whose domain contains only meta-variables, but does contain all meta-variables
Z € FMV (cur(l)). Let v = [Z := uncur(vy(Z)) | Z € dom(7)].

Then uncur(cur(l)y) = ly"=r.

Proof. By induction on the form of /.

Ifl = Z(z1,...,2,), then cur(l) = l. Using a-conversion we can write v(Z) =
ALy ... %yt s0 uncur(cur(l)y) = uncur(ly) = uncur(t) = ly"r.

The cases where [= \z.l’ and [= z-[; - - - [,, are immediate with the induction
hypothesis (in the latter case we note that the domain of v does not contain z, as
z is not a meta-variable), as is the case where I = f(l1,...,{;n) - lyt1 -+ - 15, Since
[is a pattern, these are the only forms it can have. O

Lemma 2.9. For any meta-term s over F** and substitution v whose domain
contains all meta-variables in FMV (s), we have: uncur(s)y***" =% uncur(sy).

Proof. By induction, first on size of FMV (s), second on the size of s.
The most interesting case is when s = Z(s1,...,8,) - Sp+1 - Sm With m >
n > 0. In this case, uncur(s) = Z(uncur(sy),...,uncur(s,)) - Snt1 - - Sm-

Let v(Z) = Ax1 ... 2y 1.

Then uncur(s)y*** = uncur(¢)[z; := uncur(s;)y yevns Ty 1= uncur(s,)
uncur] . uncur(57l+1),yuncur . uncur(sm),yuncur‘

By the second part of the induction hypothesis, this -reduces to the term
uncur(t)[z; := uncur(s1y),..., Ty := uncur(s,y)]-uncur(s,17y) - - - uncur(sm,y)-
Noting that ¢ is a term, while s is not, we can use the first part of the induc-
tion hypothesis to see that this term =7} uncur(f[z; = s17,...,Zn = sp7])
uncur(s,417) - - - uncur(s;,y).

By the observation below the definition of uncur, this term =7 uncur(¢[#' :=
Y] - Snt17Y - Sm7y) = uncur(sy).

The case where s is headed by a variable in the domain of v is very similar; we
just do not need the first part of the induction hypothesis.
The other cases:

uncur

v

* s=uwx-81- 8, Withz & dom()
e s=(A\x.50) 81" Sn
* s=f-81- 8, withn < ar(f)
* s=f-s1- 8, withn > ar(f)
are all completely straightforward using the induction hypothesis. O
With these preparations, we are ready to move on to the main result:

Theorem 2.10. = is terminating on terms over F if and only if =g is termi-
nating on terms over F°Ur.

Chapter 2 — Algebraic Functional Systems with Meta-variables

Proof. It is easy to see that s = t implies cur(s) =g« cur(t), using induction
on the form of s:

* the base cases, when s = ;,, t with either clause (rule) or clause (beta)
use Lemma 2.7: for example, if Iy =% rv, then cur(ly) = cur(l)y*™ =ger
cur(r)y™ = cur(ry);

* the induction cases, when the reduction takes place in a subterm, are
straightforward: for example, if s = f(s1,...,85,...,8,) == f(s1,...,58,

...ySn) = t, then cur(s) = f - cur(sy)---cur(s;) --cur(s,) =g f -
cur(sy)---cur(s)) - cur(sy,).

Thus, any infinite reduction in = leads to an infinite reduction in = g, which
gives the implication from right to left.

For the other direction, we also use induction on the size of s, to derive that
uncur(s) =g - =7} uncur(t) whenever s =g« t. The induction steps (when
the reduction takes place in a subterm) are trivial. Lemmas 2.8 and 2.9 and the
observation that uncur(cur(r)) = r, combine to give the two base cases. O

Note the if and only if in Theorem 2.10. Because of this equivalence the theo-
rem works in two ways. We can curry a functional system, but also uncurry an
applicative system, simply by taking the inverse of Transformation 2.6. For an
applicative system, there are usually many sets of corresponding functional rules,
all of which are equivalent for purposes of termination.

Example 2.11. Consider the following system:

emap(F,nil) = mnil
emap(F,cons(X,Y)) = cons(F X, emap(Az.twice(F) z,Y))
twice(F)-X = F.(F-X)

Note that the twice always appears with an additional argument. Thus, it has
the same curried form as the following system:

emap(F,nil) = nil
emap(F,cons(X,Y)) = cons(F - X,emap(Az.twice(F,x),Y))
twice(F,X) = F-(F-X)

By Theorem 2.10, their termination is equivalent.

Example 2.12. Note that Theorem 2.10 only says that termination of a set of
rules and its curried version are equivalent. It is not allowed to choose an arity
for all function symbols and apply uncur on the rule schemes. Consider for
instance the following applicative system:

F_ f : (nat—nat)—nat
"]l g : nat—nat

} R={g-X=[g}

2.3. Transformations of AFSMs

This system is terminating. However, if we naively uncurried it, the result, which
has a rule g(X) = f(A\z.g(z)), is not terminating. This is because the curried
version of the latter ruleisnotg- X = f - g.

Comment: In most existing termination techniques, and certainly the
methods discussed in this thesis, it is optimal for function symbols to
have an arity that is as high as possible. Because of Theorem 2.10 we
can avoid making special cases for systems where this does not hold. We
simply assume that any AFSM under consideration has first been uncur-
ried as much as possible.

2.3.2 Eta-expanding Rules

Now let us consider n-expansion. It is often convenient to assume that every
term of some functional type o — 7 has the form Az.s, which only reduces if
its subterm s does. This is the case if we work modulo 7, equating s : 0 — 7,
with s not an abstraction, to Az.(s -). This is for instance done in Nipkow’s
HRSs, which we will discuss in Section 3.3. However, in AFSMs S-reduction is a
separate step, and in such a setup working modulo 7 causes problems (since this
would give s-t =, (Az.(s-x)) -t =p s-t). Therefore, instead of using n-equality,
we will limit reasoning to n-long terms.

Theorem 2.13. Let R be a set of rules in n-long form. Then the set of n-long terms
is closed under rewriting, and the rewrite relation =g is terminating if and only if
it is terminating on n-long terms.

Let us postpone the proof of Theorem 2.13 for the time being, as we will be able
to derive it as a consequence of Theorem 2.16.

The requirement that the rules are 7-long is essential. Consider for example
the system from Example 2.12, which has a single rule g- X, = f-¢. Evidently,
the set of n-long terms is not closed under rewriting. This rule generates a ter-
minating rewrite relation, but its n-long variation, g - X = f - (Az.(g - z)), does
not: the left-hand side can be embedded in the right-hand side. This example is
contrived, but it shows that we cannot be careless with n-expansion.

However, to prove termination of a system we can use a transformation pro-
vided it preserves non-termination. At the price of completeness, we can use
Transformation 2.14 which, as we will see in Theorem 2.16, has this property.

Transformation 2.14 (n-expanding rules) Let R be a set of rules. Define R' as
the set consisting of all rules (I - Z1 -+ - Z,)1"= (r - Z1 -+ - Z,,) 1" with [= r in R,
with [: 01 —...— 0, —¢ and each Z; a fresh meta-variable of type o;.

Note that, given n-long rules, R = R" (since the left-hand side of a rule cannot
be an abstraction, so n-long rules necessarily have base type).

Chapter 2 — Algebraic Functional Systems with Meta-variables

Lemma 2.15. For meta-terms s,t, substitutions v whose domain contains only
meta-variables, and contains all meta-variables in FMV (s), and substitutions 0
whose domain contains no meta-variables:

LAz ((s17) - (21 17) -+ - (2 17)) =5 8175
2. (s1) - (¢17) =75 (s -)17 if s, t are terms;

3. if s is a term, then (s1")y" =% (s17)7 = (s7) 1", where v = [z := y(z)1"
|z € dom(v)] and 7 = [z := () | € dom(v)];

4. if s is a pattern, then (s1")y" = (s7)17;

5. (1" =5 (s) 1

6. if g, u,v1,...,v, are terms, then ((Az.q) - u - T) 1" :>E (q[z = u] - U)1";
7. if s,t are terms, and s =g t, then s11=1, t17.

Here, recall that 5 and s1" are defined as in Section 2.2, below the definition
of restricted n-expansion.

Proof. (1) and (2) are well-known properties of 7n-expansion on terms; it is
proved by induction on the type of s, using that z 17 [z := z 1] =} z 17 for
variables x (which holds by induction on the type of z).

(3) holds by induction on the form of s. The cases where s is (headed
by) an abstraction, a function application or a variable not in dom(y) are all
straightforward. If s = 2 -s1---8, : 01 = ... = o, — ¢ With y(x) = ¢, then
(s7) M7= Ay -+ Y- (1) - ((s1 1)) - (50177 - (1 17) -+ - (Y 7). With the
induction hypothesis, each (s; 17)y" reduces to (s;7) 1", and if we subsequently
use (2) n + m times, this term S-reduces to A\y.(t - 5 - §) 1= (s7)1". Since also
(t-8y-y) 1=t (5y1") - (F1") as seen in Section 2.2, and by the induction
hypothesis each (s;v)1"= (s; 1")7, this term is equal to (s1")7, so both parts of
the induction step are proved.

(4) holds by induction on the form of s. In the base case, s = Z(z1,...,z,),
lety(Z) = Axy ... x,.t witht in n-long form. Then (s17)y" = 57T = t17= (s7)1".
All the induction cases, when s = Ax.tors =x-s1---8, Or s = f(S1,...,8p) -
Sna1 - - Sm, are straightforward with the induction hypothesis. Note that, since s
is a pattern, there is no case Z(sy, ..., s,) with the s, not variables.

(5) is proved with a shared induction on two claims; we will see that both
(s1")~" =% (57)1", and that 577 §-reduces to either (s7)1" or to 57.

First consider the second claim. The cases where s is an abstraction or
function application are immediate with the induction hypothesis (using the

2.3. Transformations of AFSMs

25

first claim), and if s is a variable then 577 = s = 3y. If s = t - ¢, then
5v" = (t9") - ((¢ 1")77). By the induction hypothesis (¢ 1"7)y" =% (¢7) 1" and
either Iy =% #y or iy =% (t7)1". In the first case, 57" =% #y - ((¢7)1") = 57.
In the second case, 57" =% ((t7)17) - ((¢y)1"), which by (2) =7 (s7)1".

Finally, suppose s = Z(s1,...,5,) and v(Z) = Axy...z,.t. Then 37T = ¢t "
[z1 := 5177,..., 2, := 5,7"]. Noting that each 577" B-reduces to either (s;y) 1"
or to 577, we can use (3) to see that 577 =% ¢[Z := §y] 1= (s7) 1.

For the first claim, we are done if s is an abstraction or base-type meta-term
(so both 5 = s17 and 57 = (sy) 1"), and if s is a meta-variable application (so
s17= 5 and 57" =7% (s7) 1" as we saw above). Otherwise, let s : 01 — ... —
op —t. Then (s 1M)yT = A2y ... 2,5 - (20 1) -+ (20)Y = AE5YT - (2 17).
As we saw above, 57" reduces to either 5, in which case we are done because
AZ5Y - (Z17) = (s7)17, or to (sv)1", in which case we are done with (2).

(6) uses (1-3). Let s := (A\z.q)-u-vU and ¢t := gz := u|-¥. Suppose s : g, 11 —
... = O — 1, and write norm(s) = Aynt1---Ymt - Ynt1) - (Ym 17). Then
s1= norm((Az.(¢g1"))- (uw1")-(51")). This term =g norm((¢1")[x := u1]-511).
By (3) and (2) this term =} norm((q[z := u] - §)1") = norm(¢1"), which by (1)
=7 1" as required.

(7), finally, follows by induction on the size of s. The only two cases which
are not trivial with the induction hypothesis are when s = (Az.q) -u- sy - - - s, and
t=gqlz:=u] sy - sp,orwhens=1y-s1---s,and t = ry-sy---s, for some
rule [= r and substitution v whose domain contains all meta-variables in I.

The first of these cases we considered in (6). As for the second, suppose again
that s : opy1— ... dom—et. Letl' :=1-2y---Z, and v’ :=7r-Zy--- Z,,; note
that I’ t7= r' 1" is a rule in RT. Let § := yU [Z] := 81,..., Zp := Sp, Zny1 i=
Tygly-e-s Zm = Zm). Then s t"= Axpy1...24,.(I'0) 1. If either n > 0 or
r+ is not an abstraction, then also ¢ 17= Az,y1...%m.("6) 1. If n = 0 and
r7 is an abstraction, then 7 = (r7) 17, SO AZp41 ... Zm.(170) 7= norm(7y) =
norm((ry) 1) =% (ry) 1= t1" by (1). Thus, s 7= A\Z.(I'6) 17= \Z.(I' 17)éT by
(4), =1 AZ.(717)61 =% AZ.(/8) 17 by (5), = t17. O

Lemma 2.15 provides all the technical background to derive Theorems 2.13 and
2.16:

Theorem 2.16. Let R be a set of rules, and R' as obtained from Transformation
2.14. If there is no infinite reduction s; =g+ S2 =g+ ... with all s; terms in n-long
form, then =g is terminating.

Proof. Suppose =+ is terminating on 7-long terms, and, towards a contradic-
tion, that =5 is not terminating. Thus, there is a reduction s; =% $3 =g
Since by Lemma 2.15(7) also s; T":ﬁ& s;11 1" for all 4, the theorem follows. [

26

Chapter 2 — Algebraic Functional Systems with Meta-variables

Theorem 2.13 follows from Theorem 2.16, because R = R if the rules are -
long to begin with (and evidently, if there is no infinite reduction, there is also
no infinite reduction on 7-long terms).

In most examples which are commonly considered, n-expanding the rules
does not lead to non-termination. Since it is very convenient to have n-long rules
(and especially to be able to assume that all function symbols have a base type
as output type), Theorem 2.16 is an important result.

2.3.3 Simple Meta-Variables

Another transformation we should consider is the “flattening” of meta-variable
applications. That is, changing a rule of the form

map(Az.F(z), cons(X,Y)) = cons(F(X),map(Az.F(x),Y))
into a rule where the meta-variables have arity 0:
map(F, cons(X,Y)) = cons(F - X,map(F.,Y))

Part of the role of meta-variable application is taken over by §-reduction. This
transformation will be necessary to reuse results for Algebraic Functional Systems
(see Chapter 3.4), as this formalism does not have meta-variables, but does have
a separate 3-reduction rule.

Not all AFSMs can be transformed in this way: sometimes a system sim-
ply cannot be expressed without meta-variables taking arguments. For example,
without this construction we could not express a rule like the following rule for
derivation (copied from [13]):

d(Az.sin(F(z))) = Az.(d(Ay.F(y)) -) x cos(F(z))

This is because for instance d(Az.sin(F'-z)) does not match a term d(Az.sin(x));
an application can only be instantiated with an application.

However, in many (or even most) common examples, this kind of matching
does not occur. Such systems we can transform.

Definition 2.17. A meta-term s has simple meta-applications if all meta-variables
in s occur in a form Azq ..., . Z(21, ..., 2p).

Thus, a meta-term map(Az.F(z),cons(X,Y)) has simple meta-applications,
whereas a meta-term d(A\z.sin(F'(z))) does not.

Transformation 2.18 (Flattening simple meta-applications) Given an AFSM (F,R)
such that for all rules [= r € R, the left-hand side ! has simple meta-applica-
tions. For each meta-variable Z with type declaration [0y X ... X 0,,] — 7, let Z’
be a uniquely corresponding meta-variable with type oy —...— 0o, — 7.

2.3. Transformations of AFSMs

27

The flattening function flat is inductively defined as follows:

flat(z) = ¢ ifzeV
flat(f(s1,...,8n)) = f(flat(s1),...,flat(s,))
flat(s-t) = flat(s) - flat(¢)
flat(\x.s) = JAz.flat(s)

ifs# N2y .20 Z(x,29,...,2,)
flat(Azy ... 2n.Z(21,...,20)) = Z'
flat(Z(s1,...,5n)) = Z'-flat(sy)---flat(s,)

Define Rf!2* := {flat(l) = flat(r) |l = r € R}.

Theorem 2.19. If (F, R*2) is a terminating AFSM, then so is (F,R).

Proof. This holds because s =% t implies s =g - =% ¢. This is obvious when
the reduction is a $-step, and if s = C[ly] and t = C[rv], let § := [Z' := ~(2) |
Z € dom(v)]. Then: flat(l)é = Iy and flat(r)d =} rv. This holds by induction
on [and r respectively, taking into account that [has simple meta-applications.

In the induction, write s for [or 7. We will see that flat(s)d =7} sy and
that this is an equality if s has simple meta-applications. We may assume that
dom(y) contains only meta-variables, and contains all meta-variables occurring
in s. When s is a variable the result follows immediately, if it is a functional term,
application or an abstraction not of the form AZ.Z(Z), it follows easily from the
induction hypothesis (note that the subterms of a meta-term with simple meta-
applications also have simple meta-applications).

What remains are the cases when s has the form Az;...z,.Z(21,...,2,) or
Z(s1,...,5n). In the latter case s does not have simple meta-applications, so we
only have to see that flat(s)d =} sv. Consider v(Z2); this must have the form
AY1 ... Yn.t. In the first case, then, sy = A\xy ... 2p.t[y1 = T1,.. ., Yn 1= Ty] =
AY1 - . . Yn.t by a-conversion, which equals v(Z) = 6(Z’) = flat(s)d. In the latter
case, flat(s)0 = y(Z) - flat(s1)d---flat(sp)d =% (AF.t) - s17---sp7y by the
induction hypothesis, and this S-reduces to t[y; := $17,...,Yn = Spy] = sy. O

Note that Theorem 2.19 is a one-way result. The other direction does not hold,
as demonstrated for example by the (terminating) system with a single rule:

f(\z.F(z)) = F(£f(A\z.0))
This system is transformed into the AFSM:
f(F) = F-£(\z.0)

The result is non-terminating: f(Az.0) = (Az.0) - £(Az.0), which contains the
original term as a subterm. In the original AFSM, this does not happen: f£(Az.0)
reduces only to 0. Intuitively, the created §-redex is immediately reduced.

28

Chapter 2 — Algebraic Functional Systems with Meta-variables

2.3.4 Changing Types

A final transformation we will discuss is the possibility to change a base type into
another type, either a different base type or a functional type.

Let B; and B, be sets of base types; they may have elements in common, but
this is not necessary. A type-changing function is a function ¢ which assigns to
all elements of B; a type built from base types in B2 and (possibly) also the —
constructor. We extend ¢ to be a function on all types over B;, by defining

((o—=7) = ((0)=((7)

And for type declarations,

((lor x ... xon] —7) = [¢(01) X ... x ((on)] —((7)

For a given AFSM (F,R), let F¢ = {f : ((o) | f : 0 € F}. Also, let V¢ =
{x:¢) | z:0€Vyand MS = {Z : {(0) | Z : 0 € M}. Itis clear, with
a trivial induction on the definition of meta-terms, that if s : ¢ for meta-terms
over (F,V, M), then s : ((s) for meta-terms over (F¢, V¢, M¢). Substitution also
carries over: if sv is defined over F, then it is defined over F¢, and the terms are
exactly the same. Consequently, reduction is preserved: if s =% ¢ in the AFSM
(F,R), then also s = t in the AFSM (F¢, R).
By this reasoning, we obtain the following result:

Theorem 2.20. For any AFSM (F,R) and type changing function ¢, if the AFSM
(FS,R) is terminating, then so is the AFSM (F,R).

Theorem 2.20 can be used to give an AFSM a form which certain termination
techniques can handle better. A very standard type transformation is the function
which maps all base types to some fixed base type o. We say that this type change
collapses the base types. However, it can also be useful to use a type changing
function in exactly those cases where collapsing would lead to non-termination.

Example 2.21 (Functional Map). Consider the following example from the ter-
mination problem database (Applicative_05__Ex4MapList):

nil : natlist
cons : [nat X natlist]—natlist
fnil : funclist
fcons : [(nat—nat) x funclist|—>funclist
fmap : [funclist X nat]—natlist

fmap(fnil,Y) = nil
fmap(fcons(F, X),Y) = cons(F Y, fmap(X,Y))

If all types are collapsed to the same base type o, this system is non-terminating:

2.4. Reduction Orderings, Reduction Pairs and Rule Removal

29

fmap(fcons(Ax.fmap(z,x),y), fcons(Az.fmap(z, 2),y))

=x cons((Azr.fmap(z,z)) - fcons(Az.fmap(z, z),y), fmap(...))

=3 cons(fmap(fcons(Az.fmap(z, z),y), fcons(Az.fmap(z, z),y)), fmap(.. .))
which contains the original term as a subterm.

Consequently, termination techniques which do not distinguish between base
types have trouble. However, this counterexample depends on the subterm
fmap(z, z), which is not well-defined in the original typing. In fact, the system is
terminating. We can see this using a type function where ((funclist) = o —o
and ¢(¢) = o for all other base types. Termination of the resulting system will be
proved in Chapter 4 (Example 4.21).

It is not obvious how to choose a good type changing function for a given system.
For the theory, it is most important to know that they can be used, not how — this
for instance allows termination techniques to assume that there is only one base
type. In practice, the search for a type changing function may be combined with
the search for a reduction ordering (these will be defined in Section 2.4).

As demonstrated by Example 2.21, we can use type changing functions to
express crucial differences in base types with the type construction operator —.
In a limited way, this gives us some of the power created by a type ordering and
inductive types (see e.g. [19]). Type changing does not have all the power of
such a reasoning, but has the advantage that it is not bound to any fixed method.

In this work, type changing functions will almost exclusively be used in the
simplest way only, to collapse all base types into one. However, in a possible
extension to a polymorphic framework they might become very important. This
will briefly be discussed in Chapter 9.3.

2.4 Reduction Orderings, Reduction Pairs and Rule Removal

Before diving into the depth of termination methods, we must settle on a termi-
nology for the relations we will need. These definitions are mostly standard, or
adapted in a minor way from the standard definitions to the setting of AFSMs.
In Section 2.4.1 we shall consider reduction pairs, and see roughly how they are
used. In Section 2.4.2 we will consider some transformations of reduction pairs
rather than term rewriting systems.

2.4.1 Definitions

Well-founded Orderings and Quasi-Orderings. A quasi-ordering in mathemat-
ics is a binary relation > on some set A which is both transitive (ifa > band b > ¢
then a > ¢) and reflexive (a > a for all a € A). A strict ordering is a transitive
binary relation > which is irreflexive (not a > a for any a € A). Following [10],
a strict ordering > is well-founded if there is no infinite sequence a; > ay > ...
Since well-foundedness implies irreflexivity, such a relation is shortly called a
well-founded ordering.

30

Chapter 2 — Algebraic Functional Systems with Meta-variables

Comment: This definition of well-founded, although often used in the
setting of term rewriting, is non-standard in mathematics. Assuming the
axiom of choice, the standard definition is the converse of the definition
used here; that is, a relation < is well-founded if there is no infinite
sequence ai,as, as, ... such that each a;,1 < a;. The notion used here is
sometimes referred to as converse well-founded or Noetherian.

Reduction Orderings and Pairs for TRSs. The traditional way to prove termi-
nation of a TRS is to use a reduction ordering. This is a well-founded ordering >
on the set of terms which is well-founded, transitive, stable (if s > ¢ then sy > ¢y
for all substitutions «), and monotonic (if s > ¢ then C[s] > C[t] for all contexts
(). If we have a reduction ordering >, and we can prove that [>~ r for all rules
! = r, then the reduction relation =5 is included in >: if s =% ¢ then we can
write s = C[lvy] and t = C[r~|; we have [> r by assumption, iy > rv by stability,
and s = Cllv] > C[rvy] = t by monotonicity. By well-foundedness of -, there is
no infinite decreasing >-chain, so =5 is terminating.

But we can do better! Let us consider rule removal. In this old technique
(references go back as far as 1979 [92]), a reduction pair is used. Rather than
proving [> r for all rules in one go, we prove [>~ r for some rules, [= r for
the others, and then remove the strictly oriented rules and prove termination of
the rest. To use rule removal we need a strong reduction pair': a pair (7, =) of
a quasi-ordering and a well-founded ordering such that both = and > are stable
and monotonic, and the two relations are compatible: > - 7 is included in .

Reduction Orderings and Pairs for AFSMs. To extend the notion of a reduction
pair and the method of rule removal to AFSMs, we have to deal with 3-reduction
and meta-terms. Because of the pattern restriction, we will not need stability;
the somewhat weaker condition of meta-stability suffices.

Definition 2.22. A strong reduction pair is a pair (7,) of a quasi-ordering and
a well-founded ordering on meta-terms, such that:

» and > are compatible: > - 77 is included in >;

* ~ and > are both meta-stable: if s 7~ ¢ and s is a pattern of the form f()- v,
and + is a substitution with domain FMV (s) U FMV (t), then svy zZ t (and
the same for >);

* ~ and > are both monotonic: if s = t with s,¢ terms, and C is a context,
then C[s] z C[t] (and the same for >);

* = contains beta: (A\x.s) -t 7 s[z := t] if s and ¢ are terms.

1 In the literature, a strong reduction pair is commonly referred to as a strongly monotonic re-
duction pair. Here, we use the shorter phrasing to contrast it with a weak reduction pair, which is
commonly just known as a reduction pair.

2.4. Reduction Orderings, Reduction Pairs and Rule Removal

31

A reduction ordering is a well-founded ordering > such that (>=,) is a strong
reduction pair (where == is the reflexive closure of).

Note that stability implies meta-stability; thus, this notion is a strict generalisa-
tion of the original definition to the higher-order case.

Theorem 2.23 (Rule Removal). Suppose we have a strong reduction pair (=, >)
such that, for some partitioning R = R1 W R4 of a set of rules, we have:

e [>rforallrulesl = r € Ry;
e [z rforallrules! = r € Ro;
Then the AFSM (F,R) is terminating if and only if (F, R2) is terminating.

Proof. One direction is obvious: if there is no infinite = -reduction, then there
is no infinite reduction of the subrelation =%,. For the other direction, suppose
that =%, is terminating. Then any infinite reduction over R must use a rule in
R, infinitely often. We will see that such an infinite reduction leads to an infi-
nite decreasing >-chain, contradicting well-foundedness of ~. So let an infinite
reduction sy = s; =x ... be given. For each i:

* if s;, = C[ly] =R, C[ry] = si+1, then | = r by assumption, Iy = rvy by
meta-stability, and s; = ¢; by monotonicity of >;

» if s;, = C[ly] =&, C[ry] = si+1, then | = r by assumption, Iy Z ry by
meta-stability, and s; - ¢; by monotonicity of »;

~

* if s, = Cl(Az.s) - t] =3 C[s[z := t]], then s, 7 t; because - contains beta
and is monotonic.

Thus, always s; 7= s;+1 or s; > s;+1, and the latter happens infinitely often. Since
a > by = ... 7 b, = cimplies a > b, > ¢ by compatibility, we thus obtain
an infinite decreasing - sequence. As this is impossible by well-foundedness of
>, the assumption that an infinite =% reduction exists must be false; (F,R) is

terminating. O

If we have a suitable way of obtaining strong reduction pairs, we can successively
remove rules until none remain. At that point, since 3-reduction is terminating,
we have proved termination of the original system. Moreover, to prove termina-
tion of R,, we do not need to use the same technique. We could for example
remove one rule with the polynomial interpretations from Chapter 4, a second
rule with the iterative path orderings from Chapter 5, then two more with polyno-
mial interpretations, and finally pass the rest to the dependency pair framework
of Chapter 6 and 7.

32

Chapter 2 — Algebraic Functional Systems with Meta-variables

Weak Reduction Pairs. The dependency pair approach, which we will discuss
at length in Chapter 6 (and extend in Chapter 7), provides an alternative way
to prove termination. In this approach, the termination question is reduced to a
number of sets of constraints, which can be handled with (among other methods)
a weak reduction pair. A weak reduction pair is almost a strong reduction pair,
except that > is not required to be monotonic.

Definition 2.24. A weak reduction pair is a pair (7, >) of a quasi-ordering and
a well-founded ordering on meta-terms, such that:

* = and > are compatible;

* =~ and > are both meta-stable;
* = is monotonic;

* - contains beta.

Since every strong reduction pair is also a weak reduction pair, a weak reduction
pair is often simply called a reduction pair. We will consider weak reduction
pairs and their requirements in the dependency pair approach in more detail in
Chapter 6.6, but will already see some ways to define them in Chapters 4 and 5.

2.4.2 Transformations of Reduction Pairs

In later chapters we will see some examples of both weak and strong reduction
pairs. Currently, we do not have much material. But we do have a number of
ways to transform existing reduction pairs: all the transformations of AFSMs
from Section 2.3 can be used for (weak or strong) reduction pairs as well.

Currying and Uncurrying. Let us start at the beginning! The currying transfor-
mation from Section 2.3.1 leads to a straightforward reduction pair:

Theorem 2.25. Given a signature F, let a reduction pair (2Z,>) on terms over

Fer (which is defined as in Transformation 2.6) be given. For R € {7, >}, let the

relation R, on (meta-)terms over F be given by: s Reyy t iff cur(s) R cur(t).
Then (Zcur, > cur) IS a reduction pair; and >, is monotonic if > is.

Proof. Well-foundedness, transitivity, reflexivity and compatibility are inherited
from the corresponding properties on -, and >, and monotonicity of R, is in-
herited from monotonicity of R by an easy induction on the size of the context.

Meta-stability of R.,, holds by meta-stability of R and Lemma 2.7: if [is a pat-
tern of the right form, » a meta-variable, and ~ a substitution on domain FMV (1)
U FMV (r), and if cur(l) R cur(r), then cur(ly) = cur(l)y*** R cur(r)y®* =
cur(ry).

Finally, 7., contains beta because - does, and by Lemma 2.7: cur((Az.s) -
t) = (Az.cur(s)) - cur(t) = cur(s)[z := cur(t)] = cur(slz :=t]). O

2.4. Reduction Orderings, Reduction Pairs and Rule Removal

33

Unfortunately, the transformation in the other direction (which is arguably more
interesting) is trickier. We can still define a reduction pair which uncurries, but
we have to phrase it in a careful way with regards to meta-terms.

To start, say that an applicative signature F “respects” an arity function ar if
forall f: 01 —... >0, —¢ € F with . a base type, n > ar(f). A meta-term s
respects ar if any symbol f in s occurs in a context f - ¢y - - -t with k > ar(f).

Theorem 2.26. Let F be signature where all function symbols have arity 0, and
(=, =) a reduction pair on meta-terms over F. Let ar be an arity function on F
such that F respects ar, and let F°" be the signature {f : [01 X ... X 0gp()] —
Tar(f)41 > =0 —t| fro1—... =0, —1 € F}

For R € {z, >}, let the relation Ryucur be given by: s Runcur t if and only if
uncur(s) R uncur(t) and either s and t are both terms or they both respect the
arity function ar.

Then (Zuncurs ™uncur) IS a reduction pair, and =yycor is monotonic if > is.

Proof. Well-foundedness, transitivity, reflexivity and compatibility are all inher-
ited from the corresponding properties of -~ and -, and monotonicity of Ryncur
is inherited from monotonicity of R by a straightforward induction on the size of
the context.

Meta-stability of Ry, holds by meta-stability of R, and Lemmas 2.8 and 2.9:
if [is a pattern of the right form and r a meta-variable, and ~ a substitution on
domain FMV (I)UFMV (r), and if s Rypcur t, then by definition of Ryy,c.r we know
that either s and ¢ are both terms (in which case there is nothing to prove), or s
and ¢ respect ar. For such terms, it is easy to see that s = cur(cur~'(s)) and the
same for t. Moreover, by definition of Ryycor We know that uncur(s) R uncur(t).
Thus, uncur(sy) = uncur(cur(uncur(s))y), which by Lemma 2.8 is equal to
uncur(s)y™**. By meta-stability of R (for clearly uncur(s) is still a pattern of
the right form), this term R uncur(¢)y****. By Lemma 2.9, and because - con-
tains beta and is transitive and monotonic, this term 7 uncur(¢y). Either by
compatibility of > and -, or by transitivity of =, we conclude that sy Runcyr 7.

Finally, Zu.c.r contains beta because — does, and by Lemma 2.9:
uncur((Az.s) - t) = (Az.uncur(s)) - uncur(t) - uncur(s)[z := uncur(t)]

uncur(s[z := t]). O

Thus, we can use the uncurrying transformation freely, provided we do it only
for meta-terms which respect the new arity function. Note that the resulting
reduction pair is not fully stable, even if the original reduction pair (-, >) is.

In the transformation of Theorem 2.26 we had to use a special case for the
meta-variables. This sets the tone to transform also the other transformations of
Section 2.3.

n-expansion. The n-expansion transformation is trickier than currying or uncur-
rying, and we have to jump through some hoops to properly define the reduction
pair. However, once defined, it is easy to use.

34

Chapter 2 — Algebraic Functional Systems with Meta-variables

Theorem 2.27. Let (-,) be a reduction pair and define, for R € {7z, =}, the
relation R as follows: s R t if and only if:

* sand t have the same type o1 — . ..— 0, — 1 With ¢ a base type, and

* for all substitutions v on domain FMV (s)UFMV (t) and all kwith0 < k <n
and all terms q; : 01,...,qx : o we have: (s-q1---qe)T" R(t-q1-- qx) 1"

Then (7, =) is also a reduction pair, and if = is monotonic, then so is ~1.

If s » t implies that A\x.s = Ax.t, then for all meta-terms l,r where | is a
pattern of the form f(5) -t and r a meta-term of the same type, | R" r holds if
(1-Z M R (r- Z) 1" for fresh meta-variables such that | - Z has base type.

Proof. Well-foundedness, transitivity, reflexivity and compatibility are all inher-
ited from the corresponding properties on - and . For example compatibility:
if s =T ¢t =T ¢, then s, t and ¢ all have the same type, and for all substitutions
~ on domain FMV (s) U FMV (t) U FMV (q) and terms uy,...,ug: (svy- @) 17>~
(ty- @)1 (g - W) 1", so by compatibility of > and 7 also (s - @) 17> (g7 - @) 1".

Meta-stability of both relations is evident immediately from the definition:
taking into account that the result sy of a substitution does not include meta-
variables, s R' t for meta-terms if and only if sy R ¢ for all substitutions v on
FMV (s) U FMV (t).

By Lemma 2.15(6) and because -, contains beta and is monotonic and tran-
sitive, also =T contains beta.

As for monotonicity, let us use induction on the form of C. Suppose R is
monotonic, and s R't. Then certainly s1”7 R t1" (choosing k := 0). Thus:

e \z.s R" \z.t since (\z.s) "= Az.(s1") R Az.(t1") = (\z.t) 1" by mono-
tonicity of R. Writing norm(w) = Azy...zpmw - (x1 T7) - (zp 1), We
have, for k > 1: (Ax.s) - q1 - - qx) T"= norm((Az.(s1)) - (2 1) - - - (¢ 1)),
which by monotonicity also R norm((Az.(t 1)) - (@1 17) -+ (qx 1)) =
(Azt) - q1- - qu) 1.

* We derive that¢-s R" ¢-tand f(qi,...,s,...,q,) RTf(q1,...,t,...,qn) in
a very similar way, except that these derivations do not need a special case
for k = 0.

e We see that s - ¢ R" t - ¢ because by definition of s R't we have, for all
U, ..., Uk, that (s-q- @)1t R (t-q-a)1".

Thus, (=T, =) is also a reduction pair, and =" is monotonic if > is.
For the second claim, let / be a pattern of the right form and r a meta-term
of the same type o; — ... — 0, — ¢. To see that [R r we must see that for all

substitutions v on domain FMV (I) U FMV (r) and terms s; : 01,..., S : 0 wWith
0<k<nwehave: (Iy-sy---spg)t" R (ry-s1---sg) ™. Writel' :=1-2Z,---Z,
andr’ :=r-Z;--- Z, for fresh meta-variables 71, ..., Z,, and suppose that {’ 1"

R r'1". Then I’ is still a pattern of the right form, so:

2.4. Reduction Orderings, Reduction Pairs and Rule Removal

35

(ZV N TREE S}c)T"
= ACgg1 - T (ly 81 Sk Tpgr - Tp) 1"
= Agt1 ... Tn.(I'617) where § :=~y U [Z) := s1,..., Zk = s,
Zpg1 = Thy1, -+ Ln = Tn)
= ATjy1...2T,.0'1" 6T by Lemma 2.15(4)
R Axjyq...7,.7" 1" 5T by meta-stability (and A-monotonicity) of R
7 ATk41 - .- T (r'8) 1" by Lemma 2.15(5) and because - contains beta
and is transitive and monotonic

= AZpq1 ... T (ry 17 ‘SlTn s ‘MHV7 sz 1)

AT T Py ST S X)) T = (ry o810 sk) !
Either by compatlblhty of > and 7z, or by transitivity of -, we conclude that
(Iy-s1---sK)1" R (ry-s1---s5)1" as required. O

Although the definition of this reduction pair is somewhat tricky, in practice we
simply use the second part of the theorem: we can freely n-expand the meta-
terms under consideration before orienting them with a reduction pair.

Flattening Simple Meta-variables. Next, we move on to the transformation of
Section 2.3.3. This transformation has the nice feature that it leaves terms alone;
only meta-terms with meta-variables are altered.

Theorem 2.28. Let (7, >) be a reduction pair, and let £1at be the function from
Transformation 2.18. For R € {7,>}, let s Rsay t if and only if s has simple
meta-applications, and flat(s) R flat(t). Then (Zsiat, >f1at) 1S also a reduction
pair, and =14 1S MONOtoNic if 7~ s1a¢ 1S.

Proof. Since 7Zs1.¢ and =s1,. define the same relation as =~ and > when restricted
to terms, all properties but meta-stability are obvious. Since [has simple meta-
applications whenever [s, 7, this is proved exactly as in Theorem 2.19. O

Type Changing. The last, and quite possibly simplest, of the transformations of
Section 2.3 is the type changing transformation:

Theorem 2.29. Let (-, =) be a reduction pair on (meta-)terms over F¢, V¢, M,
and define, for R € {,>}, the relation R; on (meta-)terms over F,V, M as
follows: s R¢tiff s Rt when s and t are seen as terms over F¢, V¢, MC.

Then (¢, >¢) is also a reduction pair, and if > is monotonic, then so is .

Proof. The most important observation, that these relations are well-defined,
is because any (meta-)term that is well-typed in F,V, M is also well-typed in
F¢, V¢, MS. Well-foundedness, transitivity, reflexivity and compatibility are all
inherited from the corresponding properties on - and -, and 7 contains beta
because =~ does. Monotonicity of either relation R is also inherited from mono-
tonicity of R, (if applicable), as is evident with a trivial induction on the context.
Meta-stability is inherited because if the term s+ is defined in the original system,
then it is defined, and the same term, in the type-changed system. O

36

Chapter 2 — Algebraic Functional Systems with Meta-variables

Inverse Compatibility. Finally, let us consider one more reduction pair trans-
formation. The notion of compatibility used here is less general than commonly
used: normally, a pair of relations (7, >) is compatible if > - = is a subrelation
of =, or - - > is. Let us call the latter possibility an inverse compatible pair of
relations. The definitions here do not permit a reduction pair where the relations
are inverse compatible rather than compatible, even though the soundness proof
of for instance rule removal goes through almost unmodified with this definition.

The reason for this choice is twofold: first, allowing inverse compatibility for
a reduction pair necessarily complicates transformations of reduction pairs: nei-
ther the uncurrying transformation (Theorem 2.26), nor the 7-expansion (The-
orem 2.27 or meta-variable flattening (Theorem 2.28) transformations given in
this section work if the underlying reduction pair is not compatible. These trans-
formations could still be defined if - - > is included in >, but their definition
would have to be a bit more convoluted.

This is not sufficient argument to disallow this form of compatibility alto-
gether — especially not since there are inverse compatible reduction pairs in the
literature which are not reduction pairs with this definition of compatibility (see
e.g. [22]). However, the second reason justifies the choice: we can transform an
inverse compatible reduction pair into a normal reduction pair.

Theorem 2.30. Let I~ be a quasi-ordering and > a well-founded ordering on terms,
such that both relations are meta-stable, and - contains beta and is monotonic.
Suppose moreover that 7~ - - is a subrelation of .
Let s »' t if for all substitutions v on domain FMV (s) U FMV (t): sy = - 7 t.
Then (7, >') is a reduction pair, and ' is monotonic if > is.

Proof. All required properties of = are already given, so we merely need to see
that >’ is transitive, well-founded, meta-stable, compatible with >~ and mono-
tonic if > is.

For transitivity, suppose s =’ ¢t =’ g, so for all substitution v on domain
FMV (s)UFMV (t)UFMV (q) there are terms u, v such that sy > u 5 ty > v 7 ¢7.
By inverse compatibility of (7, >), this gives that sy > u > v ¢7. By transitivity
of - we thus have sy > v 7 ¢y for all 4, so s =/ g.

For well-foundedness, suppose s; >=" s2 >’ We can safely assume that all
s; are terms, otherwise we substitute them and still have an infinite decreasing
chain. By definition of =’ we can find ¢1,%,,... such that s; > ¢; = so = to =
s3 > ... But then by inverse compatibility, ¢; > t2 > ..., contradicting well-
foundedness of .

Meta-stability is immediately obvious from the definition. Monotonicity (if
required) is inherited from monotonicity of >~ and . O

Note that, if we can prove that [> r in an inverse compatible reduction pair,
and [is a pattern of the right form, then also I =’ r (by reflexivity of =~ and
meta-stability). Thus, we can use an inverse compatible reduction pair just as we
would use a normal reduction pair.

2.5. Overview

37

2.5 Overview

In this chapter, we have defined the formalism of Algebraic Functional Systems
with Meta-variables. We have seen a number of transformations on this formal-
ism, which allow us for instance to swap between notations, or use 7-long forms.
This gives us a lot of freedom in the use of AFSMs. We have also discussed how
reduction pairs behave in the setting of AFSMs.

AFSMs are unusual in that they have both meta-variables and 3-reduction,
both function application and normal application. Typical applications of higher-
order rewriting in practice do not need all this. However, AFSMs were not
designed as a model of any particular behaviour. Rather, the AFSM formalism
should only be seen as a tool to study termination of higher-order rewriting. As
we will see in Chapter 3, systems in other formalisms can often be transformed
to AFSMs without losing non-termination. By deriving results for AFSMs, we can
obtain termination results for all these formalisms in one go.

Higher-order Formalisms

Or;, Wait, what about all those other ways?

The first problem anyone who wishes to study higher-order term rewriting runs
into, is the lack of a standard formalism. There is not one standard — there
are about a dozen: CSs, CRSs, ERSs, HRSs, PRSs, AFSs, ADTSs, IDTSs, CRSXs,
STRSs, STTRSs ... Some of these are strictly included in others, but most are
incomparable. It is often not obvious whether a result in one formalism can be
adapted to another.

Considering that one of the reasons to study higher-order term rewriting is
to obtain uniform proofs, which can be used in all application areas of rewrit-
ing rather than using a different modelling in every field, it is somewhat ironic
that not two papers on higher-order term rewriting seem to use exactly the same
formalism.! In the study of confluence, Nipkow’s Higher-order Rewriting Systems
(HRSs) [101] and Klop’s Combinatory Reduction Systems are dominant, but in ter-
mination research Jouannaud’s and Okada’s Algebraic Functional Systems (AFSs)
[63] are equally popular. But, as the latter is a quite permissive formalism, many
results are limited to some restriction (with some restrictions more fundamental
than others), and several other formalisms have been proposed. to deal with the
weaknesses of either HRSs, CRSs or AFSs.

Since the aim of this thesis is to provide general termination results, and to
place existing results in a larger framework, I have elected not to choose any of
these existing frameworks, but instead to define techniques for the new formal-
ism of Algebraic Functional Systems with Meta-variables defined in Chapter 2.2.
At first this seems counter to the wish of being general: the last thing the higher-
order term rewriting community is waiting for is yet another formalism. How-
ever, as stated before, the aim is not to promote this formalism. Rather, the goal
is to derive termination results for most of the common higher-order formalisms
at once. As we will see, systems in other styles of rewriting can be transformed
into an AFSM without losing non-termination. Thus, the termination methods
defined in this thesis will be immediately applicable to CSs, CRSs, AFSs, PRSs,
IDTSs and, probably, CRSXs as well.

I This is a slight exaggeration.

39

40

Chapter 3 — Higher-order Formalisms

HOW STANDARDS PROUFERATE:
(45 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

7! RIDICULOUS!

WE NEED To DEVELGP

SITUATION: ?ﬁ”mgm SITUATION:
THERE ARE USE. CASES. VERH! THERE ARE

4 COMPETING ‘O || 15 coreeTiNG
STANDPRDS. STANDPRDS.

Figure 3.1: Source: http://wuw.xkcd.com/927/

Chapter Setup. In Section 3.1, I will attempt to give a chronological overview
of the existing higher-order formalisms. The rest of the chapter is dedicated to
explaining the most relevant formalisms (that is, those higher-order formalisms
which have both simple types and bound variables) in some more detail: Blan-
qui’s IDTSs (3.2), Nipkow’s PRSs (3.3), Jouannaud’s and Okada’s AFSs (3.4) and
Rose’s CRSXs (3.5). We will see how to transform a system in those formalisms
to an AFSM without losing non-termination. In some cases there is also a trans-
formation in the other direction. Sections 3.6 and 3.7 treat two untyped systems
(Contraction Schemes and Combinatory Reduction Systems) which can never-
theless be transformed into typed systems without affecting termination. It is
very likely that most, or even all, other formalisms discussed in Section 3.1 can
also be transformed into AFSMs — to some extent. For example, HRSs can not in
general be expressed as AFSMs, but the common subclass of PRSs can be. Several
other formalisms are untyped, and may well be expressible as an AFSM, but since
termination is not likely to be a large issue in untyped systems (recall that the
untyped \-calculus is non-terminating!), this seems of relatively little interest.

An overview of the transformations in this chapter is given in Figure 3.2.

A solid arrow indicates that systems in the first formalism can be represented
in the second without affecting termination. A dashed arrow indicates that sys-
tems in the first can be represented in the second without losing non-termination,
but termination may be lost. If the arrow is marked with a star, termination of
systems in the first is equivalent to a special termination question in the second
(for example, termination using a beta-first reduction strategy). A dotted arrow
indicates that some systems in the first can be represented in the second without
losing non-termination. The question mark for CRSXs indicates that, although

http://www.xkcd.com/927/

3.1. A History of Higher-order Formalisms

41

CRS

IDTS ~_, «- PRS

- »:‘l

\J : P
/I\ ’

CS 21 AFSM \

....A
CRSX AFS

Figure 3.2: Transformations of higher-order formalisms

it is very probable that a good non-termination-preserving transformation exists,
the exact formal details for the transformation are not presented in this work.

It is worth noting that every formalism is connected to AFSMs with a solid or
dashed arrow. Thus, we can transform any system in one of these formalisms to
an AFSM, and if the result is terminating, then so is the original.

The sections in this Chapter are only marginally inter-related. It is possible to
read any of them without being familiar with the rest, although understanding
of the preliminaries in Chapter 2 is recommended, and the sections on CRSXs
(3.5), CSs (3.6) and CRSs (3.7) refer to the definition of IDTSs (Section 3.2).

3.1 A History of Higher-order Formalisms

Omitting logics such as the A-calculus, the first definition of a higher-order term
rewriting system is Aczel’s definition of Contraction Schemes in 1978 [4]. This
definition extends first-order term rewriting systems with binders and meta-
variables, thus allowing higher-order functions to be defined. In a contraction
scheme, abstractions are not considered terms by themselves, although they can
be used as subterms. While contraction schemes are not formally equipped with
a type system, the restrictions in term formation guarantee that a simple typing,
as described in Section 2.1.2, can always be derived.

Extending on the ideas of Contraction Schemes, Klop defines the framework
of Combinatory Reduction Systems, and extensively studies their properties in his
1980 thesis [70]. An alternative definition is given in 1993 [71], and has become
the standard form of CRSs. In combinatory reduction systems (as in most of the
later formalisms), abstractions are considered as terms, and as a consequence
CRSs are not implicitly typable.

Next comes Khasidashvili’s formalism of Expression Reduction Systems, which
was published in 1990 [68]. Unlike most other higher-order systems, the syntax
of expression reduction systems allows matching on variables, and rules use an
explicit syntax for substitution; f(Az.X,Y) = X[z < Y] is a typical rule (here,
the variable x may occur in whatever is substituted for X). Expression reduction

42

Chapter 3 — Higher-order Formalisms

systems are untyped, and there is no implicit typing. Various definitions and vari-
ations of ERSs exist, such as for instance Context-sensitive Conditional Expression
Reduction Systems [69], which adds context-sensitive rewriting to the formalism.

The first higher-order formalisms which use types were introduced simultane-
ously at LICS 1991: Nipkow’s Higher-order Rewriting Systems [101] and Jouan-
naud’s and Okada’s Algebraic Functional Systems [60] (although this name for
the formalism did not appear in the literature until later).

In Nipkow’s HRSs, terms are equivalence classes modulo af8n. The origi-
nal 1991 definition uses a pattern restriction on rules, which guarantees that
the rewrite relation is decidable. Following Wolfram [127] this restriction was
dropped in [98]; the original definition is still popular as the class of pattern
HRSs (PRSs). HRSs use simple types.

Jouannaud’s and Okada’s AFSs are originally defined with a polymorphic type
structure, although later variations use different typings. Later definitions also
have other modifications, which solve some problems present in the original def-
inition. AFSs are the first formalism to use both application and functional appli-
cation. =3 and, in some versions, <, or its reverse are separate rule schemes
added to every system. The definition of AFSs in [63], but restricted to sim-
ple types, has become the basis for the first higher-order category in the annual
termination competition [125] in 2010.

The next few formalisms defined in the nineties do not have an explicit typ-
ing. In 1993 Interaction Systems are introduced by Laneve [91], to study the
theory of optimal reductions as defined by Levy [93] in a setting that is more
general than A-calculus. Interaction Systems use a syntax similar to ERSs, but
can be seen as a subclass of Contraction Schemes. The same year also sees Taka-
hashi’s Conditional A-Calculus [116], another form of untyped rewriting which
uses the explicit substitution syntax of ERSs, as well as conditions for rewriting.
For example, the n-shortening rule (the reverse of —,) can be expressed as a
CLC which has a rule Az.M - x = M with condition = ¢ FV (M).

To deal with the vast number of higher-order formalisms, van Oostrom and van
Raamsdonk introduce the framework of Higher-Order Rewrite Systems in 1994,
best described in [102]. This framework aims to unify the existing formalisms by
separating the notion of a substitution calculus from the notion of terms. Exam-
ples of a substitution calculus are the typed A-calculus (for HRSs) or the untyped
A-calculus (for CRSs). The authors show the usefulness of this formalism by
defining a notion of orthogonality, and obtaining various confluence results.

These HORSs are not, however, the end for other formalisms; for while the
abstractness of HORSs offers an unprecedented generality, this comes at the price
of easy reasoning. It is harder to express examples, and results like the recursive
path ordering (as described in Chapter 5) cannot easily be extended — the sub-
stitution calculus plays too large a role in the question of termination. And it is
termination which became an object of active research at the end of the 90s and
in the following decade.

3.1. A History of Higher-order Formalisms

43

In 1996, Rose introduces Combinatory Reduction Systems with eXtensions [107],
a formalism aimed at business applications, which has been significantly altered
and improved over the years. Despite the name, these CRSXs are closest to
Aczel’s contraction schemes, and are implicitly typable. CRSXs allow matching
on variables like in ERSs, and rules may introduce free variables in the right-
hand side, a feature which is used for instance to simulate memory allocation.
The most alien notion to other formalisms is the use of lookup tables, a sort of
mapping where variables and strings can be assigned a (term) value. In recent
definitions, CRSXs are equipped with a (polymorphic) type discipline.

Abstract Data Type Systems, defined by Jouannaud and Okada in 1997 [61],
are designed to facilitate building formal specification languages, which integrate
computations and proofs within a single framework. These ADTSs, also called In-
ductive Data Type Systems, define types by enumerating their constructors, for in-
stance Bool := True : Bool | False : Bool. Certain restrictions on what
can be defined make it easier to prove termination. However, if we look past the
syntax, the underlying formalism is just the AFS framework.

In [13], Blanqui extends this formalism with CRS-like meta-variables. This
formalism, still called Inductive Data Type Systems even though the necessity to
declare types in an inductive way is dropped, is declared in a monomorphic way,
and can be seen as the extension of CRSs with simple types.

As far as truly higher-order systems (including A-abstraction) are concerned, this
is where the proliferation ends. Termination results in the last decade have been
designed for (variations of) the existing formalisms, in particular HRSs and AFSs,
which use an explicit form of typing. This is for good reason: systems expressed
in an untyped formalism tend not to be terminating. For example, the common
example of a higher-order function, map, could be expressed by the CRS:

map(Az.F(x),nil) = nil
map(Az.F(z), cons(h,t)) = cons(F(h),map(Az.F(x),t))

As a CRS, this system is non-terminating: the term map(w, cons(w,nil)) admits
a self-loop, where w = Az.map(zx, cons(z,nil)). However, as an IDTS (which is a
CRS with typing), this example does terminate; the offending term is not typable.

Applicative Rewriting. Another style of rewriting which is sometimes referred
to as higher-order rewriting is applicative rewriting. There are several formalisms
for applicative systems. First and foremost, one might consider normal (first-
order) term rewriting systems where all function symbols have arity 0 except a
symbol “app” which has arity 2. Already in 1996 [67] it was known that when
such a system is the curried form of a normal TRS, termination is equivalent to
its uncurried form. In [56] an uncurrying termination for an arbitrary applicative
TRS is given which preserves and reflects termination.

In 2001 [86] Kusakari extends these systems with simple types, which gives
Simply-typed Term Rewriting Systems (STRSs). Later extensions also include a
product type o1 X ... X 0, and a tuple symbol.

44

Chapter 3 — Higher-order Formalisms

In a similar but unrelated line of work, Yamada defines Simply Typed Term
Rewriting Systems (STTRSs) [129], also in 2001. STTRSs are applicative systems,
but have a typing mechanism based around product types.

For termination, applicative systems in the various styles are convenient, since
B-reduction significantly complicates termination proofs. Consequently, these
systems are closer to first-order TRSs than the higher-order systems discussed in
this section. In fact, using transformations like variable instantiation (as done
in [6, 7]) applicative systems can be transformed into (many-sorted) TRSs.

As mentioned in the introduction, a sceptic might question why we should bother
with A-abstraction, and thus the whole higher-order field: would applicative
TRSs not suffice? The answer depends on which question you are interested
in. When we only seek to study termination of fixed terms, rather than termi-
nation of all terms, yes, applicative TRSs usually do suffice. Most higher-order
term rewriting systems can be converted into an applicative system. For example,
consider a higher-order rewriting system (an AFS) with the following rules:

app(abs(F),T) = F-T
start(T) = app(abs(Az.app(z,T)),0)

The corresponding applicative system simulates the abstraction in the second
rule by adding a new symbol tmp.

app-(abs - F)-T = F-T
start-T = app-(abs- (tmp-T))-0
tmp-T -7 = app-T'-T

Since the term start-0 is terminating in the applicative system, the term start(0)
is terminating in the original. In fact, this simply-typed applicative TRS is termi-
nating altogether. Thus, any term in the original system which does not contain
A-abstractions is terminating as well. If we are interested in termination of a term
with binders, for instance app(abs(Az.app(x, z)), abs(Az.app(z, z))), we can still
use applicative systems: we study the termination question of this term by adding
arule d-x = app(«x,x) and consider termination of the term app-(abs-d)-(abs-d).

Thus, using applicative systems we can more easily study termination of spe-
cific terms, or termination of all terms without binders. This is sufficient for some
purposes, but not for all. If we want to prove termination for all terms, not just
those without binders, we would have to add infinitely many new rules, and then
we are no better off than in the full higher-order system we started with.

Formal Languages. A notable omission from the list of higher-order term rewrit-
ing formalisms are the formal languages underlying functional programming lan-
guages such as Haskell and ML, or the underlying language of theorem provers
such as Coq (the calculus of inductive constructions) and Isabelle (higher order
logic). These formal languages typically use more sophisticated typing mecha-
nisms, and as such probably cannot be transformed directly into an AFSM.

3.2. Inductive Data Type Systems

45

It is likely that these languages, which form an important application area
of higher-order term rewriting, can be partly expressed as AFSMs. However, I
have not done this study; the transformation to (or, alternatively, extension of
termination methods for) AFSM from each of these formal languages seems like
a good topic for dedicated research focused on those particular formal systems.

Systems of Interest. As discussed in the introduction, the focus in this thesis is
on full termination, so termination of all terms in the rewriting formalism. There-
fore, results on applicative systems are in general not reusable. Since, moreover,
untyped systems are in general not terminating, the main systems of interest are
HRSs, AFSs, the last version of IDTSs and CRSXs, as well as those systems where
an implicit typing can be inferred. Unlike HORSs, AFSMs are syntax-wise very
close to the formalisms we are interested in, and the results in this thesis should
show that it is not too difficult to obtain strong termination techniques for them.

3.2 Inductive Data Type Systems

The AFSM formalism used in this work is
an extension (or, depending on your point
of view, a subset) of the IDTS formalism
proposed by Blanqui in [13].

The name “Inductive Data Type Sys-
tems” is somewhat misleading: it refers not so much to the formalism as to the
type restrictions posed in the paper where they were introduced (these restric-
tions were posed solely for the definition of a general schema). However, we will
stick to this name as there is no alternative name available.

IDTS <=2 AFSM

3.2.1 Definition

Inductive Data Type Systemsuse simple types, and terms are generated as in Def-
inition 2.2, but without clause (app). Rewrite rules, too, and the rewrite relation,
are defined as in AFSMs. Thus, an IDTS can be seen as an AFSM with a restric-
tion on (meta-)term formation: only application-free meta-terms are permitted
(and all rules are application-free). Here, a meta-term is application-free if it
does not contain the application operator. In this way, AFSMs could be seen as
the extension of IDTSs with an application operator and /3-reduction. The subset
view will be explained in Section 3.2.3.

Due to this similarity it might seem at first that an IDTS is just an AFSM where F
and R have certain restrictions. However, this is not exactly the case. Since all
terms, not just the rules, must be application-free, it is not in general possible to
create non-variable terms of an arbitrary type. This may have a crucial impact on
termination: the same system could be terminating when interpreted as an IDTS
and non-terminating when interpreted as an AFSM.

Chapter 3 — Higher-order Formalisms

Consider, for example, an IDTS with four function symbols,

nat

[nat —nat —nat] —nat
[nat x nat] —bool
[nat] — bool

5 0o

And a single rule:

f(a, g(Azy.F(z,y))) = h(F(a, g(A\zy.F(z,y))))

Note that an application-free term of type nat cannot contain the symbol £ any-
where and therefore cannot be reduced. Consequently, a reduction starting in an
IDTS-term over F has at most one step, so this IDTS is terminating.

However, if we consider this same system as an AFSM, then application is
allowed in term formation. In this case, there is an infinite reduction by instanti-
ating F'(z,y) with z - £(z,y) if z : bool — nat:

f(a, g(Azy.2 - £(,y)))
=r h(z-f(a,g(\ry.2 - £(x,y))))
=r h(z-h(z- f(a,g(\vy.2 - £(2,9)))))

Even in systems with only one base type, application might make a crucial differ-
ence to termination, if the function symbols have an arity of at most one:

0 : nat
f : [nat—nat—nat]—nat
g : [nat—nat—nat|—nat

f(A\rvy.Z(z,y)) = Z(g(A\ry.Z(z,y)),0)
gy Z(z,y)) = Z(0,f(\vy.Z(z,y)))

Since both function symbols have arity 1, an application-free term contains at
most one variable (bound or free), which is not the case when application is
allowed. Seen as an IDTS, this system is terminating. Intuitively, if s does not
contain any bound variables (except maybe in binders A\z), then any rewrite step
decreases the size of the term. If s does contain a bound variable z, then s may
have two forms which allow a non-decreasing step:

* s =Clf(Axy.s")] =r C[s'[x = g(Azy.s")]]
* s=Clg(M\yx.s")] =r C[s'[x := f(Ayz.s')]]

Here, y is ignored because it cannot occur in s’ when s’ already contains x. After
this step, the occurrence of x in s’ is still the only leaf in the term, but now s

3.3. Pattern Higher-order Rewrite Systems 47

does not have either of the forms above, nor reduces to it. Thus, any further step
decreases the size of the term, so reductions must terminate.

However, if we allow the application operator, then there is a counterexample
for termination: instantiate Z(x,y) by z - = - y. Then:

fQay.z z-y)
=rz-gAzy.z-x-y)-0

=gz (2:0-fAzy.z-z-y))-0
=R .-

3.2.2 From IDTS to AFSM

The examples above demonstrate that IDTSs and AFSMs are not quite the same.
However, termination of an AFSM does imply its termination on the set of applica-
tion-free terms. Thus, termination results on AFSMs transfer to IDTSs:

Theorem 3.1. An IDTS (F,R) is terminating if and only if the corresponding AFSM
(F,R) is terminating on application-free terms.

In this work, we will not really consider techniques which take the added infor-
mation that terms are application-free into account. The main place where it
might matter is in the dependency graph of Chapter 7.4: if we are only consid-
ering termination of application-free terms, then we may be able to omit some
edges from the dependency graph.

3.2.3 From AFSM to IDTS

For the other direction, we change viewpoints. We could see an AFSM as a
special kind of IDTS by considering IDTSs which contain, for all types o, 7, a
symbol @777 : [¢ — 7 X 0] — 7 and rules Q"7 (\x.F(x),Z) = F(Z). Thus,
application and §-reduction are simulated.

Any AFSM can be seen as an IDTS of this form and thus, termination methods
on IDTSs immediately extend. True, this IDTS is infinite, but the infinity comes
from a countable set of very similar rules. When using techniques like the iter-
ative path ordering discussed in Chapter 5, the constraints from such rules can
easily be eliminated.

3.3 Pattern Higher-order Rewrite Systems

Another important style of higher-order
rewriting, used in particular in confluence
research, are Nipkow’s HRSs [101], and
the subclass of PRSs. This formalism uses
simply-typed terms, where term equality is defined modulo 8 and 7.

&

PRS i1 AFSM

48

Chapter 3 — Higher-order Formalisms

3.3.1 Definition

An HRS directly extends A-terms with typed function symbols and rules. For-
mally, assume given a set F of simply-typed function symbols and a set V of
simply-typed variables which contains countably many variables of each type.
Pre-terms over F,V are those expressions s for which we can derive s : ¢ using

the clauses:
a:o if a:c€VUF

s-t:T if s:o—7andt:o
Ae.s:o—T1 if z:o€eVands:T

Note that this only differs from the definition of simply-typed A-terms by in-
cluding typed function symbols. As in the A-calculus, we consider application as
left-associative, and omit unnecessary parentheses. A termis a pre-term in 7-long
B-normal form. Every pre-term s corresponds to a unique term sig.z

Using the normal definition of substitution, a type-respecting mapping [z :=
S1,...,&y 1= Sy|, the result of applying a substitution ~ on a term ¢ is the pre-
term t with all occurrences of some z; replaced by s;. A context is a term with a
single occurrence of a typed symbol O,;; if o is a base type then the pre-term C/[s]
obtained by replacing [J, by some term of the same type is also a term.

A rewrite rule is a pair [= r of terms which have the same base type, such
that F'V(r) C FV(l) and [has the form f-l; - - -[,,. The rewrite relation on terms
is given by:

Clivli] == Clry15] (1= r € R, v asubstitution, C[] a context)

Unfortunately, this rewrite relation is in general not decidable. Hence attention
is usually restricted to pattern HRSs, where the left-hand sides of rules are “pat-
terns”. A term [is a pattern in an HRS if for every subterm x - ¢; - - - t,, with z free
in [and n > 0, the ¢, are the n-long forms of distinct bound variables. Patterns
are defined by Miller [99], who proves that unification (and hence matching)
modulo S is decidable for patterns. This restriction is very similar to the patterns
used in AFSMs (and in CRSs and IDTSs). We will refer to Pattern HRSs as PRSs.

Example 3.2. The typed \-calculus can be encoded as an infinite PRS with
symbols @7 : (0 — 7) — o — 7 for all types o, 7, and corresponding rules
@777 . (Ax.y - x) - z = y - z. Note that Az.y - = in the left-hand side also matches
on, for instance, \z.g(, x), since this can be written as A\z.((\z.g(z, 2)) - 2) [}

Example 3.3. We can represent the system map from Example 2.3 by a PRS with
symbols nil : list, cons : nat — list — list, map : (nat — nat) — list —
list, 0:nat, s:nat—nat, and rules:

map - (Az.F - x) -nil = mnil
map - (Az.F-z)-(cons-y-z) = cons-(F-y)- (map- (\z.F-x)-2)

2Alternatively, terms might be defined as equivalence classes of pre-terms modulo 3/n-equality.
These definitions are equivalent (the “terms” in the definition used here being the standard represen-
tative in the alternative definition).

3.3. Pattern Higher-order Rewrite Systems

49

Note that the F' in the map rules is a variable and that \x.F - x can be instantiated
by any term Az.s : nat —nat. An example reduction:

map - (Az.z) - (cons - (s-0) -nil)

=r (cons- ((Az.z)-(s-0))- (map- (\z.z) nil))]}
= cons - (s-0) - (map - (Az.z) - nil)

=xr cons-(s-0)- (ni

= cons - (s-0)-nil

3.3.2 From PRS to AFSM

The definition of terms as a special kind of pre-terms is straightforward enough;
in practice, we merely have the convenient assumption that all terms we can
reduce are -normal and 7-long, and should remember to S-normalise a term
after reducing it.

Transformation 3.4 (Transforming a PRS into an AFSM) For any simple type o :=
01— ...— 0o, — 1 with . € B, let ¢’ be the type declaration [o] X ... X 0] —>¢.
Given a PRS (F,R), let F** = {f' : ¢’ | f : 0 € F}, and choose for all variables
x : o which occur freely in some rule, a uniquely corresponding AFSM-meta-
variable Z* : ¢’. Now, given a set S of variables, define a function ¢g which

maps PRS-terms to AFSM-(meta-) terms as follows:

ws(Az.s) = Az.ps(s)

@s(f 51 sn) = flles(s1),---,0s(sn)) fETF

Ps(x - 517 5n) = x-ps(s1) -ps(sn)) xEV\S
os(@ -yt -yt = Z%(y1,-. -, Yn) x€S, Y, yn €EV\S
ws(x-s1+"8n) = Z"(¢s(s1),...,¥s(sn)) x €S, otherwise

We shortly denote ¢(s) := py(s).

Let R™ = {¢rva)(l) = ¢rva)(r) | I = 7 € R}; this is a well-defined set of
AFSM-rules because a PRS-pattern is always mapped to an AFSM-pattern, as a
simple induction on the definition of ¢ g shows.

Thus, the PRS-rule
map - (Ax.F - z) - (cons-y-z) = cons - (F-y)- (map- (A\z.F-x) - 2)
is mapped to an AFSM-rule
map’ (A\z.F(z), cons’(Y, Z)) = cons’(F(Y),map’ (A\z.F(z), Z))

The role of reasoning modulo 3 is taken over by the use of meta-variables. At
least, to some extent; there are still AFSM-terms over F** which only correspond
with pre-terms in the original PRS (for instance a term (Az.z) - 0). Consequently,

50

Chapter 3 — Higher-order Formalisms

Transformation 3.4 does not necessarily preserve termination. Consider for ex-
ample the following third-order PRS:

h-0 = g-(Azyx-(h-y)) (z:nat—nat)
g (A\ey.Z - (Az(x-2)-y) = Z-(Az2.0)-0

This PRS is terminating: h - 0 reduces to g - (Azy.z - (h - y)), which reduces to
(Azy.z - (b -y)) - (A2.0) - 0L}= 0. This PRS is transformed into the following
AFSM:
W'(0) = g'(Azy.x-b'(y))
g (\ry.Z(z,y)) = Z(A2.0,0),

We have an infinite loop: b'(0’) = g'(Azy.x -h'(y)) = (Az.0') -1’ (0') = ...

This is the case because the application symbol - in a PRS has a slightly dif-
ferent nature than the same symbol in an AFSM: every appearance of a 3-redex
is instantly reduced. Even in a second-order system the difference may be signif-
icant. Consider for example the following AFSM, obtained as a translation from
a PRS3:

) = £ (X, X)
fo (a, X) = f3 (X)
gi(Az.f3(F(x))) = F(hide(Az.f3(F(x))))
unhide(hide(A\z.F(x))) = go(Az.F(x))
g2(Mrf3(F(2)) = e(Aef1(F(z)))

This (admittedly highly artificial) second-order system has the property that any
term that is S-normal can only be reduced to other S-normal terms. Yet non-
termination is caused by the possibility of non-g-normal terms. Let x[y] :=
(Az.a) - unhide(y). Then:

=r g1(A\y-f3(x[y]))

=xr x[hide(Ay.£5(x[y]))]

= (Az.a) - unhide(hide(Ay.£3(x[y])))
=z (\v.a) g(\y.f3(xy)

=r (Az.a)-gi1(Ay-f1(x[y])

The crux of the example is that, because in an AFSM we do not work with -
normal terms, there is a term that reduces to a but also has a subterm unhide(y).
In the original PRS, no counterpart of this reduction exists.

Thus we see: Transformation 3.4 does not preserve termination. However, non-
termination is preserved, and termination is preserved if we use a beta-first re-
duction strategy.

3The PRS in question is omitted, because it is utterly non-interesting: it looks exactly the same,
except that it is curried. The rules are already in 7-long form.

3.3. Pattern Higher-order Rewrite Systems

51

Theorem 3.5. The PRS (F,R) is terminating if and only if the AFSM (F**, R™) is
terminating using a reduction strategy where [3-reduction is preferred to other steps.

Proof. Letl,r, s be PRS-terms, S a set of variables, and + a substitution on domain
S. Let d, be [Z% := p(y(x)) | z € S]. We can make the following observations:

1. Ifl=2-y1 1" -- -y, 1" with 2 € S and all y; distinct variables not in S, then
e(Iv13) = ws(1)d,.
Proof: Using a-conversion, we can write y(z) = Ay1...yn.t, s0 Iy {}=
tlyr =y M. yn = yu 1] 5= t T}= t. Therefore o(iy I3) = o(t).
On the other hand 0,(Z%) = o(y(x)) = Ay1...yn-0(t), so ps(l)d, =
Z5 (Y1, yn)0y = @Oy = eW1)dy, - yn = 0(Yn)dy] = @)y =
Y1, -+ Yn = Yn] = ©(t) as required.

2. If for all subterms x - sy - - - s,, of [with z € S all s; are (the n-long forms of)
distinct variables not in S, then p(I71}3) = ¢s(1)d,-

Proof: This follows by a straightforward induction on the size of I, the base
case being (1) and the induction cases (I = \x.ly, [= f-ly--- I, with f € F
orl=uwx-l---1l, with x not occurring in S) all simple.

3. p(s)lz = o(v(x)) |z € S] =5 w(s713)-

Proof: By induction on the pre-term sy, ordered with =3 U > (which is
terminating because =3 is). The cases where s = Az.sg, s = f-s1---sp
ors=ux-s1-s, withz € V\ S are all immediate with the > part of the
induction hypothesis. What remains is when s =z - s ---s, withz € S.
Let y(z) = A\y1...yn.t. Write 6 := [z := @(v(z)) | = € S]. Then ¢(s)d =
(z) - p(51)0 - p(sn)d =7 6(x) - p(s17T3) -~ @(sny I}) Dy the > part of
the induction hypothesis. Since d(x) = Ay; ... yn.(t), this term S-reduces
to o(t)[y1 = p(s17Lp)s -+ Yn = w(sny I3)]. Using the =5 part of the
induction hypothesis, this term /S-reduces to ¢(t[y; := s17¥ $g, ey Yn =
snYTBITR) = @ty := 517,y yn = sa71 1) = (s713)-

4. ps(r)oy =5 e(rv 1)
Proof: By induction on the form of r. The cases where r is one of Ax.rq
or f-ry---ry Orx-r1---7, With x ¢ S are immediate with the induc-
tion hypothesis. So suppose r = z - ry---r, with x € S. If the r; are
all (the n-long forms of) different variables not in .S then (1) gives the re-
quired (in-)equality. Otherwise let v(z) = Ayi...yn.t. Then ¢g(r)d, =
Z%(ps(r1), .. 0s(rn))dy = @()[y1 1= ps(r1)dy, ..., yn = ¢s(rn)d,], and
by the induction hypothesis on the r; this term S-reduces to ¢(t)[y; :=
e(riv I5)s - yn = @(ray T3)]. By (3) this term =% o(t[y1 = r1y 13

yeeesYn = Ty ig] ig) - (P(t[yl =T Yn = T’n’}/] ig) = 90(7,/7 ig) as
required.

52

Chapter 3 — Higher-order Formalisms

5. p(Cls]) = ¢(C)[e(s)] if s has base type and C is a context.

Proof: By a completely straightforward induction on the form of C' (note
that no meta-variables are introduced because we consider).

6. If s =5 t, then p(s) =% - =5 t.

Proof: 1f s = C[ly 3] and t = C[ry{j], then ¢(s) = ¢(C)[p(Iv13)] by (5,
= @(O)prv)(1)dy] by (2), =rm @(C)lprv) (r)d4] =5 ¢(C)lp(rd13)] by
@, = ¢(C[ré1}3)) by (5).

Fact (6) provides the only if part of the Theorem: if there is an infinite reduction
in the PRS (F,R), we can also find an infinite reduction in (F** R*).

For the if part, consider an “inverse” ¢! of ¢, defined only on AFSM-terms
in n-long $-normal form:

ot (\z.8)
o Nz 51-5n) 2o (1)
7 H(f' (51, 5n)) froHs1) 97 (sn)

It is evident that ¢ ~!(¢(s)) = s for all PRS-terms s, and also that p(¢~1(t)) =t
for AFSM-terms ¢ in 7-long /-normal form. We also have:

Az.p71(s)
1

7. o HC[s]) = ¢ HCO)[p~1(s)] if C is an AFSM-context and s a base-type
AFSM-term, both in 7-long S-normal form.

Proof: o ' (Cl[s]) = ¢ (e(e 1 (O))[p(p~'(s))]), which by (5) equals
e el (O (3)]) = e H O ()

Now suppose there is an infinite beta-first reduction over (F**, R*), say s; =%
$; 4p=gre s;41 for all i € N. Recalling Lemma 2.15(7) we can assume that
these s; all have n-long form. Since the reduction s; |g=g= s;+1 cannot be a
p-step, we may write s; |g= Clopy) (l)x] and siy1 = Clopy)(r)x] for some
PRS-rule [= r and substitution y on domain {Z* | = € FV(l)}. Choosing
v = [z = o Y (x(Z2%)) | € FV()] we have x = §,, so by (7) ¢ (s;) =
e (O™ Hprv) (1)d,)], which by (2) equals =" (C)[iv]}3]. This term reduces
to o H(C)[ry 1], which is in S-normal form, and therefore by (4) is equal to
e O Hervay(r)oyds)] = ¢~ (Clervay (Nxlis) = ¢ (sit1dp)-

We obtain an infinite PRS-reduction p=*(s1l5) =r ¢ '(s2lg) =r O

Thus, a PRS is terminating if the corresponding AFSM is terminating. Theo-
rem 3.5 gives us more: we don’t have to prove full termination, but merely
termination under a particular reduction strategy. In this work, however, this
property will not be exploited, as the focus is on full termination.

3.3. Pattern Higher-order Rewrite Systems

53

3.3.3 From AFSM To PRS

Alternatively, to use the existing termination techniques for PRSs to derive termi-
nation of an AFSM, we will need an embedding of AFSMs into PRSs. The trick is
simply to consider application as an explicit function symbol, and S-reduction as
an infinite set of rules.

Transformation 3.6 (Transforming an AFSM into a PRS) Recall the definition
cur(fo; X ... X 03] — 7) = 01 = ... = 0, — 7 of “currying” type declarations
used in Transformation 2.6.

Given an AFSM (F,R), let F** = {f" : cur(o) | f: 0 € F}U {Q° : 0 >0 |
o € T | o functional}. Choose, for all meta-variables Z : o, a matching variable
xz with type cur(o). Now let ¢(s) be inductively defined as follows:

p(x) = at” (zeV)

o(f(s1-+sn) = fo@(s1)--@(sa)t (f€F)

@(Z(Sl’ casn)) = a2z (1) 9(sa) 1 (2 €M)

p(s-1) = @7 -p(s) - p(t)1" (s:0)
p(Ax.s) = Az.o(s)

Let R:= {p(l)=p(r)|l=reR}
u{(Q? -z -y)1t"= (z-y)1" all functional types o}
and R¥ := {l = r € R| AZ.l = \Z.r € R | l,r having base type}.

It is easy to see that ¢ maps every meta-term in the AFSM (F, R) to a term in the
PRS (F** R*?). Some further study reveals that every AFSM-rule is mapped to
a PRS-rule: (1) is a PRS-pattern if [is an AFSM-pattern. Moreover, reductions,
and therefore non-termination, are preserved:

Theorem 3.7. The AFSM (F,R) is terminating if the PRS (F**, R*?) is

Proof. We will see that s = ¢ implies that ¢(s) =gw» ©(t). We observe:

(**) p(s7) =gy ©(s)7? for all s, if dom(v) contains all meta-variables in s.
This holds by a straightforward induction, first on the number of meta-variables
occurring in s, second on its size. The cases where s is an abstraction, func-
tional term or application, are immediate with the second induction hypothe-
sis. The case for s a variable is also clear, whether s € dom(~) (both sides are
n-equal to v(v(s))), or s ¢ dom(v) (both sides are s 17). The only remain-
ing case, s = Z(s1,...,8,) With v(Z) = Azy...x,.t, uses the first induction
hypothesis: ¢(s7) = @(t[Z := #]) =g/, (H1) 9(t)[Z := ©(57)] =p/y (H2)
PO = 0(5)77] =5 (v (22)) - (P(s1)7%) -~ (p(8n)7?) = (s)7%.

Using (**), we can see that if s =% ¢ in the original AFSM, then ¢(s) =r ¢(t)
in the resulting PRS; by induction on the size of s. The induction cases (where s
is a functional term, application or abstraction, and the reduction happens in an

54

Chapter 3 — Higher-order Formalisms

immediate subterm) are all straightforward (taking into account that every ¢ 1"
in the definition of ¢ can be read as AZ.q - (x117) - - - (,1"7)). Only the base case
of a topmost step remains.

First suppose s = Iy =g ry = t. Noting that ¢ maps to terms, which are
already in long 3/n-normal form, (**) provides that p(s) = @(I)y% I} =xw
@(r)y#15= »(t) as required.

Alternatively, if s = (Az.¢) -vwand t = q[x = ul, then gp() =@° (/\:1: ©(q)) -
p(u) =grw (Az. so() so() and (Az.¢(q)) - p(u) Tj = p(a)[x == ¢(u)] 5, which
by (**) equals o(t i O

Theorem 3.7 is not an equivalence. Consider for example the terminating AFSM
with f : [o—o]— o0 and g: o —o, and a single rule

f(g) = £(\y.(g-v))
The translation to a PRS,

- (y(g-y) = £ (W.(@°7 - (Az.(g-2) - y))

is not terminating, as demonstrated by the looping reduction:

(Ay (8-v))
= £ (W@ (\z2.(g-2),9))
= £ y.((Az2(g-2) v)13)
= ' (\y.(g-y)

In addition, Theorem 3.7 creates an infinite PRS, while the original AFSM may be
finite. However, this is not likely to be much of a problem: these infinitely many
rules all have the same form, and definitions of e.g. the higher-order recursive
path ordering and weakly monotonic algebras can typically orient these rules
easily (we shall study variations of these techniques for the class of AFSMs in the
following chapters).

3.4 Algebraic Functional Systems

An Algebraic Functional System, as defined
in [63] (based on a definition in [60]),
extends the simply-typed \-calculus with
function symbols and rewrite rules. Con-
sequently, /3 is a separate reduction step. As suggested by the name, AFSs and
AFSMs are very similar, but AFSs use normal variables instead of meta-variables
in the rules (which gives more limited matching functionality). There are several
variations of AFSs in the literature: using different type systems, with or without
an n-reduction rule, sometimes adding pairing rules... Here, we will stick with
the definitions of [63], limited to simple types. This variation of the formalism
also appears in [118, Chapter 11], and is used in the higher-order category of
the annual termination competition [125].

AFS LLREES AFSM

3.4. Algebraic Functional Systems

3.4.1 Definition

Terms in Algebraic Functional Systems are exactly AFSM-terms, defined using
clauses (var), (fun), (abs) and (app) in Definition 2.2. There are no meta-terms.
Substitutions and contexts are defined as before. A rule is a pair of terms [= r
such that [and r have the same type and all variables in r also occur in [. The
rewrite relation = is generated by:

Clly] =r Clr] ifil=r e R, C acontext, v
a substitution, dom(vy) = FV (1)
Cl(Az.s)-t] =r C[s[z:=t]]

An AFS is a pair (F, R) of a signature and a set of AFS-rules over this signature.

3.4.2 From AFS to AFSM

Given an AFS with rules R, we might replace the free variables in the rules by
meta-variables, which gives an AFSM with the same reduction relation (and thus
equivalent termination) as the original AFS - if the left-hand side of the resulting
rule scheme is a pattern of the form f(l1,...,ln) - ly1 -+ - L. In an AFS, there is
no pattern restriction. It is perfectly allowed to match on an application (using
rules like z - y = y or f((Az.y) - 0) = y), or on an abstraction (using a rule
Az.l = r). Nevertheless, the following result is obviously true.

Theorem 3.8. An AFS where all the rules have the form f(l1,... ly) Iyt ln,
and left-hand sides have no subterms s - t with s an abstraction or free variable, is
terminating if and only if the corresponding AFSM is.

In Section 3.4.4 we will see that an AFS can always be transformed to satisfy
these restrictions, without losing either termination or non-termination. This
closely follows the reasoning in [75]. Consequently, for every AFS we can find
an AFSM which is terminating if and only if the original AFS is.

3.4.3 From AFSM to AFS

For the other direction, we can use Transformation 2.18. An AFSM with simple
meta-applications is terminating if the corresponding AFSM with flattened meta-
applications is terminating, and such an AFSM corresponds exactly to an AFS.

Example 3.9. Recall the AFSM from Example 2.3:
map(Az.F(x),nil) = nil
map(Az.F(z),cons(X,Y)) = cons(F(X),map(Az.F(z),Y))
This AFSM has simple meta-applications, and thus is terminating if the following
AFS is terminating:
map(F,nil) = nil
map(F, cons(X,Y)) = cons(F - X,map(F,Y))

56

Chapter 3 — Higher-order Formalisms

For AFSMs with non-simple meta-variables, such as the one we saw in Sec-
tion 2.3.3, there is no obvious transformation to an AFS:

d(Az.sin(F(z))) = Az.(d(A\y.F(y)) -) x cos(F(z))

3.4.4 Simplifying AFSs

To obtain the inclusion in the diagram, we have yet to see that an AFS can always
be transformed such that for all rules [= r, the left-hand side I:

* is B-normal;
e has no subterms z - s with z free in s;
* is not an abstraction.

With these properties, [corresponds to a pattern (if free variables are replaced
by meta-variables with arity 0), and by elimination of alternatives, / must have
the form f(l1,...,lm) - lma1 - - ln, OF be a single variable. Since a rule x =5 r is
obviously non-terminating, we can safely assume such rules do not occur.

Example 3.10. In the rest of this section, we will go through a transformation
of an AFS with the following function symbols:

0 : nat
s : [nat]—nat
nil : 1list
cons [nat x list]—1list
map [(nat —nat) x list]—1list
op [(nat —nat) X (nat —nat)] —>nat —nat
pow [(nat —nat) X nat] —rnat —nat

And rules R,y consisting of:

map(F,nil) = nil
map(F, cons(z,y)) = cons(F -z,map(F,y))
pow(F,0) = Az
pow(F,s(z)) = op(F,pow(F,x))
op(F,G)- 2z = F-(G-x)
Ax.F-xz = [F (where F :nat—nat)

Removing Leading Free Variables. The first step is to get rid of subterms z - s in
the left-hand side of a rule. To do so, we will first instantiate headmost variables
with functional terms: for any rule [= C[z - s] = r all possible rules [[x

f(@) - 2] = rlx == f(¥) - Z] are added. Now when a rule with leading variables is
used, we can assume these variables are not instantiated with a functional term.

3.4. Algebraic Functional Systems

57

Second, we introduce a number of fresh symbols @7 and replace occurrences s -t
in any rule by @7 (s, t) if s : 0 and s is not a functional term, and o corresponds to
the type of a leading variable in any left-hand side. We add rules Q7 (z,y) = z-y
only for those @7 occurring in the changed rules. With this transformation, the
applicative map rule

map - F'- (cons -z -y) = cons - (F - z) - (map- F' - y)

either stays unchanged if there are no rules with a leading variable of type nat —
nat in the left-hand side, or, if there are, becomes:

map - F' - (cons - z - y) = cons - @™* 7™ ([z) - (map - F - y)

We will make this transformation formal, and more general, in Transforma-
tions 3.12-3.18. To start, we choose for every function symbol f an output arity,
denoted oa(f). Intuitively, this is a number k such that all applications of the
form f(s1,...,8m) " Sm+1 - S, With n < k are “protected”: no @° symbols will
be introduced at the head of such a term. There are various reasonable choices
for oa(f):

Liff:|oy X... Xxom] — 71 = ...7n — 1, an obvious choice is n (so all
terms headed by a functional term are protected — this is the choice that was
assumed in the idea sketch above);

II another reasonable choice, which avoids unnecessary introduction of new
rules, is to take for oa(f) the highest number k such that f(s1,...,sm) -
ty - - -t appears in any rule;

IIT alternatively, we might choose oa(f) = 0 for all f; in that case, Transfor-
mations 3.12 and 3.15 have no effect, but we may end up introducing more
symbols @ than necessary.

Example 3.11. Let us follow guideline II, so oa(f) is the highest number m such
that f(5) - t1---t,, occurs in a rule. In the system R, from Example 3.10 this
guideline gives output arity 0 for all symbols except op, to which we assign output
arity 1.

Let a term be limited functional if it has the form f(3) - ¢, ---¢, and n < oa(f).
Note that if oa(f) = 0, then a term f(5) is not limited functional: we could think
of a limited functional term as a term which expects additional arguments.

Following the idea sketch, we will first instantiate leading variables. Let
HV (s) be the set of free head variables of s, that is, the set of those x € FV (s)
where z occurs at the head of an application in s (s = C[z -] for some context C
and term t). For every rule [= Clx - t] = r we will add a number of rules where
a limited functional term f(%) - 2 is substituted for x.

58

Chapter 3 — Higher-order Formalisms

Transformation 3.12 (Filling in head variables) For every rule [= r in R, every
x: 0 € HV (1), every function symbol f : 7 € Fsuch that 7 = [ry x ... X 7] —
p1— ...pn — o for some n with 0 < n < oa(f), let 6 := [z := f(y1,...,yx) -
z1 -+ 2,] and add a new rule 1§ = r§ (with yy,...,yx, 21, ..., 2, fresh variables).
Repeat this for the newly added rule schemes.

If R is finite, this process terminates (because in every step the maximum
number of leading variables in a rule is lowered) and the result, Rf*, is also
finite. Otherwise define R/*! as the limit of the procedure.

Example 3.13. Following on Examples 3.10 and 3.11, the only rule with a lead-
ing variable in the left-hand side is the n-reduction rule Az.F - = = F. Conse-
quently, Transformation 3.12 completes after one step, with a single new rule;
R contains:

map(F,nil) = nil
map(F, cons(z,y)) = cons(F -z,map(F,y))
pow(F,0) = JAz.x
pou(F,s(z)) = op(F, pow(F,z))
op(F,G) -z = F-(G-x)
e F.-z = F
Az.op(F,G) -z = op(F,G)

It is not hard to see that R and R/ generate the same relation (since R C R/,
and all rules in R are instances of a rule in R). Moreover:

Lemma 3.14. If s =5 t with a topmost step, then there are | = r € R and
a substitution ~ such that s = lvy, t = ry and () is not limited functional for any
x € HV(I).

Proof. By definition of topmost step, there exist [, r, v such that s = Iy and t = r.
We use induction on the size of A := {x | z € HV (I) | 7(z) is limited functional}.
If A = () we are done, so assume there is some = : ¢ € A. Then v(z) has
the form f(¢) - w1 ---u, with f : 7 € F and n < oa(f). Since substitutions
respect types, we can write 7 = |13 X ... X Tg] — p1 = ... = p, — 0. Let
§ := [z := f(y1,---,Yk) - 21 2n). By the procedure of Transformation 3.12,
RIU contains arule I := 16 = ré =: r'.

Let ' be the substitution [a := y(a) | a € dom(y) \{z}]U[y1 :==q1, ..., Yk :=

Gk, 71 = Ul,...,%n = Up]. Then it is clear that I'y’ = s and 'y = t. Also
HV (") ¢ HV(l), and the new rule instantiates one less head variable with a
limited functional term. We complete with the induction hypothesis. O

Before we move on to the introduction of symbols @7, it turns out to be a good
idea to add a number of rules.

3.4. Algebraic Functional Systems

59

Transformation 3.15 (Respecting Output Arity) Let R"° be the set which con-
tains all rules in Rf!, and moreover for every rule [= r € Rf" with I limited

functional, all rules | - 1 = r - x1,...,0 - 21 - Tpy1 = r -1 Tpy1 Where
Z1,...,%ky1 are fresh variables of a suitable type, and [- z1 - - - 2, is limited func-
tional.

Thus, for all rules where the left-hand side is limited functional, we add varia-
tions of a smaller type. This is done because in a rule | = r with [= f(5) - £
limited functional, an application of the form f(3) - t - ¢ will be “protected” while
r - ¢ may not be. Note that if R/ is finite, and oa(f) is bounded (something
which we can easily enforce), then also R"** is finite. It is clear that R/% and
R"¢¢ define the same rewrite relation.

Example 3.16. Since none of the left-hand sides of R, are limited functional
with the chosen output arity, Transformation 3.15 has no effect. If we had chosen
option I, then pow(s, t) would be limited functional, so we would add two rules:

pow(F,0) -y = (Az.x)-y
pow(F,s(z)) -y = op(F,pow(F,)) y

R"¢* has a nice property that we will need later, in the proof of Theorem 3.19.

Lemma 3.17. If s- ¢ =Rres t - q, and s is limited functional while t is not, then we
can assume this reduction uses a topmost step: s-q = lvy, t-q = r~, and y(z) is not
limited functional for any x € HV (1).

Proof. Since R/ and R"** define the same rewrite relation, we know that
s+ q =gsu t-q. If this reduction uses a topmost step, then we are done by
Lemma 3.14, since R7# C R"es. If not, the reduction must still use a headmost
step, otherwise ¢ would also be limited functional. Write s = (Iv) - uy - - - uj, and
t = (rv) - u; by Lemma 3.14 we can assume that v(z) is not limited functional
for any € HV(l). Since also [is not a variable itself, it follows that [is not
headed by a variable, so | must be limited functional too. Thus, we can write
I=f(li,....0n) - vi-vm,and s = f(Livy, ..., ly) - (1)) -+ (UmY) - w1 - - - ug.
Let 21, ..., z,11 be fresh variables. Since s is limited functional, we conclude
that m+k < oa(f), sol -z - - -z is limited functional as well. Thus R"** contains
arulel -2y -z = 1721 Tpgr. Writing § = y U [21 := ug,..., 25 =
Uk, Tk41 := q], we have s - ¢ = 1§ =gres 7d = - ¢, a topmost reduction. O

Finally, we have all the preparations for the main transformation. As suggested
in the sketch, we should introduce new symbols @ only for those o where it is
necessary. Formally, let S be a set of functional types which contains all types
o where z : 0 € HV(l) for some variable z and [= r € R"°*. For every type

60

Chapter 3 — Higher-order Formalisms

o— 7 € S, introduce a new symbol Q"7 : [(¢ — T) X o] — 7. For all terms s
define exp(s) as follows:

exp(f(s1,..-,8n)) = flexp(s1),...,exp(sn))
exp(x) = 1z (z avariable)
exp(Az.s) = Az.exp(s)
@7 (exp(s),exp(t)) if s: o and o € S and
exp(s-t) = s is not limited functional

exp(s) - exp(t) otherwise

That is, subterms s - ¢ are replaced by @7 (s, t), provided the split does not occur
in a “protected” functional term, and s has a “dangerous” type.

Transformation 3.18 (Making application explicit) Let R"*?? = {exp(l) =
exp(r) [l=re R }U{Q%(z,y) =z -y|o €S}

We have reached our aim: Transformations 3.12-3.18 preserve finiteness, yet
R"ePP will not have leading (free) variables. We pose the main theorem of this
first step to simplify AFSs (Removing Leading Free Variables):

Theorem 3.19. The rewrite relation = gnoaprr generated by R™°*PP is terminating
if and only if = is.

Proof. For one direction, if s =gnosrr t then also s’ =7%... t/, where s',¢" are s,t
with occurrences of @7 (g, u) replaced by ¢ - u. Equality only occurs if s has fewer
@ symbols than ¢, so any infinite = g n.asr reduction leads to an infinite =g res
reduction. As we saw before, R"¢* defines the same rewrite relation as R/%*" and
R, s0 if = Rnoapr is Nnon-terminating, then so is =x.

For the other direction, suppose we can see that whenever s =% ¢ we also
have exp(s) =nous €xp(t). Then any =g reduction leads to a =>gnoer» reduc-
tion of at least equal length, so if =% is non-terminating, then so is = gnoapp.

It remains to be seen that s =g t implies exp(s) =%noup exp(t). We use
induction on the size of s. For any term ¢ : o, let typeof (¢) denote the type o.

If s is a functional term f(s1,...,s,) or an abstraction Az.sg, and the reduc-
tion takes place in one of the s;, we immediately conclude with the induction
hypothesis. Similarly if s = ¢ - u = ¢ - v with a reduction in the right-hand side
of an application.

If the reduction takes place in the left-hand side of an application, s = g-u =%
q -u = t, we can still use the induction hypothesis if either typeof (¢) ¢ S, or both
g and ¢’ are limited functional, or both ¢ and ¢’ are not limited functional. If
¢ is not limited functional and ¢’ is, then exp(s) = @Q“(exp(q), exp(u)) =Rgroarr
exp(q)-exp(u) = Lnoups €xp(q’)-exp(u) = exp(t) by the @-rules and the induction
hypothesis.

What remains are two cases: either s =% ¢ by a topmost step, or s = ¢ -
u =xr ¢ -u = t, where ¢ is limited functional and ¢’ is not. In the first case,

3.4. Algebraic Functional Systems

61

Lemma 3.14 provides a rule [= r € R/% C R"* and substitution v such
that s = Iy, t = ry and 7(z) is not limited functional for any x € HV (). In
the second case, Lemma 3.17 provides a rule [= r € R"®* and substitution ~y
which satisfies the same property. Using a separate induction on the definition
of exp we find: exp(ly) = exp(l)y**® and exp(r)y°*® =% .oupp exp(r7y), Where
7*P = [z := exp(y(x)) | # € dom()]. This provides exp(s) =r%.cup» exp(t) as
required. The only non-trivial part of this induction is if [or r is an application:

* | = s-t: by the assumption on +, s is limited functional if and only if s is
(as we can see by a case analysis on the form of s); since also typeof (s) € S
if and only if typeof(sy) € S, the induction hypothesis on exp(sy) and
exp(ty) provides that exp(ly) and exp(l)y°*P are the same.

* r = s-t: of course typeof(s) € S if and only if typeof (sv) € S, and clearly
if s is limited functional then so is sy. Therefore either:

exp(r)y*®

= (exp(s)7**®) - (exp(t)7**F)

=% noapp €Xp(87%*P) - exp(ty**P) (induction hypothesis)
= exp(r7)

or:
exp(r)y®®
= @7 (exp(s)y**®, exp(t)7**F)
=% noapy Q7 (exp(s7), exp(ty)) (induction hypothesis)
= exp(r7)
or:
exp(r)y*®
= @(exp(s)y**?, exp(t)7**F)
= rnoans (exp(s)7™®) - (exp(t)7*)
=% noapp €Xp(s7°*P) - exp(ty**P) (induction hypothesis)
= exp(ry)
If s top-reduces to ¢ with a jS-step, we use that exp(¢)[z := exp(u)] =noars
exp(g[z := u]) as we just derived. O

Example 3.20. Choosing S = {nat —nat}, R"°*?P consists of:

map(F,nil) = nil
map(F, cons(z,y)) = cons(Q(F,z),map(F,y))

pow(F,0) = JAz.x

pow(F,s(z)) = op(F,pow(F, x))

op(F,G) -z = Q(F,Q(G,x))

A.Q(F,z) = F
Az.op(F,G) -z = op(F,G)
Q(F,z) = F-x

62

Chapter 3 — Higher-order Formalisms

Removing Problematic Abstractions. Having guaranteed that the AFS we con-
sider has no more leading free variables in the left-hand sides of rules, there are
two more problems to deal with before we can transform AFSs into AFSMs: left-
hand sides which are abstractions, and non-/3-normal left-hand sides. Both issues
can be solved in one go by “escaping” the responsible abstraction.

The solution is very similar to the one for leading variables: we identify the
types of all abstractions which cause a problem, and replace abstractions Az.s of
such a type o by A, (Az.s), where A, is a new function symbol.

Formally, let @ be a set of types which contains all types o such that R either
contains a rule A\z.s = r, or a rule C[(\z.s) - t] with A\z.s : 0. For every o € Q
introduce a new symbol A? : [c] — . For all terms s, define expL(s) as follows:

expL(f(s1,...,5n)) = f(expL(s1),...,expL(sn))
expL(s - t) = expL(s) - expL(t)
expL(z) =z (z avariable)
B A% (Az.expL(s)) ifA\x.s:cando €@
expL(Az.5) { Az.expL(s) otherwise

Transformation 3.21 (Marking Abstractions) Let R* := {expL(l) = expL(r) |
l=reR™PPLU{A%(z) =z]|0 € Q}

It is evident that R* has no rule schemes of the form Az.l = r and its left-hand
sides are 3-normal. Moreover, the termination of this AFSM is equivalent to
termination of the original system.

Theorem 3.22. =xa is terminating if and only if =5 is.

Proof. Defining s’,t¢’ as s,t with occurrences of any A, erased, it is easily seen
that s =pa ¢ implies s’ =Z.oapp t', With equality only if the former was A-
erasing. Thus, if = is non-terminating, then so is = gnoarr, and by Theo-
rem 3.19 this implies non-termination of =x.

For the other direction, we will derive that s =>gneers ¢ implies expL(s) =7,
expL(t). Since non-termination of =5 implies non-termination of =z by The-
orem 3.19, this completes the proof.

To this end we make two observations:
1. expL(qy) = expL(q)y°*Pt, where v***L = [z := expL(y(z)) | z € dom(¥)];
2. expL(Cla]) = expL(C)expL(q)].

Both follow easily with induction (on the form of ¢ and C' respectively).
We can write s = C[g] =gnoarr C[u] =t and g =gnoarr u by a topmost step;
by (2) it suffices to show that expL(q) = s expL(u).

3.5. Combinatory Reduction Systems with Extensions

63

Consider first a g-step. If ¢ = (Az.v) - w =3 v[r := w] = u, then either
expL(q) = A(A\x.expL(v)) - expL(w) =>ra (Az.expL(v)) - expL(w), or expL(s) =
(Az.expL(v)) - expL(w). Either way, expL(q) =754 - =3 expL(v)[x := expL(w)] =
expL(v[z := w]) = expL(u) by (1).

If ¢ reduces to u by a rule step, let ¢ = Iy and ¢ = rvy. By (1), expL(q) =
expL(ly) = expL(l)y =ra expL(r)y = expL(u). O
Example 3.23. Continuing the transformation of Ry,p, we choose @ = {nat —

nat}. Since all abstractions in the rules from Example 3.20 have a type nat —
nat, Transformation 3.21 introduces the new symbol A around all abstractions:

map(F,nil) = nil
map(F, cons(z,y)) = cons(Q(F,z),map(F,y))
pow(F,0) = A(A\z.x)
pow(F,s(x)) = op(F,pou(F,x))
op(F,G) -z = Q(F,Q(G,x))
AAz.Q(F,z)) = F
A(Az.op(F,G)-z) = op(F,G)
Q(F,z) = F-zx

Thus we have seen that the rule “left-hand sides of rules | must be 3-normal
terms of the form f(ly,...,1,) - ln+1 - L, DOt containing any subterms headed
by a variables which is free in /” can indeed be assumed to hold in any AFS.

3.5 Combinatory Reduction Systems with Extensions

The last higher-order rewriting system
with types that we shall study (to a lesser
extent than the others) is that of Combi-
natory Reduction Systems with Extensions,
originally defined by Rose in [107]. CRSXs have seen major changes in recent
years, and are almost not recognisable from the original definition. As a pro-
gramming language (with features like syntactic sugar, pre-defined types, and
many restrictions to allow for optimisations) the formalism is currently in use for
specifying compilers at International Business Machines (IBM).

The most recent updates to the language and its underlying formalism, as
well as their theoretical properties, are still very much a work in progress (see
also the documentation at http://crsx.sf.net/). Therefore, I will not give a
detailed overview, but rather discuss some of the formalism’s peculiarities. In
addition, I will mention some ideas for a transformation from CRSXs to IDTSs,
but again, will not go into details (to formally describe the transformation would
require a solid treatment of the underlying formalism first!).

b
CRSX bl ¢ IDTS

http://crsx.sf.net/

64

Chapter 3 — Higher-order Formalisms

3.5.1 Definition

The basis of Combinatory Reduction Systems with Extensions is very similar to
that of IDTSs; that is, a combinatory reduction system is simply an AFSM without
application. In addition, the output types of function symbols and meta-variable
applications are always base types, so terms have a functional type if and only if
they are abstractions. There are three special features:

* CRSXs are natively second-order systems, in a strong meaning of the word:

— the type declaration of each meta-variable has order < 2;
— the type declaration of each function symbol has order < 3.

* CRSX-rules can match on variables, provided they have a certain type, and
the right-hand sides of rules may contain fresh variables.

* Some types carry lookup tables, a mapping of key/value pairs which can be
checked for presence or absence of keys.

To sketch the idea, let us look at the example of a CRSX which encodes the typed
A-calculus, and provides functions to find the type of a closed A-term.

Let BB be the set {term, type, string}, and let B,, the set of base types with
syntactic variables, consist of the base type term. We will use the following func-
tion symbols:

base string] — type
arrow type X type] —type
F_ app term X term| — term

gettype term| — type

[
[
|
lam : [type X (term— term)]— term
[
output [type] — type

In addition, there are infinitely many function symbols of type string (in the
CRSX-language, string is a pre-defined type).

The idea is that for example a A-term Az.(x-y) with « : a— b is represented by
the CRSX-term lam(arrow(base(“a”), base(“b”)), Az.app(z,y)), with variables in
the \-term being represented by variables in its CRSX-representation. The func-
tion gettype will be used to map a term to its type.

We assign typemap(type) = {term : type}, which means that terms with
type type have a lookup table which maps terms of type term to terms with type
type. The gettype function determines the type of a term, using the following
rules:

Y

output({G} gettype(X))

arrow(X, {G; z: X} gettype(Y (2)))
X

base(“unknown”)

output(arrow(X,Y)
{G} gettype(app(X,Y)
{G} gettype(lam(X, \z.Y (z))

{G|z: X} gettype(x

)
)
)

(2)
{G | =z} gettype(w)

4 e

3.5. Combinatory Reduction Systems with Extensions

65

This example demonstrates a number of interesting things, which are explained
below. First of all, the use of lookup tables. The lookup table is associated,
implicitly or explicitly, with every occurrence of a function symbol with output
type type. In fact, the first rule is short-hand notation for:

{G} output({H} arrow(X,Y)) =Y

Unused lookup tables in the left-hand side of rules are generally omitted, as are
empty lookup tables {} in the right-hand sides of rules. In fact, this has been
done in the second, third and fifth rules; for example the second rule should
actually read:

{G} gettype(app(X,Y)) = {} output({G'} gettype(X))

In the first rule, the lookup tables are ignored; the rule simply selects an ar-
gument. This rule computes the output type of a given type. The second rule
computes the type of an application app(s,). Here, the lookup table is passed
on unmodified to the recursive gettype call.

In the third rule, things get a little more interesting. Here, two things happen:
the introduction of a fresh variable z in the right-hand side of the rule, and the
addition of a key/value pair to a lookup table. The notation {G; z : X} indicates
that the lookup table G is updated with the key/value pair z : Z. The introduction
of z is allowed only because z has type term € B,, so a type where variables have
a special meaning. Syntactic variables, that is, variables with a type in B,, are
also the only variables which may occur free in the left-hand sides of a rule. This
would cause problems with confluence, if not for the following clause: syntactic
variables may only ever be substituted by other variables. That is, if Z(...,s,...)
occurs in any rule and s : ¢ € B,, then s is a variable. We see that this is indeed
satisfied in the given rules.

The variable z occurs as a new key in the lookup table {G; z : X} in the third
rule. The keys of a lookup table must be terms of a key-type (in this case term);
either syntactic variables, or function symbols of arity 0, provided there is no rule
which reduces this symbol. A very common type for lookup table keys is string.

The fourth rule assigns a type to a variable. Here we see how the lookup
tables are used for the first time: the construction {G | z : X} matches a lookup
table which must contain a key z (where z is the variable that occurs as the
argument of gettype), and assigns the value associated to z to the meta-variable
X. Essentially, this construction does a lookup for the value of z in G. The fifth
rule deals with the case that the key is not present: the construction {G | -z}
matches a lookup table which does not contain the key z.

66

Chapter 3 — Higher-order Formalisms

3.5.2 From CRSX to AFSM

To represent a CRSX as an IDTS or AFSM, and thus be able to use the termination
results of this thesis, we will have to deal both with syntactic variables, and with
lookup tables. The easiest way to do this is to abstract them away almost entirely:
for example, represent lookup tables as a list of values, and use non-determinism
to choose a value. This is, however, a very strong abstraction, which may well
lose termination. Instead, let us consider an embedding using a constraints. We
could also see this as a very specific reduction strategy (which a termination tool
might ignore to a lesser or greater extent).
A lookup table {k; : v1,...,k, : v,} is represented by a list:

table(ky, vy, table(ka, v, ..., table(k,, v,, emptytable)...))
We add some additional rules for looking up values:

lookup(key, emptytable) = absent
lookup(key, table(key,v,rest)) = present(v)
lookup(key, table(k, v, rest)) = Llookup(key, rest)

And we consider the following constraints on the rewrite relation:

* aterm of the form lookup(s, table(t, ¢, u)) may only be reduced at the top
if s and ¢ are both either a syntactic variable, or a function symbol which
cannot be reduced;

* the third lookup rule may only be applied if the second is not applicable
on a given term;

* if a term contains a subterm lookup(...), then it may not be reduced by
any other rule than the three rules above.

Now the existing rules can be altered to use lookup tables as terms instead of
special constructions. A rule

{G|z: X} gettype(z) = X
is for instance replaced by the following rules:

termwithtable(G,gettype(z)) = test(lookup(G),gettype(z))
test(present(X), gettype(z)) = X

Similarly, a rule
{G} gettype(lam(X, A\z.Y (2))) = arrow(X, {G; z: X} gettype(Y(2)))
is replaced by the rule:

termwithtable(G, gettype(lam(X, \z.Y (2))) =
termwithtable(emptytable,
arrow(X, termwithtable(table(z, X, G), gettype(Y (2))))

3.5. Combinatory Reduction Systems with Extensions

67

Of course this transformation creates the possibility for reductions which were
previously not possible, and it may well lose termination. However, since ev-
ery reduction in the old system can be simulated by a reduction in the altered
CRSX, we at least preserve non-termination, and due to the reduction strategy
we preserve the determinism of the original.

The other oddity in CRSXs, which AFSMs cannot deal with, is the use of
syntactic variables. Let us consider their peculiarities:

* only syntactic variables may appear freely in either side of a rewrite rule;

* only syntactic variables may occur as keys in lookup tables (now that we
have effectively removed lookup tables, this is not very relevant anymore);

* the rules are defined in such a way that a syntactic variable is never substi-
tuted by anything other than a variable.

The restriction on substitution in particular suggests that syntactic variables are
closer to function symbols than to normal variables. Typically, syntactic variables
are used to simulate computer addresses; the main function of them being vari-
ables is that in rewriting we already have the notion of a fresh variables, and not
so much the notion of a fresh symbol.

To get rid of syntactic variables, consider a new base type index, and count-
ably many symbols 1,2,3,... of type index. For every base type ¢ in B,, let
var, : [indexes] — ¢ be a function symbol. Intuitively, we can replace syntactic
variables z in terms by var(x), and match on the occurrence of the symbol var
rather than the variable itself. This avoids the problem of free variables on the
left-hand sides; the fresh variables in the right-hand sides we can deal with later!

For the rules, this requires the following transformation:

* in the reduction strategy for the lookup rules, a term var(s) with s : index
is considered a valid key;

* for all syntactic variables x which occur free in the left-hand side of a rule:

- let Z, be a uniquely corresponding meta-variable of type index;

— if the right-hand side of the rule has any subterms F(...,x,...), re-
place these by F(...,Z,,...) (the left-hand side is a pattern, so does
not have such subterms);

— wherever z still occurs in either side of the rules, replace it by var(Z,);
* for all remaining syntactic variables = which occur free or bound in either
side of a rule:
— let 2/ be a uniquely corresponding variable of type index;
- replace subterms F(...,x,...) in either side by F(...,2/,...);

- replace any remaining occurrences of = by var(z').

68

Chapter 3 — Higher-order Formalisms

Having done this, the rules do not match on variables anymore, and it seems
plausible (depending on the exact definition of the rewrite relation) that if s =%
t in the original system, then ¢(s) =% () in the new system, where ¢ is the
function which replaces all syntactic variables = by var(z’).

This leaves the issue of fresh variables. As mentioned, AFSMs (and most
other higher-order rewriting systems) do not really have a way to deal with this.
Note that syntactic variables cannot just be substituted, so they are essentially
harmless, far more so than bound variables. Therefore, let us consider a solution
with a reduction strategy, which treats them as “harmless” symbols.

For every rule with fresh variables in the right-hand side, add countably many
rules, each of which replaces the free variable by a different element of index (if
there are multiple fresh variables, replace them all by distinct indexes). Consider
the reduction strategy: You may only use a rule with indexes in the right-hand
side if the newly created indexes are not used anywhere in the term. With this
strategy, we effectively simulate the freshness constraint, but without introducing
variables. The price is having infinitely many rules. However, these rules are all
very similar, and an automatic tool could deal with them all at once by putting a
special marker in place of the “fresh variables”.

3.5.3 Overview

As described above, we can transform a CRSX into an IDTS without losing non-
termination. Of course, this transformation is not very formal, and misses a
number of important cases (for example, how to deal with lookup tables which
have more than one type of keys). To properly study a transformation, we would
first need to formally define the exact syntax and semantics of CRSXs. This is
work in progress, but at present not done.

CRSXs also use a limited form of polymorphism, which we have not discussed
here. This polymorphism is all but harmless, because type variables are treated
much like base types. We could consider a polymorphic CRSX as generating a
(possibly infinite) monomorphic CRSX (see also the discussion in Chapter 9.3).
Or we could consider a type-changing function which collapses all base types,
and also type variables, to the same base type.

3.6 Contraction Schemes

Although Aczel’s Contraction Schemes are
defined without types, the formalism uses
a restriction on term formation which
makes it possible to derive a typing. We
will see how contraction schemes can be seen as IDTSs (that is, AFSMs where
term formation does not use the application -) with a single base type. This re-
sult may have some bearing on other formalisms with an arity restriction on term
formation as well.

CS —— IDTS

3.6. Contraction Schemes

69

3.6.1 Definition

Terms in a Contraction Scheme are built from an infinite set of variables, and a
signature F of forms f : [k1, ..., k,] with all k; natural numbers, according to the
following clauses:

1. avariable is a term;

2.if f: [k1,...,kn] € F and s4,..., s, are terms, then also
FOZT11, - @1k STy s ATi 15+ s Ty -Sn)
is a term.

Meta-terms are built from variables, function symbols and an infinite set of meta-
variables, each with a fixed arity. This uses the previous clauses (substituting
“meta-term” for “term”), and in addition:

3. if Z is a meta-variable of arity n and sy, ..., s, are meta-terms, then also
Z(81,...,8y,) is a meta-term.

A rewrite rule is a pair | = r of meta-terms such that all meta-variables in r also
occur in . In addition, the left-hand side ! of a rule must satisfy the following
restrictions:

1. [is closed (that is, all variables occur in the scope of a \), although r does
not need to be;

2. lis linear, that is, every meta-variable occurs at most once in /;
3. lis a fully extended pattern;

4. [has a depth of 1 or 2 (where Z(Z) has depth 0 and f(A\Z1.51,..., A\Zy.Sn)
has depth max({depth(s;) | 1 <i <n})+ 1).

The rewrite relation generated by a set of rewrite rules R, is the smallest relation
=g such that always Iy =5 rv for | = r € R and ~ a substitution on domain
FMV(l).

Example 3.24. We could represent map from Example 2.3 as the following Con-
traction Scheme:

F = {nil:[], cons:[0,0], map:[1,0]}

R = { map(Az.F(x),nil) = nil, }
map(Az.F(x), cons(H,T)) = cons(F(H),map(\z.F(x),T))

70

Chapter 3 — Higher-order Formalisms

3.6.2 From CS to AFSM

Since there are, to my knowledge, no termination results on contraction schemes,
and the depth restriction is not present in other formalisms, I will only demon-
strate how contraction schemes can be seen as a form of inductive data type
systems.

An observation when comparing rules in a contraction scheme to IDTS-rules
is that the former allows free variables in the right-hand sides while the latter
does not. However, unlike CRSXs, contraction schemes have no way to match
on a variable. Nor does it matter which variable is used, since the rules are
required to be left-linear. Consequently, if we introduce a fresh function symbol
v with form [|, and replace free variables in the right-hand sides of rules by v,
termination is not affected.

Lemma 3.25. A CS is terminating if and only if the corresponding CS with all free
variables in the rules replaced by the fresh symbol v, is terminating.

Proof. Let R be the original set of CS-rules, and R’ be the variation where fresh
variables are replaced by v. Let px be the function which maps all free variables
in a (meta-)term, except those in X, to v. Then R’ consists of rules I = ¢y(r)
with [= r € R, and we have ¢y(l) = I. It is easy to see that:

() ox (s7) = x(s)[Z == ox (7(Z)) | Z € dom(7)].

For one direction, we note that s =g t implies ¢y(s) =/ @p(t), which is
trivial with induction on the size of s (the base case, a topmost step, uses (**)).

For the other direction, we note that if px(s) = ¢, then we can find some
t such that s = t and ¢ = ¢x(t). This holds by induction on the size of s.
The base case, a topmost step, uses (**) and the observation that if px (s) = Iy
for some linear pattern ! and a substitution on domain FMV (I), then s = I/
for some substitution such that v(Z) = ¢x(y(Z)) for all Z € dom(v). This
observation holds with a separate induction on the size of [, using linearity. [

Having made this modification, let o be a 0-ary type constructor and write o, for
the type o — ... — 0o — o with in total n arrows (so n + 1 occurrences of o). Let
7, be the type declaration [o X ... x o] — o with n + 1 occurrences of o. A form
f:lk1,...,ky) in F is translated to a function symbol f : [0y, X ... X g,] —> 0
in the set of IDTS-symbols F5I. All variables are assigned type o. Now every CS-
style (meta-)term can be seen as an IDTS-style (meta-)term as well. Moreover,
contraction scheme rules map to IDTS-rules; let R5! be the “translation” of R. It
is not hard see that every term in the IDTS over F°! which is not an abstraction
uniquely corresponds to some CS-term. We can derive the following facts:

Lemma 3.26. Let s,t be CS-terms, and s',t' be the corresponding IDTS-terms.
1. IfS =>r t, then s’ = RsI t.

2. lfS/ = RsI t/, then s =R t.

3.7. Combinatory Reduction Systems

71

Proof. Each case holds by a simple induction on the size of s. For the base case,
a topmost step, we either have s = Iy or s’ = I’+/, and use induction on the size
of lor /. O

Thus we have: if the original contraction scheme is non-terminating, then the
resulting IDTS is non-terminating by Lemma 3.26. In addition, if the IDTS
(F5t, R51) is non-terminating, then there must be an infinite reduction not start-
ing in an abstraction. Since every IDTS-term which is not an abstraction is also
a CS-term, Lemma 3.26(2) provides that also the CS (F,R) is non-terminating.
This gives the required solid arrow, that is, the equivalence of the natural embed-
ding of contraction schemes into IDTSs.

3.7 Combinatory Reduction Systems

Finally, let us consider a truly untyped sys-
tem: Klop’s Combinatory Reduction Sys-
tems. CRSs were originally defined in
1980 [70], but the definition relayed here
is the more commonly used version of [71].

CRS —— IDTS

3.7.1 Definition

Combinatory Reduction Systems extend first-order term rewriting with untyped
A-abstraction and meta-variables; essentially, they are IDTSs without type re-
strictions.* Formally, given a set V of variables, a set M of meta-variables and a
signature F of function symbols, where the meta-variables and function symbols
are equipped with an arity, the set of meta-terms is given by the grammar:

To=z| e T| f(T") | Z(T™) z€V, feF, ZeM, ar(f)=n, ar(Z)=m

Terms are meta-terms without meta-variables and are not subject to any type
restrictions. Rewrite rules are pairs [= r of closed meta-terms such that all
meta-variables from r also occur in /, and moreover [is a CRS-pattern: all meta-
variable occurrences in [have the form Z(z1,...,x,) with the x; distinct vari-
ables. A substitution may either map variables to terms, or n-ary meta-variables
to n-ary substitutes Az . ..x,.t and works as in AFSMs. The rewrite relation =5
is the monotonic relation on CRS-terms generated by: Iy =% ry forl =r € R
and ~ a substitution whose domain consists of the meta-variables in /.

Example 3.27. We could represent the system map from Example 2.3 as the CRS:

F = {nil, cons, map}, ar(nil) =0, ar(cons) =2, ar(map) = 2
R map(Az.F(x),nil) = nil,
B map(Az.Z(z), cons(X,Y)) = cons(F(X),map(Az.F(z),Y))

4Although, considering CRSs predate IDTSs by twenty years, it would be more fair to say that
IDTSs are CRSs with an additional type restriction!

72

Chapter 3 — Higher-order Formalisms

Due to the untyped nature of CRSs, this system is non-terminating. This is
demonstrated by the term 2 := map(w, cons(w,nil)), where the subterm w is
given by Az.map(z, cons(x,nil)) (note that this example closely corresponds to
the example for termination of the untyped A-calculus in Chapter 2.1.3). Using
simple types as in an AFSM or IDTS, €2 cannot be typed, but it is a legal CRS-term.
Using the second rule, € reduces to cons(map(w, cons(w,nil)), map(w,nil)) =
cons (2, map(w,nil)), which contains the original term.

3.7.2 From CRS to AFSM

Their untyped nature makes CRSs less interesting for full termination results:
as Example 3.27 demonstrates, many interesting and seemingly harmless CRSs
are non-terminating. Nevertheless, CRSs can be embedded into typed systems
without affecting termination. The transformation used here is very similar to
the transformation from CRSs to HRSs used in [118, Ch.11.4.1]. Recall that an
IDTS is an AFSM where terms are formed without the - operator for application.

Transformation 3.28 (Transforming a CRS into an IDTS) Given a CRS (F,R), let
B = {o} and define type declarations 7, = [0 X ... X o] —> o with n occurrences
of o before the —. Let FA = {A : [o—s o] —o}U{f : 7, | f €, ar(f) =n}
and assume every CRS-variable z corresponds with an IDTS-variable x’ of type
o, and every meta-variable Z of arity n with an IDTS-meta-variable Z’ with type
declaration 7,. Let ¢ be the function mapping CRS-style (meta-)terms to IDTS-
style (meta-)terms as follows:
o(x) = 1’ (z avariable)
P10 i50)) = FUp(s1),. s 0(sn)) (f € Frar(f) = n)
P(Z(s1,--.80)) = Z'(p(s1),...,0(s0)) (Z € M, ar(Z) =n)
p(Az.s) = A2 .9(s))
Let R :={p(l) = o(r) |l = r € R}.

Theorem 3.29. The CRS (F,R) is terminating if and only if the IDTS (F°* R°*)
is terminating.

Proof. Simple inductions on the size of s show:

1. if s is a CRS-term and + a substitution, then ¢(sy) = ¢(s)y%, where 7% =
[= ¢(y(2)) | © € dom(7)];

2. if s is a CRS-meta-term and § a substitution whose domain contains all
meta-variables in s (and no variables), then p(sd) = p(s)d®, where 6%(Z")
= AZ.p(t) if 6(Z) = A@.t and ar(Z) = n; the case where s = Z(3) uses (1);

3. if s = t then p(s) =ra ¢(t); the case where s = [§ and ¢ = rd for some
CRS-rule | = r uses (2);

3.7. Combinatory Reduction Systems

73

By (3) every infinite reduction in the original CRS leads to an infinite reduction
in the IDTS (F°, R), which provides one direction.

For the other direction, an “inverse” of ¢ is needed. For every IDTS-variable
z, choose a CRS-variable y, (note that not every IDTS-variable has the form 2’
for some CRS-variable z, since only base type variables can have this form). Now
define ¢ as the function which, essentially, drops types from an IDTS-term:

v(Az.s) = Ayz.1(s)
Y(f'(s1,-58n)) = f(¥(s1),...,9(sn))
Y(A(s)) = ¥(s)

Now a simple induction on the size of s shows:

4. If s is an IDTS-term and v a substitution, then ¥ (sy) = (s)y¥, where
W = [y = v(v(@)) | @ € dom(y)).

5. If s is a CRS-meta-term and § an IDTS-substitution whose domain con-
tains all meta-variables in ¢(s) and no variables, then ¥(p(s)d) = s8¢,
where §%(Z) = Ayg1 ... ypn0(t) if §(Z') = Az'...2".t; the case where
s=Z(81,--.,5,) (50 ¥(p(s)d) = Y(t[z! := p(51)d,...,2" := p(s,)d]) and
s0% = () [yl := s16%,...,y" := 5,0%]) can be handled with the induction
hypothesis and (4).

6. If s is an IDTS-term and s =%« t, then ¢¥(s) = ¥(t); the case where
s =)0 =ra p(r)d =t uses (5).

By (6) every infinite reduction in the IDTS (F°* R®) leads to an infinite reduc-
tion in the CRS (F, R), which completes the proof. O

3.7.3 Confluence

Since the focus of this work is on termination, we have so far not discussed
whether confluence is preserved by any of the transformations. However, to
have some results available, it is worthwhile to make some brief observations on
the relation between CRSs and AFSMs.

Every AFSM can be seen as a CRS, if we drop the types, view the application
operator as a binary infix function symbol, and add a single rule (Az.F(z))- X =
F(X). If the original AFSM is (F,R), then let (F*°, R*°) be the resulting CRS.
Of course, this CRS is utterly non-terminating (it implements the untyped -
calculus), but it has the following properties:

* every AFSM-meta-term over F is a CRS-meta-term over F*;
* if s =x t in the original AFSM, then s = g ¢ in the resulting CRS;

* if s is an AFSM-term over F, and s =pa t, then ¢ is also an AFSM-term
over F, and s =5 t.

74

Chapter 3 — Higher-order Formalisms

Thus, if the CRS (F*¢, R*¢) is confluent, then so is the AFSM (F,R). Knowing
this we immediately obtain all available confluence results which are available
for CRSs, such as the fact that an orthogonal CRS is confluent [71]. We will use
this in Chapter 7.7.

Definition 3.30 (Orthogonality). An AFSM is non-overlapping if for every pair
of rules I = r,u = v, and subterm !’ of u we have: if there are substitutions
7, ¢ such that I’y = ud, then either I’ has the form Z(z4,...,z,) for some meta-
variable Z and variables z1,...,z,,orl'’ =1l =wand r = v.

An AFSM with rules R is orthogonal if it is left-linear and non-overlapping.

Theorem 3.31. An orthogonal AFSM is confluent.

Proof. If an AFSM is orthogonal, then so is the underlying CRS: orthogonality for
CRSs is defined in exactly the same way, and due to the pattern restriction the
left-hand side of a rule does not overlap with the redex @Q(\z.F(z), X) for the
B-rule. Since orthogonality implies confluence for CRSs, this implies confluence
for the original AFSM as well. O

3.8 Overview

This chapter discusses a variety of higher-order formalisms, in particular Pattern
Higher-order Rewriting Systems, Algebraic Functional Systems and Inductive Data
Type Systems, all of which have both A-abstraction and use simple types. For each
of these formalisms we have found an embedding into AFSMs, which preserves
at least non-termination. For the formalism of Combinatory Reduction Systems
with Extensions we have sketched a similar transformation. For demonstration
purposes, embeddings for two untyped systems into AFSMs have also been given.
Consequently, to prove termination for a system in any of these formalisms, it
suffices to translate the system into an AFSM and use the techniques from this
thesis to show termination of the result.

For those systems where termination techniques have been defined (PRSs,
AFSs and IDTSs) we also have a non-termination-preserving embedding from
AFSMs to any of these systems. As such, existing techniques can be translated
to the AFSM formalism, as is done at several places in this work. Moreover,
following the arrows in Figure 3.2, these transformations make it possible to
transfer termination results between existing formalisms.

Although confluence is of relatively little interest in this work, we have also
seen that confluence results for CRSs naturally extend to AFSMs.

Polynomial Interpretations

Or, Can we think of “Plus” as “+”?

One of the most prominent techniques in termination proofs for first-order term
rewriting is the use of polynomial interpretations. In this method, which dates
back to the seventies [92], terms are mapped to polynomial functions over some
well-founded set, such as the natural numbers. For example, to prove termina-
tion of the TRS
plus(0,y) = y
plus(s(z),y) = s(plus(z,y))

we can use an interpretation in the natural numbers, assigning to the symbol
0 the natural number 0, to s the function An.n 4+ 1 and to plus the function
Anm.2 - n + m + 1. Then the interpretations of the rules are strictly decreasing:

[p1us(0, y)] y+1 > y = [l
[plus(s(z),y)] = 2-2+y+3 > 2-z4+y+2 = [s(plus(z,y))]

Consequently, the interpretation of a term decreases when the term is rewritten,
and therefore the TRS is terminating.

Polynomial interpretations often give very intuitive (hand-written) termina-
tion proofs, since a TRS is usually written with a meaning in mind, which may
be modelled by the interpretation — to some extent. In the example above, the
successor s is modelled by An.n + 1. However, the naive interpretation for plus,
Anm.n + m, does not work: with this interpretation both sides of the rule are
mapped to the same number. Apart from hand-written proofs, the method is
also automatable, and has been implemented in various automatic tools, such as
AProVE [45], T, [83] and Jambox [34].

Polynomial interpretations are an instance of the monotonic algebra approach,
which also includes for instance matrix interpretations [35].

In his 1996 thesis [104], van de Pol proposes an extension of monotonic algebras
to higher-order term rewriting. More precisely, to the HRS formalism described
in Chapter 3.3 (without a pattern restriction). In this extension, terms with a
functional type, such as Az.0, are mapped to weakly monotonic functions. Sur-
prisingly, the method has seen little interest in the literature since, while methods

75

76

Chapter 4 — Polynomial Interpretations

based on a computability reasoning, such as HORPO (see Chapter 5.1.3), have
flourished.

In this chapter, I will first present the basic definitions and results for the class
of weakly monotonic functionals, as defined for HRSs in [104], and extend these
results to AFSMs using a transformation (Section 4.1). This gives only a weak
reduction pair, which cannot be used directly for termination proofs, but we will
then consider strongly monotonic functionals, and see how these can be used to
prove termination of an AFSM in Section 4.2. This result is a simplification of the
strict functionals used in the original method. In Section 4.3 we will study the
class of higher-order polynomials. This class of weakly monotonic functionals can
be used as an interpretation domain for the function symbols of an AFSM.

A proof-of-concept implementation of the method is discussed in Chapter 8.5.

This chapter is based on [42], where polynomial interpretations for the class of
AFSs are introduced. The paper also discusses the implementation, which is detailed
in Chapter 8.5.

4.1 Weakly Monotonic Functionals

Background. In the first-order definition of monotonic algebras [35], terms are
mapped to elements of a well-founded target domain (A, >, >). This is done by
choosing an interpretation function J7(f) for all function symbols f in a given
signature, and a valuation «(x) for all variables. These interpretations are ex-
tended homomorphically to an interpretation [-] 7 ., of terms. The interpretation
function must be monotonic w.r.t. > and >. In the definition of polynomial inter-
pretations, J(f) is always a polynomial.

If [[]7.a > [r]7,« for all valuations « of the free variables of ! and r, then
[CliIM7,a > [Clry]l7,e for all contexts C, substitutions v and valuations a.
Thus, if there is an infinite reduction over =5, then there is also an infinite
decreasing >-chain, contradicting well-foundedness of >. More precisely, the
relations > and > on A induce a strong reduction pair on terms.

Type Interpretations. In higher-order term rewriting we have to deal with in-
finitely many types (due to the type constructor —), a complication which is not
present in first-order term rewriting. As a consequence, it is not very practical
to map all terms to the same target set. A more natural interpretation would be,
for instance, to map a functional term Az.s : o— o to an element of the function
space N— N. However, this choice has problems of its own, since we then have to
reason about functions that we have no information about. For example, if we do
not know anything about F', we can only be sure that a constraint F'(a) > F(b)
holds if @ = b, which is very restrictive.

Instead, the target domain for interpreting terms, as proposed by van de Pol
in [104], is the class of weakly monotonic functionals. To be precise, to each type o
we assign a set WM, and two relations: a well-founded ordering 1, and a quasi-

4.1. Weakly Monotonic Functionals

77

ordering J, (see Section 2.4.1 for definitions of these concepts). Intuitively, the
elements of WM, _,, are functions which preserve the quasi-ordering J, but not
necessarily the strict ordering .

We consider the following definition from [104, Def.4.1.1]:

Definition 4.1 (Weakly Monotonic Functionals). We assume given a well-founded
set: a triple A = (A, >,>) of a non-empty set, a well-founded strict ordering on
that set and a quasi-ordering that is compatible with it.!-2

To each type o we associate a set WM, of weakly monotonic functionals of
type o and two relations 1, and J,, defined inductively as follows.

For a base type ¢:

* WM, = 4;

e J,=>,and J, = >.
For a functional type o —7:

* WM, _,, consists of the functions f from WM, to WM., such that J is
preserved: if J, y then f(z) J; f(y);

* fOor giff f(x) O; g(x) for all x € WM,;
* fDoor giff f(x) 3; g(z) for all z € WM,

Thus, WM,_,, is a subset of the function space WM, — WM., consisting of
functions which preserve the O relation. Note that both the WM, and the re-
lations 3, and J, should be considered as parametrised with A; the complete
notation would be WM, 34, 34, However, for readability, A will normally
be omitted, as will the type denotations for the various 1, and 3, relations; if
z,y € WM,, then x J y should be read as z J, y. The phrase “f is weakly
monotonic” means that f € WM, for some o.

It is worth noting that we use the mathematical definition of a function as a
set of pairs; a function is specified entirely by its domain and values. Thus, if
F and G are both functions in WM, for some o, and F'(z) = G(z) for all z in
their domain, then F' = G. We will use the (extensional) notation Az.P(x) for a
function that takes one argument z, and returns P(z).

It is not hard to see that an element Az; ...x,.P(z1,...,z,) of the function
space WM,, —...—» WM, — A is weakly monotonic if and only if:

VNlaMl € WM0'17'-'7N7L7MTL € WMUn :
if each N; J M; then P(Ny,...,N,) 3 P(My,..., M,)

1In [104], van de Pol defines > as the reflexive closure of >, but in recent definitions of mono-
tonic algebras it is common to separate > and >. This is needed for example for interpretations in
the rational numbers.

2Several definitions of well-founded set appear in the literature, but the basis is a pair of a set A
and a well-founded ordering >. The definition used here is a generalisation of this notion; if > is the
reflexive closure of >, then the two definitions coincide.

Chapter 4 — Polynomial Interpretations

Since all base types are interpreted by the same set A, the sets WM, and WM.,
are the same if o and 7 are equal modulo collapsing of base types.

Comment: The definition in [104] actually assigns a different well-
founded set A, to each base type ¢ (although there must be an addition
operator +, ., for every pair of base types). Here we use the same set for
all base types, as this leads to a simpler definition, and it is not obvious
whether using different sets gives a stronger technique. We could for in-
stance choose A as the disjoint union of A, and A,, instead of using two
different base sets. Moreover, all examples in [104] use a single “base”
set, as do the polynomial interpretations of Section 4.3.

Also, in [104] WM, _, . consists of functions f in a larger function space
7, —Z, such that f(z) € WM, if £ € WM, and f preserves . Here,
Z, = A, if « € B, and Z,_,, is the full function space Z, — Z,. The
definition here is simpler to present, but essentially equivalent; every
function in WM, — WM. can be extended to a function in Z, —Z,.

By [104, Lemma 4.1.4] the relation 1 is a well-founded ordering, the relation
J is a quasi-ordering, and J includes . Since here we did not take > as the
reflexive closure of >, the last statement does not always hold anymore, but we
can derive a compatibility result instead:

Lemma 4.2. For all types o the following statements hold:
e 1, is well-founded;
* T, and 3, are both transitive;
* 1, is reflexive;
* 3, and 3, are compatible;
* WM, is non-empty.

Proof. We prove the lemma with induction on the type o. Assume (IH) that for
all strict subtypes 7 of o, 1, is well-founded, both 1, and 1, are transitive, 1.
is reflexive, 1, and J, are compatible and WM. is non-empty.

For o a base type, we immediately have well-foundedness, transitivity, reflex-
ivity, compatibility and non-emptiness, by the assumptions on >, > and A. For
o = T—p, we obtain:

Jo is well-founded: Suppose, towards a contradiction, that f; 3, fo T
f3 3o Let a € WM, (such a exists by IH). By definition of ,, also fi(a) 3,
f2(a) 3, f3(a) 3, ..., contradicting well-foundedness of —J,,.

J, is transitive: Suppose f J, g J, h. Then for all x € WM., we have
f(z) 3, g(x) 3, h(z) by definition of J,, so by the induction hypothesis f(z) J,
h(zx) for all z € WM. This exactly means that f J, h.

7, is transitive: Same as for J,,.

4.1. Weakly Monotonic Functionals

79

3, is reflexive: Let f € WM,. Then f 3, fiff forallx € WM,: f(z) 3
f(z). But this holds by reflexivity of J, (IH).

J, and J, are compatible: Let f,g,h € WM, and suppose f O, g J, h.
Then for all z € WM, we have f(z) 3, g(z) 3, h(z), so f(z) 3, h(z) by (IH),
and therefore f 1, h

WM, is non-empty: Let a € WM,; the function g := An : WM, .a is in
WM, because if z 1, y, then g(z) = a J, a = g(y) by reflexivity of J, (IH). O

Note that n J m does not in general imply that n 1 m or n = m, even if > is the
reflexive closure of >. For example, using functions over the natural numbers,
let f := Az.z (that is, the function which takes some argument n and returns it),
and g := Az.0. Then f 3 g (because for all n we have f(n) =n > 0= g(n)), but
not f 1 g (because not f(0) > ¢g(0)), and also not f = g (because f(1) # g(1)).

Term Interpretations for A-terms. The goal is to associate to every term of
some type o an element of WM, ; thus, terms of functional type will be mapped
to functions. The original definition from [104] targets HRSs rather than our
AFSMs, but the ideas translate easily to AFSMs. Moreover, we will not have to
redo any proofs; we can transpose the original results using a transformation. All
that we will really need from [104] are the results related in Lemma 4.4.

Definition 4.3 (Interpreting a A-term as a Weakly Monotonic Functional). Given
a well-founded set A = (4, >, >), a simply-typed A-term s and a valuation « — a
function which assigns to all variables x : o in F'V(s) an element of WM, —, let
[s]a be defined by the following recursive clauses:

[7]a = ax) ifreVy
H (? a)

[S aU{z—n}

8
2,
8
|

Definition 4.3 is an instance of a definition in [104], which defines term inter-
pretations for HRS-pre-terms. The definition for A-terms suffices to transpose the
proof of the relevant results to AFSMs. From [104] we obtain:

Lemma 4.4 (Facts about Algebra Interpretations).

1. (Respecting § and n) If sJ3=t1} then also [s], = [t] for all a.

2. (Substitution Lemma) Given a substitution v = [x1 := $1,...,Z, = 8,] and
a valuation a whose domain does not include the x;, we have: [s7]o = [S]aoy
(where o oy is the valuation o U {z1 — [s1]as---,ZTn > [Sn]a})-

3. (Weak Monotonicity of Interpretations) If s : o is a simply-typed \-term,
then [s]o € WM, for all valuations «.

80

Chapter 4 — Polynomial Interpretations

Proof. By Proposition 3.2.2, Lemma 3.2.1 and Proposition 4.1.5(1) in [104] re-
spectively. Note that we here use a slightly different definition of WM than van
de Pol does, in that we do not require that > is the reflexive closure of > (we
also choose the same base set for all base types, but this was permitted by the
definitions in [104] as well). This is not a problem, however: the first two state-
ments do not depend on the definition of WM, and Proposition 4.1.5(1) only
uses reflexivity of J,, and the following facts:

o if fe WM,_,, and x € WM,, then f(x) € WM,;

o if f J,,; gand x € WM,, then f(z) 3 g(x);

e if f Jo—r g and z € WM, then f(x) O g(z);

e if f € WM,_,; and z,y € WM, and = J y then f(z) J f(y).
All of these still hold. O
Lemma 4.4(3) provides a way to find weakly monotonic functionals, for example:
Example 4.5 (Weakly Monotonic Functionals).

1. Forallm € A and types 0 = 01y — ... = o — (, let n, := AZ.n,. This
constant function is in WM, because it is [Az1 ... 2r.Y](ysn}-

2. Suppose A is equipped with a symbol 0 which is a minimal element for the
ordering >. Then for any type 0 = 01 — ... — 0, — ¢, the lowest value
function, Af.f(0), which maps a functional f € WM, to the constant
f(0s,,...,04,) € A, is a weakly monotonic functional in WM,._,, because

itis P‘fxl cee In~f Xy xn]{wy—)OUl,..A,xnb—ﬂ)an}-

3. Maximum Function: In the natural numbers, the function max which as-
signs to any two numbers the highest of the two is weakly monotonic, since
max(a,b) > max(a’,b’) ifa > a’ and b > V. Forany type 7 =11 — ... —
T, — ¢ (with ¢ € B) let max,(f,m) = Azy...zp. max(f(x1,...,2x), m).
This function is in WM. _,,_,, because itis [A\zy ... zp.a- (Y- 1 Tk) - Z]as
where « = [a — max,y — [,z — m)].

Term Interpretations for AFSMs. The interpretation of Definition 4.3 is not
entirely suitable for our purposes, mostly because of the way application is han-
dled: the definition has been designed in such a way that [s], = [t], if s =5 t.
While this is useful for HRSs (where terms are equivalence classes modulo a8n),
it is not very convenient for AFSMs if for instance [(Az.0) - ¢] = [(Az.0) - ¢] re-
gardless of the values of ¢ and ¢. But, recalling Transformation 3.6, we could
think of application as a sort of function symbol. Or, if we use a transformation
to simply-typed \-terms, as a special variable.

4.1. Weakly Monotonic Functionals

81

Definition 4.6 (Weakly Monotonic Algebras for AFSMs). For any type declara-
tiono = [o1 X ... X 0,,] — 7, let cur(o) denote the type 01 —... =0, > 7.

A weakly monotonic algebra for an AFSM with function symbols F consists of
a well-founded set A = (A, >, >) and an interpretation function J which assigns
toall f: o € F an element of WM. (), and which also assigns a value in
WM, to the fresh symbol @ for all functional types o.

Given a weakly monotonic algebra (A, 7), a meta-term s over F and a valu-
ation o which assigns to all variables z : ¢ in F'V(s) an element of WM, and
to all meta-variables Z : o in FMV (s) an element of WM.y, (o), let [s]7 . be
defined recursively by the following clauses:

[%] 7.a = az) ifxeV
[Z(s1,---s80)]lga = aZ)[s1]l7.as--->[n]7.0) fZeM
[f(s1,- - 80)l70 = T s1]lg,a:---:[snl70) EfEF

[+ 7.0 = T@)[slgem) ifsio
[Az.s]7,a = An.[s]7,au{esn} ifx ¢ dom(a)

This definition assigns to every function symbol, variable and meta-variable a
weakly monotonic functional, and calculates the value of the meta-term accord-
ingly. For the purposes of the interpretation, application is treated as a function
symbol @°. The interpretation function 7 for the function symbols is separate
from the valuation « of the variables and meta-variables because the former is
normally fixed, while we will quantify over the latter. Definition 4.6 roughly fol-
lows the ideas in [104], where also an interpretation function 7 and separate
valuation are used. It conservatively extends the first-order definitions in [35].

Example 4.7. Consider our usual map signature, and let A = (N, >, >), where
> is the usual greater than relation in the natural numbers and > its reflexive
closure. Choose:

J(cons) = Anm.n+m
J(map) = AFn.F(n)
J(s) = Ann+2

J@o) =1
alz) = 37

Then [map(Az.s(z), cons(s(0), 2))] 7.0 = [F(n)]7,{Fsrm.m+2,nsa0} = 42.

Theorem 4.8 (Weakly Monotonic Algebras for AFSMs). Let [J be an interpre-
tation function, s,t meta-terms and ~ a substitution. For all valuations «, the
following statements hold:

1. [s]l7.a E WM, if s: 0.
2. [s]7,00y = [87]7,0 Where aoy=aU{z = [y(z)]7,a | © € dom(y)}).

3. If [s]7.,0 2 [t] e for all valuations 6, then [sv] 7o 3 [tV]7,a-
If [s] 7.6 2 [t] 7,6 for all valuations 6, then [sv] 7.o 3 [t7] 7

82

Chapter 4 — Polynomial Interpretations

Proof. The proof proceeds by translating AFSM-meta-terms to simply-typed -
terms, and then reusing the original result. Interpretation of function symbols
(J) is translated to assignment of variables («), and application is treated as a
function symbol. We use the following transformation:

pz) = = (xeV)
o(Z(s1,...,80) = xz-9(s1) - 9(sn) (Z€M)
P(f(s15--080)) = xp-p(s1)-p(sn) (f€F)
p(s-t) = zas-@(s)-o(t) (s:0)
p(Az.s) = Az.p(s)

Here, the z; is a new variable of type cur(c) for f : 0 € FU{Q |0 €T, o
functional}, and zz is a special variable of type cur (o) for a given meta-variable
Z : o. Note that this transformation is almost exactly Transformation 3.6, only
function symbols are mapped to variables instead of other function symbols, and
we don’t bother 7-expanding since [] 7, is defined on pre-terms anyway.

For any substitution ~, let ¥ denote the substitution which sends x to ¢(y(z))
for x € FV(s), and zz to ¢(y(Z)) for Z € FMV (s) (the z; and za- are left
alone). We make the following observation:

(D o(s7v) =p ¢(s)7¥ for all substitutions ~.

This holds by induction first on the number of meta-variables in dom(v),
second on the form of s. The only non-trivial case is when s = Z(s1,...,5p)-
In that case, let v(Z) = Azy...x,.q. On the one hand, ¢(sy) = ¢(q [=
$17, -y &y = $p7y]). On the other, p(s)v? = (Z) - (s1)7? - ©(sn)7¥, WhiCh
by the second induction hypothesis and definition of ¢ is equal modulo § to
(AZ.0(q)) - (s17) -~ p(sny) =5 (@)1 == @(517),... @ = @(sn7)]. Thus,
using the first induction hypothesis (the substitution [# := §y| has no meta-
variables in its domain, while v does), both sides are equal modulo £.

In addition, note that:

M [sls.a = [p()y i x(@) = a(@) for « € FV(s), x(zz) = a(Z) for
Z € FMV (s) and x(z¢) = J(f) for all x5 occurring in ¢(s).

This holds by induction on the definition of ¢; all cases are obvious.

Now we can prove the statements in the theorem.

(1) holds by (II) and Lemma 4.4(3).

(2) holds by the Substitution Lemma and the two observations above:
[7]7. = [p(s7)]x by (D, = [p()7¥], by (D and Lemma 4.4(1), = [(s)]or -
by Lemma 4.4(2), which is exactly [s] 7 a0y by (ID).

(3) holds by (2): [s7] 7,0 = [s]7,a0y by (2), 3 [t] 7,a0 because the statement
speaks of all valuations, = [t7] 7,«. The case with T is exactly the same. O

For the time being, we can ignore the rest of the theory of [104] and continue
only with Definition 4.6 and Theorem 4.8, in addition to the results about the
class of weakly monotonic functionals. We will need one more result, which does
not have a counterpart in [104] because van de Pol did not consider situations
like rule removal, where J must induce a monotonic quasi-ordering.

4.1. Weakly Monotonic Functionals

83

Lemma 4.9. Let (A, J) be a weakly monotonic algebra for an AFSM (F,R), and
s,t terms in this AFSM. If [s] 7o 3 [t]7 « for all valuations «, then [C[s]]7.o 3
[C[t]] 7.« for all valuations o and contexts C.

Proof. This is a straightforward induction on the form of C. The base case (C' =
O,) is evident, otherwise suppose (IH) [D[s]].7,, 3 [D]t]]7,y for all valuations
X, and let « be an arbitrary valuation. Consider the form of C.

If Cf] = Az.D[], an abstraction, then [C[s]] 7o = An.[D[s]] 7 au{z—sn} and
we are done because, by (IH) and the definition of J, for functional types,
An.[D[s]] 7,a0{zsny 2 An[D[t] 7,001zn) = [Clt]]7,a-

If C] = f(s1,...,D[,...,sn), a functional term, then [C[s]]ly. =
TN Us1)7.er-- -5 [Pl 7.as - - -5 [$n] 7.a). Weak monotonicity of J(f) implies
that if any of the arguments J-decreases, then so does the result. Thus, by (IH)

also [Clsl]7,0 2T (f)([s1]7.0:- - [Pltll7.0: - - [1] 7.0) = [Clt]] 7 0
The cases where C[] = D] - g or C|[] = ¢ - D[] are very similar. O

With the theory so far we can create a weak reduction pair (see Definition 2.24).

Theorem 4.10. Let a weakly monotonic algebra (A, J) be given such that always
J(@%) 3 Afn.f(n), and define the pair (7Z,>) by: s Z t if [s]7,a 2 [t]7,« for
all valuations o, and s > t if [s] 7o 3 [tlg,« for all o. Then (z,>) is a weak
reduction pair.

Proof. (7, =) is a compatible combination of a quasi-ordering and a well-founded
ordering by Lemma 4.4, both relations are stable (so certainly meta-stable) by
Theorem 4.8(3) and - is monotonic by Lemma 4.9. Also, - contains beta: for
all valuations a, [(Az.s) - t] 7.0 = J(Q7)([Az.5]7.0: [t] 7.0) 2 [M2.5] 7.0 ([t] 7,0)
by assumption, which equals [s] 7 aUfzs[1] 5.0} = [5]7,a0[x:=)> and this equals
[s[z :=t]] 7,o by Theorem 4.8(2). O

Comment: if we choose J(@%) = A fn.f(n), we have a system very simi-
lar to the one used for simply-typed A-calculus (and HRSs). By not fixing
the interpretation of @? we have a choice, which will be essential to do
rule removal, and also for the dependency pair approach of Chapter 6.

Example 4.11. We consider an interpretation in N for the AFSM map from Ex-
ample 2.3.

J@il) = 1
J(cons) = Anman+m+1

J (map) AFn.F(0)+2-n+n-F(n)
J(@o") = AFn.F(n)+n forall types o, 7

It is not hard to check that each of these functions is in WM. Moreover, taking
a={F— f, X —=n, Y~ m}, we have:

* [map(Az.F(x),nil)] 7.0 = f(0) + f(1) +2> 1= [nil] s q;

84 Chapter 4 — Polynomial Interpretations

* [map(Az.F(z),cons(X,Y))]s.a
= f(0)+2-n+2-m+2+n-f(n+m+1)+m- f(n+m+1)+ f(n+m+1)
=1+fin+m+1)+f0)+2-m+m-f(n+m+1)+2-n+1+
n-fln+m+1)
> 1+ f(n) + f(0) +2-m+m - f(m)
= [cons(F(X),map(Az.F(z),Y))] 7o

The last inequality holds because f(n+m+1) > f(n)and f(n+m+1) > m for all
weakly monotonic f. Here we see the advantage of considering interpretations in
WM rather than interpreting higher-order terms with arbitrary functions. Rea-
sonings of the form “f(a) > f(b) because a > b and f is weakly monotonic” are
very prevalent in termination proofs using weakly monotonic algebras, and will
return in Chapter 8.5.

However, we won’t be able to do much with a weak reduction pair until Chap-
ter 6. In Example 4.11 we found a reduction pair (-,) such that [- r for both
rules in the system, but this does not suffice to prove termination. To use for in-
stance Theorem 2.23, we must have a strong reduction pair, where the generated
strict equality > is monotonic.

In the next section, we will see how to make sure that this property is satisfied.

Comment: An often-suggested possibility is to use strongly monotonic
functionals for the interpretation domain rather than weakly monotonic
ones. Not only would this immediately give a strong reduction pair, it
would also be easier to derive strict inequalities (as we would have that
F(n) > F(m) if n > m).

However, in the setting where A-abstraction and -reduction are present,
this is not a very convenient interpretation domain. This is due to terms
like A\z.0, where the abstracted variable is not part of the body of the
abstraction. To interpret terms like this with a strongly monotonic func-
tional, we would not be able to interpret abstraction in the obvious way.
Van de Pol explores this avenue briefly in [104], but it is significantly
more complicated, and seems less powerful, than interpretations using
weakly monotonic functionals.

4.2 Strongly Monotonic Functionals

To use weakly monotonic algebras as a reduction ordering, or a strong reduction
pair, we will need an additional property: if s O ¢, then also C[s] O C[t]. We
achieve this by posing the restriction that 7 is strongly monotonic:

Definition 4.12. An element f of WM, ., iS strongly monotonic in argu-
ment i if for all Ny e WM,,,..., N, € WM, and M; € WM,, we have:

f(Nl,...,Ni,...,Nn):lf(Nl,...,Mi,...,Nn) llele

4.2. Strongly Monotonic Functionals

85

We will require that the 7(f) are strongly monotonic in all arguments required
by their arity. This is not special for the higher-order approach; the same strong
monotonicity requirement appears in the first-order approach [35].

Example 4.13. Let A = (N, >).
* the constant 37 is strongly monotonic in all arguments (it has none);

* the function Anmk.2" - (m + 1) + k - n is strongly monotonic in its first two
arguments, but not in its third;

¢ the function Af : WM 6 50150-A0 1 WM. f(f(0,Az.0), Az.n + x) + n is
strongly monotonic in both arguments;

* for every type o=01 — ... — 0, — , the function Az; .. -%-331(6) + ...+
2,(0) € WM, is strongly monotonic in all n arguments (where z;(0) is
the lowest value function from Example 4.5(2)) — thus, there are strongly
monotonic functionals of all types.

For symbols f : 0 € F with order(c) < 3, strong monotonicity corresponds to the
notion strict in [104]. For functions with a higher order, the definition of [104]
is more permissive.> Here we consider strong monotonicity instead of strictness
because the strictness requirement significantly complicates the theory of [104],
and adoption of a technique often correlates with its simplicity. Moreover, in most
common examples of higher-order systems the function symbols have order < 3.
As we saw in Example 4.13, strongly monotonic functionals exist for all types.

Definition 4.14 (Extended Monotonic Algebra). A weakly monotonic algebra
(A, J) for an AFSM with function symbols F is an extended monotonic algebra if
J(f) is strongly monotonic in its first n arguments for all f : [0y X ... X 0,,] —
7 € F, and each [J(@?) is strongly monotonic in its first 2 arguments.

Note that the phrase “strongly monotonic in its first n arguments” refers to the
elements of the function space WM, or WMy (,). For example, J(@°7°7°)
is an element of the function space WM, ;o o = WM, = WM, = WM,, a
function which takes three arguments. It does not need to be strongly monotonic
in its 3'Y argument, because we think of application as a function symbol @77 :
[(c = T) x o] — 7 of arity 2, where T may be functional.

Now we arrive at the key result. An extended monotonic algebra for higher-
order rewriting is defined pretty much the same as an extended monotonic alge-
bra for first-order rewriting — except the target domain is the class WM instead
of some basic set like the natural numbers. To use weakly monotonic algebras
in a strong reduction pair, it only remains to be seen that the relation on terms
induced by T is monotonic.

3For strictness, it is only required that f(...,m;,...) 3 f(...,ki,...) if m; 3%t k;, where
TJ8trict is a subrelation of 1.

86

Chapter 4 — Polynomial Interpretations

Lemma 4.15. Let (A, J) be an extended monotonic algebra and s,t terms. If
[s]7,« 3 [t]7,a for all valuations «, then [C[s]] 7o 3 [C[t]] 7, for all valuations
a and contexts C.

Proof. By induction on the form of C. If C is the empty context this is evident,
otherwise suppose the assumption already holds for some context D.

If C[] = Az.D[], then [C[s]] 7, = An.[D[s]] 7,au{zsn} and we are done be-
cause, by the induction hypothesis and definition of 3 for functions, this function
- An'[[D[tH]J,aU{mHn} = [[C[t]]]J,a-

IfC[) = f(s1,...,D[],...,8n), and J(f) = A (a strongly monotonic function
by assumption), then [C[s]]7.o = A([s1]7,a)-- - [D[s]l7.as- - - [$n]7,a). By the
induction hypothesis, [D[s]] 7, 3 [D[t]]7,a, S0 by strong monotonicity of A in
argument 4, also [C[s]] 7. T A([s1]7,as-- -+ [Pt]]7.as-- -5 [$n]7,0) = [C[t]] 7,a-

The cases where C[] = DJ[] - ¢ or C[] = ¢ - D[] are very similar, since @7 is
strongly monotonic in its first two arguments. O

Comment: This result is similar to [104, Theorem 4.3.4], but does not
require variable valuations to be strongly monotonic. This is possible be-
cause of the strong monotonicity requirements on the @“ interpretations.

We thus conclude the background theory of weakly monotonic algebras:

Theorem 4.16. Let an extended monotonic algebra (A,) be given such that al-
ways J(@Q%) 3 Afn.f(n). Then the pair (Z,>) from Theorem 4.10 is a strong
reduction pair.

Theorem 4.16 holds by Theorem 4.10 and Lemma 4.15. It corresponds roughly
to [104, Theorem 5.1.4] (taking into account the different formalism).

Example 4.17. The interpretation given in Example 4.11 is strongly monotonic
in all arguments for the symbols nil, cons and map. The interpretation of
J(@?77) is strongly monotonic in its first two arguments as required (even
though it is not strongly monotonic in its third argument, if it has any).

Thus, the algebra (A4, J) for the signature map is an extended monotonic
algebra. By Theorem 4.16, the generated pair (7,) is a strong reduction pair.

As we saw in Example 4.11, [= r for both rules. Consequently, by Theo-
rem 2.23, the AFSM map is terminating.

4.3 Polynomial Interpretations in the Natural Numbers

It remains to be seen how to find extended monotonic algebras, preferably au-
tomatically. In this section, we will discuss the class of higher-order polynomials
in N, a specific subclass of the weakly monotonic functionals with (N, >, >) as a
well-founded base set. Polynomials are weakly monotonic functionals by nature,
and we can pose restrictions to enforce strong monotonicity.

4.3. Polynomial Interpretations in the Natural Numbers

Definition 4.18 (Higher-order Polynomial in N). For a set of variables X =
{z1:01,...,2, : 0, }, each equipped with a type, the set Pol(X) of higher-order
polynomials over X is given by the following clauses:

* if n € N, then n € Pol(X);
* if p1,py € Pol(X), then p; + p2 € Pol(X);
* if p1,py € Pol(X), then p; - p2 € Pol(X);

eife;:m—...>71, > € Xwithe € B,and p; € Pol™(X),...,pm €
Pol™ (X), then z;(p1,...,pm) € Pol(X)

- here, Pol*(X) = Pol(X) for a base type ¢, and Pol° 7 (X) contains
functions Ay € WM,.p with p € Pol" (X U {y}).

Note that X, in Definition 4.18, is not fixed. That is, the set Pol(X) is defined for

all sets X of variables. A higher-order polynomial is an element of any Pol(X).
Noting that WM, = WM, if 0 and 7 have the same type “form” (so are

equal modulo renaming of base types), the following lemma holds for all . € B:

Lemma 4.19. If p € Pol({z1 : 01,...,2y : 0n}), then Azxy...x,.p is a weakly
monotonic functional in WM, . o, -1

Proof. First note: Anm.n + m and Anm.n - m are weakly monotonic functionals in
WM, _,,_,,. This is easy to see.

The lemma holds by induction on the derivation of p € Pol({Z}).

If p € N, then AZ.p is a constant function; its weak monotonicity was demon-
strated in Example 4.5(1).

If p1,p2 € Pol({Z}), then by the induction hypothesis AZ.p; and AZ.p, are
both weakly monotonic functionals. Consider the A-term L := Ay; ...y, . A (F} -
y) - (F> - §). By Lemma 4.4(3) [L], is a weakly monotonic functional, where
o = {A — Anm.n + m, Iy — Af.ph Fy5 — Afpg} ThllS, [L]a = Afpl +p2 €
WM . —0,—0- 10 the same way (using a valuation with A — Anm.n - m),
AZ.p1 - p2 is a weakly monotonic functional.

Finally, suppose p; € Pol™(Z),...,pm € Pol™(Z), and z; has type 7 —
... = T;m — t. By the induction hypothesis, each AZ.p; € WMgz_,»,,. Thus,
AZ.xi(p) = [Mjyi - (21 %) (2m - D]{zimp1,.s2mpm} 18 @ Weakly monotonic
functional by Lemma 4.4(3). O

Higher-order polynomials are typically represented in the form a; +. . .+a,, (with
n > 0), where each q; is a higher-order monomial, that is, an expression of the
formb-cy - - ¢, where b € N and each ¢; is either a variable = with base type, or
a function application z(A#1.p1, . .., Ayk.pi) with all p; higher-order polynomials
again. Examples of higher-order polynomials in the natural numbers are for
instance the polynomial 0 and the polynomial 3+ 5 - 22 -y + F(37 + z). To find a
strongly monotonic functional, it suffices to include, for all variables, a monomial
containing only that variable:

88

Chapter 4 — Polynomial Interpretations

Theorem 4.20. Let P(x1,...,x,) be a higher-order polynomial of the form p, (Z)+
..+ pm (Z), where all p;(Z) are higher-order monomials. Then AZ.P(Z) is strongly
monotonic in argument i if there is some p; of the form a - 2;(b(Z)), with a € NT.

Proof. Let weakly monotonic functionals Ny, ..., N, be given, and some i, j such
that p; = a - a; (b(Z)) with a € N*. It suffices to see that if N; 3 M, then also
P(Ny,...,N;,...,N,) > P(Ny,...,M;,...,Ny,). In the following, N is short
notation for Ny,...,N;,..., N, and N is short notation for Ni,...,M;, ...,N,.

By Lemma 4. 19 AZ.p (%) is a weakly monotonic functional for all £, and this
implies that p,(N) > Pk (N") (since N; 3 M; implies N; 3 M; when A = (N, >,
>)). If, moreover, p; (N) > pj(N’), then we obtain P(N) > P(N'), as required,
by the nature of the addition operator.

Write p; (%) = a - d(z;, Z), where d(y, &) = y(AZ1.b1(Z, 2), . /\zm b (2, 2)).
Since all b, are polynomials, Lemma 4.19 provides: /\yj ;i (V) > Ayj.b; (]\7 ").
Thus, by weak monotonicity of N; we know d(N“ N) > (., N) By the def-
inition of N; 7 M;, we also see that d(N;, N') > d(M,]\7) Since for a > 0
we generally have a -k > a - j if £ > j, it follows that p](]_f) =a-d(N;,N) >
a-d(M;,N') = J(N’) as required. O

Of course, there is nothing that stops us from defining higher-order polynomials
based on other well-founded sets A as well, provided the set A admits weakly
monotonic operators for addition and multiplication: Lemma 4.19 does not use
any special features of N. Theorem 4.20 does, however (for example the property
thata -k > a - j if a > 0). To use polynomials for e.g. matrix interpretations or
interpretations in the rational numbers, we would need to derive similar results
for the different well-founded set.

Example 4.21. Recall the “functional map” AFSM from Example 2.21. After
changing types, this system has the following form:

nil : o
cons : [oXo]—o
F = fnil : o—o
fcons : [(0—0) x (0—0)]—o0—0
fmap : [(0—o0) X o]—o0

R fmap(fnil,Y) = nil
" | fmap(fcons(F,X),Y) = cons(F Y, fmap(X,Y))

4.4, Overview

89

We consider a polynomial interpretations in the natural numbers:

J(nil) = 0
J(cons) = Anmmn+m
J(fnil) = An.0
J(fcons) = Afgn.l+n + f(n)+g(n)
J(fnap) = Afn.f(n)+
J@om) = AFnm.F(n, m) +n(0) for all types o, 7

By Theorem 4.20, the interpretation of each function symbol is strongly mono-
tonic in all arguments required by the symbol’s arity. Thus we have a strong
reduction pair by Theorem 4.16.

Leta={F+— f, X — g, Y — n}. We have:

[fmap(fnil,Y)]sa = O0+4+n
> 0
= [[Ililﬂjﬂ
[fmap(fcons(F, X),Y)]7a = 1+4+2-n+ f(n)+ g(n)
> 2-n+ f(n)+g(n)

cons(F - Y, fmap(X,Y))

Using rule removal (Theorem 2.23), we can remove the second rule; the system
is terminating if the first rule on its own is terminating. But this is quickly demon-
strated by a second polynomial interpretation, with 7 (fmap) = Afn.f(0) +n+1
and J(nil) = 0.

4.4 Overview

In this chapter we have considered the termination method using weakly mono-
tonic algebras, introduced by van de Pol in [104], and extended these results to
the setting of AFSMs. Some definitions were generalised (in particular the use
of a separate > relation in the basis of W.M), others restricted or simplified (in
particular the choice for strongly monotonic functionals rather than strict ones).

More than just transposing the technique from [104] (which we could have
done with Theorem 3.7), we have seen how weakly monotonic algebras can be
used to create either a weak or a strong reduction pair. Thus, we can use algebra
interpretations to prove termination either directly (with a reduction ordering),
or using rule removal or dependency pairs.

Furthermore, we have discussed the class of higher-order polynomials in N,
which provides an easy and systematic way to find both weakly and strongly
monotonic functionals. Higher-order polynomials form an elegant method for
proving termination by hand and, as we will see in Chapter 8.5, a feasible au-
tomatable technique as well. This class could easily be extended to other base
sets with addition and multiplication operators — matrix [35], integer [40, 49],
rational [96] or arctic [82] interpretations, the sky is the limit!

An Iterative Path Ordering

Or, Can we do this in small steps?

In the previous chapter we have seen how the termination method of monotonic
algebras can be lifted to the higher-order case. Here we shall consider an exten-
sion of two methods which are closely related to each other: the recursive path
ordering (RPO) and the iterative path ordering (IPO).

The termination method of recursive path orderings was first defined by Der-
showitz [30], and improved for example in [27, 36, 66]. The starting point
of this method is a well-founded ordering (also called a precedence) on the
function symbols of a TRS, which is lifted to a reduction ordering > on terms.
In the context of termination of higher-order rewriting, Jouannaud and Rubio
present a higher-order extension HORPO of RPO in [63], a definition which
is formalised in [81] and extended to HRSs and CRSs with an arity restriction
in [106]. Incarnating ideas from the general schema [18], this definition has
been strengthened with for instance a computability closure and type orderings in
the extended version of the paper [64]. A later version, the Computability Path
Ordering (CPO) [19] simplifies the definition and adds several new features.

In the first-order setting, Klop, van Oostrom and de Vrijer [73] present, fol-
lowing an approach originally due to Bergstra and Klop [12], the iterative lexi-
cographic path ordering (ILPO) by means of an auxiliary term rewriting system.
ILPO can be understood as an iterative definition of the lexicographic path or-
dering, a variant of RPO [66]. The authors show that ILPO is well-founded, and
that it coincides with the lexicographic path ordering if the underlying relation
on function symbols is transitive. Although ILPO seems less suitable for automa-
tion than RPO, it is an elegant and simple technique, useful for hand-written
termination proofs, where a TRS is proved terminating by showing its inclusion
in a terminating TRS. ILPO can be further extended to also include a multiset
ordering, which was explored (in different ways) in [72] and [77].

In [76] Femke van Raamsdonk and I present an iterative variation of the orig-
inal HORPO. Going further, however, presents new challenges, since both the
extended HORPO from [64] and CPO relate terms of different types. Pursuing
this path anyway, and extending the iterative path ordering to the AFSM setting

91

92

Chapter 5 — An Iterative Path Ordering

beyond the most basic steps (yet not necessarily allowing everything that is possi-
ble in CPO) leads to something new altogether: a simple yet powerful reduction
pair on terms, which is weaker than the existing definitions of HORPO and CPO
in some ways but, due to a more fine-grained approach, native transitivity and
freedom of choice with regards to application, stronger in others.

Chapter Setup. In Section 5.1 we will discuss the existing definitions of recursive
and iterative path orderings, both first-order and higher-order variations.

The higher-order iterative path ordering (HOIPO), a higher-order rewriting
system defined as an application-free AFSM, is introduced in Section 5.2, and
proved terminating in Section 5.3.

Since automation is an important part of this work, and an iterative defini-
tion without reduction strategy is not easily automatable, we will then study a
recursive definition of the same ordering relation in Section 5.4.

Moving away from application-free systems, Section 5.5 discusses how the re-
sults can be used to define a strong reduction pair on AFSMs, without the limita-
tion to application-free meta-terms. In Section 5.6 we will see how to strengthen
the method using argument functions. Finally, in Section 5.7 we will compare the
respective power of HOIPO and the existing computability path ordering, CPO.

This chapter extends [76], where an iterative variation of the first definition of
HORPO is defined.

5.1 Existing Path Orderings
We will start by studying the existing definitions of (recursive or iterative) path

orderings. The definitions of path orderings considered here, both first- and
higher-order, share a number of features. Let us introduce these, first.

The Multiset Extension. A multiset is a set which might contain duplicates, and

is denoted {{s1,...,s,}}. The multiset extension of a given relation is defined as
follows: {{s1,...,sn}} =nmu {t1,.-.,tm}} if wecanwrite {1,...,n} = AUB with
B non-empty, and there is a total function = mapping {1,...,m} to {1,...,n},
such that:

e if (i) € A, then s;(;) = t;;
e if 7(i) € B, then s.(;) > t;;
* for every element j of A there is exactly one i such that 7 (i) = j.
The multiset extension of a well-founded ordering is also itself well-founded.

Example 5.1. Let > be the standard greater than operator on natural numbers.
Then {{3, 5}} > Mul {{3}} > Mul {{2, 2, 2}} > Mul {{0, 2, 1}} >Mul - -

5.1. Existing Path Orderings

93

Sometimes this definition does not suffice, in particular when a pair of rela-
tions is considered rather than a single relation . The other relation could for
instance be an equivalence relation which is not just equality, or a compatible
quasi-ordering. Following [120] we define the generalised multiset extension of
a pair (,>) of relations as follows: {{s1,...,s,}} =gmw {{t1,....tm}} if we
can write {1,...,n} = AU B with B non-empty, and there is a total function 7
mapping {1,...,m} to {1,...,n}, such that:

o if 7T(Z) € A, then Sn(i) ?\‘/ t;
* if 7(i) € B, then Sn(s) » ti;
* for every element j of A there is exactly one i such that 7 (i) = j.

In addition, {{s1,...,sn}} Zgmw {t1,...,tm}} if n = m and there is a permuta-
tion 7 of {1,...,n} such that each s ;) Z ;.

Thus, the normal multiset extension of > is the generalised multiset extension
of (=,>). Equivalently, the normal multiset extension of > can be seen as the
generalised multiset extension of (-,), where - is the reflexive closure of »-.
The authors of [120] show that if > is well-founded and = is compatible
with >~ and transitive, then the generalised multiset extension of (7, >) is also
well-founded. However, we will not need this result. We will use the generalised
multiset extension in the recursive version of StarHorpo, in Section 5.4.

The Lexicographic Extension. The lexicographic extension of a given relation
is defined as follows: [s1,...,8n] >=Lex [t1,-..,tm] if there is some i such that
s1 = t1,...,8; = t; and either i = m < n or s;41 > t;11. It is well-known that
the lexicographic extension of a well-founded relation is again a well-founded
relation, provided the domain is restricted to sequences of a bounded length.

Example 5.2. Let > be the standard greater than operator on natural numbers.
Then [3,5] >rex [3] >Les [2] >Les [0,37,42] > ey - .. The bounded length restric-
tion is needed for well-foundedness because we do have, e.g. [1] > s [0, 1] > Lex
[0,0,1] >re - -

As with the multiset extension, we might define the generalised lexicographic ex-

tension of a pair (7, >) as follows: [s1,...,8,] =gLes [t1,- .., tn] if there is some
i such that s1 = ¢1,...,s; = t; and either i = m < n or s;4+1 > t;+1. In addition,
[81,.-.,5n] ZgLes [t1,--.,tm] if n =m and each s; = ¢;.

We will use this extension in Section 5.4. As with the generalised multiset
extension, the extra g will typically be omitted.

Precedence. All versions of the recursive and iterative path ordering are based
on some precedence which is lifted to a reduction ordering or reduction pair.
Following modern approaches we will assume given a precedence », which is a
quasi-ordering on the set of function symbols. Its strict part, » \ «, commonly

94

Chapter 5 — An Iterative Path Ordering

denoted as », should be a well-founded ordering. Let ~ denote the relation
» N «; it is not hard to see that this is an equivalence relation. Arities are
irrelevant; we may have f» g and even f = g regardless of the arities of f and g.

In early versions of the recursive path ordering, » was assumed to be anti-
symmetric: if s = ¢t then s = ¢. In later definitions, there are no restrictions on p
other than well-foundedness of ».

Status. In modern approaches of the recursive path ordering, all symbols are
equipped with a status in {Lex, Mul}. This status must respect =, so if f = g,
then stat(f) = stat(g). Moreover, if stat(f) € Lez, then the arity of equivalent
function symbols must be bounded. That is, there is some N such that for all g
with f = g the arity of ¢ is at most N.

5.1.1 The Recursive Path Ordering (RPO)

There are many definitions of the recursive path ordering for first-order TRSs in
the literature, as the original definition has been gradually refined and improved.
The definition we shall consider here roughly corresponds to [27]. Only one fea-
ture (the use of permutations for symbols with a lexicographic status) is omitted
here, as we will consider this as an addition afterwards (see Section 5.6).

Definition 5.3 (Recursive Path Ordering). The recursive path ordering from [27]
is built from two ingredients: a precedence », and a status for all function sym-
bols (which respects =, the equivalence relation induced by »). First, = and the
status function together induce an equivalence relation ~ on terms:

* x ~ yif x = y are variables;
* f(s1,.-.y8n) ~g(t1,...,t,) if f = g and:

— if stat(f) = Lez, then s; ~ t; for all 4;

— if stat(f) = Mul, then there is a permutation = of {1,...,n} such that
always s.(;y ~ t;.

The recursive path ordering >, and the compatible quasi-ordering - = > U ~,
are defined by the following recursive clauses: s = f(s1,...,8,) = t if

1. some s; 77 t, or
2. t=g(ty,...,t,n) with f » g and s > ¢, for all 4, or
3. t=g(t1,...,tm) with f = g and:

a) stat(f) = Lex, s > t; for all ¢, and [s1,...,8p] >gLes [t1,- .-, tm], OF
b) stat(f) = Mul, and {{s1,..., s} =gmw {t1,. -t }}

Here, > 41, and >gaz are the lexicographic and multiset extensions of (~, >).

5.1. Existing Path Orderings

95

Example 5.4. Consider the following TRS, which is contrived but demonstrates
all features of RPO in one go:

f(g(s(z),9):1,2) = £(gly,s(x)),0,h(g(x,x)))

Letf ~h » 1 » 0= g~ s. Suppose stat(f) = stat(h) = Lez, and the status for
the other symbols is Mul. Then we have the following reasoning:

1. f(g(s(x),y),1,2) > £(g(y,s(x)),0,h(g(z, z))) using clause (3a) because:
e f=f,
* the left-hand side > each part of the right-hand side (2,3,4),
* [g(s(2),9), 1, 2] =1es [8(y, 8(2)),0,h(g(x, z))] by 5 and 7.

1 > 0 using clause (2).

© N o v & W Db
09

s(z) > x by clause (1).

It can be demonstrated that >~ is well-founded, and that both - and - are mono-
tonic and stable. Obviously, 7~ and - are compatible. Thus, (77, >) is a strong
reduction pair (and > on its own is a reduction ordering).

Variations. As stated before, there are many variations of the recursive path
ordering. In particular, the definitions of ILPO, HORPO and CPO in this section
are based on a definition of RPO which does not include an equivalence relation
~. There, 7 is just the reflexive closure of . This is quite relevant: in the
derivation given above, for example, it is essential that g(s(z),y) ~ g(y, s(x)).
The use of a quasi-ordering for the precedence has also not always been the
standard; traditional approaches assume that » is just the reflexive closure of ».
Nor do all definitions use a status. For example, the lexicographic path ordering
(LPO) (on which ILPO is based) is the restriction of RPO where stat(f) = Lex
for all function symbols f, and where f » ¢ if and only if either f » gor f = g.

96

Chapter 5 — An Iterative Path Ordering

5.1.2 The Iterative Lexicographic Path Ordering (ILPO)

The iterative lexicographic path ordering from [73], ILPO, defines essentially the
same relation as the lexicographic path ordering, but gives this relation as a term
rewriting system. This results in a reduction ordering =}, or a reduction pair
(=% =7). Let 7* := FU{f* | f € F}, where f* has the same arity as f, and
let R* consist of the following rules, for all symbols f, g:

flxr, .., xn) =put (..., zn)

f*(wlv cee 71'71) —select Tj

f*(mlv"'7xn) = copy g(f*(f),..., *(f)) iff’Q
o= (21,00, 9(8), -y Tn) =lex flxr, . oo g™ (@), 1%, ..., 1)

The clauses above are rule schemes: clauses which generate a number of rules in
one go. Mostly, we will simply refer to them as rules, since no ambiguity can
arise from speaking of, for instance, the put rule. We also write =1po for =x-.

The TRS (F*,R*) is evidently not terminating. For example, in (some in-
stances of) the copy rule, the right-hand side contains the left-hand side! But it
can be proved that there is no reduction in =11 po which contains infinitely many
star-free terms.

Thus, for a given set of rules R, we can show termination of the rewrite
relation =g if it is included in the relation =} . (which is terminating on
terms over). This we prove by showing that | =] p, 7 for all rules I = r € R.
More generally, = 1, is a reduction ordering on terms over F.

Example 5.5. The constraint add(s(z),y) > add(z, s(y)) is oriented by ILPO if
we choose add » s:

add(s(x),y)
:>put add*(s(I), Yy
=1ex add(s*)
=copy 2add(s*(7),s(add*(s(z),y)))
=>select add(S(

—select add(x, S(y))

Intuitively, the star denotes an intention to make the term under consideration
smaller. The restriction of =} . to terms over F defines the same relation as
=1po (the restriction of RPO to the case where stat(f) is always Lexz and » is
the reflexive closure of »).

Why ILPO? There are several reasons to consider ILPO over LPO. First, there is
a certain elegance to proving termination by showing the inclusion of the rewrite
relation in another rewrite relation, which is known to be terminating. Second,
the definition of ILPO as a TRS avoids a number of problems in the definition
of LPO (which are essentially ignored here, and in most sources). For example,
LPO uses the lexicographic extension of a relation which is not yet fully defined.

5.1. Existing Path Orderings

97

Another reason is that derivations using ILPO and LPO have a very differ-
ent form. Where derivations with LPO use proof obligations (add(s(z),y) >
add(z, s(y)) because (1) s(z) > « and (2) add(s(z),y) > s(y)), derivations us-
ing ILPO take small reduction steps. Often, the decision how exactly to make
the term smaller is postponed, and there may be many marked symbols in a term
(corresponding to the proof obligations in the LPO case). Depending on your
flavour, this style may be preferable for (in particular hand-written) termination
proofs, especially using a top-down goal-driven reduction strategy.

In the higher-order case, a further reason appears: f*(3) is the largest term
that is “smaller” than f(3). There is no counterpart of such a term in LPO. Having
a term like this is exceedingly useful when, due to S-reduction, a term is copied
many times. We will discuss this in more detail at the end of Section 5.4.

Extending ILPO with Multisets. To extend the definition given above with a
multiset status, and perhaps get a counterpart of the complete RPO, there are
several ways we might go. In [77] Femke van Raamsdonk and I propose an
additional two rule schemes:

f*<fvg(17)7 2) = mul f([ml‘g*(g)]v v 79*(5)7 EEE) [Zn‘g*(g)}) if Stat(f) = Mul
[(@1, 20) =ora f*(Tr)s- .., Tr(n)) for some permutation 7

Here [a|b] means either a or b can be chosen, and we may make different choices
at different places in the term. The lex rule must additionally be updated with a
stat(f) = Lex restriction. The relation =1po generated by these rules in addition
to the ILPO-rules corresponds to a version of RPO where no equivalence relation
is used, and where = is just equality, but where the status is not fixed.

An alternative way to extend ILPO with a multiset status is (tentatively) ex-
plored in [72] (an unpublished variation of [73]). Here, the solution is to alter
the definition of terms a bit, to take the status into account:

* every variable is a term;
e if f € F, and f has arity n, and sy, ..., s, are terms, then:

— if stat(f) = Lex, then f(s1,...,s,) is a term;
— if stat(f) = Mul, then f({{s1,...,s,}}) is a term.

)
In this definition, f({{s1,...,sn}}) = f({t1,...,tn}}) if the multisets {{s1,...,
sp}} and {{t1,...,t,}} are equal. The TRS (F*, R*) is extended with a single
new rule scheme:

S {7 91(h1), - g Wn)) =mse f({E, 97, (03155 98, (i) 1)

Example 5.6. Consider the TRS from Example 5.4, but now with a strict symbol
precedence: £ »h» 1» 0> g» s.

f(g(s(r),),1,2) = £(gly,s(x)),0,h(g(x, r)))

Chapter 5 — An Iterative Path Ordering

Suppose stat(g) = Mul, and the status for the other symbols is Lex. Then we
have the following reduction:

f(g({{s(z),y}}). 1,2)

=pr £ (g({s(z),4}}),1,2)

=1ee g({{s(x), v}, 17, £ (g({{s(2) y}}). 1, 2))
“eopy T(g({{s(®),y}}), 1, h(t*(g({{s(z),y}}), 1,2)))
serect T(g({{s(2),y}}), 1%, h(g({{s(2),y}})))

~eopy f(8({{s(2),y}}),0, (({s(z), y}})))

S £(E({{s(2).y})). 0.1(g" ({{=(x).¥}))))

=use f(g({{s(2),y}}),0,h(g({{s*(2),s*(2)}})))
=derece T(8({{s(x),y}}),0,n(g({x,2}})))

= £(g({{y: s(@)}}), 0, n(g({z, 2}})))

In the higher-order iterative path ordering, we shall not use either approach.
Rather, we consider a third technique, which is more suitable for a precedence
where = is not just equality, and which does not require altering the definition of
terms.

5.1.3 The Higher-Order Recursive Path Ordering (HORPO)

The definition of the higher-order recursive path ordering [63] considers Alge-
braic Functional Systems (see Chapter 3.4), and therefore has no cases for meta-
variables. The reduction ordering is given by a number of inductive clauses,
using =, = and =~. The latter two relations are explained below; for terms? s, ¢
we have s - ¢ if both sides have the same type and:

(HD) s= f(s1,...,5m)and s; Z t forsome 1 <i<m

(H2) s=f(s1y--y8m)s t =9g(t1,...,tn), f» gand s = {t1,...,t,}

(H3LEX) s = f(s1,---, sm), t=f(t1,...,tm), stat(f) = Lezx,

[51, .. .,Sm] > Lex [tl,. .. ,tm] and s =~ {tl,. .. ;tm}
(H3MUL) s = f(s1,---58m), t = f(t1,...,tm), stat(f) = Mul and

{s1s-- s smtt =pra {1, -t }}

(H4) S:f(Sl,...,Sm),t:tl~t2"'tn and s =~ {tl,...,tn} (n>2)
(HS) S =818, t =11 1o and {{81,82}} = Mul {{t1,t2}}
(H6) s=Mr.g,t=Xr.wand q - u

Here = denotes the reflexive closure of . Further, following the notation from
[81], the relation =~ between a functional term and a set of terms is defined as
follows: s = f(s1,...,8m) = {t1,...,t,} if for every i € {1,...,n} we have
either s > t;, or there exists j € {1,.. m} such that s; - t;.

The first four clauses of the definition stem directly from the first-order definition
of RPO, with the difference that instead of the requirement s >~ {¢1,...,t,} for

ITechnically HORPO is an ordering on AFS-terms, but the definition of terms in an AFS is exactly
the same as in an AFSM. Thus, we can just speak of “terms” here without ambiguity.

5.1. Existing Path Orderings

99

HORPO, we have for RPO the simpler s > ¢; for every i. This is not feasible
for the higher-order case because of the type requirements; the relation > is only
defined on terms of equal type

The type restriction cannot be avoided entirely: without it, we would have,
for example, A(L(F), X) = F - X, which leads to an infinite decreasing sequence
AL(Az.A(z,x)),L(Az.A(z,z))) > (Ax.A(z,z)) - LOAz.A(z,z)) = AL(Ax.A(x,2)),
L(Az.A(z,z))). However, it can be weakened; for instance, the definition in [63]
equates all base types (which we might do with the type changing functions from
Theorem 2.29). Later definitions of HORPO use a type ordering, as we will see
in the next section.

Example 5.7. Consider the following definition of the recursor for the natural
numbers:

0 : nat
F= s : [nat]— nat
rec : [nat X nat X (nat—nat—nat)]|—nat
_ rec(0,V,F) = Y
T | rec(s(X),Y,F) = F-X- -rec(X,Y,F)

For the first rewrite rule, we have rec(0,Y, F') > Y by (H1). For the second:
1. rec(s(X),Y,F) = F- X -rec(X,Y, F) by (H4) and 2, 3 and 4.
2. F -, F by reflexivity of ~.
3. s(X) > X by clause (H1).
4

. rec(s(X),Y, F) > rec(X,Y,F) by choosing stat(rec) = Mul and using
again 2, 3 and also that Y 7= Y by reflexivity.

HORPO as presented here has some important weaknesses. Although it can be
used to show termination of many standard examples, such as rec and map, the
type restrictions often limit the possibilities. For example, assuming that £ has
a base type as output type, we do not have that £(1, F) > £(0, \z.g(z)) even
if 1 » 0 and £ » g: this is because £(1,F) = {Az.g(x)} does not hold for
type reasons. The authors of [63] combat this weakness by introducing the com-
putability closure, a possibly infinite set of terms CC(f(5)), such that the clause
“s = {t1,...,t,}” everywhere in the definition of HORPO can be replaced
by “each t;, € CC(s)”. Using a computability closure, the example constraint
f(1,F) > £(0, \x.g(z)) can be oriented, since \zx.g(z) € CC(f(1, F)).

Here, we shall not consider the computability closure. Instead we look at a
recent extension of HORPO, which removes the need for a computability closure.

100

Chapter 5 — An Iterative Path Ordering

5.1.4 The Computability Path Ordering (CPO)

The computability path ordering from [19] is restricted to AFSs where all func-
tion symbols have a base type as output type. The method uses a type ordering
in addition to the precedence and status on the function symbols. This is a
quasi-ordering >1 with strict part >7 = >p \ <, which satisfies the following
requirements for all o, 7, p:

well-foundedness >7 U >_, is well-founded
here, >_,7 is given by: 0 =71 >_, 0;

right arrow subterm o —7 > 7;
arrow preservation o —7 = piff p =o' =7 witho’ =r cand 7’ =1 7;

arrow decreasingness if 0 — 7 > p, then either 7 >r porelse p = o/ — 7/
with o =7 ¢’ and 7 > 7'.

Using this type ordering, the authors of [19] define an accessibility relation. This
relation is based on the following definition: let + denote a base type;

* Positive(o1 —...— 0, —1) = {¢t} U Negative(o1) U ... U Negative(o,,);
* Negative(o1—...— 0, — 1) = Positive(o1) U ... U Positive(oy,).

The set Acc(f) of accessible argument positions of a function symbol f : [0 X ... x
on] —> ¢ is the largest set of integers i € {1,...,n} such that:

* no base type x with k > ¢ occurs in o;
* no base type x with k = ¢ occurs in Negative(o;).

The accessibility relation, ..., is the smallest transitive relation such that for
all function symbols f and all ¢ € Acc(f): f(s1,---,8n) D>ace Si- For example, if
ordrec : [ord X a X ord — a — a X (nat — ord) — (nat — a) — a] — a and
lim : [nat — ord] — ord, then the meta-variable F is accessible in the meta-
term ordrec(lim(F),Y, G, H) provided ord >r nat. The accessibility relation is
typically used to access higher-order subterms which would cause problems? if
all base types were equal.

The full reduction ordering CPO is an ordering on terms (technically AFS-terms,
but terms in an AFS and in an AFSM use exactly the same definition) built over a
signature which satisfies the restriction that all symbols have a base output type.
It is given by the clauses below, where X is a set of variables, - is the reflexive
closure of =%, and for s : o and ¢ : 7, the notation s >-» t denotes that s = ¢
and o > 7. Similarly, s =2 ¢ denotes that s =% ¢t and ¢ > 7. The set X will

2In particular, problems of the “unwittingly encoding the untyped A-calculus” kind.

5.1. Existing Path Orderings

101

be used to keep track of the bound variables encountered “above” the right-hand
side of the current constraint.

Unlike its predecessor, CPO uses a quasi-precedence where » is not neces-
sarily the reflexive closure of », so = may be more than just equality.

1. s

= f(s1,...,8,) == tif f € F and at least one of:

a) te X;

b) t =g(t1,...,tm) with f =g, s =X t1,...,5 = t,, and
[81,.‘.,8774] (>/V]JW @] ji(écs)stat(f) [tl,.‘.,tm}

X,s
acc

where ¢ : ¢/ 375 u : 7 if the following requirements hold:
* o' >p 7]
o U=u-wy W
* qPacc Vs
o 5% ; for all w;;
c) t=g(t1,...,tm) with f » gand s =% ¢; for all 5;
d) t=tg-t;-- -ty and s =X t; for all 4;
e) t = Ar.gand s =XV1=} ¢;
f) s; imT t for some 7;

g) ¢ ,ﬁ% t for some ¢ such that s; 1> ,.. g for some 1.
= q-u =~ t if at least one of:

a) te X;

b) t =v-w and {{q, u}}(>®T)mul{{U7 w}};
¢) t=MAr.gand s =X ¢

d) g=F torurXt;

e) ¢ = Ar.vand v[z :=u] =¥ t.

~

= \z : 0.q =~ tif at least one of:

a) te X;
b) ¢ z7 t;
) g=u-zandu =X t;

d) t=Xy:7uand o =r 7 and gz := 2] =% uly := 2] for some fresh
variable z;

e) t=Ay:7uand o £y 7 and s =~ w.

The authors demonstrate that =9, is a reduction ordering. We might also denote
this relation as >cpo.

102

Chapter 5 — An Iterative Path Ordering

Example 5.8. Consider Brouwer’s Ordinals.

0 : ord
s : [ord]—ord
lim : [nat—ord]—ord
ordrec : [ord X a x (ord—a—a) X ((nat—ord)— (nat—a)—a)]—a

ordrec(0,Y,G,H) = Y
ordrec(s(X),Y,G,H) = G-X - ordrec(X,Y,G, H)
ordrec(lim(F),Y,G,H) = H-F -)Ax.ordrec(F-z,Y,G, H)

The first rule is oriented with clause 1f. The second rule is oriented with clause 1d,
using clauses 1b and 1f (multiple times) for the resulting constraints. Using a
type ordering with ord > nat, the last rule is also oriented with clause 1d.
This gives proof obligations ordrec(1im(F),Y,G, H) =% H (which holds by
clause 1f), ordrec(1im(F),Y,G, H) =? F (which holds by clause 1g), and
ordrec(lim(F),Y,G, H) =° Az.ordrec(F - z,Y, G, H).

This last constraint holds by clause 1e and 1b which (omitting the constraints
we can easily handle with 1f) yields the proof obligations ordrec(1im(F),Y, G,
H) ~{=} F .2 (which holds by clauses 1d, 1g and 1a), and 1im(F) —lz}ordrec(...)
F -z (which holds because ordrec(...) ~{#} z by clause 1a).

Note that we could not deal with this rule using the original HORPO; we
needed accessibility for the last rule.

Not including the type ordering and definition of accessibility, nor a possible
equivalence relation that we might wish to add to follow the definition of RPO,
or additional rules for meta-terms, this definition spans a full page. It can be
simplified a bit, however: if s >®T t, then any > clause in its derivation either
has the form ¢ =% u with ¢ a functional term, or ¢ >9 u. The proof proceeds
by induction: we assume that s : ¢ =% ¢ : 7 and either s is a functional term, or
both X = () and o > 7, and then prove that the same holds for all clauses used
in its derivation.

Thus, we lose some cases, and do not always have to keep track of variables.
Still, this definition is a good deal more involved than the first-order definition.
This is inherent in the design: the ordering aims to be as powerful as possible.

The iterative path ordering which we will see next, and its recursive variant
which we will study in Section 5.4, are not based on CPO. Rather, the starting
point is ILPO; the resulting reduction pair has much in common with CPO, but
differs in several important respects. As a side bonus, the definition of HOIPO
also provides a new iterative path ordering for first-order systems, which corre-
sponds to the full definition of RPO present in Section 5.1.1.

Figure 5.1 gives an overview of the systems discussed so far in their mutual
context. For a more complete picture, “RPO without ~” (that is, RPO where no
equivalence relation is used, and where ~ is just equality) is included, as this is

5.2. The Higher-Order Iterative Path Ordering (HOIPO)

103

the version of RPO which HORPO is based on. A horizontal line in the diagram
indicates an equivalence, a vertical or diagonal line indicates inclusion.

CPO o StarHorpo @ -------- * HOIPO

’
’
’
.

HORPO e

.

RPO e
without ~
[] []
LPO ILPO

Figure 5.1: Iterative and Recursive Path Orderings — the solid lines represent existing
results, the dashed lines represent the two new results presented in this chapter.

The plan for this chapter is given by the dashed lines: we will define an ex-
tension of the iterative lexicographic path ordering, and an equivalent recursive
counterpart which builds on the recursive path ordering. This new relation will
strictly extend the higher-order recursive path ordering but will not extend the
computability path ordering. Rather, the definitions will be incomparable.

5.2 The Higher-Order Iterative Path Ordering (HOIPO)

To extend ILPO in as natural a way as possible to the higher-order case, we
should ideally avoid special cases. One measure to simplify the definitions is to
not consider application as a special symbol; this way we do not need a parallel
to case 2 of CPO. Functionally, we avoid application by restricting the method
to application-free AFSMs. That is, AFSMs (F,R) where no applications occur
in either side of any rule, and where the rewrite relation is restricted to terms
which do not contain applications.

We saw this as the IDTS-formalism from Chapter 3.2. As observed there,
limiting interest to application-free AFSMs is not a real restriction, since every
AFSM can be transformed into such a form. For example, a rule

map(F, cons(X,Y)) = cons(F - X,map(F,Y))
is translated to

map(F, cons(X,Y)) = cons(@™**7"**(F, X) map(F,Y))

104

Chapter 5 — An Iterative Path Ordering

and additional rules
Q77" (Ax.F(z),X) = F(X)

are added for all types o, 7 to simulate 3-reduction. We will say some more about
this in Section 5.5. For now, we will just limit interest to application-free meta-
terms. Other than this, there are no restrictions. Unlike CPO, function symbols
may have an arbitrary output type.

With an eye on the extensions of Chapter 6, and possibly other transforma-
tions, we will include one new “special case” feature: minimal elements.

In the application-free setup used in the coming sections, we will define a
strong reduction pair, which, in the absence of S-reduction, does not need to
include beta. That is, a pair (7, =) of a quasi-ordering and a compatible well-
founded ordering, such that both relations are monotonic and meta-stable. In
Section 5.5 we will use this reduction pair for application-free meta-terms to
create a strong reduction pair for unrestricted AFSMs.

Towards defining an ILPO-like strong reduction pair, let ¥ = Fy W {l, | o a
type} be a set of function symbols, and let 7* be F extended with for every
function symbol f o1 X ... x 0,] — a € Fy, infinitely many new “marked”
symbols fr i1 X...X0p X T1 X ...Ty| — p. Such a symbol
is added for all m, and all types Tlyenvs T, P

The symbols fZ , take possibly more arguments than f itself, and may have
any output type. With this choice, we avoid certain limitations in what a term
of the form f*(3) can be reduced to. Note that no marked symbols are added
for the special symbols | ,. Types will commonly be omitted when they are clear
from context. For a term s = AZ. f(3) with f € Fi, let s* denote A\Z.f*(3), where
7 is the output type of f; s* is undefined if s does not have this form.

Now we fix a precedence » on F; (which does not need to satisfy any addi-
tional constraints; we may have a precedence where = is not the equality), and
choose a status function stat which maps the symbols of F; to {Lex, Mul}. The
set of rules R* is generated by the rule schemes in Figure 5.2, each of which
represents a finite or infinite number of rules. We will informally discuss these
rule schemes afterwards.

Explicit type denotations for the f* have been omitted; the rules preserve
types, so for instance in the put rule, if f : [¢] — 7, the f* should be read as
fr. In the select rule, if the f* on the left-hand side has a type denotation
d,7and Z; : [p1 X ... X pm] — p, then the right-hand side should be read as
Zi(f§7p1(Z), cee f; o (Z 7)), and so on. The legality of the last rule, labelled bot,
is questionable, since we normally do not permit rules whose left-hand side is a
meta-variable. However, this system is not expected to be terminating, and we
can easily adapt the definition of IDTSs to allow such rules.

The higher-order iterative path ordering (HOIPO) is the relation =}.. This
relation is also denoted =,.

Comparing these rule schemes (usually just called rules) to the definition of
ILPO from Section 5.1.2 there are some observations to make:

Tl; Tm,P

5.2. The Higher-Order Iterative Path Ordering (HOIPO)

105

I
f*
f*
f*

f*

Iz
I
I

Z

ZL,...,Z”) :>put f*(Zl,...,Zn) . .
(Z) = (44, .. .,/\f.Zi(f)J ces Zn) —select Zi(f(2),...,f*(Z))
(%17"-7Zn) :copyg(f*(z)v"wf*(z))iff»g N .
(Z) = f(Z1,. .y Siye s Zn) =1ex 9(Z1y .y 85, [5(2), ..., [*(2))
if f=g, stat(f) = Lex, i < ar(f), i—1 < ar(g)
where either i > ar(g) and s; = Z,,
or ar(g) > iand s; = A& h(Z}(Z),. .., Z}(&)) and st = AZ.h*(Z/(Z))
note: if ¢ > ar(g) the right-hand side should be read: g(Z1,...,Z;—1)
(81, ey Sn, Zn+17 e, Zm) = mul g(tl, e ,tk)
if f =g, stat(f) = Mul, ar(f) = n, and each s; is either a unique
meta-variable Z; or has the form A:E.h(Z:f(f)); each t; is some s; if s;
is a meta-variable, or 8% otherwise; each s; which is a meta-variable
occurs at most once in {{t1,...,t;}}. Moreover, {{5}} # {{{}}.
Z17---aZ'n,) = abs Al‘fﬁ (Zl,...7Z,L,$)

,THp(G,T,p

Zl, ey Zn) :>equiv 9(217 ey ZTL)

if f=g, stat(f) = Lex and ar(f) = ar(g) =n
Z17 ey Z’n) :>equiv g(Zﬂ'(l)7 M) Zﬂ(”))

if f =g, stat(f) = Mul, = a permutation and ar(f) = ar(g) =n
Spot Lo if Z:0

Figure 5.2: Rules of HOIPO

The first four rule schemes essentially correspond to the rule schemes of
ILPO; the next deals with multiset status, and the abs clause is new, for
dealing with abstractions. The two equiv rule schemes are inherently non-
terminating, and are used to generate the equivalence relation which cor-
responds to ~. The bot rule reduces any term to a “minimal symbol” L.

The put rule is similar to its first-order counterpart: add a mark to the
function symbol, without changing types. As with ILPO, the star denotes
an intention to make the term smaller.

The select rule adds new functionality: it can be used in the same way
as the first-order select rule (taking for ¥ the empty vector), but also
deals with functional subterms. For example, if £ : [0 x (7 — 0)] —
o, then £% (a,Az.g(z)) reduces with the select rule to either a or to
g(f%,(a,Az.g(z))). Note that f* might have a different type in its occur-
rences in the right-hand side than in the left-hand side (in the example, this
happens if o # 7).

The copy rule corresponds closely to its first-order counterpart, but again,
the f*(Z) might need to be retyped to fit at an argument position.

106

Chapter 5 — An Iterative Path Ordering

* The lex rule is where it gets interesting. Mostly, this rule stays true to
its first-order counterpart (permitting for the necessary type-changing of
marked terms), but the subterm which is marked might be an abstraction.
Moreover, since f*(8) may have more arguments than ar(f), the subterm
which is marked must be in the “original” set of arguments.

* This definition of the mul rule diverges both from the choice made in [72]
and the one in [77]. Essentially, a term f(s1,...,8n,qnt1s > k) = mul
g(t1, ..., tm)if f = gand stat(f) = Mul, and moreover {{5}} (= put) prur {{}}-

* The abs rule scheme simply introduces an abstraction; this rule scheme is
the only one which alters the arity of some f*.

How can we use this new rewrite relation? Certainly, =, is non-terminating.
In the first-order case, termination is proved if [=} r for all rules [= r in
the original system, but doing something similar here is a bit troublesome: both
because even on star-free terms =, is not terminating, and because =} is a
relation on terms, and the rules use meta-terms. However, both objections are
easily remedied.

First, let us consider an extension of the definition of a reduction.

Definition 5.9 (Meta-rewriting). A meta-substitution ~ follows exactly the def-
inition of a substitution from Chapter 2.2, but maps to meta-terms rather than
just terms. Applying a meta-substitution is defined the same as applying a sub-
stitution. A meta-context is a meta-term with exactly one occurrence of a special
symbol [J,,.

As with terms, we say s =% t for some set of rules R and meta-terms s, ¢ if
either s = C[ly] and ¢ = C[rv] for some meta-context C, rule | = r and meta-
substitution v, or s = C[(Az.q) - u] and ¢t = Clg[x := u]] for some meta-context C
and meta-terms ¢, u.

Denoting =y for the relation AZ.s = \put AZ.s* (where # may have length
0), we have:

Theorem 5.10. The pair (=7}, = xput - =) is a strong reduction pair on applica-
tion-free meta-terms over F.

Note that s =)y - = ¢ if and only if s* =7 ¢.

Proof. The last part of the proof, well-foundedness of = .t - =, is postponed
to Section 5.3, but this theorem will not be used in that section.
It is evident that both =} and =), - = are transitive (since =)py is
included in =), that the former is reflexive, and that the pair is compatible.
Moreover, =, is monotonic by the definition of (meta-)rewriting. As a con-
sequence, =; is monotonic as well, and so is =)p.; - =5: we observe that
(Ax.8)* = Ax.s*, and if sf =7 t;, then either

T (815 s 80y Sn) =ma F(S1,---,80, ..., 8n) (if stat(f) = Mul)

5.2. The Higher-Order Iterative Path Ordering (HOIPO)

107

or, if stat(f) = Lex:
f*(slv"'usia"'7sn) =lex f(slw"vsz(vf*(;)w"7f*(§))

:>:e1ect f(817"'73:7---78n)

Thus, if s = C[t] and t = et - =5 ¢, and C is an application-free context (not
meta-context!), then s =, s* =5 C[t*] = Clq] as required.

As for (meta-)stability, for any substitution whose domain contains FMV (s)
we have sy =7 tv, and if the reduction s =, t is at the top or directly below an
abstraction at the top, then even sy =, tvy. This immediately gives stability of
the pair. The truth of these two claims follows in two steps:

(I) Let s be a meta-term, + a meta-substitution on domain FMV (s) and § a
substitution whose domain contains FMV (sy), and assume that the free vari-
ables in s do not occur in dom(d). Then (sv)d = s(vd). This holds with a simple
induction on the form of s. The variable case is obvious by the domain restriction
of 4, the case of a functional term and abstraction just use the induction hypoth-
esis, and if s = Z(s1,..., Sn), then consider . We can write v(Z) = Az ... x,.t,
and have (s7)0 = t[z1 := $17,...,&n = $pY]0 = té[x1 1= 5179, ..., Ty := $p7Y0)
since the z; do not occur in dom(d) (which we can assume by a-conversion).
On the other hand, s(vd) = td[z1 := s1(79),...,Tn = $p(70)], which by the
induction hypothesis is the same thing.

(I) The two claims now hold by a straightforward induction on the form of
s. In the base case, s = [d and ¢t = rd for some meta-substitution v on domain
FMV(l) and rule I = r, we use that sy = [(dv) =, r(dy) = tvy (the rules of
R* do not contain free variables). All induction cases are obvious. The least

trivial of them is when s = Z(s1,...,8;,...,8n) and t = Z(s1,...,8,,...,8pn), i
which case, writing v(Z) = Az ...z,.q, we have sy = ¢q[z1 = s17,...,2; =
5i%, .y Ty = SpY] =R Q@1 = S1Y,. .., T = Sy, .., &y = spy] =ty b

induction hypothesis.
Finally, = pwe - =7} is well-founded by the combination of Lemma 5.13
and 5.18, which we will see in the next section. O

Example 5.11. Recall the recursor for the natural numbers:

rec(0,Y,F) = Y
rec(s(X),Y,F) = F-X -rec(X,Y,F)

To prove its termination, it suffices to convert it to an IDTS by the transformation
described in Chapter 3.2 (a transformation which preserves and reflects termina-
tion), and show that:

rec*(0,Y,F) =i Y
rec*(s(X),Y,F) =i @retwmet(@rateatmat(p X)) rec(X,Y, F))

As a precedence, let rec » @77 for all o; despite the infinite number of function
symbols, this precedence is well-founded. The first rule is easily disposed of: we

108 Chapter 5 — An Iterative Path Ordering

immediately have rec*(0,Y, F') =e1ect Y. For the second rule:

rec*(s(X),Y, F)

:>C°PY @nat,nat (recnat—mat(s(X)a }/a F)a reC*(S(X), Yv F))
=m1 @ (rech, o (s(X), Y, F),rec(s*(X), Y, F))
setect @(recy . (s(X), Y, F),rec(X,Y, F))
:>C°PY @nat nat (@nat onatmar (re nat—)nat—)nat(s()a Y’)
rec*(s(X),Y,F)),rec(X,Y, F))

Sgelect @PATMAE(@uatratmat([rec*(5(X),Y, F),rec(X,Y, F))
= celect @nat,nat(@nat,natmat(() rec(X, Y-7 F))

:>put @nat,nat(@nat,nat—)nat(() rec(X Y F))

:>select @nat,nat(@nat,nat—)nat(F X rec(X Y F))

Here, type denotations are included for the rec* only where the typing diverges
from the type declaration of rec.

Example 5.12. For an example where meta-variables are used in a more inter-
esting way, consider map from Example 2.3; assume that all base types have been
collapsed to the same base type o. Choosing a precedence map » cons,nil and
taking Mul as the status of all function symbols, we immediately obtain that
map*(Az.F'(z),nil) = copy nil. The second rule requires a bit more work:

map*(Az.F(z), cons(X,Y)
=copy cons(map*(Az.

F)
=l cons(map* (Az.F

F

A\T.

Y
ap(Az.F(x),cons*(X,Y)))
),map(Az.F(z),Y))

;map(A\z.F(x),Y))

)

((X,Y)),map*(Az.F(x), cons(X,
(ma (achons(X7 X
= select CODS(IH (((X
=select cons((m *(
Sselect cons((con (X)),map()\:v.F(x Y))
= put cons(F'(cons (Y)),map(Az.F(x),Y))
= select COIIS(()

F
F
F
F

5.3 Termination

To complete the theory of Section 5.2, we must see that =, - = is well-
founded when considered as a relation on terms over F. Following the proof
approach used for the first-order case in [73], we show this by means of an
auxiliary relation, which contains the restriction of =, - = to star-free terms
and is well-founded. Unlike [73], this auxiliary relation is not itself a (meta-)
rewrite relation in any of the common formalisms, both in order to simplify the
termination proof, and because it is combined with an equivalence relation.

The relation < that we will define in this section is a relation on AFSM-terms.
There is no restriction to purely functional terms. However, < itself will not be a
rewrite relation. It is merely used to prove termination of = . - =} and serves
no other function.

5.3. Termination

109

Fixing a set of function symbols F = F; W {1, | o a type} as before, and a
precedence » and status function stat on F, let the set 7* be given by:

{f“:0|f:0€Fi}

U{L, |0 atype}

U{fl o pi[@XTix. o x 1] —p|
f:[o]—aeF, neN, r,..., 7, ptypes}

That is, 7 consists of all “minimal” symbols in F, and in addition contains for
all normal symbols f : [¢] — « in F; a symbol f“ : o, as well as infinitely many
symbols fZ : [0 x 7] — p. Such symbols exist for all » and combinations of new
input types and output type.

Note that this is very similar to the definition of F*, but the original symbols
are marked with an w (the first limit ordinal), and rather than one marked sym-
bol fz | for all function symbols f and types 7, p, we introduce countably many
symbols fZ marked with a natural number.

We consider the equivalence relation ~, which corresponds closely to the first-
order definition, on terms over F“. Here, s ~ t can only hold if s and ¢ have the
same type!

* x ~ yif x = y are variables;
° J—O’ ~ J—O’;
e \r.s~ Mx.tif s ~t;

* f(s1,.-.y8n) ~g(t1, ..., tn) if f =" g () and:
— if stat(f) = Lex, then s; ~ t; for all 4;

— if stat(f) = Mul, then there is a permutation 7 of {1,...,n} such that
always s,.(;) ~ t;; if f = h* for some k, then 7 (i) = i for i > ar(h).

(**) Here, f =’ g means that either f = h%, g = and h = i, or [=
h% ., g =% and h ~i. Inboth cases, ar(h) = ar(i) must hold. The status
function is assumed to be extended to marked symbols, so stat(h:) =
stat(h*) = stat(h). 7

We will consider terms over F*, which may contain application. For any term of
the form s = \Z.f“ () with f € Fy, let s” denote the term \Z. f7 (%) if f : [6] — 73
s" is not defined if s has a different form. Terms of the form \Z.f“(t) are called
markable.

Now consider the relation < on terms over F%, given by the following
clauses:

110

Chapter 5 — An Iterative Path Ordering

N

> W

8.
9.

f(5) = f2(5) foranyn € Nand f : [¢] — 7T € Fy
f;)tl(g) S f;t’pl(g‘)...fg’pm(g’) ifs;:p1—... =2 pm—T
P3N = g2 (5, (3 3, BN f B g (o1 X X p] =7

fg:l(slwwysnma <_>gw(sla-~'a3?7f§7ai+l(§v£§7"'7f§,ak(‘§f>)
if f:[p1 X... X pm]—>p and f = g and stat(f) = Ler and
gipr X oo X pi X Qi1 X .o X] —T,
where k = ar(g) > i—1and m > i;
if ar(g) = ¢ — 1 then s; does not need to be markable

. f;L,tl(817"~78m7{> — gw((h""’q}“)

if ar(f) =m, f = g and stat(f) = Mul, and {{3}} Da {7} where
u is the smallest relation such that v 3 ™ for all u,n, and the
corresponding J is its reflexive closure; ¢ (¢) must be well-typed,
and must have type 7

n+1

#rp(8) = Aw.f2 (5,x), for some freshz: 7 €V

Some monotonicity clauses:

F(S1yeeySiyenaySn) = f(S1,.00,8h . 8n) ifs; sl feFv
st <= st if s s
As. = As. if s — s

The fact that the right-hand side of an application does not reduce is delib-
erate; — does not need to be completely monotonic.

(Ax.s) -t — s[x =]

s— ly,ifs:cand s # 1,

Checking each of the clauses, — preserves types, and reduces well-typed terms
to other well-typed terms over F7“. Moreover, the relation is almost stable (if
s < t then sy <~ tv), and preserves ~ (provided we add a clause s; - s3 ~ t1 - o
if each s; ~ t;): if s ~ t and t — ¢, then there is some u such that s — u and
q ~ u. Thus, ~ - = C < - ~. We will see shortly that —* defines a well-founded
ordering on terms. The relevance of this is given by the following result:

Lemma 5.13. If — is well-founded on terms over F*, then =y - =% is well-
founded on meta-terms over F.

Proof. For s an application-free term over F, and ¢ a term over F%, let s R™ ¢ if
this can be derived with the following inductive clauses:

r R" =z if 2 avariable, for alln € N
Ar.s R"™ Azt if sR™t

f(3) R* f“(s) if feF, eachs; R"s|
fE.(5) R fE (§) if N>k>n, eachs R" s

5.3. Termination

111

Note that a term containing stars is associated to infinitely many terms over
F¥, but to a star-free term we can assign a unique term frans(s) such that
s R™ trans(s) for all n € N.

By stability of = »,u - =7, it suffices to see that for any two application-free
terms s,t: if s =puetop - =5 ¢ then trans(s) —* trans(t). We don’t need to
prove anything special for meta-terms, since an infinite reduction on meta-terms
$1, 82, ... can be transformed into an infinite reduction on terms sy, s27, . . .

Claim: if s,t are application-free terms over F* such that s =, t, and s RN *1q
for some term q, then there is a term u such that t R w and either ¢ ~ u or
q —7T u; if the step s =, t uses a put rule even q — u.

Suppose the claim holds, and recall that: (*) ~ - < C < - ~, and ~ is an
equivalence relation. Towards a contradiction, suppose that < is well-founded
while =),y - = is not well-founded on terms over F. Thus, there are star-free
terms si, so, ... such that each s; =,y - =% s;41. Suppose the reduction from
s; to s;41 has length n. Since s; is star-free, we know that s; R"*! trans(s;),
and by the claim and (*), we have that trans(s;) < u ~ v for some terms u, v
such that s;,; R® v. But, considering the definition of R, this term v can only
be trans(s;11). Thus, trans(sy) <+ - ~ trans(sy) —T - ~ ... gives an infinite
descending sequence, which, using (*) again, generates an infinite descending
sequence over <, contradiction.

It remains to be seen that the claim holds, which we will do by induction on
the size of s. To this end, we make the following observation: (**) If v RN+ g,
then also v R w. This is obvious due to the > n in the definition.

Now, let s =, t and suppose s RV *1 q. We must find some v such thatt RY u
and either ¢ ~ u or ¢ =™ . Consider the form of s and of the reduction. First
SUPPOSe s =0t t by a topmost reduction, so ¢t = 1. Ifalso s = |, thens ~ ¢
and we are done, otherwise s < t by clause 9. Otherwise, either the reduction
uses another rule, or is done in a subterm. It is clear that s cannot be a variable,
as variables do not reduce (other than with =,).

Suppose the reduction is done in a subterm. Since s is application-free, there
are two possibilities. Either s = f(s1,...,8i,...,8n) =% [(S1,.-., 8, ..., 8n) =t
for some f € F* or s = A\z.s’ =, Az.t’ = t. In either case, we just use the
relevant monotonicity clause, and (**). For example, if f = g*, then ¢ has the
form ¢*(qi,...,q,) where each s; RN*1 ¢; and k > N + 1. By the induction
hypothesis we find ¢, such that either ¢; —* ¢} or ¢; ~ ¢}, and s, R" ¢. Thus,
using the first monotonicity clause or the definition of ~ respectively, either ¢ —*
u = g*(q1,...,q},---,qn) OF ¢ ~ u, and moreover ¢t R™ u because also k > N,
each s; RV ¢; by (**), and s, RV ¢| as we have seen. The case where s is an
abstraction is even easier. Note that the number of steps in the reduction g <+ u
or ¢ ~ u corresponds with the number of steps in the reduction in the subterm.

What remains is the base case: s =, t by a topmost step. We consider each
of the rules that might have been used.

112 Chapter 5 — An Iterative Path Ordering

put s = f(3), t = f*(5) and ¢ = f“(q) with each s; RN*! ¢;. Then ¢ — u :=
N (@), and indeed t R u by (**). Note that a single put step is replaced
by a single < step, a property which is preserved in the induction step.

select s = fz (5) with s; = AZw and t = v[zy := f5 , (5),....2n = f5, (3)],
using the right retypings; ¢ = ;ff;l(q’) for some k > N. Then we also have
f3,,(8) RN f% , (q) for all j (using (**)). We can write ¢; = AZ.w with
v R,

Now note: if s’ RP ¢’ and , ¢ are substitutions on a domain of variables,
such that each v(x) RP 6(z), then also s’y RP t', as is demonstrated by a
simple induction on the form of s'.

Therefore, t RN u := w(zy := f% (@),...,xn := f%, (7)]. By clauses 2

a,p1

and 8, also ¢ < ¢; - f% , (9)--- f% , (@) =" u.

copy s = f5.(5)andt = g(f7 ,,(5),-.., f5 ,, (5)) with f » g, using the right re-
typings. Write g = f371(2) with k > N let u = g*(f3,, (@)...... £5,,, (D).
Then ¢ — u by clause 3, and ¢t RN u by (**).

lex s = f*(s1,...,8,) and ¢t = g(s1,...,8i—1,85, f*(8),..., f*(5)) with f = ¢
and stat(f) = Lex and i < ar(f), i —1 < ar(g). We can write ¢ =
" qi,...,q,) withn > ar(f) > iand k > N. Ifi — 1 = ar(g),
sot = g(s1,...,8_1), then let u := ¢*(qy,...,q;_1). Certainly ¢t RV u,
and also ¢ — wu by clause 4. Otherwise, s; is a markable term; let u :=
a“(q1,- -, qi—1,4%, F*(@), .. ., £¥(q)), with suitable retypings. Then clearly
t RN wu, and also ¢ < u by clause 4.

mul s = f*(s1,...,8m,...,5,) and t = g(f) with f = g and stat(f) = Mul
and m = ar(f). By the rule definition, choosing for C' the set of indexes
where the rule uses a meta-variable, and for D the set where it does not, we
can find some function = mapping {1,...,ar(g)} to {1,...,m} such that if
m(i) € C then sr(;) = t;, and if w(i) € D then s} ;) = t;. Moreover, is
injective on C, and {{5}} # {{t}}, which means that either D is non-empty,
or {{t}} is a strict sub-multiset of {{5}}.

We can write ¢ = f**1(q1,...,qm,...,q,) with each s; RN*! ¢;. Let u :=
9% (u1, ..., Uar(g)), Where uj = qr(;) if 7(j) € C, and u; = ¢ if 7(j) € D.
Then clearly ¢t RY u. We also have ¢ — u if we can prove: {}} D {u}}.

Now, let A be the set of indexes j such that j € C and there is some ¢ such
that (i) = j; let B:= {1,...,m}\ A. Then B is non-empty, because D C B
and, if {}} has fewer elements than {{5}}, then at least one element of C'
does not occur in A. Since 7 is injective on C, for every element j of A there
is exactly one i such that w(i) = j. For all ¢ € {1,...,ar(g)}, if 7(i) € A,
then 7(i) € C s0 qr(;) = uy, S0 certainly q,¢;y 3 uy, and if 7(i) € B, then
(i) € D, so q;(i) = u;, and therefore ¢.;) 3 u;

5.3. Termination

113

abs s = fz (5) and t = Az.f;_ (S,x). We can write ¢ = f;tip((j) with
k > N. Choose u := Az.f%_ (¢, x). Then both ¢t R u, and ¢ — u by
clause 6.

equivl s = f(3), t = ¢(8) with f = g and stat(f) = Lex; let ¢ = f“(g) and let
u = g*(q). Then ¢ ~ v and t RN u by (**).

equivIl s = f(s1,...,5,) and t = g(sr(1),--.,5x(n)) for some permutation 7
and symbols f ~ ¢ with status Mul. Writing ¢ = f“(q1,...,q,) choose
w:= g*(qr(1)s - - » @n(n))- Then clearly t RN*T! u so also ¢ RN w by (**), and
q ~ u.

The rules bot we already handled. O

Having proved this much, it only remains to be seen that — is indeed terminat-
ing. To see this, we will use Tait’s and Girard’s computability technique. The
definition and proof here follows closely that in [63] (but can be simplified be-
cause the application - is only monotonic in its first argument).

Definition 5.14 (Computability with Respect to —). A base-type term is com-
putable if it is terminating under <. A term s : o — 7 is computable if for all
computable terms ¢ of type o also s - t is computable.

We quickly obtain the following results:
Lemma 5.15. For all types o:

1. If s : o is not an abstraction, it is computable if all its direct — reducts are
computable.

The minimal symbol 1, is a computable term.

2.

3. All variables of type o are computable.

4. All computable terms of type o are terminating.
5.

If s : o is computable, then for all t with s — t also t is computable.

Proof. By joined induction on o. If ¢ is a base type, then all five claims are
obvious because computability coincides with termination. We merely need to
note that the 1, symbols do not reduce to anything, and a variable z : o reduces
only to 1.

If we know that the claims hold for ¢ and r, then they also hold for o — 7:

1. Suppose s is not an abstraction, and all its <-reducts are computable; s is
computable if s - ¢ is computable for all computable ¢ : o. By induction hy-
pothesis 1, s-t : T is computable if all its reducts are, so if |, is computable
(which is the case by induction hypothesis 2), and s’ - is computable when-
ever s — s’ (as this is the only other way an application reduces when its

114

Chapter 5 — An Iterative Path Ordering

head is not an abstraction). But this is obviously the case, since such s’ is
computable by assumption.

2. By 1 (which is already proved), |, ,, is computable if its direct reducts are;
since it has none, we are done.

3. By 1 (which is already proved), a variable x : ¢ — 7 is computable if its
direct reducts are. But this is only L, ., which, by 2 (which is already
proved), is computable.

4. To see that a computable term s : ¢ — 7 is terminating, suppose this is
not the case: s < s; — s3 — By induction hypothesis 3 variables
of type o are computable, so s - x is computable for some variable, and
therefore terminating by induction hypothesis 4. However, by clause 7 of
the definition of < also s - & < s1 - & < s9 - & < ..., contradiction.

5. Suppose s : 0 — 7 is computable and s < s’; we must see that s’ - t is
computable for all computable ¢ : 0. But this is obvious: s - ¢ is computable
by definition, and by induction hypothesis 5 its reduct s’ - ¢ is computable,
too.

O

Lemma 5.16. If s[z := t] is computable for all computable t : o, then A\x.s : 0 —T
is computable.

Proof. Assume s[x := t] is computable for all computable ¢ : o. Then also s itself
is computable, since s = s[z := z] and z is computable by Lemma 5.15(3). By
Lemma 5.15(4), s is terminating. Thus, let us prove the lemma with induction
on s, ordered with <. By the induction hypothesis, Az.s’ is computable for all
reducts s — s, because if s < ¢/, then s[z := t] — s'[x := t], is computable for
all computable ¢ by Lemma 5.15(5).

By definition, Axz.s : o — 7 is computable if (Az.s) - t is computable for all
computable ¢ : ¢. By Lemma 5.15(1) this is the case if all direct reducts of
this term are computable. It has two reducts: s[x := ¢], which is computable
by assumption, and (Az.s’) - t for some s’ such that s’ < s, in which case the

induction hypothesis gives computability of the result. O
Lemma 5.17. If f : [o1 X ... X 03] — 7 € F¥ and s1 : 01,...,8, : 0p are
computable terms, then f(si,...,S,) is computable as well.

Proof. In the definition of status, we have assumed that if stat(f) = Lexz, then
there is some N such that all symbols ~-equal to f have arity at most N. Let
maxarity be a function mapping f with stat(f) = Lex to the smallest such N.
We will prove, by induction on (f, (s1,...,8ar(s)): K, (Sar(f)+1,- - - Sn)), that
the term ff,fT(Sbm,Sn) is computable if all s; are computable, where k €
N U {w}, for f € F,. Note that if f = 1, we already know that the term is

5.3. Termination

115

computable by Lemma 5.15(2). The components of the induction are ordered
lexicographically. The first component, f, is ordered by » (with two ~-equal
symbols considered equal). The second component is ordered by <., restricted
to sequences of length at most maxarity(f) if the status of the first component is
Lex, otherwise by <,,,.;. This relation is well-founded when restricted to terms
which terminate under —, and this holds for the s; by Lemma 5.15(4). Note
that if f = g, then stat(f) = stat(g), and if this status is Lex then maxarity(f) =
maxarity(g), so this dependence of the second component of the induction hy-
pothesis on the first is not problematic. The third component, k, is ordered by
the normal greater-than relation for natural numbers, with additionally w > & for
all k € N, and the fourth by the multiset extension of <, which is well-founded
because computable terms terminate.

f*(5) is not an abstraction, so by Lemma 5.15(1) it suffices to see that all
its reducts are computable. We will consider each clause that might be used to
obtain s = f*(...) = ¢, and show that ¢ is computable. In several of the clauses,
the left-hand side has the form f;ftl(E') while the right-hand side has subterms
rk ,(8). In each of these subterms, note that we have not made any assumptions
about the o; and 7. Thus, this subterm is computable by the third component of
the induction hypothesis. Let us refer to this reasoning as (***).

1. The right-hand side is computable by the third component of the induction
hypothesis (the others are unaltered).

2. The right-hand side is an application of computable terms by (***) and the
assumption that all s; are computable.

3. This reduction lowers the first component of the induction hypothesis. We
merely need to see that indeed all subterms of the right-hand side are com-
putable, which holds by (***).

4.5 = fE(s1,. . 8m,...,8,) With m = ar(f) < maxarity(f), and ¢t =
g“(s1,...,s%, q) where stat(f) = Lex, f = g, all ¢; are computable by
(***), i < m and ar(g), which is the length of the sequence [sq,...,s¥, ql,
is at most maxarity(g) = maxarity(f).

As the first component is unchanged (modulo =), and all arguments of g*
are computable (both the ¢;, the s;, and sf by Lemma 5.15(5) because
$; =pus Sr), we can apply the induction hypothesis if the second compo-
nent (originally (sy, ..., s,) is decreased, which, following the definition of
the lexicographic extension, is the case both if ar(g) = i—1 and if ar(g) > 4,
because s; =put 57).

5. As in the previous case, this reduction keeps the first component of the
induction hypothesis unchanged, while lowering the second, as ¢ =pu: ¢™.

116

Chapter 5 — An Iterative Path Ordering

6. s = f;fti)p(@ and t =)\a:.f[’,fmp(i x). By the third component of the in-
duction hypothesis, fgm ,(5,q) is computable for all computable ¢ (note
that all arguments are still computable as required, and that the second
component is (si,...,8.(s)), and is not altered by adding an additional
argument ¢; the fourth component increases, but the third component is

more significant). By Lemma 5.16, this means that ¢ is computable.

7. The monotonicity clause reduces either the second or fourth component,
while keeping the others the same.

8. t = 1, is computable by Lemma 5.15(2).

O

The results on the computability of terms with various forms can now be com-
bined in one termination result:

Lemma 5.18. For all terms s and substitutions - where all ~(x) are computable
terms, sy is computable.

Proof. By induction on the form of s.

If s is a variable, then sy is either computable by Lemma 5.15(3) (if s ¢
dom(v)), or it equals v(z) and is computable by assumption.

If s = Az.t, then using a-conversion x can be assumed to be fresh, so § :=
v U [z := ¢] is a computable substitution for any computable term §. Then ¢ is
computable by the induction hypothesis, and t§ = ty[z := ¢|. Thus, A\x.(ty) is
computable by Lemma 5.16.

If s = f(s1,...,8,), then by the induction hypothesis all s;y are computable.
By Lemma 5.17 this means that f(s17,...,s,7) = sv is computable. O

Thus, all terms are computable (choosing for « the empty substitution) and there-
fore terminating (by Lemma 5.15(4)). This completes the proof of Theorem 5.10.

5.4 StarHorpo

The iterative method is elegant, but has a significant downside when trying to
prove termination automatically: it is not at all evident whether or not s =7 ¢,
and without a suitable reduction strategy, we have little way to test other than
reducing terms for an arbitrary amount of time, and seeing whether we find ¢
eventually.

Rather than defining a reduction strategy, let us study a recursive definition of
the same ordering. This will serve to provide some decidability for the relation
and give a direction for a future reduction strategy. Moreover, this makes the
relation more comparable to common definitions of the higher-order recursive
path ordering. We shall call the resulting reduction pair StarHorpo.

5.4. StarHorpo

117

To start, consider the following definition, which shall be needed to deal with
the select rule recursively. For meta-terms s : oy — ... = 0, — 7 and t; :
O1y...ytn 1 Op, let s(ty, ..., t,) be defined by the following clauses:

o if s = Axy...2p.q, then s(ty,...,t,) = q[z1 := t1,...,2, := t,] (this
includes the case where n = 0, so s() = s for any s);

e ifs=Axy...x5.f(81,...,8n) Withk < n, thenlet~ := [z :=1y,..., 2 :=
ty] and define s(t1, ..., t0) = f5, | o 2(517 s SmYs thtts o tn);

e ifs= Al‘l .. 'xk'f;17'~~7Pp70k+1—><--—.>gnﬁq'(81’ .. .,Sm) with k < n, then let o=
[21 == t1,..., 2% == tx), and define s(t1, ..., tn) = [} o o0 1o (517
o Sm Y thtts o tn)-

If s does not have one of these forms (for example, if n > 0 and s is a variable or
meta-variable), then s(ty, ..., t,) is simply not defined.

StarHorpo is a strong reduction pair (=, >,). Unlike the recursive definitions
we have seen so far, =, is not the union of -, with some equivalence relation.
Rather, the latter is expressed essentially as = xpyt - . This is both to preserve
a strong relation with the iterative setting, and because, in the setting with meta-
variables, the quasi-ordering >, should be more than the union of a strict relation
and an equivalence relation: it would be useful to at least have F(s) =, F(t)
when s >, t, butif F' is a meta-variable then neither an equivalence F'(s) ~ F(t)
nor a strict relation F'(s) >, F(t) would be preserved under substitution.

Definition 5.19. Let s =, ¢ if s* =, t, where =, is a relation on equal-typed
meta-terms, which is recursively defined as follows:
(Var) T . T if zeV

(Abs) .5 s Azt if s>t

(Meta) Z(5) . Z() if eachs; =, t;

(Fun) f(5) « g(t) if f=gand|s = [t]and 5= s t [1]
Pu) F(5) =t 0 fr(5) =t

(F-Abs) f*(3) » Azt if f*(Sx) =it

(Copy) f*(3) . g(t) if fwgand f*(3) =, t; for all i [3]

(Stat) (3 = gt) if frgand (si,...,Sa(s)) megstar(s) t [1]

and f*(5) =, t; for all i [3,4]

(Bot) s = Ls if s:o
[1] Here, we use the generalised multiset or lexicographic extensions of (=, =),
as defined at the start of Section 5.1.
[2] Here, the f*(S) instances are retyped to fit the type of s;. s; itself may not be
retyped, and the output type of s; must be the same as the type of .
[3] Here, the f*(3) instances are retyped to fit the type of ¢;.
[4] Note that if (s1,...,5,) =«gnu (t1,--.,tm), then automatically f*(5,q) = t;
for all ¢: this is easily seen with clause (Select), converting a clause s; >, ¢; into
s; =, t; either by (Abs) and (Put), or by (Bot).

=
>
>
>
(Select) f*(3) =, t if s (f*(3),..., f*(3)) =4 t [2]
—
t
t

118

Chapter 5 — An Iterative Path Ordering

This recursive definition corresponds in a close way to the definition of =, and
has been designed to generate the same relation. Let us boldly venture the fol-
lowing claim:

Claim 5.20. For application-free meta-terms over F:
s s=Xtifandonlyifs =, t
* S =put,top - = tifandonly if s =, t
Here, =7 is the extension of reduction to meta-terms from Definition 5.9.

Suppose Claim 5.20 holds. Then by Theorem 5.10, (>, >,) is a reduction
pair.

Example 5.21. Consider once more the main rule from Example 5.7. Choosing
again stat(rec) = Mul, we can prove its termination in a very similar way, but
using StarHorpo instead of CPO. Let rec » @7 for all o.

1. rec*(s(X),Y, F) =, @uatnat(qratnat—nat (7 X)) rec(X,Y, F)) by (Copy), 2
and 3.
2. rec’

nat-nat (8(X), Y, F) =, @etnamst (F X) by (Copy), 4 and 5.

3. rec(s(X),Y, F) =, rec(X,Y, F) by (Stat), remark [4] below the definition
of =,, 6 and two applications of (Meta) for the last two arguments.

4. recly marmat (8(X), Y, F) =, F by (Select), where F' = F' by (Meta).
5. rec*(s(X),Y, F) =, X by (Select), (Put) and 6.
6. s*(X) =, X by clauses (Select) and (Meta).

Example 5.22. Consider the map function which we proved to be terminating
with HOIPO in Example 5.12. The following reasoning proves its termination in
the recursive way, taking map » nil, cons.

1. map*(Az.F(x),cons(X,Y)) =, cons(F(X),map(Az.F(z),Y))
by clause (Copy) and 2 and 3.

2. map*(A\zx.F(z),cons(X,Y)) =, F(X) by clause (Select) and 4.

3. map*(A\z.F(x),cons(X,Y)) =, map(Az.F(z),Y) by clause (Stat), 5, 6, and
remark [4].

4. (A\x.F(x))(map*(Az.F(z),cons(X,Y))) = F(map*(Az.F(x),cons(X,Y)))
=+ F(X) by (Meta) and 7

5. \z.F(x) =, Ax.F(z) by (Abs), (Meta) and (Var).
6. cons(X,Y)) >, Y because cons*(X,Y)) =, Y by (Select) and (Meta).

5.4. StarHorpo

119

7. map*(A\x.F(x),cons(X,Y)) =, X by (Select) and 8.
8. cons(X,Y)) =, X by (Put), (Select) and (Meta).

Whether HOIPO or StarHorpo is a better choice depends on your preferences,
and the setting (for example, the recursive version is likely to be a better choice
for an automatic tool, and is used for instance in WANDA, as we will see in Chap-
ter 8, while the iterative approach is perhaps more charming for a classroom).

The rest of this section is dedicated to proving that Claim 5.20 indeed holds.
First, we shall consider an extension =¢ of >, to terms over F*, whose restriction
to terms over F is exactly =,. We will see that =, is included in ¢, that that
~ is included in =%, and consequently, that =% coincides with =% on star-free
terms. Next, we will see that =¢ is transitive, and therefore >, itself coincides
with =%. The proof of Claim 5.20 then follows quickly.

5.4.1 Extending -,

Claim 5.20 states a strong relation between =% and ~,. A first step towards
proving this claim is the following result, which shows that >, is at most as
powerful as =*.

Lemma 5.23. Let s, t be application-free meta-terms over F*. If s =, t then s = t.

Proof. By induction on the derivation of s =, t; consider the clause used to derive
this inequality.

(Var) = =% x because =7 is reflexive.

(Abs) Az.s =% Az.t because by induction s = t.

(Meta) Z(5) =* Z(t) because by induction each s; =* t;.

(Fun) If stat(f) = Lez, then f(5) =>equiv 9(5) =% g(t) because each s; =} ¢; by
induction hypothesis.

If stat(f) = Mul, then there is some permutation 7 such that s,y =, t;
for all 4. By the induction hypothesis f(5) =equiv 9(5x(1)s--+s5xn)) =%
g(tl, e ,t").

(Put) f(5) =pu f*(5) =7 t by the induction hypothesis.

(Select) Let s = f*(5) : 7 and s; : 07 — ... = 0, — 7. Suppose that s; =
AT1...xk.q and either k = n, or k < n and ¢ is not an abstraction. We have
s =, t because s;(f*(5), ..., f*(8)) = t, with exactly n repetitions of f*(5)
(which may have various types). By the induction hypothesis we are done
ifs = 5,(f*(5),..., F(3)).
If Kk = n, then indeed s =ge1ect qlz1 = [*(8),..., 2, := f*(5)], which is
exactly s;(f*(3),..., f*(3)).

120

Chapter 5 — An Iterative Path Ordering

If k < n, then s;(...) is only well-defined if ¢ has the form g(Z) or g*(#),
and s;(f*(5),.... f*(8) = g*(t7, [5 ... (5),---. [5,,.(5)), where v is the

substitution [zq := f5 , (5),...,zx = f5, (5)]. Writing § = [z; =
fé,pl (8),...,xn = f* (5’)] for fresh variables k41, - -, Ty, WE Can rewrite
this term as g* (£, Zp41, . .., 2)0.

Since s; = Az1,...,25.q =i A1, ..., Tp.g*(E, Tpi1,. .., x,), We indeed
have that s :>abs jselect S; < (g)v ceey f*(g»

(F-Abs) fz . (5) =abs Ax.f5 . (5, x), which by induction hypothesis =} Ax.t.
(Copy) [*(5) =copy 9(f*(5),...,f*(5)), and each f*(5) =} t; by the induction

hypothesis.

(Stat) Here, f*(5,q) >, g(f) because f ~ g, |5 = ar(f), 5 = sgstat(f) t and

f*(8) = t; for all i. Consider stat(f).

If stat(f) = Lex, then there is some i such that s; >, t1,...,8,—1 =& ti—1,
and either |t| = i — 1 < |5], or s; =, t;. In the first case, f*(5,1) =1ex
g(s1,-. -, Si— 1) =* ¢g(t1,...,t;—1) by the induction hypothesis on the in-
equalities s; >, t;. In the second case, f*(s”,ﬂ =1ex 9(51,--.,8i-1, 5],
(&), ..., (5 fg By the induction hypothesis, s; =% t; for j < .
sf =¥ t; (since s; >, t; means that s} =, t;), and f*(§',f) =%¥t; forj > .
Thus, f*(5,1) =1ex - = g(i) as required.

If stat(f) = Mul, then let |5] = n, |t] = m. There is a function = :
{1,...,m} = {1,...,n} and disjoint sets A, B such that:

* {1,...,n} = AU B with B non-empty;

* for every element j of A there is exactly one i such that 7 (i) = j;
e if n(i) € Athen sy =« t;

* if w(i) € B then s} ;) = ti.

Let uy,...,u, be defined as follows: if 7(i) € A then u; := s,(;), other-
wise u; := s . By the induction hypothesis, g(u) =} g(t). If, moreover,
f*(8,q) = g(@) we are done. To see that this is the case, let us construct
the exact instance of the mul rule which can be used for this reduction.

Let ! := f*(l1,...,ln, Zns1,---,Z), Where [; := Z; is a meta-variable if
either i € A, or there is no j with n(j) = i. Otherwise, s; is markable and
thus has the form AZ.h(7), so let I; := AZ.h(Z;(%)), where Z;(Z) should be
read as (Z;1(Z),..., Zip(Z)). Let r := g(r1,...,rm), where r; = Z.; if
1 € A, and otherwise r; = l;(i). This is Well-deﬁned since in those cases
l(iy is markable.

Certainly [= r is one of the mul rules:

5.4. StarHorpo

121

* not {{{}} = {{#}}, because if all 7(i) € A then m < n because B is
non-empty and 7 is injective on A

* each /; which is a meta-variable occurs at most once in {{7}}, for these
i are either in A, where 7 is injective, or /; is unused altogether

Moreover, there is a substitution v such that Iy = f*(s1,...,8n,q1,---,qk)
and v = ¢g(q1, - .., ¢m). This is obvious by the respective definitions.

(Bot) S = bot Lg.
O

It is harder to see that also = is included in >, since the single-step relations of
=7* are not included in »=,: >, is a relation on terms over F, and without having
a reduction strategy yet, it is difficulty to analyse, exactly, what =7 is.

In order to analyse =, in the same context as =,, we shall therefore consider
an extension, which coincides with >, on terms over F. Let s »¢ t if s* =¢ ¢, and
let =¢ be recursively defined by the clauses from Definition 5.19, and in addition:

(In) (3 =¢ g¢*(1) if f=gandar(f)=ar(g)=kand
(81, ceey Sk) tigstat(f) (tl, eee ,tk)
and |5] = |f] and s; =€ t; ifi > k

(Marked1) f*(5) =¢ g (t) if fwgand f*(5) =¢t; foralli

(Marked2) f*(3) =¢ g (1) if f=gand f*(5) =¢t,; forall i
and ar(f) =k, ar(g) = m and

(81, ceey Sk) >_iqstat(f) (tl, ce ,tm)

(Drop) (59 =5t if f*(5) =% tand[5] > ar(f)
(Swap) (81,0038, 85,...,8n) =S tif ar(f) < iand

Jr(s1, 00y 80e ey Siy ey Sn) 25T
(Arg) f*(5) =2t if f*(S.41,....q0) =¢ ¢ where each

¢; has the form f*(s1,...,sk)
with ar(f) <k <|3]
(Select) (9 . t if si{q1,...,qm) =« t, where each

g; has the form f*(s1,...,sk),
with ar(f) < k < 5]

Note that the new (Select) clause includes the old one, so we do not have to

consider the original (Select) clause when proving properties about =¢.

Let us start by making some straightforward observations about *¢.

Lemma 5.24. For all meta-terms s,t over F*:
1. ifs =S t, then s = t;
2. =< is reflexive;

3. iff(;ﬁ(é’) =< g,*IT(§') by clause (Marked1), (Marked2) or (In), then this holds
for any .

122

Chapter 5 — An Iterative Path Ordering

Proof. Ift = 1, then (1) holds by (Bot), otherwise s = AZ.q with ¢ an unmarked
functional term, and ¢ = AZ.u with ¢* »=¢ w; in this case we conclude with (Abs)
and (Put).
(2) holds by induction, using clauses (Var), (Abs), (Meta), (Fun) and (In).
(3) is obvious from the definition of the relevant clauses. O

The important thing to know is the following: >¢ and ¢ define exactly the
same relation as =, and >¢ on meta-terms over F. This is demonstrated by the
following lemma, since obviously =, is included in >€.

Lemma 5.25. If s,t are meta-terms over F and s =€ t or s =€ t, then also s =, t
or s =, t, respectively.

Proof. Define the relation # on terms over F* as follows:
* zfiz if z is a variable
o \z.sfAx.t if sft
* Z(S1y...y St Z(t1,. .., ty) if each s;ft;

f(s1y.. o 8n)8f(t1,. .., ty) if each s;fit; and f € F

* S350 st t)BfE (qr, - gnsua, - ug) i ar(f) = noand each
s;f¢; and for each u;: either some t;fu;, or f*(§, f)jjui

We easily derive:
() if gfu and both sides are markable, then ¢*fu*;
(D if £z (5)4f% ,(f), then this holds for any p;
(I1D) if gfu and vfw, then also g[x := v]fu[z := w] (Where z is a variable).

The last statement holds by induction on the definition of f.

We will see: if s and ¢ are terms over F* and ¢ is a term over F, and if ¢fis
and either s =€ t or s =¢ ¢, then also ¢ >, t or ¢ =, t respectively. To this end,
we will employ induction on the derivation of s =¢ ¢ or s =¢ ¢. Considering all
the clauses, if s’ R t’ is used in the derivation of s R ¢, then ¢ is a subterm of
t, and consequently will also be unmarked. Hence, we do not have to check in
every case whether the induction hypothesis is applicable.

First, if s >¢ t, this holds because s* »=¢ t. By (I) also ¢*§s*, and by the
induction hypothesis therefore ¢ >, t.

Alternatively, s =¢ ¢; consider the clause used to derive this.

(Var) If s = ¢ is a variable, then ¢ must be the same variable, so ¢ =, ¢ by the
same clause.

5.4. StarHorpo

123

(Abs), (Meta), (Fun) In these cases we can trivially use the induction hypoth-
esis. The hardest is (Fun), where s = f(s1,...,8,), t = g(t1,...,t,) and
f =~ gand §iigsmt(f) t. By definition of § we have ¢ = f(q1, ..., q,) Where
each g;f#s;. If stat(f) = Lex, then we have for all i that ¢;tis; >=¢ ¢;, so by
the induction hypothesis ¢; = t;. If stat(f) = Mul, then there is a permu-

tation m such that for all i: ¢ (;)#s~(;) =$ ¢, so by the induction hypothesis
(i) =« ti- Bither way, ¢ = star()b, SO ¢ = t by (Fun).

(Put) As the =< case described above.

(Select) s = fr , (5)and si(wy,..., wy) =5 t, where s; : p1—... = pp =7
and each w; = f;h...,okj,pj(slv -5 Sar(f)+k,) for some k;. We have ¢ =

féj((j) and by the definition of f, we must have 13, p; (@)tw; for all j.

There are two possibilities for s;: either i > ar(f) and f3 , . . (§)ts:
or ¢,ts; for some j.

In the first case, we can write s; = f*(u1, ..., uq.(s), ¥) where each 7k fu; for
j < ar(f), and since I3 o (@)twy, for all k we see that also gt f*(u, ¥, W) =
si{wi, ..., wy,). Now we can apply the induction hypothesis, and obtain
that ¢ =, t.

In the second case, suppose that ¢'ffs’ and vy fwy, . . . , v, fw,, together imply
that ¢’(v1,...,vm) § s'(w1, ..., wy). Then we can conclude by the induction
hypothesis and the original (Select) rule, since ¢;#s; and f3 (@)fw; for all
j. We prove this by induction on m. If m = 0 the result is obvious, and also
if ¢’ and s’ are functional terms (with or without star) the definition of #
quickly gives the required result. Otherwise, s’ = Az.s” and ¢’ = A\z.¢"" and
¢ (V) = ¢"[x := v1){(va, ..., vp) and s (W) = §"[x = wi](wa, ..., wy,). We
have the required result by the induction hypothesis and (III).

(F-Abs) s = fz (5) and t = Xa.t’ with f7 (S,z) =% . We have ¢ =
G (@) Smce also fz . (¢,z)8f5 . ,(5,x), the induction hypothesis and
clause (F-Abs) give that ¢ =, t.

(Copy) s = fz,(5) and t = g((t) where f » g and f5,,(8) =5 t; for all i
Writing ¢ = f5.(¢) the induction hypothesis and (II) prov1de that also
fg’ o (@) =« ti- Therefore we can use (Copy) to obtain q =, t.

(Stat) s = f; (5) and t = g(t) where f ~ ¢ and f3,.(8) =% t; for all 4, and
(S15--3Sar(s)) = Sgstat(f) t. As in the (Copy) case we can write g = f53.(D)
and have [5(@) =« t; for all i. Moreover, ¢;fs; for all i < ar(f). Conse-
quently, if s; =¢ t; or s; > t; is used in the derivation of the subclause
(8155 Sar()) = % gstat(f) t then we also have ¢; >, t; or ¢; >, t; respec-

tively by the induction hypothesis. Thus, (g1, .., qar(s)) > xgstat(f) ¢, and
we can complete with (Stat).

124

Chapter 5 — An Iterative Path Ordering

(Bot) t = 1,,soalso g =¢ t by (Bot).

(In), (Marked1), (Marked2) None of these cases could be applied, since ¢ is
star-free.

(Drop), (Swap), (Args) In each of these cases, s =¢ t because s’ >¢ ¢ for some
s’ such that sfs’. Every time it is evident that also gfs’, so by the induction
hypothesis s’ =¢ ¢ implies ¢ =, s'.

O

Thus, the original and extended version of =, coincide on terms over F. How-
ever, on terms over F* they differ, and it is this which makes the extended ver-
sion such a useful aid, both in proving transitivity of >, (which we will do in
Section 5.4.2), and to see that = is included in =,. A first step towards this is
given by the following lemma:

Lemma 5.26. =, is included in 5.

Proof. The relation >, is monotonic over meta-terms by clauses (Abs), (Meta),
(Fun) and (In). Thus, we only need to see that s =, t if s =, ¢ by a topmost
step. Consider the rule that was used to derive s =, t.

put s = f(5) and t = f*(5). Then s »=¢ ¢ by clause (Put) and reflexivity of =¢.

select s = f*(3) where s; = A\.q, and ¢t = ¢[z1 := f*(5),...,z, := f*(8)] =
$i(f*(8),..., f*(5)). Hence, s =¢ t by (Select) and reflexivity.

copy s = f*(3) and t = g(f*(3),..., f*()). Since each f% (5) =¢ f2, (5) by
reflexivity, we have s =¢ ¢ by (Copy).

lex s = f*(5) and ¢t = g(s1,...,8i—1,8F, [*(5),..., f*(3) with f = g and i <
ar(f). Whether i > ar(g) ornot, [s1,...,sn] =% 7., [s1,...,8i-1, 87, f*(8),
.., f*(8)] =: [t], either because the latter is a strict initial subsequence of

the former, or because s; ¢ s7 =1;.

Moreover, for every j we have f*(5) =¢ t;: if j > ¢ this holds by reflexivity
of »¢, if j < i by the (Select) clause, and if j = i by the combination
of (Select) and the observation that s; >~$ s7 and Lemma 5.24(1). Thus,
s =% t by clause (Stat).

mul s = f*(5) and t = g(f) where, much like we have seen in the proof of
Lemma 5.13, {{s1,.. ., Sar(s)}} Tnw {E}} if 2 is the relation ¢ J ¢* (and
the corresponding 1 its reflexive closure). Since this 1 is a subrelation of
=<, we also have that s =¢ t by clause (Stat) since, as argued in the case of
lex, also f*(5) =¢ t; for all i by the (Select) rule, possibly combined with
(Put) and (Abs).

5.4. StarHorpo

125

abs s = f*(8) =¢ Ax.f*(8, z) by (F-Abs) and reflexivity.

equiv s = f(5), t = g(5) and f = g, 5 =gstat(s) t. By reflexivity of -, this means
§ Zwgstat(f) £, 50 5 = t by (Fun).

bot s:oand ¢ = 1,. By (Bot) also s >=¢ t.
O

Lemmas 5.23 and 5.26, together with the transitivity result of the next section,
show that =, =¢ and = define the same relation on meta-terms over F. How-
ever, »=¢ should not be considered of interest in and of itself; this extension is
merely meant as a way to prove properties about .

5.4.2 Transitivity

Finally, we will see that >¢ is transitive (and therefore >, is transitive as well!).
This is both of an important theoretical interest (as =, must be transitive to be an
ordering), and essential for >, and = to define the same relation. This result
does not follow immediately; we will need several lemmas to use in the proof.

Lemma 5.27. Let v,§ be substitutions on the same domain such that always
~v(x) =¢ 6(x), and suppose s =€ t. Then also sy =< t4.

Proof. By induction first on whether or not A := dom(~) contains meta-variables,
second on the derivation of s >=¢ ¢; consider the clause used to derive this.

(Var) s =t = x. If x € A then sy = v(z) »=$ é(x) = t§ by assumption. If
x ¢ A, then sy = s »=¢ ¢ = ty by (Var).

(Meta) s = Z(s1,...,8,) and t = Z(t1,...,t,). If Z ¢ A then sy =
Z(81%,---,8n7y) and ty = Z(t16,...,t,0). By the second induction hypothe-
sis each s;v =¢ t;0, so sy =% t0 by (Meta). If, however, Z € A, then let
Y(Z) = Xx1...2p.qand 6(Z) = Axy ... x,.u with ¢ >=$ u. Then sy = ¢[Z := 5]
and t0 = u[Z := 10]. By the second induction hypothesis each s;y =¢ t;4, and by
the first induction hypothesis therefore sy =¢ ¢4.

All other cases are immediately obvious with the second induction hypothesis.
We consider for instance (Select), the most complicated of the lot: s = f*(5)
and some s;(q1,...,qn) =5 t, where each ¢; has the form f*(si,...,s;). By
the induction hypothesis s;(q1,...,qn)y =¢ ty. Whether s, is an abstraction or
a functional term, s;{q1,...,qm)y = (si7){q17,--.,q»7y) (as can easily be seen
with induction on n), and if ¢; is obtained from f*(5) by dropping a number of
arguments, then ¢;v is obtained from f*(5)v in the same way. Therefore also
(8)y = f(8y) =5 ty by (Select). O

126

Chapter 5 — An Iterative Path Ordering

Lemma 5.28. If s =¢ ¢ and t is markable, then either s is markable or s = ¢*. In
the first case, s* »¢ t*, in the second, s =¢ t*.

Note that this lemma is a special case of transitivity, where the second step merely
adds a star.

Proof. The lemma holds by induction on the derivation of s =$ ¢, assuming that
t is indeed markable. Consider the clause used to derive s =¢ ¢. It could not be
one of (Var), (Meta), (Bot), (Marked1), (Marked2) or (In), for in these cases t is
not markable.

(Abs) s = A\z.s’ and t = Az.t’. Since t* = Az.t'*, and if s is markable then
s* = A\x.s'", we can complete with the induction hypothesis.

(Fun) s = f(38) =¢t = g(5) because §iigsmt(f) t, so by (In) also s* >¢ ¢*.

(Put) s =t because s* =¢ t. By the induction hypothesis also s* =$ t*.

(Select), (Drop), (Swap), (Args) s »¢ t because ¢ =¢ ¢ for some meta-term gq.
By the induction hypothesis, either ¢* =¢ ¢ (if ¢* is markable), or ¢ >=¢ ¢ (if
not). By Lemma 5.24(1) we have ¢ =¢ ¢ in both cases. Thus, s =¢ ¢ by the
same clause (which suffices, because s is already marked).

(F-Abs) s ¢ ¢ because s’ ¢ ¢ for some marked meta-term s’. By the induction
hypothesis also s’ =¢ t*, so s =¢ t* by (F-Abs) (which suffices because s is
already marked).

(Copy), (Stat) s is already marked, and s >=¢ ¢* by (Marked1) or (Marked2).

O

Lemma 5.29. If s ¢ tand q; =€ uq,...,qn =< uy, then s(q) »=¢ t(u) if the latter
is defined.

Proof. If n = 0, then s(¢) = s =¢ t = t(&) by assumption, so this case we
need not consider. Suppose the lemma holds for n = 1. Then it holds for all
n, with induction on n, for by the induction hypothesis, s(q1){ga,...,qn) =¢
t(u1)(uz,...,uy,). Since both sides are defined, and investigating the definition
of (---), we can conclude that s(§) »=¢ ().

Thus, we only need to show that if s »=¢ ¢ and ¢ =¢ w then also s(q) *=¢ t(u)
if the latter is defined. We use induction on the derivation s >¢ ¢, and use a case

analysis on the clause used to derive this.
(Var), (Meta), (Bot) Not applicable, since ¢(#) is not defined in these cases.

(Abs) s = Az.s’ and t = A\x.t’ with s’ »=¢ /. By Lemma 5.27 s(q) = s'[z := ¢] =¢
t'x == u] = t(q).

5.4. StarHorpo

127

(Fun), (In) s = f®(5) and t = g™ (&) with s; =¢ t; for i > ar(f), and

(815 -+, 8gstat(f)) tistatf (t1,- -, tgstat())- Using (In) and the assumption
that ¢ = u, we have s(g) = f*(5,9) =% g*(f, u).

(Put) s = f(5) =¢ t because f*(3) = ¢. By the induction hypothesis s(¢) =
(8,q9) = f(8){q) ¢ t(u) (without using (Put)).

(Select) s = f*(s) and s;{vy,...,v,) =¢ t for some vq,...,v, obtained from
f*(5) by dropping arguments. Because g =¢ u, we have f*(3,q) =¢ u by
(Select), so the induction hypothesis provides that s;{q1, ..., qn, [*(5,q)) =
5i(q1, -+, qn)(f*(5,q)) =¢ t(u). Since each g¢; is obtained from f*(5) by
dropping arguments, and f*(5) is obtained from f*(3,¢) in the same way,
we have s(q) = f*(5,q) ¢ t(u) by (Select).

(F-Abs) s = f*(3) =% Az.t/ = t because f*(5,z) »=$ t'. By Lemma 5.27 s{q) =
f*(5.q) = [*(5,2)[x = q] =5 V'] = q] = t(q).

(Copy), (Marked1) s = f*(3), t = g™ (&), f » g and f*(5) =¢ t; for all i.
Also always f*(3,q) =< t;, by (Drop), and f*(§,q) =¢ u as well by (Select)
(selecting ¢). Thus, 5(q) = f*(5,q) =¢ g*(t,u) = t(u) by clause (Marked1).

(Stat), (Marked2) s = f*(5) and t = g™ () with f ~ g and f*(5) =¢ t; for each
7, and (81, RN sar(f)) >_igstat(f) <t17 cee 7tar(g))' By (DrOP) also f*(ga Q) ti
t;, and f*(5,q) =¢ u by (Select). Thus s(q) = f*(5,q) =¢ ¢*(f,u) = t{u) by
(Marked?2).

(Drop) s = f*(5,v) =2 t because f*(5) =¢ t. By the induction hypothesis
[*(8,q) =5 t(u), so by (Swap) s{q) = f*(5,v,q) =£ t(u) because f*(5,q,v)
=5 t(u) by (Drop).

(Swap) s = f*(s1,...,8,-..,8j,...,5,) =% t because f*(s1,...,85,...,8;,...,
sn) =5 tm. By the induction hypothesis f*(s1,...,5;5,...,8,...,8n,q) =%
t(u), so by (Swap) again s{q) *=¢ t(u).

(Args) s = f*(8) =¢ t because f*(5,v1,...,v,) =¢ t, where each v; is obtained
from f*(3) by removing some arguments. By the induction hypothesis
(801, v0,q) =€ t(u). By (Swap) also f*(8,q,v) »=¢ t(u). Since all
v; are obtained from f*(§, ¢) by removing some arguments (including the
new argument q), we thus have f*(3,q) =¢ t(u) by (Args).

O
Lemma 5.30. If s =¢ f*(§,t) then also s =¢ f*(3) (if well-defined).

As with Lemma 5.29, this is a special case of the transitivity proof, where the
second step is a topmost (Drop) application.

128

Chapter 5 — An Iterative Path Ordering

Proof. We use induction on the derivation of s »=$ f*(5,t) and case analysis on
the rule used to derive it. If this is any of (Star), (Select), (Args), (Drop) or
(Swap), then s »=¢ f*(5,t) because some ¢ =¢ f*(§,t), and by the induction
hypothesis also ¢ >=$ f*(5) and thus s =¢ f*(3) by the same clause. The clause
cannot be any of (Var), (Abs), (Meta), (Fun), (F-Abs), (Copy), (Stat) or (Bot),
since the right-hand side does not match. Only (In), (Marked1) and (Marked2)
remain.

If s =¢ f*(5,t) by (In), write s = ¢g*(q,u) where ar(g) = ar(f) < |5] and
q; =% s; fori > ar(g) and u =< ¢. Then also ¢g*(§) >=$ f*(5) by the same rule, and
therefore s »=¢ f*(5) by (Drop).

If s =¢ f*(3,t) by (Markedl), then by the same clause s >=$ f*(5).

If s =¢ f*(5,t) by (Marked2), then note that |5] > ar(f) because f*(5) is well-
defined. Thus, ¢ is an optional argument, and also s >=¢ f*(5) by (Marked2). O

Lemmas 5.24-5.30 provide all the context we need to plunge, at last, into the
proof of transitivity.

Theorem 5.31. If s =¢ t =¢ q then s =¢ q.

Proof. Given s =%t =¢ ¢, we use induction on the derivation of ¢t =¢ ¢ first (IH1),
and the derivation of s =¢ ¢ second. If either clause is (Bot), then ¢ = 1, and
definitely s >=¢ ¢, so assume this clause is not used. Consider the form of s.

* if s is a variable, ¢ and ¢ can only be the same variable; s =¢ ¢ by (Var);

* if s is an abstraction Az.s’, then ¢t = \z.t’ and ¢ = Ax.¢/ with s’ =¢ ¢ =¢ ¢/;
by the first induction hypothesis also s’ =¢ ¢/, so by (Abs) s =¢ ¢;

« if s is a meta-variable application Z(sy,...,s,), then t = Z(t) and ¢ =
Z(q) have the same form, and each s; > t; =¢ ¢;; again we just use the
induction hypothesis, and clause (Meta).

Thus, we can safely assume that s is a (marked or unmarked) functional term.

If s =¢ t by one of the clauses (Put), (Select), (Drop), (Swap) or (Args), then
s =¢ t because some u *=¢ t. By the second induction hypothesis also u *=¢ ¢, so
s =¢ q by the same clause. If s =¢ ¢ by clause (F-Abs), then ¢ = Ax.t’ with u =¢ ¢/
for some fixed u. In this case ¢ can only have the form A\z.q" with ¢’ >¢ ¢/, and
the induction hypothesis gives u =¢ ¢/, and therefore s =¢ \z.q' = ¢ by the first
induction hypothesis.

What remains for the derivation of s »¢ ¢ are the clauses (Fun), (Copy),
(Stat), (In), (Marked1) and (Marked2). For these, we must also consider the rule
that was used to derive ¢t >=¢ ¢. The table below shows all relevant combinations
of clauses; the indexes are the ones used in the proof below.

5.4. StarHorpo 129
Fun | Copy | Stat | In | Markedl Marked2
Fun 3 4 5 1 1 1
Put 2 2 2 1 1 1
Select 1 1 1 7 8 8
F-Abs 1 1 1 6 6 6
Copy 1 1 1 10 10 10
Stat 1 1 1 14 10 12
In 1 1 1 13 11 12
Marked1 1 1 1 10 10 10
Marked2 1 1 1 14 10 12
Args 1 1 1 9 9 9
Drop 1 1 1 9 9 9
Swap 1 1 1 9 9 9

Note that, since the right-hand side of each of the clauses (Fun), (Copy), (Stat),

(In),

(Marked1) and (Marked?2) is functional, the second clause in these cases

cannot be any of (Var), (Abs) or (Meta), which explains their omission.

1.

A clause where the right-hand side is unmarked cannot be followed by one
where the left-hand side is marked, and vice versa.

. If s =¢ t =% ¢ for some unmarked functional meta-term s, and the latter

inequality uses clause (Put), then ¢ =¢ ¢ holds because t* >=¢ ¢. By IH1, it
suffices to see that s =¢ t*, which holds by clause (Put) and Lemma 5.28.

. If s =¢ t =¢ ¢ both by (Fun), then write s = f(3), t = g(), ¢ = h(q)

and f =~ g = h, so also f = h (since ~ is an equivalence relation on the
symbols). If stat(f) = Lez (so also stat(g) = Lez), then we simply have
s; =S t; =¢ g; for all i, and therefore s; =¢ ¢; by IH1, so f(5) =¢ h(q)
by (Fun). If stat(f) = Mul, then we can find permutations = and p of
(1,...,ar(f)) such that always s.(;) =¢ t; and t,(;) =¢ ¢;. Combining two
permutations gives a permutation again, and also s,(,;)) =% ¢; by IH1, so
§ =% a7 and therefore s =¢ t by (Fun).

If s =¢ t by (Copy) and t =¢ ¢ by (Fun), write s = f*(5), t = g(t) and
q = h(§) where f » g = h, so also f » h. Whatever the status of g, we
can find a permutation = (possibly the identity), such that the derivation
t =$ q uses that t,(; = ¢; for all i. Since f*(5) =¢ t; for all j, IH1 gives
that f*(5) =¢ ¢; for all 4, so s =¢ ¢ by (Copy).

. If s =¢ t by (Stat) and t =¢ ¢ by (Fun), write s = f*(5), t = g(t) and

q = h(q) where f = g = h so also f = h. As in case 4, f*(8) =¢ ¢; for all i.
Consider the status of f (which is also the status of g and k).

a) If stat(f) = Lex, then there is some k such that s; =2 ¢1,...,8,-1 =¢

—%

ty—1 and either k — 1 = ar(g) < ar(f) or s; =S ti; furthermore,

130

Chapter 5 — An Iterative Path Ordering

(&)

all ¢; »¢ qz By the first induction hypothesis, s; =€ ¢1,...,8k-1 =¢
Qk—1, S}, =5 qx, S0 AlSO (51,. .., 84r(f)) >.igLex(T'

b) If stat(f) = Mul then let {1,...,ar(f)} = AU B with B non-empty.
There are a permutation 7 such that each ¢,;) =% ¢;, and a function
p such that for every element j of A there is exactly one ¢ such that
m(i) = j, and s,y =5 t; if p(i) € A, otherwise s}, =5 ;. By the na-
ture of a permutatlon, the function p o 7 also satisfies the requirement
that for every j € A there is a unique ¢ such that p(x (7)) = j. Thus, by
TH1, also (s1,. -, 8ar(f)) =% gnru (- - -+ Qar(n)): 'if p(m(i)) € A, then
Sp(r(i)) =% lrx() =% @ SO Sp(x(i)) =% @i, and if p(w(i)) € B then
5;(71.(1)) =5 tﬂ'(i) ~% Qi SO Sp(w(i)) -5 G-

6. If s = f;ﬁ_m(é‘) =¢ by (In), (Marked1) or (Marked2), and ¢t =5 ¢ by (F-

Abs), then ¢t = ggﬁﬁp f} and ¢ = \z.q’ with ga - p(t x) =¢q. By (IH1) and
the same clause (F-Abs) it suffices to see that f7 (5,z) = g@mp(t,:c).
But this holds in each of those three cases: if (In) was used because the
Lex/Mul relationship on the first ar(f) and ar(g) arguments is not affected
by adding an argument, if (Marked2) was used for the same reason and
because f*(3,z) =¢ t; by (Drop) and f*(5,z) »=$ x by (Select), and if
(Marked1) was used because f » g and f*(5,x) =¢ t1,...,t,, 2 for the
same reasons.

Cfs=fr(8) =St = g*(f) by (In) and ¢ *¢ ¢ by (Select), then ¢;{u1, ..., un)

~¢ ¢ for some wui,...,u, obtained from the appropriate g*(¢) by drop-
ping arguments. There is some permutation 7 such that s.;) =% t; for
all j. By IH1 and the (Select) clause it suffices if s, (f*(5),..., [*(3)) =
ti{u1, ..., u,). We use Lemma 5.29: s(;) =
u; by (Drop) and (In).

¢ t; by assumption, and f*(s) >-i

T x

CIf s = f*(3) =¢ t = g*(t) by (Markedl) or (Marked2) and ¢t >¢ ¢ by

(Select), then t;(uq,...,u,) =¢ ¢ for some uq,...,u, obtained from the
appropriate g*(t) by dropping arguments. Using (Args) and IH1, it suffices
if f*(5, f*(8)) =¢ t;(uq,...,un), where the new argument f*(3) is equipped
with the same type as ¢;. By (Select), this holds if f*(5)(f*(3),..., f*(3)) =¢
t; (@), which by Lemma 5.29 is the case because f*(5) >=¢ t; by the definition
of (Marked1) and (Marked2) and each f*(5) =¢ u; by Lemmas 5.24(3)
and 5.30 (as f*(5) = f))

. If t =¢ q by (Args), (Drop) or (Swap) this is because some u =¢ ¢. By [H1

it sufﬁces to prove that s =¢ u

Ifs=f*35) =¢t= f*(f) by (In), then in the cases (Drop) and (Swap) it
is evident that also s =¢ u by the same (Drop) or (Swap) clause, combined
with (In). If t =€ ¢ by (Args) we also need to observe that f*(3) =¢ “g* f}
with some arguments dropped” by Lemmas 5.24(3) and 5.30.

5.4. StarHorpo

131

10.

11.

12.

If s = f*(5) =¢ t = g*(f) by (Marked1) or (Marked2), then the order and
number of arguments beyond the arity of g are entirely irrelevant; they
only share the property that f*(5) =¢ ¢, for all i. Therefore also s =¢ u by
(Marked1) or (Marked2): (Drop) only removes an extra argument, (Swap)
changes the order of arguments, and (Args) adds arguments obtained from

(t) by dropping arguments. f(5) =¢ these extra arguments by Lem-
mas 5.24(3) and 5.30.

Ifs=f*(8) =¢t= g*(f) by (In), (Marked1) or (Marked2), and ¢ = ¢ =
™) (g) by (Copy) or (Marked1), then f » h either by compatibility of ~
and », or by transitivity of ». Moreover, ¢ > ¢ holds because g*(f) >¢
each ¢;, so by IH1 and Lemma 5.24(3) also f*(5) =¢ ¢;. Thus, s =¢ ¢ by
(Copy) or (Marked1).

The same reasoning holds if s =¢ ¢ by (Marked1) and ¢ = ¢ by (Stat) or
(Marked2): here, too, g*(f} =€ q; is used for all 4, and f » h.

Ifs=f*38) =¢t= g*(f) by (Marked1) and ¢ >$ ¢*(¢) = ¢ by (In), then
the latter holds because for some permutation 7, t.(;) =5 ¢; for all i. The
former holds because f*(§) =ty forall j. As f*(3) =¢ trq) =% q; for all 4,
which implies f*(3) »=¢ ¢; by IH1 and f» g=h 1rnp11es f » h, we have
s =¢ g by (Marked1).

Suppose s = f*(5) =¢ t = ¢g*(f) by (Marked2), and t >¢ ¢ = h*)(q) by
either (Stat), (In) or (MarkedZ) Since f =~ g = halso f = h We will prove
s =¢ ¢ by (Stat) if ¢ is unmarked, or by (Marked?2) if ¢ is marked.

To this end, we first note that by IH1 f*(5) »=¢ ¢; for all : this is either
because f*(5) =¢ g*(f) =¢ ¢; by Lemma 5.24(3), or because f*(5) =¢
t; =% g; for some j (where f*(£) =¢ q; is used in the derivation of ¢t =¢ ¢ if
the clause (Stat) or (Marked2) was used, and otherwise ¢; ¢ ¢; is used).
What remains to be seen is that (si,...,54r(f)) =S gstat(f) (@155 Qarn))-
Consider stat(f).

o If stat(f) = Lez, then there is some i < ar(f) such that s; *¢

t1,...,8-1 =% t,_1 and either ar(g) =i — 1, or s} =5 t,.
If t =¢ ¢ by (In), then ar(g) = ar(h) and each ¢; >§ q], so also
s1 =% q1,...,8—1 =% qi—1 and either ar(h) < i or sf =¢ g;, which

gives the required lexicographic inequality.

Ift =5 q by (Stat) or (MarkedZ), then there is some k < ar(g) such
that t1 = ¢1,...,tk—1 =% qr—1 and either ar(h) =k — 1 or ¢} =< qy.
Let N := mlIl(Z k;) then N < ar(f) and N < ar(g). For j < N we
have s; =¢ t; =¢ g;, so by IH1 also s; =¢ ¢;. If N > ar(h) we are
therefore done Otherw1se sy =S¢ gyt if i < k because s =S t; =y qi,
and if ¢ > k because s}, >, t} >, s, by Lemma 5.28.

132

Chapter 5 — An Iterative Path Ordering

13.

14.

o If stat(f) = Mul, then {1,..., ar(f)} = AUB, and there is some func-
tion = mapping {1,..., ar(g)} to AU B which touches every element
of A exactly once, and if 7(i) € A then s, (;) =¢ t; and if 7(i) € B then
s;(i) =$ t;. B is non-empty.

Moreover, we can write {1, ..., ar(g)} = CUD, and there is a function
p mapping {1,...,ar(h)} to C U D, which touches every element of
C exactly once, such that if p(j) € C then t,;y = t; and if p(j) € D
then t;(j) >¢ t;. Since the second clause may be (In), it could be that

D is empty.

Let A’ ={n(i) |ie C}nAand B' = {1,...,ar(f)}\A’. Then B’ D B,

so is non-empty. Then the function 7 o p touches every element of A’

exactly once: if s € A’ then i € A, so there is exactly one j such that

m(j) = 4, and by definition of A’ this j € C, so there is exactly one &

such that p(k) = j. Hence, there is exactly one k where 7(p(k)) = i.

If w(p(i)) € A’, then s.(,u)) =% t,) =¢ ¢ (because 7w(p(i)) € A

and p(i) € C), so by IH1 s, (,)) =$;- If n(p(i)) € B’, then either

S:r(p(z)) =5 tp(i) ti qi (if P(Z) € C but W(p(Z)) € B), or 37(:();)(1)) ii tp(z')

and t;(i) =¢ q; (if p(i) ¢ C). In the first case we immediately have

s;(p(i)) ~¢ ¢; by IH1, and in the second case Lemma 5.28 and IH1

provide Sn(p(iy) =% - Either way, the multiset requirement is satisfied.

If s = f*(5) =¢t = g*(f) =¢ ¢ = h*(g) both by (In), then f ~ g = h so
f = h, and all arities and argument numbers are equal. If stat(f) = Lex
we simply have that s; ¢ t; =¢ ¢, for all 4, and therefore s; =¢ ¢; by IH1
and thus s >¢ ¢ by (In). If stat(f) = Mul, there are permutations , p of
{1,...,n} (where n := ar(f)) such thateach s, ;) = t; and ;) =5 ¢;, and
s; =5 t; =% q; whenever i > n. By the induction hypothesis s (,.)) =5 ¢
fori <nands; =¢ ¢; for i > n. Thus also s = ¢ by (In).

Suppose s = f*(5) =¢ t = ¢g*(f) by (In) and t =¢ ¢ = h(*)(g) by (Stat)
or (Marked2). Certainly f =~ h, so we will also derive s =¢ ¢ by (Stat)
or (Marked2), depending on whether ¢ is marked or not. We know that
g*(t) =¢ ¢; for all 4, so by IH1 and Lemma 5.24(3), we have f*(5) =¢ ¢;
as well. What remains to be seen is that is that (s1,...,Sar()) =5 gsar(s)

(q1s-- -5 Qar(n))- Consider stat(f).

o If stat(f) = Lez, then s; »=¢ t; for all ¢ and there is some k such
that ¢4 >=$ q1,...,tk—1 =¢ qx—1 and either ar(h) < k < ar(g) =
ar(f), or t§ =$ gr. By the induction hypothesis also s; >=$ ¢; for
i < k, which suffices if ar(h) < k. Otherwise, by Lemma 5.28, s} >¢
ty =5 qix, which by IH1 implies that s} >~ ¢x. This gives the required
lexicographic inequality.

e If stat(f) = Mul, then there is a permutation 7 such that s, ;) =% t;
forall i € {1,...,ar(9)} = AU B, and a function p which maps

5.4. StarHorpo

133

{1,...,ar(h)} to AU B and touches all elements of A exactly once
such that ¢,;) =5 t; if p(j) € A and otherwise ¢7 ., = t;. B is non-
empty. Let A’ = 7(A) and B’ = n(B). Then the function = o p touches
the elements of A’ exactly once (since 7 is a permutation), B’ is non-
empty, if 7(p(i)) € A’ then s, (,:)) =5 ton) =5 ¢ implies sy qy) =5 ¢
by IH1, and if 7(p(7)) € B’ then S (p(i)) =% sy =% ¢; by Lemma 5.28,
which implies Sn(p(iy) =5 i by IH1.

O

Having at last proved transitivity of >¢, we are almost ready to dispense of this

%>

extended relation. We merely need to convert the results back to =,.

Theorem 5.32. Claim 5.20 is true: =, defines exactly the same relation as = on
meta-terms over F, and >, can be expressed as =)put - =1

Proof. 1f s =, t, then by Lemma 5.23 s = t. If s -, ¢, then s =yt 10p - =5 t DY
the same lemma.

If s =% t, then by Lemma 5.26 s (=¢)* t. By Theorem 5.31 (transitivity),
this implies that s =¢ ¢, and by Lemma 5.25 (>¢ and =, coincide on star-free
meta-terms) we conclude that s =, t. If s = - = t, then s* =7 ¢, 50 s* =¢ ¢
by Lemma 5.26 and transitivity. As s >¢ ¢, and >¢ coincides with >, on star-free

meta-terms, we conclude that s =, ¢. O
Corollary 5.33. (>, >,) is an application-free strong reduction pair.

It is worth observing that transitivity of the ordering is not so common as may be
expected. Both HORPO and CPO are non-transitive; the corresponding reduc-

. . . +
tion pair is (>{orpPos ™ HORPO)-

Example 5.34. Suppose we need a strong reduction pair to orient a number of
requirements, one of which is: f(Az.g(z), X) > g(X). Here, f : [o— (0 x0)]— o0
and g : [o] — o. Suppose also that for the other constraints we must take £ » g.

We do not succeed with ~cpo, even though we can orient the constraint with
its transitive closure: f(Az.g(x), X) =cpo (Az.g(x)) - X =cpo g(X).

With >, we can orient the rule in one go: £*(A\z.g(z), X) >, g(X) by (Se-
lect), because (Az.g(x)){(f*(A\x.g(z), X)) = g(f*(A\z.g(z), X)) =+ g(X). This
holds by (Fun): £*(A\z.g(z), X)) =, X by (Select).

Example 5.35. Suppose we must orient f(Az.g(z, z), X,Y) > g(X,Y), and other
clauses have caused a constraint that £ » g. We easily succeed with >, as be-
fore, but to orient this with >:5PO, we must construct some term ¢ such that
f(\x.g(xz,2),X,Y) =cpo t and both ¢ >=cpo X and ¢ >cpo Y. Whether this
is possible depends on types, and whether or not there are function symbols
»-smaller than f.

CPO and StarHorpo will be compared in a bit more detail in Section 5.7.

134

Chapter 5 — An Iterative Path Ordering

5.5 A Reduction Pair for AFSMs

So far, we have derived a strong reduction pair for application-free terms. But
although we have seen, in Chapter 3.2, that we can always transform an AFSM
into an IDTS (where everything is application-free), it would still be nice to have
a result immediately on our formalism of choice. Fortunately, this is very easy.

Definition 5.36 (StarHorpo reduction pair). Given an AFSM (F,R), let Fq :=
Fu{@Q°~7:[c—71 x g]— 71| 0,7 types}. Let u be the function which replaces
all appearances of an application s - ¢t with s : ¢ — 7 in a meta-term by Q%7 (s, t).

Fixing a well-founded precedence » and a status function on Fa, let (=, >)
be given by: s - t if pu(s) = p(t) and s > ¢ if pu(s) =, p(t).

Theorem 5.37. The pair (-, >) from Definition 5.36 is a strong reduction pair.

Proof Sketch. It is easy enough to see that always p(svy) = u(s)y*, where v#(x) =
w(v(z)). Having this, most important properties are inherited from (>, >,). The
last one, 7 includes f3, holds because p((Az.s) - t)* = @} _(Az.u(s), 11(t)) = serect

pls)lz = @7 (Az.puls), 1)) = Gerece 1(8)[z = p(t)] = p(slz = t). O

Since =, and = can be used interchangeably, Theorem 5.37 is both a result
about the iterative and the recursive definition of HOIPO. The proof is merely a
sketch because the result will actually follow as a consequence of Theorem 5.39.

5.6 Function Symbol Transformations

A notable omission from both the version of RPO and StarHorpo defined here, is
that the lexicographical extension is only used in one orientation. We can easily
orient a rule Plus(s(X),Y) = Plus(X, s(Y)), but we cannot deal with the very
similar rule Plus(X,s(Y)) = Plus(s(X),Y). The definition of RPO in [27]
does not have this problem: here, symbols with status Lex are equipped with a
permutation for the arguments. The second Plus example can be dealt with by
assigning Plus the permutation = = [2, 1].

In this chapter I decided against immediately including such a permutation.
The proofs are complex enough as they are, and it is unnecessary to immedi-
ately include this feature in the theory, just as it was unnecessary to consider
application in the definition of HOIPO: we can simply add the permutation
on arguments of lexicographic symbols afterwards. That is, in the function
from Definition 5.36, we could also replace functional terms f(si,...,s,) by
J(85(1), -+ 8p(n)) for some fixed permutation p for the symbol f.

But we can do more! As formalised for first-order rewriting in IsaFoR [121],
and also implemented in for instance AProVE [45], we might “filter” away a
function symbol f with only one argument, replacing a meta-term f(s) by just
s. More generally, we can manipulate function symbols in any way we like, pro-
vided their arguments are preserved if we want to obtain a strong reduction pair:

5.6. Function Symbol Transformations

135

Definition 5.38 (Argument (Preserving) Function). Let X be a set of function
symbols, containing a symbol |, for all types o.

An argument function from Fq to ¥ is a function 7 which maps every function
symbol f : [o1 X... X0, —T € Fatoaterm Az ... 2.8 : 01 —...—>0p — T OVEr
¥ such that FV(s) C {z1,...,x,}. An argument preserving function additionally

has the property that FV(s) = {z1,...,2z,}. An argument (preserving) function
is extended to application-free meta-terms as follows:
T(z) = = forx eV
T(Ax.s) = Az.7(s)
T(Z(s1y.-y80)) = Z(@(s1),...,7(sn)) for Z e M
T(f(S1y-.-y8n)) = tlxr :=7(s1)y...,Tn :=7(sn)] Hw(f)=Az1... 20t

Note that in the last case, the substitution used is actually a meta-substitution,
since some of the 7(s;) may not be terms. Typically, argument preserving func-
tions are used in the two ways suggested above, and for minimal symbols:

* changing the order of arguments in a term with status Lez, so that the
more important arguments are put in front (that is, f(si,...,s,) becomes
J'(8p(1)s - - - Sp(n)) for some new symbol f' and permutation p);

* filtering away a symbol f with only one argument (just like, when using
polynomial interpretations, f could be interpreted by the function An.n);

* mapping a 0-ary symbol to 1, so it becomes minimal for >,.

Argument functions are more general, and also permit for instance replacing
f(s1,...,8) bY f'(Siy5 - -, 83,), so filtering some arguments away.

The definition does not pose restrictions on what form an argument function
should have, as we have nothing to lose, and perhaps something to gain, by
posing the result in a general way.

Theorem 5.39. Consider a set of function symbols F, and an argument function
m on Fa, which maps to application-free meta-terms over some set of symbols ¥,
and which maps each Q%7 either to itself or to Axy.Q%7 o0, (y,). Let » be a
well-founded precedence on the symbols of 3, and let stat be a status function on
this same set.

Let the pair (=, >) be given by:

o sz tifm(p(s)) = m(u(t));
o s = tif T(pu(s)) = T(p(t)).

Then (7, >) is a weak reduction pair, and if m is an argument preserving function it
is even a strong reduction pair.

136

Chapter 5 — An Iterative Path Ordering

Proof. We must see that > is a well-founded ordering relation (so transitive and
well-founded), that = is a quasi-ordering (so transitive and reflexive) compatible
with >, that both relations are (meta-)stable, that ~ is monotonic (and so is
> if 7 is an argument preserving function), and that - contains beta. The last
requirement was already demonstrated in the proof sketch of Theorem 5.37, and
7 does not cause problems by the restriction that = can at most permute the
arguments of @%7. So let us consider the other constraints.

If s =t > ¢, then T(pu(s)) = 7T(u(t)) =« T(u(q)), so by transitivity of >,
we have 7(u(s)) >, 7(n(q)) as required. In the same way, transitivity of 7,
well-foundedness of > and compatibility of the pair are inherited from the cor-
responding properties of (=, >,).

In order to prove stability, let v™# denote the substitution which maps z to
T(p(y(x))) for all (meta-)variables z € dom() for some given substitution . We
can see that w(u(sy)) = w(u(s))y™* for all s and v whose domain contains all
meta-variables in s, by induction first on the number of meta-variables in dom(7),
second on the form of s. Write 7 (s) as short-hand notation for 7(u(s)).

* if s is a variable not in dom(~), both sides are s;
* if s is a variable in dom(~), both sides are Tu(v(s));

 if s is a meta-variable application Z(s1,...,s,) and v(Z) = Az1...zp.t,
then we have 7Tu(sy) = Tu(tlx = s17,...,2, 1= sp7]) and Tu(s)y™" =
Tu(t) |z == 7u(s1)y™", ..., Ty = TS,)y™"], which by the second induc-
tion hypothesis equals 7u(t)[z1 = Tu(s1y),...,xn = Tu(s,7y)]. By the
first induction hypothesis, both sides are equal,

* if s = Ax.t then Tu(sy) = Az.7Tu(ty), which by the induction hypothesis
equals \z.(7u(t)y™H) = Tu(s)y™*;

o ifs =ty-to withty : c— 7, thenTu(sy) = @”’T(/)(ﬁu(tp(l)'y),fu(tp(g)’y)) for
some permutation p of {1,2}, and by the second induction hypothesis this
equals Q77D (7pu(t 1))Y ™, Tt pga))Y ™) = Tpu(s)y™", since substitution
does not affect the type of ¢;;

e finally, if s = f(s1,...,8,), and 7(f) = Azy...x,.t, then Tu(sy) =
T(f(1(s17)s - 807)) = tlxr = Tp(s17), ..., Tn = Tu(syy)], which by

the (second) induction hypothesis equals t[z1 := Tu(s1)y™*, ..., z, =
T(sn)y™*]. On the other hand, Tu(s)y™* = tlxy = Tu(s1),...,xn =
Tu(sn)]y™*. Since t itself contains only the variables z1,...,x,, this is
exactly t[zy :=Tu(s1)y™", ..., xn = Tu(sn)y™"], so both sides are equal.

Thus, if Tu(s) >, Tu(t), and v is a substitution, then also 7u(s) is a pattern.
Therefore (using stability of >-,), Tu(sy) = Tu(s)y™#* =, Tu(t)y™* = Tu(ty) as
required; stability of >, is similar.

Finally, monotonicity. We must see that if s = ¢ then also C[s] = C[t] for all
contexts C, and if 7 is an argument preserving function, then the same holds for

5.6. Function Symbol Transformations

137

>. We can do so by induction on the form of C. Each of the cases where C[] =
Az.D[] or C[] = DJ]-q or C = q- D]] is completely straightforward (in the last two
cases, note that 7 can at most exchange the two arguments of @Q%7, so nothing
exciting happens). What remains is the case where C[| = f(q1,...,D[],--,qn)
and by the induction hypothesis either D[s] - D[t] or D[s] > D[t]. Let 7(f) =
Azy...zpu. Then Tu(Cls]) = u[zr = Tulqr), ..., = 7Tp(D[s]),...,xn =
T (qn)]-

In the > case, where = can be assumed to be an argument preserving func-
tion, we know that z; occurs in u (possibly more than once). Since >, is both
monotonic and transitive (and therefore Efv,...,v] =, Fw,...,w]ifv =, w and
m > 0), this term >, u[zy = Tulqr),...,x; = TU(D[t]),. .., 20 = Tp(r,)] =
7p(C[t]). In the =, case it may be that z; does not occur in u, but by reflexivity
of =, we still have the required result. O

Example 5.40. Consider the AFSM foldl:

nil : 1list
cons : [nat X list]—1list
foldl : [(nat—nat—nat) x nat x list]—nat

foldl(Azy.F(x,y), X,nil) = X
foldl(Azy.F(x,y), X,cons(Y,Z)) = foldl(\xy.F(z,y),F(X,Y),Z2)

Let ¥ be Fo U{Ll, | ¢ € T}, but with all base types collapsed into a single
type o. Let w(f) = AZ.f(&) for all symbols except foldl, and let 7w(foldl) =
Azyz.foldl(z,z,y), so we simply swap the last two arguments of foldl. To
prove the system terminating in one go, we have the following constraints:

foldl(Azy.F(x,y),nil, X) =, X
foldl(Azy.F(x,y),cons(Y,Z),X) >, foldl(A\zxy.F(z,y),Z, F(X,Y))

Whether we use the iterative approach or a recursive analysis, both requirements
are easily satisfied if we choose stat(foldl) = Lex.

Example 5.41. Consider the first-order system:

Using an argument preserving function with w(a) = 7(b) = L and a precedence
with £ ~ g we obtain:

138

Chapter 5 — An Iterative Path Ordering

Thus, with rule removal we can get rid of the first two rules. The last one is easy
to orient separately. This demonstrates how minimal symbols can used to orient
constraints that could otherwise not be handle with (HO)RPO.

Note that, although this is a first-order system, the recursive path ordering
from Section 5.1.1 cannot handle it! However, although technically not part of
the specification of RPO, minimal symbols are not entirely new. A very recent
paper [120] introduces a rule that x =~ f for x a variable and f a function symbol
of arity 0 which is minimal in the precedence. This feature has already been
formalised in IsaFoR [121], and also implemented in AProVE [45].

5.7 CPO Versus StarHorpo

CPO and StarHorpo are truly incomparable. Each has advantages over the other.

CPO is defined only for AFSs (although a definition of HORPO has also been
extended to HRSs [106]), and moreover assumes that all function symbols have
a base type as output type. StarHorpo is defined for the more general class of
AFSMs, which includes AFSs, as we saw in Chapter 3.4.

CPO uses a type ordering and accessibility relation, which may add signifi-
cant power to the system. To some extent, a type changing function which does
not just collapse all base types can be used to handle systems for which CPO uses
accessibility, but for instance Example 5.8 cannot be handled with StarHorpo.

StarHorpo uses minimal symbols and a separate quasi-ordering -, and en-
codes application as a function symbol. The latter cannot just be done in CPO,
as the symbols @ do not in general have a base type as output type. Conse-
quently, CPO uses separate (weaker!) cases if the left-hand side is a function
symbol. StarHorpo also uses argument (preserving) functions, but these could
also be used with CPO.

A very important difference between CPO and StarHorpo concerns the (Se-
lect) rule. This rule is far more powerful in StarHorpo than in its counterpart in
CPO. This is related to the difference in the formalisms for which the systems
are defined: HORPO and CPO target AFSs, where it is actually very uncommon
to have abstractions in the left-hand side of rules. In our AFSMs, where left-hand
sides often contain meta-terms A\Z.C[F(Z)], it is however very likely that we will
need the transitivity which is made possible by the new (Select).

Transitivity is another point where StarHorpo has the advantage. Of course
>_$PO is transitive, but this relation may not be decidable, as we saw in Exam-
ples 5.34 and 5.35. In particular Example 5.35 demonstrates how the use of
marked terms adds power in practice. By postponing the choice to select a term
smaller than a given term f(3) (and just using f*(3)) we can make multiple dif-
ferent choices later.

5.8. Overview

139

5.8 Overview

In this chapter we have seen an extension of the iterative path ordering to the
higher-order case. Specifically, to the IDTS formalism, which is similar to the
AFSM formalism we normally use, but considers application-free (meta-)terms.
This iterative definition, HOIPO, provides a simple and elegant termination
method for IDTS. We have also considered a recursive definition of HOIPO, and
discussed how the resulting relations can be used as a strong reduction pair on
AFSMs (without the application-free restriction). In addition, we have extended
the method with the notion of argument preserving functions, which will come
back in a generalised form in Chapter 6.6.3.

Compared to the computability path ordering (the most recent extension of
the higher-order recursive path ordering), StarHorpo has far fewer rules. How-
ever, for optimal results, StarHorpo works best in combination with transforma-
tions, in particular the argument (preserving) functions of Section 5.6.

The power of the respective techniques is incomparable. While CPO beats
StarHorpo in examples where a type ordering, and in particular an accessibility
argument, are needed, the use of “minimal symbols” and the transformations
from Section 5.6 are new in StarHorpo. We also gain additional power by treating
application as a function symbol. Moreover, unlike both HORPO and CPO, the
new StarHorpo is natively defined as a transitive relation, a great advantage since
it is in general very hard to decide whether some term s -{p t.

As we will see in Chapter 8.6, the techniques in this chapter can all easily
be implemented in an automatic tool, which determines not only the precedence
and the status automatically, but also a suitable argument function.

With an eye on future work for the techniques in this chapter, consider Figure 5.3.
This diagram extends on Figure 5.3. As before, all the iterative and recursive path
orderings discussed in this chapter are listed in their mutual context, with a hor-
izontal line indicating an equivalence, and a vertical or diagonal line indicating
inclusion. This time also [76] is included. In this paper, Femke van Raamsdonk
and I present a more restrictive version of the higher-order iterative path order-
ing, which mostly corresponds to the original definition of HORPO [63] (the
iterative definition of [76] is slightly stronger, but the difference is minor).

The dotted lines in the diagram suggest an obvious direction for future re-
search: to combine the strengths of CPO and StarHorpo, perhaps along with
an improvement of the iterative technique. At the moment, the main difference
between the relations is the type ordering. StarHorpo has none because, in a
definition as term rewriting system, types are preserved in every step. Thus, we
cannot have s =, t if s and ¢ do not have the same type, for that would also mean
that s = ¢t. However, there are plenty of possible solutions to this issue which
may be explored.

In an entirely different direction, we might consider alternative shapes for
argument functions that could be attempted by default.

140 Chapter 5 — An Iterative Path Ordering

D)
CPO o) StarHorp(; & -------- . HOIPO
HORPO @ --mddommmmoae . [76]
e RPO

y

RPO e
without ~
[] []
LPO ILPO

Figure 5.3: Iterative and Recursive Path Orderings — the solid lines represent existing
results, the dashed lines represent theory from this chapter or [76], and the dotted lines
suggest future work.

Dependency Pairs

Or, What shall we order?

Both the polynomial interpretations in Chapter 4 and the path ordering from
Chapter 5 give quasi-simplification orderings. That is, f(s1,...,sn) = s; if both
terms have the same base type. This property, combined with monotonicity of -,
means that quasi-simplification orderings cannot deal with a rule like:

quot(s(X),s(Y)) = s(quot(minus(X,Y),s(Y)))

For if we could orient this rule with a quasi-simplification ordering, then
quot(s(0),5(s(0))) + s(quot(minus(0, s(0)),s(s(0)))) % s(quot(s(0),s(s(0))))
7~ quot(s(0), s(s(0))), which contradicts well-foundedness.

The dependency pair approach, defined for first-order TRSs by Arts and Giesl
in [9], provides a solution for systems like this. This approach transforms a term
rewriting system into groups of ordering constraints, such that rewriting is termi-
nating if and only if the groups of constraints are (separately) solvable. To solve
these constraints, it suffices to use a weak reduction pair rather than a strong
reduction pair. Moreover, the constraints can be simplified using for instance ar-
gument filterings and usable rules [53], which not only makes it possible to deal
with rules like the quot rules above, but adds other advantages as well. Various
optimisations of the method have been studied, see for example [46, 54].

It is not obvious how the dependency pair approach should be extended to
higher-order rewriting. In particular the question of how we should deal with
functional meta-variables, and with bound variables, are objects of decision. As
a result, in the last few years not one but three dependency pair approaches for
higher-order rewriting have been developed independently. The static approach,
developed in [87, 114] by Kusakari et al., avoids dependency pairs headed by
a functional meta-variable, but allows bound variables to become free. The dy-
namic approach, first defined in [112] by Sakai et al., and extended by Femke
van Raamsdonk and me in [79, 80], does admit dependency pairs headed by
a functional meta-variable, but avoids freeing bound variables. The type-based
approach, by Roux [109], is based on the shape of types rather than terms.

It is the second, dynamic, approach which we will study in this chapter.

141

142

Chapter 6 — Dependency Pairs

Chapter Setup. Because the method of using dependency pairs offers many
possibilities, the material has been split up over two chapters. This chapter con-
siders a basic definition of the dependency pairs approach. Furthermore, two
improvements are considered: formative rules, a method similar to usable rules
in the first-order approach, and a definition of tagged dependency chains. Both
techniques are designed specifically for the higher-order setting. Chapter 7 con-
siders a higher-order extension of the dependency pair framework [46]: there
we will consider several ways to manipulate dependency pairs and chains. The
techniques in Chapter 7 are mostly extensions of existing first-order techniques.

In this chapter, Section 6.1 briefly discusses the ideas from existing studies
of dependency pairs for higher-order rewriting. Section 6.2 relates those parts
of the first-order dependency pair approach most relevant to the work discussed
here. The definitions are presented in a style that, although somewhat unusual,
is most suitable for extension to the higher-order case. In Section 6.3 we will
define a basic dependency pair approach for higher-order rewriting.

Section 6.4 discusses a first improvement: the notion of a formative reduction,
which leads to formative rules, a variation of the usable rules which are commonly
used in the first-order case. Formative rules have been designed specifically for
the higher-order setting and currently have no first-order counterpart. Unlike
usable rules, formative rules require a special form of dependency chains.

The initial definitions do not suffice to deal with systems where quasi-simpli-
fication orderings fail. Therefore Section 6.5 discusses an important improve-
ment, limited to the class of abstraction-simple AFSMs. For such systems, we can
weaken the subterm property, which makes life difficult in the basic definition,
and go beyond quasi-simplification orderings. Finally, in Section 6.6 we will con-
sider some systematic ways of finding a suitable reduction pair, both for the basic
approach and for abstraction-simple systems.

The definitions and results from Section 6.3 onward are new in this thesis and
the corresponding papers. The basic results of Section 6.3.1-6.3.3 have a coun-
terpart in the setting of HRSs [112], but the definitions in this setting are signif-
icantly easier than in the AFSM setting. Meta-variable conditions, §-saturating,
(B-reduced sub-meta-terms and reduction triples do not appear in [112].

Both for polynomial interpretations and the iterative path ordering, the definition
was designed to be simple. To gain extra power, transformations are used (such as
type changing functions and argument preserving functions). With dependency
pairs, this is not the case: the definitions in this chapter are as general as possible,
not assuming any transformation was done on the system beforehand (other than
presenting the system with maximum arity). This is because the dependency pair
approach in the first-order setting provides a characterisation of termination, and
is used both for termination and non-termination analysis. To have any hope for
the same power in the higher-order case, the definitions must be general.

This chapter is primarily based on [79] and its journal extension [80]. However,
where [79, 80] concern the AFS formalism, here of course AFSMs are considered.

6.1. Background and Related Work

143

6.1 Background and Related Work

As mentioned in the introduction, the extension of dependency pairs to the
higher-order case is not entirely straightforward, and thus many variations exist.
This work can roughly be split along two axes. On the one axis, the higher-
order formalism: dependency pair definitions have been provided for applicative
rewriting, rewriting modulo 5 (HRSs), and with 3 as a separate step (AFSs). On
the other axis, the style of dependency pairs, with the main styles being dynamic
and static. Figure 6.1 gives an overview.

| Applicative HRS AFS
Dynamic | [86] [112] [78] [79]1 [80]
Static | [89] [90] [16] [111] [87] [114] [16]
Other | [6] [7] [56] [47] - [109]

Figure 6.1: Papers on Higher-order Dependency Pairs

The dynamic and static approach differ in the treatment of leading variables in
the right-hand sides of rules (subterms x - s; - - - s,, with n > 0 and « a free vari-
able; the corresponding notion in the AFSM formalism is meta-variable applica-
tion). In the dynamic approach, such subterms lead to a dependency pair; in the
static approach they do not. Consequently, first-order techniques like argument
filterings, the subterm criterion and usable rules are easier to extend to a static
approach, but this approach is not always applicable, and moreover incomplete.

Dependency pairs for applicative rewriting. Since many definitions of “higher-
order” dependency pairs exist for applicative systems, they deserve some men-
tion. Recall that in applicative systems there are no meta-variables or abstraction,
but functional variables may be present. There are various styles of applicative
rewriting; untyped, simply typed, and with alternative forms of typing.

A dynamic approach was defined both for untyped and simply-typed applica-
tive systems in [86], along with a definition of argument filterings. A first static
approach appears in [89] and is improved in [90]. The method is restricted to
plain function passing systems where, intuitively, leading variables are harmless.

Due to the lack of binders, it is also possible to eliminate leading variables
by instantiating them, as is done for simply-typed systems in [6, 7]. In [56],
an uncurrying transformation from untyped applicative systems to normal first-
order systems is used, which preserves and reflects termination. In [47] several
first-order dependency pair processors are adapted to work better for untyped
applicative systems; this paper also considers an uncurrying transformation.

However, as we have seen in Chapter 3.1, results on applicative systems can-
not be transposed to rewriting with binders. Nor do these results have any paral-
lels in the presence of \-abstraction. Thus, let us move on to the results for HRSs
and AFSs.

144

Chapter 6 — Dependency Pairs

Dynamic Dependency Pairs for HRSs. A first definition of dependency pairs
for HRSs is given in [112]. Here termination is not equivalent to the absence of
infinite dependency pair chains, and a term is required to be (weakly) greater
than its subterms (the subterm property), which makes many optimisations im-
possible. Consequently, most of the focus since has been on the static approach.
However, in [78] (an extended abstract by Femke van Raamsdonk and me) it is
discussed how the subterm property in this setting may be weakened by posing
restrictions on the rules. This discussion lays the foundation for Section 6.5.

Static Dependency Pairs for HRSs. A first appearance of static dependency
pairs for HRSs is in [111], where an analysis is given for non-nested and strongly
linear systems. The limitations are very strong, however, and this method is
subsumed by [89], where the static approach is moved to the setting of HRSs.
This approach is extended with argument filterings and usable rules in [114].
The static approach omits collapsing dependency pairs (that is, dependency pairs
f4() = z - 7 with x a variable),! which avoids the need for a subterm property.
The technique is restricted to plain function passing HRSs. A system with for
instance the (terminating) rule h(g(Az.F(z))) = F(a) cannot be handled. In
addition, bound variables may become free in a dependency pair. For example,
the rule I(s(n)) = twice(\z.I(x),n) generates a dependency pair I*(s(n)) =
1%(x) which admits an infinite static dependency pair chain, even though, as we
will see, the rule itself is not problematic.

Type-based Dependency Pairs for AFSs. In type-based termination analysis,
function symbols in terms are equipped with “sized types”, a form of dependent
typing. These types can themselves be seen as terms. Roux [109] considers a
dependency pair approach based on the sized types rules. Although this method
uses the ideas of first-order dependency pairs, it does not seem to be comparable
with dependency pair approaches which consider the shape of terms rather than
types. The restriction of type-based dependency pairs to the first-order setting
also does not coincide with the first-order definition of dependency pairs.

Dynamic Dependency Pairs for AFSs. The definitions for HRSs [87, 112] do
not immediately carry over to AFSs, since AFSs may have rules of functional type
and S-reduction is a separate rewrite step. Certainly, we could transform AFSs
into HRSs by n-normalising rules, and introducing a separate function symbol for
application and an infinite number of 3-rules (as done in Chapter 3.3), but this
transformation may lose termination — and in fact, examples of systems which
this transformation loses can often be proved terminating with the dependency
graph from Chapter 7.4.

Except for a short paper by Blanqui [16] (which introduces static dependency
pairs on a form of rewriting which includes AFSs, but poses some restrictions

LThis definition of collapsing generalises the first-order notion ([10, Def. 9.2.3]), where a collaps-
ing rule is a rule where the right-hand side is a variable.

6.2. First-Order Dependency Pairs

145

such as function symbols having a base type as output type), dependency pairs
for AFSs primarily appear in [79], by Femke van Raamsdonk and me. An ex-
tended version of this paper, [80], includes argument functions and a restriction
of locality, which allows for the subterm property to be weakened.

This chapter considers dynamic dependency pairs for AFSMs. The method con-
servatively extends the one for first-order rewriting, and is both sound and com-
plete. Because of the choice for a dynamic approach, the definitions are in prin-
ciple not restricted to a sub-class of AFSMs. The restrictions which are needed to
weaken the subterm property and for instance make it possible to use argument
filterings, are optional.

To some extent, the static and dynamic approaches can be combined in the
same framework. Some words about this will be said in Chapter 7.8.

6.2 First-Order Dependency Pairs

To place the ideas and definitions in this chapter in their context, let us start by
considering the corresponding definitions for the first-order case. In this setting,
without the complications brought on by A-abstraction and §-reduction, the in-
tuition behind the method is more apparent. In the rest of this chapter, these
definitions and results are extended to the higher-order case.

6.2.1 Dependency Pairs

The motivation of the dependency pair approach is to be able to deal with sys-
tems which cannot be handled with a quasi-simplification ordering. For example
the following TRS for division, which includes the rule we saw in the introduc-
tion.

minus(z,0) = =«
minus(s(x),s(y)) = minus(z,y)
quot(0,s(y)) = O

quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))

An intuition behind the dependency pair approach is to identify those parts of
the right-hand sides of rewrite rules which may give rise to an infinite reduction.

Suppose we have a minimal non-terminating term tq, so a non-terminating
term where all proper subterms are terminating. Consider an infinite reduction.
After finitely many internal steps, there must be a step at the top, Iy — r. If we
identify a minimal non-terminating subterm ¢; of v, we find that its root symbol
f occurs in r, and moreover, that f is a defined symbol, which means that a rule
f(I) = r exists. From t;, we can continue this reasoning, and end up with an
infinite sequence which uses special “rule with subterm” steps at the top of terms.

This reasoning suggests that we should be particularly interested in subterms
of right-hand sides of rewrite rules with a defined symbol at the root. Follow-
ing [112], we call such subterms candidate terms of r.

146

Chapter 6 — Dependency Pairs

Definition 6.1 (First-order Dependency Pairs ([9, 31])). Let (F,R) be a first-
order TRS. Let F* denote the union of F with the set which contains (exactly) a
fresh marked symbol f* for every defined symbol f € F; f* has the same arity
as f. The dependency pairs of a rewrite rule f(ly,...,l,) = r are all pairs of
the form f4(ly,...,1,) = ¢*(p1,...,pm) With 7 > g(p1,...,p,) and g a defined
symbol, where ¢(p) is not a subterm of one of the I;. The set of all dependency
pairs of (F,R) is denoted by DP(R).

Example 6.2. The quot-example has the following dependency pairs:

minus?(s(z),s(y)) = minusf(z,y)
quot’(s(z),s(y)) = quot®(minus(z,y),s(y))
quotf(s(z),s(y)) = minus(z,y)

The first and third rewrite rule do not give dependency pairs, because their right-
hand sides do not contain defined symbols. The fourth rule gives two different
dependency pairs.

6.2.2 Dependency Chains

Dependency pairs are used in a dependency chain, a sequence [(I; = p;, si,t;) |
i € N], such that for all i:

1. ;= pi € DP(R),
2. s; = l;y; and t; = p;y; for some substitution ~;;
3.t :>;€ Sit1;

A dependency chain is minimal if the strict subterms of all s;, t; are terminating

in =%. Note that, since ¢; has the form f#(¢) and the marked symbol f* is not

used in any rule, the reduction ¢, =% s;;1 takes place in strict subterms.
Termination of a TRS can be studied by examining dependency chains:

Theorem 6.3 (First-order Dependency Chains [9]). A TRS is terminating if and
only if it does not admit a minimal dependency chain.

The intuition of how a minimal dependency chain is constructed was given in
Section 6.2.1.

Comment: About terminology: this definition of a dependency chain,
and also its naming, is not a standard. In the literature, our dependency
chains are also called infinite R-chains [9]. In the language of [119] we
might refer to an infinite (DP(R), (), R)-chain.

However, in these definitions, the chains are merely chains of depen-
dency pairs; s; and t; are not included. In the higher-order definitions
we will need these separate terms. Hence the different naming. Since
we are not interested in finite chains, the “infinite” adjective is omitted —
a dependency chain is infinite by definition.

6.2. First-Order Dependency Pairs

147

Example 6.4. Consider a TRS which enumerates the natural numbers with a
rule nats(n) = cons(n,nats(s(n))). This TRS admits a dependency chain:

(natsf(n) = nats(s(n)) , nats?(0) , nats¥(s(0)))
(nats®(n) = natsf(s(n)) , natsf(s(0)) , nats®(s(s(0)))),

Thus, the system is non-terminating. This chain corresponds with the reduction
nats(0) = cons(0,nats(s(0)) = cons(0, cons(s(0),nats(s(s(0))) = ...

6.2.3 Using a Reduction Pair

If a TRS has no (minimal or non-minimal) dependency chain, then it is terminat-
ing. Absence of infinite dependency chains can be demonstrated with a weak re-
duction pair, which we have previously seen in Chapter 2.4. Recall that a (weak)
reduction pair for first-order rewriting is a pair (77, =) of a quasi-ordering and a
compatible well-founded ordering, such that - and >~ are both stable, and - is
monotonic, but > need not be monotonic.

Theorem 6.5 ([8, 88]). R is terminating if and only if there is a reduction pair
(7, =) such that | - p for all dependency pairs | = p, and - r for all rules | = r.

The if part holds because, if the requirements are satisfied, there cannot be a
dependency chain: each s; > ¢; 77 s;41, (the > step occurs at the top, so mono-
tonicity is not needed). As the dependency chain is infinite, this leads to an
infinite decreasing >~-reduction.

For the only if part, we can define a reduction pair based on =, and =.

Example 6.6. The quot example is terminating if there is a reduction pair satis-

fying:

minusf(s(z),s(y)) > minusf(z,y)
quoti(s(z).s(y) = quoti(mimus(z,y),s(y))
quotf(s(x),s(y)) > minusf(z,y)
minus(z,0) = =
minus(s(z),s(y)) 7 minus(x,y)
quot(0,5(y)) & O
) Z

s(quot(minus(z,y), s(y)))

Recall from Theorem 4.10 that polynomial interpretations without the strong
monotonicity requirement give a weak reduction pair; this is also the case in
first-order rewriting. Thus, we can orient the constraints with a polynomial
interpretation. We consider an interpretation over the natural numbers with:
J(minus) = J(minus®) = Azy.z, J(quot) = J(quot?) = Azy.x +y, J(s) =

148

Chapter 6 — Dependency Pairs

Az.x + 1, J(0) = 0. This gives the following constraints:

r+1 > =z r > =z

z+y+2 > xz+y+1 z+1 > =z

r+y+2 > x y+1 > 0
r+y+2 =2 x+y+2

It is clear that these constraints are satisfied for all valuations. Note that the
resulting reduction pair is not a strong reduction pair, as > is not monotonic:
[minus(s,t)] = [minus(s,q)] evenif ¢t > q.

The requirements for Theorem 6.5 are somewhat stronger than we need. As with
rule removal, rather than orienting all dependency pairs at once, we can use a
step-by-step approach. Let a set of dependency pairs P be called chain-free if
there is no minimal dependency chain [(p;, s;,¢;) | ¢ € N] with all p;, € P. Since
evidently () is chain-free, the task of a termination prover is to iterate over P until
no dependency pairs remain. This we can also do with a reduction pair:

Theorem 6.7 (Based on [43, 53]). A set of dependency pairs P = P W Py is
chain-free if P is chain-free, and there is a reduction pair (7, =) such that | > p
for all dependency pairs | = p € Pyandl = pforalll = p € Pyand [7 r for all
rulesl = r e R.

Comment: The notion chain-free actually does not appear in the first-
order literature. It is based on the notion of non-loopingness in [112].
The first-order results presented in this section are adapted from their
original definitions (but can also be seen as a consequence of some re-
sults in the dependency pair framework discussed in Chapter 7.1.1).

Example 6.8. Let us try to prove termination of the following TRS for addition
and multiplication:

add(0,y) = vy

add(s(z),y) = s(add(z,y))
mul(0,y) = O

mul(s(z),y) = add(y,mul(z,y))

This TRS has three dependency pairs:

addf(s(z),y) = add(z,y)
mul’(s(z),y) = add*(y,mul(z,y))
mulf(s(z),y) = mulf(z,y)

6.2. First-Order Dependency Pairs

149

To prove termination, Theorem 6.3 states that it suffices if the set of these three
pairs is chain-free. Using Theorem 6.7, we must orient the following constraints:

add*(s(z),y) R addf(z,y) add(0,y) = vy
mulf(s(z),y) Z, add*(y,mul(z,y)) add(s(x),y) % s(add(z,y))
mul*(s(z),y) (2, mulf(z,y) mul(0,y) = O
mul(s(z),y) 2 add(y,mul(z,y))
Here, 7 indicates that the constraints may either be oriented with 7 or with

>, but at least one should be oriented with . Let’s try the 1ntu1t1vely logical
polynomial interpretation, with 7(0) =0, J(s) = An.n+1, J(add) = Anm.n+
m, J(mul) = Anm.n - m. Moreover, choose J(add*) = Anm.n and J(mulf) =
Anm.m. All interpretations are weakly monotonic functions, and the constraints
are satisfied:

r+1 > = y >y
y >y r+y+1 > x+y+1

y =y 0 > 0
zy+y =2 z-y+y

The first of the dependency pairs was oriented with > and the rest with =, so
we must prove that the set {mulf(s(z),y) = add®(y,mul(z,vy)),mul?(s(z),y) =
mul?(z,y)} is chain-free. To prove this, we might use any reduction pair, but let us
use polynomial interpretations again, with the same interpretation for 0, s, add
and mul, but now choosing J(add*) = Anm.0 and J(mul®) = Anm.n. Then
[ll7.« = [r]7,« for all rules as before, and moreover:

[mulf(s(2),y)]7a = z+1 > 0 = [add*(y,mul(z,y))]s.q
[mul*(s(z),9)]7a = z+1 > z = [mul?(z,y)]7.q

Thus, termination is reduced to chain-freeness of (), which we know to hold; the
system is terminating.

6.2.4 Argument Filterings

In order to obtain a reduction pair which does not necessarily have the subterm
property, there are two ways we could go: either we use approaches like the
polynomial interpretations given in Example 6.6 and 6.8, which directly give
us a pair (7, ~) where > may be non-monotonic, or we use an existing strong
reduction pair and adapt it with argument filterings.

An argument filtering is a function 7= which maps terms of the form f(z4,...,
x,) with f € F* either to a term f, (z;,,...,2;,) or to one of the x;. An argument
filtering is applied to a term as follows:

ﬁ(f(slv~-~7sn)) = fﬂ'(ﬂ—(sll) ﬁ(slm)) lfﬂ(f(f)):fﬂ(mhv’mlm)
T(f(s1,---180)) = 7(s:) if m(f(7)) = i

T(x) = =z if z a variable

150

Chapter 6 — Dependency Pairs

Phrased differently, 7(f(s1,...,84)) = 7(f(x1,...,2n))[x1 = T(81),..., Ty =
7(sy)]. Note that an argument filtering works both on unmarked and on marked
symbols. Using the symbols from the quot example, suppose 7(minus(z,y)) = =
and 7(quot(z,y)) = quot_(z) and 7(s(x)) = s,(x). Then we for example have:
7(s(quot(minus(z,y),s(y)))) = sx(quot (z)).

Using argument filterings, we can eliminate troublesome subterms of the de-
pendency pair constraints. To this end, we have the following result:

Theorem 6.9 (Based on [88]). Let (7, >) be a reduction pair on terms. Let be
an argument filtering, and define s -, t iff m(s) 75 ™(t) and s = t iff T(s) > 7(t).
Then (7, >=) is a reduction pair.

Argument filterings are a special case of the argument functions from Chap-
ter 5.6. They can be used with an arbitrary reduction pair, rather than just the
recursive path ordering.

Example 6.10. Recall the constraints given in Example 6.6. Using Theorem 6.9
and the argument filtering with m(minus(z,y)) = =, 7(quot(z,y)) = quot_(x)
and 7(f(Z)) = f»(Z) for all other symbols, it suffices to find a strong reduction
pair satisfying:

x Tz minust (s;(z),s,(y)) = minus?(z,vy)
sr(r) 2 w quot? (sx(z),s+(y)) > quoti(z,s(y))
quot_(0r) 7 Ox quotgr(s7r (7),s:(y)) > minust(z,y)
quot, (sx(z)) % sx(quot, (z))

These altered constraints are easily satisfied with a recursive path ordering.

6.2.5 Usable Rules

To prove that a set of dependency pairs P is chain-free using a reduction pair,
so far we always have to show that [= r for all rules [= r. Thus, even when
we have only a single dependency pair, we may have many ordering constraints.
The method of usable rules comes to the rescue. The idea of this method is that
in a dependency chain over P, we can restrict attention to those rules that may
actually be relevant in the reduction ¢; =% s;.

First we need some definitions. Let f J,, g denote that there is a rewrite
rule f(ly,...,l,) = Clg(r1,...,rm)]. The reflexive-transitive closure of 1, is
denoted by J% . Overloading notation, let s 3%, ¢ indicate that there is a symbol
f in the term s such that f 3%, ¢. So if not s J%_ g, then s cannot reduce to a
term containing the symbol g.

Definition 6.11. The set of usable rules of a term s, notation UR(s), is the set

of rules g(I) = r € R, where g is any symbol such that s 3%, g. For a set of
dependency pairs P, let UR(P) = U,z ,cp UR(D)-

6.2. First-Order Dependency Pairs

151

Using a reasoning originally due to Gramlich [51], and following on results
from Urbain [123] and a definition for innermost rewriting [9], the authors of
both [53] and [48] (independently) demonstrate that if there is a minimal depen-
dency chain [(p;, si,t;) | ¢ € N] over P, then there is a (not-necessarily-minimal)
dependency chain [(p;, s, ;) | i € N] over P where the reduction ¢, =* s;11 uses
only the rules in UR(P) U {p(z,y) = z, p(z,y) = y} for a fresh symbol p (these
two rules are usually considered harmless, as methods like the recursive path or-
dering or polynomial interpretations trivially orient them). If we can see (using
for instance a reduction pair) that the latter cannot use a certain dependency
pair infinitely often, then the same holds for the former.

Example 6.12. Let P = {quotf(s(z),s(y)) = quotf(minus(z,y),s(y))}. For
each of the symbols f occurring in the right-hand side of the one dependency
pair in this set, only f 37, itself. Thus, the usable rules of this set are only the
two minus rules,
minus(z,0) = =z
minus(s(z),s(y)) = minus(z,y)

Comment: Usable rules occur with slightly different definitions in dif-
ferent places. The definition here corresponds to the one in [53], but
stronger definitions (which give fewer usable rules) are possible. All ex-
isting definitions can be seen as approximations of the general definition
of usable rules given in [119], which we will not consider here.

6.2.6 Concluding Remarks

Thus we see a simple algorithm to prove termination using dependency pairs:
* calculate the dependency pairs, and let P := DP(R);
* while P is non-empty:

- find a weak reduction pair such that [> p for one or more pair [=
p € P and [7 p for the rest, and also [= r for all rules in UR(P) (this
pair could for example be chosen with weakly monotonic polynomial
interpretations, or with RPO with an argument filtering);

— remove those pairs | = p which were oriented with > from P
* conclude that the system is terminating!

Typical implementations of dependency pairs use more sophisticated techniques,
such as a graph of dependency pairs and the subterm criterion. These will be
discussed in Chapter 7. For now, let us restrict ourselves to the challenge of
extending this basis to the higher-order setting.

152 Chapter 6 — Dependency Pairs

6.3 The Unrestricted Dynamic Dependency Pair approach

When trying to extend the first-order dependency pair approach to AFSMs, we
run into several new issues:

* collapsing rules: non-termination might be caused by a meta-variable ap-
plication. For example, the right-hand side of the non-terminating rule
f(g(Az.F(z)), X) = F(X) doesn’t even have defined symbols;

* dangling variables: given a rule £(0) = g(Az.f(z)), the bound variable z
may become free in the corresponding dependency pair;

* rules of functional type may lead to non-termination only because of their
interaction with the (applicative) context they appear in, such as a rule
A(B(F)) = F (with A: [o)]—o—o0and B: [(0—0)]—0);

* typing issues: to be able to use polynomial interpretations or path order-
ings, both sides of a dependency pair (or the constraints generated from it)
should usually have the same type modulo renaming of base types.

Typing issues will be addressed in Section 6.3.4. For the other problems we have
to take precautions already in the definition of dependency pairs.

Example 6.13. The following AFSM twice (which appears under the same name
in the termination problem database v.8.0.1) is the running example of this chap-
ter. Its signature consists of four function symbols: O : nat, s : [nat] — nat,
I : [nat] — nat, and twice : [nat — nat] — nat — nat. There are three rewrite
rules:
I0) = ©
I(s(X)) = s(twice(Az.I(z))- X)
twice(F) = My.F-(F-y)

The symbol I represents the identity function on natural numbers; twice runs a
given function two times on any argument. Although this system is terminating,
this is not trivial to prove: higher-order path orderings have trouble with the I(x)
subterm of the second rule, polynomial interpretations in N struggle because of
the - in the same rule, and a static dependency pair approach fails because it
is impossible to prove I*(s(X)) = If(Y) with a meta-stable and well-founded
ordering relation.

Example 6.14. Another example that will be used regularly is the AFSM eval:

0 : nat dom : [nat X nat X nat]—>nat
s : [nat]—nat fun : [(nat—nat) X nat X nat] —nat
eval : [nat X nat]—nat

6.3. The Unrestricted Dynamic Dependency Pair approach

153

dom(s(X),s(Y),s(Z2)) = s(dom(X,Y,Z))
dom(0,s(Y),s(Y)) = s(dom(0,Y,Z2))
dom(X,Y,0) = X
dom(0,0,Z) = O
eval(fun(A\z.F(2),X,Y),Z) = F(dom(X,Y,Z2))

This system encodes a function, together with an application domain, as a natural
number. The dom function makes sure that a function is only applied to elements
of the domain it is restricted to. Note that, unlike twice, this AFSM has meta-
variables which take arguments. This system is difficult because of the last rule:
if we could orient this rule with a reduction pair that satisfies dom(X,Y, Z) = Z,
we would have eval(w,w) = eval(dom(zx,y,w),dom(x,y,w)) 7 eval(w,w) > ...
for w := fun(Az.eval(z, z), z,y).

6.3.1 Dependency Pairs

In this section we define dependency pairs, after pre-processing the rules and
defining candidate terms. The complete definition is a fair bit more complicated
than its first-order counterpart, and may at first seem somewhat baroque. This
is partly because we have to work around the issues of functional rules and dan-
gling variables, and partly because of several optimisations which are immedi-
ately included to obtain an easier result system, and a complete method.

To start, F is split into two subsets: the set of defined symbols, denoted D,
and the set of constructor symbols, denoted C. Defined symbols are those symbols
f such that a rule f(ly,...,0Ln) - Lnt1 -1, = r exists; all other symbols are
constructor symbols.

Pre-processing. Before defining dependency pairs, we alter the system in the
following way:

Definition 6.15 (3-saturating Rules). An AFSM is 3-saturated in two steps. First
we add for all rules of the form [= AZ.((\y.s) - t - §) where [has a func-
tional type, a new rule [= A\Z.(s[y := t] - ¢), and iteratively repeat this with
the new rule until it no longer has such a form. Then we add for each rule
of the form [= Azy...z,.r with » not an abstraction the following n rules:
1-Zy = Xpg.c.anrlrr =24, ooy U 20 Zy = vy =20,y Ty = Ly

Note that 3-saturation has no effect on termination, since the added rules can be
simulated with the original rules and some S-steps. No rules are removed.

Example 6.16. The system twice from Example 6.13 is S-saturated by adding
the rule twice(F)-X = F-(F-X). The system eval has only base-type, 5-normal
rules, so S-saturating does not add anything.

154

Chapter 6 — Dependency Pairs

To understand why [-saturation is necessary, consider the following example:

Example 6.17. Let R = {£(0) = Az.f(z) -z}. The term £(0) itself is terminating.
However, there is an infinite reduction involving this rule: £(0) - 0 = (Az.f(z) -
z)-0=3£(0)-0=...

Rules like the one in Example 6.17 might complicate the analysis of dependency
chains, because the important =-x-step does not happen at the top. The pre-
processing makes sure that it could also be done with a topmost step: f(0) - 0
self-reduces with a single step using the new rule f(0) - z = f(z) - which was
added by [-saturation.

Comment: It is worth noting that we did not add new rules for rules of
functional type, only for those where the right-hand side is an abstraction
(or might S-reduce to an abstraction). A rule £(0) = £(A) of functional
type is left alone. This is an optimisation: it would be natural to add a
rule £(0)-x = £(A) -, but this might give a dependency pair £(0)-z = A
which will not be needed. Instead of “saturating” this rule, we will later
add a special dependency pair for it. Apart from optimising, this choice
was made with an eye on a future extension to polymorphic systems: the
given definition of 3-saturation only adds finitely many rules even in the
presence of polymorphic types, while the simpler alternative does not.

Candidate Terms. In the first-order definition of dependency pairs, we identified
subterms that may give rise to an infinite reduction. Taking subterms in a system
with binders is well-known to be problematic because bound variables may be-
come free. However, in the setting of AFSMs this is not too troublesome, because
variables are not meta-variables, and can be treated differently.

Something that we should also watch out for is 3-reduction. As a design
decision, our dependency pairs will always have the form [= s - i where s
is either a functional term, or a meta-variable application, and ¢ has length >
0. Notably, we will not have dependency pairs headed by a M-abstraction. Not
because dependency pairs of the form | = (\z.¢) - t would cause insurmountable
problems (they wouldn’t), but because pairs like this would give an extra case
every time we prove something about dependency pairs — and they are easy to
avoid, by taking some care in the definition.

Moreover, terms which occur below a meta-variable may be destroyed in a
substitution of the term. If we want to achieve a complete method, we must
keep track of the way meta-variables are used.

These considerations lead to the following notion of candidate terms:

6.3. The Unrestricted Dynamic Dependency Pair approach 155

Definition 6.18 (Candidate Terms). The set of 3-reduced sub-meta-terms of a
meta-term s, denoted brsmtg(s), is given by the following inductive definition:

brsmta(Ax.s) = brsmty(s)
brsmta(f(s1,...,50)) = {f(5) (A)}U VEJl brsmt(s;)
brsmta(Z(st,...,5n)) = {Z(5) (A)}U _Q brsmtauz.iy (5:)
brsmta(s-£) = {s-¢(A)}Ubrsmta(s) U brsmta()
(if head(s) is not an abstraction)
brsmta((Ax.s) -to---tn) = brsmta(s[z :=1to]-t1---t,) Ubrsmta(to)
brsmta(z) =

This function is defined for all terms, as we can see with induction on =4
combined with the subterm relation. The set A is used to keep track of the
meta-variables below which the given S-reduced sub-meta-term occurs. If s is
B-normal, then brsmty(s) contains pairs ¢ (A) where ¢ is a sub-meta-term of s
which is not an abstraction, and A is a set of conditions which indicate the meta-
variable applications inside which ¢ occurs. The set A will be referred to as a set
of meta-variable conditions.

The “candidate terms” of a meta-term r are those 3-reduced sub-meta-terms
s (A) of r where either:

* s= f(t1,.-.,tm) q1- g, wWith f a defined symbol and n > 0, or

* s=F(t1,...,tm) - q1 - g, with F' a meta-variable and n > 0, and either
n > 0, or ty,...,t, are not all distinct variables (that is, a meta-variable
application of the form F(z1,...,x,,) where either all z; are distinct vari-
ables (or m = 0) is not a candidate term, but all other sub-meta-terms of
the form F (i) - ¢ are).

The set of candidate terms of r is denoted by Cand(r). Note that a single meta-
variable is never a candidate term.

Example 6.19. In the twice system we have:
Cand(F - (F-x))={F-(F-z) (), F-z ()}

Cand(F - (F- X)) = {F - (F-X) (), F-X (0)}

Because the system is applicative, there are no meta-variable restrictions, and
F - z is included. If these were meta-variables applications rather than normal
applications, we would have:

Cand(F(F(x))) ={F(F(z)) (0)} (butnot F(z)!)

Cand(F(F(X))) ={F(F(X)) (0), F(X)({F:1})}

156

Chapter 6 — Dependency Pairs

In the twice system we also have:

twice(Az.I(z))- X ()
Cand(s(twice(Ax.I(x)) - X)) = ¢ twice(Az.I(z)) ()
I(x) ()

If f is a defined symbol, then the candidate terms of f(a)-b-c-d are f(a), f(a)-b,
fla)-b-c, f(a)-b-c-d. Note that for example x - y is not a candidate term of
g(Az.x - y) because x is a variable, not a meta-variable.

By a-conversion, a term with bound variables may have infinitely many candi-
date terms. For instance a term f(Az.g(z)) with g a defined symbol has a can-
didate term g(z), but also g(y), g(2), ... For the sake of sanity, let us assume we
have chosen one representative for every class of candidate terms which is equal
modulo renaming of free variables. Thus, a single term only has finitely many
candidate terms.

Dependency Pairs. As in the first-order case, the definition of dependency pair
uses marked function symbols.

Let F! = FU{f*: 0| f : 0 € D}, so F extended with for every defined symbol
f a marked version f* with the same type declaration. The marked counterpart
of a term s, notation s, is f¥(sy,...,s,) if s = f(s1,...,5,) with f in D, and
just s otherwise. For example, (twice(F))* = twice®(F) and (twice(F) - m)f =
twice(F)-m. The application operator is not a function symbol, so is not marked.

Definition 6.20. A dependency pair is a triple? | = p (A) such that:
* [is a closed pattern of the form f(l1,...,0,) - lnt1 - Im;
* pis a meta-term;
* Ais a set of meta-variable conditions.

The set of dependency pairs of a rewrite rule [= r, notation DP(I = r), consists
of:

* all triples I* = p* (A) with p (A) € Cand(r), provided p is not a strict
sub-meta-term of [,

* if] has a functional type 01 —...— 0, —¢ (n > 1) and head(r) has the form
F(5) with F' a defined symbol or meta-variable: all triples [- Z; --- Z), =
r-Zy---Zi (0) where k € {1,...,n} and all Z, are fresh meta-variables

Let DP(R) (or just DP if R is clear from context) denote the set of all dependency
pairs of rewrite rules of an AFSM R.

2Unlike the name suggests, dependency pairs are triples, consisting of two meta-terms and a set
of constraints. We will stick to the terminology “dependency pair” both because it corresponds to the
first-order terminology, and because the most important part of this triple is the pair /, p.

6.3. The Unrestricted Dynamic Dependency Pair approach 157

The dependency pairs of R are also called dynamic dependency pairs of R to
contrast the static dependency pairs which we will see in Chapter 7.8.

Example 6.21. The set of dependency pairs of twice consists of:

I*(s(X)) = twice(Az.I(z))-X twice!(F) = F-(F-y)

I*(s(X)) = twicef(\r.I(x)) tuice!(F) = F-y

I*(s(X)) = 14x) twice(F)- X = F-(F-X)
twice(F)- X = F-X

Here, the set of meta-variable restrictions has been omitted where it is () (that is,
everywhere). We will generally stick to this notational convention. The last two
dependency pairs originate from the rule added by -saturation.

Example 6.22. The system eval from Example 6.14 does not need S-saturating,
or dependency pairs of the second kind, because all rules already have base type.
However, because the meta-variables take arguments, we do encounter variable
restrictions. We have the following dependency pairs:

dom? (s (),s(Y),s(Z2)) = dom*(X,Y,Z2)
dom®(0,s(Y),s(Y)) = domf(0,Y,2)
evalf(fun(\z.F(2),X,Y),Z) = F(dom(X,Y,Z2))
evalf(fun(\z.F(2),X,Y),Z) = dom*(X,Y,Z) {F:1}

The second form of dependency pair deals with functional rules whose right-
hand side is not an abstraction. To illustrate why they are necessary, consider
the system with function symbols A : [o] — o — o0 and B : [0 — o] — o, and
one rewrite rule: A(B(F)) = F. This system has no dependency pairs of the
first kind, but does admit a two-step loop: writing w := B(Az.A(z)), we have
Aw) -w= (Az.A(z)) -w =p A(w) -w. The rule does have a dependency pair of the
second kind, A(B(F)) -z = F - x.

Comparing the dynamic approach here to static dependency pairs as defined
in [87], the main difference is that the dynamic approach includes collapsing
dependency pairs, where the right-hand side is headed by a meta-variable ap-
plication. Also, in the definition of a dependency chain, the free variables in
the right-hand sides of dependency pairs are treated as harmless symbols; in the
static approach, as we will see in Chapter 7.8, this is not the case.

Comment: The meta-variable conditions for dependency pairs are new
in this work, and their use is not immediately evident. In this chapter,
we will primarily use them to obtain a completeness result regarding
dependency pairs. In Chapter 7.4, we will see how these conditions also
affect the dependency graph, and thus add power for termination provers.

158

Chapter 6 — Dependency Pairs

6.3.2 Dependency Chains

Now we have almost all the ingredients to define dependency chains. Compared
to the first-order definition, we have several new aspects. To name a few: free
variables (which originate from bound variables, and are therefore mostly harm-
less), meta-variable conditions F' : ¢ and -reduction.

Definition 6.23. A dependency chain is a sequence [(p;, s;,t;) | ¢ € N] such that
for all 4:

1. p; € DP U {beta};
2. if p; =1; = p; (A) € DP then there exists a substitution « such that:

a) dom(y) = FMV(l;) UFMV (p;) U FV(p;);
b) s; = liy;
¢) if p; is an application or functional term, then ¢; = p;7;

d) if p; = F(uq,...,u,) with F a meta-variable, and v(F) = \z; ... 2,.q,
then there exists a term v such that ¢ > v and {Z} N FV(v) # () and
t; = v*[Z := iiv], but v is not a variable;

e) all variables in dom () are mapped to fresh variables;
f)if F:ie Aand y(F) = Az1...zy.q, then x; € FV(q);

3. if p; = betathen s; = (Ax.q) - u- vy - - - vy, and either

a) k>0andt;, =qlz:=u] vy v, or

b) k = 0 and there exists a term v such that ¢ > v and € FV(v) and
t; = v*[z := u], but v is not a variable;

4. t; :>ch Sit1;

A dependency chain is minimal if moreover the strict subterms of all ¢; are ter-
minating in =.

Here, a step =, is obtained by rewriting some ¢; inside a term of the form
fl@1,---1qn) - @nt1 - - ¢m- The relation =}, is reflexive, so if ¢; = 5,11, then ¢;
does not need to be (headed by) a functional term.

This definition has several aspects which are not necessary in the first-order
case: the chain admits beta steps and reductions involving collapsing depen-
dency pairs, both of which may be combined with an arbitrary subterm reduction.
Even when using a normal dependency pair, v has extra restrictions, involving
the free variables and functional meta-variables. Also, we explicitly require that

t; =7, si+1, which is necessary because ¢, may be an application rather than a
functional term, and consequently may not be marked.

6.3. The Unrestricted Dynamic Dependency Pair approach

159

Comment: This definition allows subterm reduction steps in two different
cases: following a S-reduction step, and after a collapsing dependency
pair is used. This is a consequence of using the AFSM formalism, which
gives us the freedom of both having 8-reduction and meta-variables. In
for instance a prior work where Femke van Raamsdonk and I defined
dynamic dependency pairs for HRSs [78], there is only a subterm-step
immediately after the use of a collapsing dependency pair, as HRSs have
no separate (3-steps. In the definition for AFSs [80] they are only needed
following S-steps, because this formalism does not have meta-variables.
The price of the generality of the AFSM framework, in this case, is that
we need both.

Theorem 6.24. R is non-terminating if and only if there is a minimal dependency
chain over DP(R).

Proof. Since the proof of this is quite long, it is split in two lemmas, Lemmas 6.25
and 6.27 below. O

Lemma 6.25. If R is non-terminating then there is a minimal dependency chain
over DP(R).

Proof. Given any non-terminating term, let ¢_; be a minimal-sized subterm that
is still non-terminating (¢_; is MNT, or Minimal Non-Terminating). We make the
observation:

(**) If an MNT term is reduced at any other position than the top, then the
result is either also MNT, or terminating.

This holds because, if ¢ = C[s] = C][t], because s =% ¢ and ¢ is non-
terminating, then so is s, which contradicts minimality of ¢ unless C is the empty
context. We also note:

(%) If u =%, v, then uf =, vk

This holds by the nature of an internal step.

Now, for any given i € NU {—1}, let ¢; be some MNT term, and suppose ¢; =
qf. We consider an infinite reduction starting in ¢;. The term ¢; cannot be an
abstraction, since abstractions can only be reduced by reducing their immediate
subterm, contradicting minimality. For the same reason ¢; cannot have the form
x - uy---u, with x a variable, or the form f(u1,...,up) - Upt1 - u, with f a

constructor symbol. What remains are the forms:
(A) qgi = ()@Q) cUVL Uy,
B) ¢ = f(u1,---,Upn) - Upy1 - Uy with f € D.

In the first case we will choose p;1 = beta and satisfy requirement 3. In the
second case we will choose p;; € DP and satisfy requirement 2. Either way, re-
quirement 1 and the minimality constraint are satisfied (the latter because always
t; = qf with ¢; MNT), and we have to take care that requirement 4 is satisfied.

160

Chapter 6 — Dependency Pairs

(A) Let ¢; = (\x.u) - v - wy---w,. By minimality of ¢; eventually a headmost
step must be taken, which must be a 3-step because the left-hand sides of rules
have the form f (l;) . l;. Therefore, any infinite reduction starting in ¢; has the
form ¢; =% (Az.u) -0 - wi---w), =5 W[z =] w---w, = ... Since also
ulr = 0] wy - wy, =% W i=0]-w) - - w), the immediate beta-reduct of ¢; is
non-terminating as well. There are two sub-cases:

* If n > 0, this reduct is MNT by (**); in this case choose ¢;; := u[z :=
’U] cW Wy and let Pit1,Sit1, ti+1 = beta, qiyqit1- Note that 85 = S; and
t? = t;, and that case 3a of the definition of a dependency chain is satisfied.

e If n = 0, so u[x := v] is non-terminating, then let w be a minimal-sized
subterm of u where w[z := v] is still non-terminating. By minimality of ¢;
both w and v are terminating, so F'V (w) contains x, but not w = x. Since w
is not a variable we have (w[z := v])* = w*[z := v]. By minimality of w, also
wlz := v] is MNT (as its direct subterms have the form w’[z := v] for some
subterm w’ of w). Thus, choosing ¢; 11 := w[z := v] and p; 1, Si+1, i1 =
beta, ¢;, ¢ 11, case 3b is satisfied.

Note that in both sub-cases, case 4 is also satisfied, since ¢; = s;11.

(B) Let ¢; = f(u1,...,up) Upt1 - - Un. Any infinite reduction starting in ¢; must
eventually take a headmost step. Therefore we can find some rule [= r and
term q; = ly - uj - up, such that ¢; =%, ¢;, and ry - u} - uj, is still non-
terminating. Choose s; 1 := q;ﬁ ; by (***), requirement 6.23(4) is satisfied, and
by (**) ¢; is MNT.

Since the rules were §-saturated, we can assume that either m = j, or r is not
an abstraction or application headed by a §-redex: if r = Az.r’ and m > j then
the resulting term r+ - 4’ is a 3-redex, and (like above) may be reduced imme-
diately without losing termination. The same result would have been obtained
with the rule [- Z = 7/[x := Z]. If r is headed by a g-redex (A\z.s) - t - ¢ while
m > j, then [has a functional type, so there is also a rule s[z := t] - ¢ which could
have been used instead to obtain a non-terminating term.

If m > j, then by (**) ry - u} - -uj, is MNT. Consequently, head(ry) can-
not be a variable or a functional term ¢(%) with g a constructor symbol: rv is
either headed by an abstraction, or by a functional term with root symbol in D.
Since r itself is not an abstraction, nor headed by a 3-redex, its head must be a
meta-variable application or a functional term with defined root symbol. Either
way, |- Zjy1- Zm = 1+ Zjy1- Zy (0) is a dependency pair. Let p;;1 be this
dependency pair, and let 7' := y U [Zj41 :=] q,..., Zm = uy,]. Additionally
let gi1q := 71 - uj 41Uy, (an MNT term as required), and t,,; := ¢;4+1 (which
equals q§ 1 because ¢;;; is an application). Requirement 2 is satisfied with the

substitution +’: this is clear for 2a, 2b and 2c (recall that s;, 1 = qiﬁ) ; 2d is not
applicable because the right-hand side of the chosen dependency pair is an appli-

6.3. The Unrestricted Dynamic Dependency Pair approach

161

cation, 2e because the right-hand side has no free variables, and 2f because p;11
has an empty set of meta-variable requirements.

On the other hand, if m = j, then ¢} = Iy and rv is non-terminating. Let all
bound variables in r be fresh (a safe assumption by a-conversion). We choose a
pair ¢g(r) = p (A) in brsmty(r) as follows:

* if r is an abstraction Az.r’, then 7'+ is also non-terminating; let p4(r) =
pa(r');

* if r is an application (Az.s) - ¢ - ¢, and tv is non-terminating, then choose
wa(r) := pa(t), otherwise choose w4 (r) = wa(s[z := t] - §). Note that
in the latter case (s[x := t] - §) is non-terminating too: either some g¢;~y
is non-terminating (a subterm of this term), or s is non-terminating (and
therefore so is s[x := t]), or otherwise the S-reduct is;

e if either r = s - s, with head(s;) not an abstraction, or r = f(3), and all s;~y
are terminating, then choose @ 4(r) = r (A); if some s;7 is non-terminating,
then choose the smallest such i and let (1) = pa(s;);

o ifr = F(s1,...,8,) and v(F) = Az; ... x,.t, and if s;7 are terminating for
all i such that x; € FV(t), then p4(r) = r (A); if s,y is non-terminating for
some 4 with z; € FV(t), then choose the smallest such ¢ and let ¢ 4(r) =
@Au{F;i}(Sz‘)-

Write ¢g(r) = p (A). From the choice of ¢y (r) it is obvious that g (r) € brsmty(r)
and that py is non-terminating. Moreover, for F' : i € A we have that v(F) =
AZ.u with z; € FV (u).

If p does not have the form Z(¥) for some meta-variable Z (so p is an applica-
tion or functional term), note that p’y is terminating for all immediate subterms
p’ of p. Thus, py is MNT. As observed before, this can only be the case if py is
headed by an abstraction or functional term with a defined root symbol. Taking
into account that p itself is not headed by an abstraction, there is a candidate
term p (A) of r such that p is just p with a variable renaming applied on it. Say
p = px for some substitution y which maps the variables in p to the free variables
occurring in p. Then p is not a strict sub-meta-term of [: either p contains free
variables which do not occur in I, or p = p, and pv is not a strict subterm of
Iy because the latter is MNT. Choose p;,; := I* = p* and let ¢;;1 := px~, and
tiv1 = q? 1= Pty (since p is not a variable). All parts of requirement 2 are
satisfied for the substitution yU~: 2a, 2b and 2c are evident, 2d is not applicable,
2e holds by the choice of y (note that bound variables in r, so free variables in p,
were assumed to be fresh), and we already observed that property 2f is satisfied.

Finally, if p does have the form Z (%) for some meta-variable Z, the v; cannot
be all distinct bound variables: if they were, py was just a strict subterm of s;
with variables renamed, and therefore terminating. Thus, some renaming of
p (A) must be a candidate term. Let p = px with p (4) € Cand(r) and x a
suitable variable renaming, so p;; := I = j* is a dependency pair. Suppose

162

Chapter 6 — Dependency Pairs

v(Z) = M.u. Clearly u[# := ¥y] = py is non-terminating. Consider a minimal
subterm w of u such that w[Z := ¥y] is still non-terminating. Then w cannot
be one of the z;, for if x; occurs in ¢, then its substitute, v;7, is terminating by
choice of p. Nor can it be another variable, for then w[Z := ¥y] = w is clearly
terminating. We also see that F'V (w) must contain some of the x;, for otherwise
w[Z := ¥7y] = w, which is a subterm of y(Z) and therefore a strict subterm of
Iy = ¢}, which contradicts minimality of ¢/.

Choose ¢;+1 := w[Z := ¥y] and t;4;1 := qfﬂ and p; := I* = p (A). For the
substitution ~, all requirements of 2 are satisfied: requirement 2a is obvious,
requirement 2b we have already seen, requirement 2c is not applicable, the rea-
soning above shows that 2d is satisfied (taking into account that (wé)* = w*§ if
w is not a variable), 2e holds by the freshness assumption on the free variables
in r, and we had already observed that property 2f is satisfied. O

Example 6.26. As we will see, neither twice nor eval admits a dependency
chain. As an example of a system which does have one, consider the AFSM with
the following three rules:

£(0) = g(Az.f(x),a) g(F,b)=F-0 a=b
This system has four dependency pairs:
£#(0) = g'(\rf(2),2)
£(0) = £(a)
f5(0) = af
The rules admit an infinite reduction: £(0) = g(\z.f(z),a) = g(Az.f(x),b) =

(Ax.f(z)) - 0 =3 £(0) = ... Following the steps in the proof of Theorem 6.24
(starting with £(0)) we obtain the following dependency chain:

(£(0) = g'(\w.f(x),a) , £%(0) gl t(x),a)),
(g(Fb)=>F-0 , g'(\f(z),b) , (Azf(x),a)-0),
(beta , (\z.f(z),a)-0 , £%(0)),
(),

£4(0) = gf(\z.f(z),a) , £%0) , gtOx.f(x),a)

Between the first and second step, a =;,, step was done to reduce a to b. Also

note that in the third triple we used case 3b from Definition 6.23, with v = £(x).
If we alter the specification a little, replacing the rule g(F,b) = F -0 by

g(Az.F(x),b) = F(0), then we get the following dependency chain:

(£(0) = gat(@)a) , £(0) . g0wt(a),a)),
(g(wF(2),0)= F(0) , g0wi(@),b) . £(0))
(£(0) 2 g t()a) , £(0) . gwt(2),a)),

Here, in the second step, case 2d is used.

6.3. The Unrestricted Dynamic Dependency Pair approach

163

As in the first-order case, the other direction of Theorem 6.24 holds, intuitively,
because a dependency chain roughly defines a =% U > reduction.

Lemma 6.27. If there is a dependency chain over DP(R), then R is non-terminating.

Proof. First, consider the definition of brsmtp: we will use that for any ¢ (4) €
brsmty(s) and substitution - which respects A: sy (= Ur>)* t~y. Here, the phrase
“~ respects A” means that for all F': i € A the substitute v(F) = \xy ... x,.q has
the property that x; € FV(q).

(**) If t (A) € brsmtp(s) and ~ is a substitution with only meta-variables in its
domain, which respects A, then sy (=3 U >)* t.

The proof of this claim is a straightforward induction on the derivation of
t (A) € brsmtp(s): we are done if s = ¢, take a subterm step if s is an abstraction,
application or functional term (the variable which becomes free in the abstraction
case is not a problem, because dom(v) contains only meta-variables), and if s =
(M) -v - and ¢ (A) € brsmt(v) we take a subterm step, otherwise a j3-step.
Only the case where s = F'(s1,...,s,) and t (A) € brsmtp(r.;}(s;) is not entirely
trivial. In this case, note that whenever ¢ (A) € brsmtp(q), we necessarily have
B C A (this is an easy induction on the definition of brsmtg). Thus, F': i € A, so
Y(F) = Axy...xn.qwith x; € FV(q), S0 s7 = q[z1 := 517, ..., Tn = $pY] > 87,
which by the induction hypothesis (=3 U >)* #y. Thus, (**) holds.

Now consider a dependency chain [(p;, s;,t;) | i € N]. We will see that each
|si| (== U>)" |sir1], where |q| is ¢ with possible # marks removed. Since the
existence of such an infinite reduction implies the existence of an infinite =5
reduction (as a =5 - > b implies a = C[b] for some context (), this is sufficient
to derive non-termination of = %. In the subterm steps, we are not bound by any
particular representation of |s;|: using a-conversation we both have e.g. Az.2>x
and Ax.x > y for a fresh variable y.

For given 4, consider p;.

If p; = beta, then whether case 3a or case 3b applies, |s;| =5 - > |t;| =%
|Si+1]-

If p; is a dependency pair I* = p# (A), then there are a rule [= r and
substitution ~ such that p (A) € brsmty(r), and v respects A (requirement 2f
of Definition 6.23). Write v = 0 U x, where dom() consists of meta-variables
and x maps the variables in FV(p) \ FV(r) to fresh variables. We can also
write v = xd. Using a-conversion, we can replace every bound variable x in r
systematically by ~(z) (if defined), without changing the term. Write 7’ for this
different representation of r. Then we easily see that px (A4) € brsmty(r'). By
), ly=10 =g rd =1'6(=r UD)* pxd = pr.

If we are in case 2c of the definition of a dependency chain, then py = |t,,
otherwise py &> |t;|. Either way, |s;| (=g U>)"|t;|, which =% |[si11]. O

Similar to the rule removal setting, we will consider sets of dependency pairs,
and iteratively eliminate pairs. To this end, consider the following definition:

164

Chapter 6 — Dependency Pairs

Definition 6.28. A set of dependency pairs P is chain-free if there is no minimal
dependency chain where all p; € P U {beta}.

We have seen that an AFSM is terminating if and only if DP(R) is chain-free.
Considering the form dependency chains might have, we could make a num-
ber of observations:

I Lemmas 6.25 and 6.27 together also prove that an AFSM is terminating if
and only if it does not admit a dependency chain, regardless of minimality.

II @ is chain-free, because a dependency chain with only beta steps is an in-
finite =5 U > reduction, which cannot exist by the well-foundedness of j3-
reduction.

III If a set of dependency pairs P is non-collapsing, then there is a dependency
chain over P where all p; € P (so no beta steps are taken), and which
does not take subterm steps. This is clear by considering that eventually (by
Observation II) some p; € P. But then, the head of ¢; can only be a functional
term, so p;+1 must also be in P, and no subterm step is possible.

The variables which are freed in the right-hand side of a dependency pair are
essentially harmless: they may only be substituted with other variables. This will
occasionally be reflected by substituting them with “small” symbols c. To this
end, let C be a set consisting of fresh symbols c¢ for all types ¢ and numbers
i € N. Let F. denote the set F ¥ C, and F¥ := F*uw C.

6.3.3 Reduction Triples

In the first-order method of Section 6.2.3 we used a reduction pair to reduce
the question “is P chain-free” to the same question for a smaller set P’. In the
higher-order case, because of type differences, it will be advantageous to instead
use a reduction triple. This definition is lifted from a first-order definition in [55].

Definition 6.29. A reduction triple consists of two quasi-orderings >~ and > and
a well-founded ordering >, all defined on meta-terms built over ¥, such that:

1. 7~ and > are compatible: - - > C >; also, = and >~ are compatible;

2. =, = and > are all meta-stable (if | R r and [is a pattern of the form f(5)-t,
and + is a substitution on domain FMV (1) U FMV (r), then Iy R rv);

3. z ismonotonic (if s 77 ¢ and s, ¢ are terms of the same type, then C|s] 7 C[t]
for all C[);

4. 7 contains beta (always (Az.s) - ¢t 7= s[x := t] if s, are terms).

6.3. The Unrestricted Dynamic Dependency Pair approach

165

The reduction pair (or weak reduction pair) from Definition 2.24 is a pair (=, >)
such that (7,7, =) is a reduction triple. The reduction triple generalises this
definition, by not requiring > to be monotonic. We will need a non-monotonic >
in Section 6.3.4 to compare terms with different types.

To deal with subterm reduction in dependency chains, an additional defini-

tion is needed.

Definition 6.30 (Subterm Property). > has the subterm property if the follow-
ing requirement is satisfied: for all terms s,t over F such that s > t, there is a
substitution with domain FV (t) \ FV (s) such that s = t*y.

Intuitively, the substitution v can be used to replace free variables in ¢ which
are bound in s by corresponding constants c;. However, we will also use a more
liberal replacement of those variables, hence the general v. Note that the subterm
property concerns all terms s,t with s > ¢, not just base-type terms.

The following theorem shows how reduction triples are used with depen-
dency pairs.

Theorem 6.31. A set P = P; W P, of dependency pairs is chain-free if P, is chain-
free, and there is a reduction triple (77, =, >) such that:

e l>=p' foralll=p(A) € Py,
e [=p' forall=p(A) € Py
e [m-rforall=reR,
* P is non-collapsing or > satisfies the subterm property.
Here, p’ is p with free variables replaced by arbitrary c¢ of suitable type.

A set of dependency pairs P is called collapsing if it contains any collapsing
dependency pairs, or non-collapsing if it does not.

Proof. Towards a contradiction, suppose that P, is chain-free, but P admits a
minimal dependency chain [(p;, s;,t;) | ¢ € N | @ > j]. Then infinitely many p;
must be in P;. Moreover, we can safely assume that the variables which occur
in the dependency pairs do not occur in the s;,¢;. If P is non-collapsing, then
by observation III we can also assume that all p; are dependency pairs, and that
case 2d is never applicable.

Let &y be the empty substitution, and ¢ := sq. Now, for each i, suppose we
have a term ¢; and a substitution ¢§; such that ¢; = s;d;. Suppose also that the
domain of §; contains only variables. Consider p;.

* If p; is a dependency pair! = p (A) and p is not a meta-variable application,
then s; = lv,t; = py for some substitution ~. Let x be a substitution such
that we have [> py if p; € Py orl = px if p; € Py (so x maps variables to
symbols c;).

166

Chapter 6 — Dependency Pairs

By meta-stability of - or > either s;d; > px~vd; (f p; € P1) or s;9; = pxyd;
(if p; € P2).

Since the variables in the dependency pairs do not occur in ¢;, and the c¢
symbols cannot be substituted, pxvy = pyx = tix.

Let §i+1 = X(si. Then s;0; >~ t¢5i+1 or s;0; = ti§i+1.

* If p; isadependency pairl = p (A) and p = F(p1,...,pm), thens; = Iy and
py > |t;| for some substitution v. Here, |t;| means ¢; with §-tags removed.
In this case, P is collapsing, so we can use the subterm property.

As in the previous case, we can find a substitution y mapping variables to
c-symbols such that either s;y; > (pv)x7vi Gf p; € P1), or s;v: = (py)x7ys Gf
pi € P2).

By the definition of a dependency chain, py>>q for some term ¢ with ¢f = ¢;.
Since the domains of x and ¢; contain only variables, and since ¢ itself is not
a variable, we also have that pyxd; > ¢xd;. The subterm property provides
a substitution ¢ such that pyxd; = t;xd;¢. The domain of { contains only
variables.

Let 5i+1 = X(Szg Then s;0; > ti6i+1 or s;0; = ti6i+1 by compatlblhty or
transitivity.

* if p; = beta, then P is collapsing, so we can use the subterm property.
Either s;0; = t;0; because - contains beta, or there is a substitution ¢ with
8i0; 72 8t0; ¥ ¢;0,C (where s/ is the S-reduct of s;).

In the first case, let d;1; := ¢;; then s;0; 7= ¢;0;41.; In the second case, let
Oiy1 = 0;C; then s;0; 7 - = t;0;11.

In all three cases, we find a substitution ¢;,1, whose domain contains only vari-
ables, such that either 5251 - ti5i+1, or 5251 >~ ti5i+1, or 5251 i - ti5i+1.
Moreover, the strict case s;0; > t;0;11 holds for infinitely many i.

In addition, we find that ¢;0;1 77 s;+10;11, because 7, is meta-stable, mono-
tonic, transitive, and contains beta. We use for instance that if C[ly] =x C[rv],
then 176,11 7 7v0;41 by meta-stability, so C[7]di+1 = Cdit1[lv0iv1] Z
Cir1[rydiv1] = Clry]dit1-

Thus, using compatibility and transitivity, for all ¢ we see that either s;5; >
Si+15i+1; or SZ'(SZ' = - i 5i+15i+1: or 87;(51‘ i o= i: Si+15i+1- This leads to
an infinite reduction of >, > and = steps, with infinitely many occurrences of
>. Using both compatibility clauses, this can be transformed into an infinite
decreasing >-sequence, contradicting well-foundedness. O

6.3. The Unrestricted Dynamic Dependency Pair approach

167

Example 6.32. Termination of twice is proved if there is a reduction triple (7,
~,) which satisfies the subterm property, and also:

I*(s(X)) Rl twice(Az.I(z)) - X
I*(s(X)) R twice!(\z.I(z))
IF(s(X)) (=, TH(cF)
twice!(F) = F-(F-c5)
twice!(F) = F -3
twice(F)- X = F-(F-X)
twice(F)- X = F-X
100 =~ 0O
I(s(X)) = s(twice(Az.I(x))-X)
twice(F) = A\y.F-(F-y)
twice(F)- X = F-(F-X)

Each of the R constraints should be oriented with > or with -, and the set of
dependency pairs which were oriented with >~ must be chain-free.

At this point, we have not used certain special features of dependency chains. For
example, the subterm property completely ignores that subterm reduction is only
ever necessary in combination with substitution. This will be used in Section 6.5.

Another feature we have lost is completeness: there is no parallel for Lemma
6.5 which states that a set of dependency pairs is chain-free if and only if it has
a reduction pair. This is due both to non-left-linear systems, and the fact that
we ignore the meta-variable constraints which dependency pairs are equipped
with. The dependency graph, which will be extended to the higher-order case in
Chapter 7.4, can make use of differences in bound variables and the restrictions
on dependency pairs. In Example 7.34 we will see a set P that cannot be proved
chain-free with just a reduction pair.

For AFSs, where meta-variables do not take arguments, we can have a com-
pleteness result involving reduction triples (provided we restrict attention to left-
linear systems), as demonstrated in [80]. However, taking into account the trans-
formations of the next section, which are also likely to break completeness, the
usefulness of such a result only goes so far.

6.3.4 Type Changing

The situation so far is not completely satisfactory, because both > and > may
have to compare terms of very different types, which neither polynomial inter-
pretations nor path orderings are equipped to do very well. Consider for example
the dependency pair twice?(F) = F-x, where the left-hand side has a functional
type and the right-hand side does not. Moreover, the comparison in the definition
of the subterm property may concern terms of arbitrary different types.

A solution is to manipulate the ordering constraints. Let (7, >) be a weak
reduction pair. Define >, > and > as relations on terms as follows:

168 Chapter 6 — Dependency Pairs

* s>t if for all terms ¢1, ..., q, such that s - ¢ has base type, there are terms
u1,...,un, such that ¢ - 4 has base type, and moreover s - ¢ > t - i;

* s >t if for all terms ¢1, ..., q, such that s - ¢ has base type, there are terms
u1, ..., U, such that ¢ - 4 has base type, and moreover s- ¢ R t - @i, where R
is the union of 7~ and - - >;

* s> tif s - t and s,t have the same type.

For each R € {Z,>, >}, let R’ be the relation on meta-terms given by: s R’ t if
sy Rt for all substitutions v on domain FMV (s) U FMV (t).

Lemma 6.33. (2/,>',>') as generated from a reduction pair (7,) is a reduction
triple.

Proof. First note that >’ >’ >’ coincide with 2, >, > when restricted to terms.
It is easy to see that each of the properties of transitivity, well-foundedness and
reflexivity holds for R’ if it holds for R, and similar for compatibility.

>’ is transitive: if s > ¢ > ¢, then for all terms « such that s - @ has base type,
there are terms ¢ such that ¢ - ¥ has base type, and s - @ - ¢ - ¥. But then there are
also terms o such that ¢ - « has base type, and ¢ - ¥ > ¢ - w. By transitivity of >~
we see: s- U > q - W.

>’ is well-founded: if s; > s; > ... then for all numbers 7 and terms ¢;
such that s; - ¢; has base type, there are terms ¢;,; such that s; ;1 - ¢;+1 has base
type and s; - ¢; > S;+1 - ¢;+1. Thus, choosing ¢j a sequence of variables, we have
S0 qo > S1-q1 > ..., contradicting well-foundedness of .

>’ is transitive: this follows in the same way as transitivity of >’, provided
the union of 7~ and - - > is transitive. But this is easy to see with compatibility
(all cases are straightforward).

>' is transitive: this follows from transitivity of .

>’ and >’ are reflexive: by reflexivity of .

>’ and >’ are compatible: If s > ¢t > ¢ then for all « there are ¥, & such that
s U >t -URq-w, where R is either > or 7 - >. In the first case, s- @ > ¢ - @ by
transitivity of >, in the second case this holds because - - =~ - > is included in >
by compatibility and transitivity.

>’ and >’ are compatible: >’ is a subrelation of >’, because > is a sub-
relation of >, by monotonicity of = (if s = ¢, then for all §also s- ¢ = ¢ -).
Compatibility with >’ follows.

>’ >" and >’ are all meta-stable: let s,¢ be meta-terms, and suppose that
s >" t. That is: for all substitutions v on domain FMV (s) U FMV (¢) and terms
d, we have that sy > ¢v. Let ¢ be a substitution on domain FMV (s) U FMV (t).
Then indeed s§ >’ td, because sé and td are terms, so s§ > t6 implies s§ >’ t0.

=’ is monotonic and contains beta: obvious because >’ restricted to equal-
typed terms is just 7~, which is monotonic and contains beta. O

6.3. The Unrestricted Dynamic Dependency Pair approach

169

The relations defined above are not necessarily computable, but they don’t need
to be: we will only use specific instances. To prove that [>’ r for all rules, it
suffices to prove [= r. To prove [>’ p or [>’ p for dependency pair constraints,
we can use the following result:

Lemma 6.34. Given meta-terms: 01— ...~ o, —candr: 7 — ... = Tm — K,
where | is a pattern of the form f(8) -t. If Z1,..., Z, are fresh meta-variables and
t1,...,t,, meta-terms, then:

s ifl-Zy- Ty =1ty ety thenl >'r

s ifl-Zy- - Znmrotyty, thenl >'r
Proof. If [is a pattern and of the right form, then also [- Z is a pattern of the
right form, so we can use meta-stability of the relations > and .

Ifl-Zy---Z, > r-t1---tn,, then for all substitutions y on domain FMV () U
FMV (r) and terms sy, ..., Sy:

(ly)-5§ = (1.2)5 where § =y U [Z1 := 81,...,Zp := Sy
(r-£) by meta-stability of >~
(ry) - (t16) - -+ (tm)

And thus [>’ r as required. The case for >’ is similar. O

Iy

Thus, to prove that a set P of dependency pairs is chain-free, we can choose for
every dependency pair [= p (A) € P some meta-terms # such that p - ¢ has base
type, and prove either [-Z > p-tori-Z = p-i. In the examples in this chapter, we
will simply choose for each ¢; some cf. This is typically a good choice because the
cg can be thought of as “minimal symbols”, as they occur only on the right-hand
sides of constraints. However, in some cases it may for instance be preferable to
let some t; be a meta-variable.

To make sure that >’ satisfies the subterm property when necessary, let us con-
sider the relation >7. This relation can be used to satisfy the subterm property,
but is defined on base-type terms, and uses 3-reduction instead of allowing sub-
term steps Ax.s > s.

Definition 6.35. > is the relation on base-type terms (and >7 its reflexive
closure) generated by the following clauses:

o (A\x.s) -ty t, 7 qifsfzi=1to] -t t, 7 g
* f(s1,--y8m) t1-t,>F qifs;-S >F gand f € F;

o s5-ty---t, >7 qift;- ¢ > ¢ (s may have any form).

170

Chapter 6 — Dependency Pairs

Here, s - C is a term s applied to constants c¢ of the right types. We say (2, >)
respects >7 if >/ is contained in (- U >=)*. Note that, since = contains beta,
the first clause is not likely to give any problems. The relation >7 is interesting
because if s > t and s has base type, then there are terms ¢, .. ., ¢, and a substi-
tution v such that s >7 ty - ¢ - - - ¢,, (this is easy to see with induction on the size
of 5). Consequently, >’ satisfies the subterm property if (-,) respects > and
f(£) = f4(&) for all f € D (the marking property).

Theorem 6.36. A set of dependency pairs P = Py W Py is chain-free if P is chain-
free and there is a reduction pair (7, >-) such that:

1. [=pforl=p(A) e Py

2. [=pforl=p(A) e Py

3. lz-rfordll=reR;

4. if P is collapsing, then (=, =) respects >, and f(Z) = f*(Z) for dll f € D.

Here, [= - Zy --- Z, for fresh meta-variables such that [- Z has base type, and p
may be any base-type meta-term of the form (px) - ty - - - t,,, where x replaces the
free variables in p by symbols c7, and the t; are meta-terms (which may use the
meta-variables Z1, ..., Z,).

Proof. By Theorem 6.31, using the reduction triple generated from (’z,>-). O

Example 6.37. To prove termination of twice it suffices to find a reduction pair
(7, =) such that (=, =) respects > and satisfies the marking property, and:

I*(s(X)) Z, twice(Az.I(x))- X
Iz(s(X)) o t;ﬂiceu()\x.l x)) -
H(s(X)) & THS)
twice!(F)- X :ﬁj F.(F-c5*)
twice!(F) =z, F-c§*
twice(F)- X |z, F-(F-X)
twice(F)- X z, F-X
100 =~ O
I(s(i()g ,E s(twic(e()\x.)I(z)) - X)
twice(F = M. F-(F-y
twice(F)- X = F-(F-X)

At least one of the 7 must be oriented with -, and the remaining dependency
pairs must be proved chain-free separately.

We consider a polynomial interpretation to the natural numbers. We saw
in Theorem 4.10 that without the requirement of strong monotonicity for alge-
bra interpretations, we still have a weak reduction pair. Let J(c,) = 0, and

J(@7=7) = Xfnm. max(f(n,m),n(0)) (this is not a higher-order polynomial,

6.3. The Unrestricted Dynamic Dependency Pair approach

171

but it is a weakly monotonic functional), and furthermore:

J@Oo) = 0
() = Ann+1
JO)=J1% = Ann
J(twice) = (tw1ceﬁ) = Afn.max(n, f(f(n)))

Let (z, >) be the reduction pair generated by this interpretation. Indeed (=, >)
respects >7, and f() = f¥(7) for all f € D (this will be discussed in a bit more
detail in Section 6.6.1). Translating the requirements to polynomials, we obtain:

(4) X+1 > X

(B) X+1 > 0

() X+1 > 0

(D) max(X,F(F(X))) > max(F(max(F(0),0)), max(F(0),0))
(F) max(X,F(F(X))) > max(F(0),0)

(F) max(X,F(F(X))) > max(F(max(F(X),X)), max(F(X),X))
(G) max(X,F(F(X))) > max(F(X),X)

(H) 0 > 0

(I X+1 > X+1

(J) max(n,F(F(n))) > max(F(max(F(n),n)), max(F(n),n))
(K) max(X,F(F(X))) > max(F(max(F(X),X)), max(F(X),X))

Each of (A), (B), (C), (H) and (I) is obvious; (F), (J) and (K) are duplicates
and (D) is implied by them; (E) is implied by (G). (G) is implied by (F), so
this leaves only (F) to prove. We use a case analysis: either X > F(X) (so by
weak monotonicity of F, also X > F(X) > F(F(X))), or F(X) > X (so also
F(F(X)) > F(X) > X). In the first case, the constraint simplifies to X > X. In
the second case, we get F/(F/(X)) > F(F(X)). Either way we are done.

Thus, the AFSM is non-terminating if the set consisting of the twice and
twice! dependency pairs is chain-free. We will finish this proof in Section 6.4.

This completes the basic definition of dependency pairs for AFSMs. It is question-
able whether this basis is a huge improvement over the more conventional rule
removal: a reduction pair with the subterm property is still a quasi-simplification
ordering, and we must always prove [7~ r for all rules [= r.

In the next two sections, we will strengthen the approach in two ways. First,
in Section 6.4, we will study formative rules. This approach allows us to ignore
rules which do not really “contribute” to a dependency chain. It is similar to the
usable rules approach we saw in Section 6.2.5, but is based on the left-hand sides
of rules rather than the right-hand sides.

Then, in Section 6.5, we will see how we can weaken the subterm property for
systems where the rules are abstraction-simple. This is a significant improvement,
which brings the method closer to its first-order counterpart (although due to
collapsing dependency pairs, features like usable rules remain a problem).

In Section 6.6 we will discuss how to find a good reduction pair systematically.

172

Chapter 6 — Dependency Pairs

6.4 Formative Rules

For the first improvement on the basic dependency pair approach of Section 6.3,
let us focus on the ¢; =% s;41 parts of a dependency chain. Because of these
parts, we have to prove | =~ r for all rules [= r whenever we use a reduction
pair. In particular with large systems, this can be quite inconvenient. But is it
really necessary?

In the first-order approach, it is not. With usable rules we can ignore those
rules which are not really relevant to a given dependency chain. Unfortunately,
this method breaks in the presence of collapsing dependency pairs (we will see a
definition for non-collapsing dependency pairs in Chapter 7.6, but is has rather
strong restrictions). However, we can define a method which uses the same
ideas, but goes in a different direction. Where usable rules depend on the right-
hand side of a dependency pair, the formative rules introduced here depend on
the left-hand side. The intuition behind formative rules is that only the formative
rules of some rule | = r can contribute to the creation of its pattern, provided !
is a linear, fully-extended pattern.

Aimed as this approach is at higher-order systems, we consider the symbols
occurring in the left-hand side of a rule or dependency pair along with their type.
We consider a fixed set of rules R. First, let R™ be defined as the set:

{l = r |l = r € the -saturated extension of R | r an abstraction} U
{L-Zy--Zp=r-Zy---Z, |l = r € the S-saturated extension of R
| 1 - Z well-typed, head(r) not an abstraction}

Note that while Rt may contain rules which do not occur in R, the rewrite
relation =+ is included in the transitive closure of the original, =}. All rules
of R are included in R™ (n may be chosen 0), except those which are headed by
a 3-redex. Formative rules will be chosen from R*:

Definition 6.38 (Formative Rules). For a pattern s, let Symb(s) be inductively
defined as follows:

Symb(Ax.s :0) = {(ABS, 0>}mU Symb(s)
Symb(f(81,...,8n) Spt1- - Sm:0) = {{f,o)}U ‘L:Jl Symb(s;)
Symb(x - s1--8p:0) = {(VAR,o)} U _LZJI Symb(s;) (n > 0)
Symb(Z(xq,...,xn):0) = 0

For a € F U{ABS, VAR}, a meta-term s : o has shape (a, o) if:
e a = ABS and s is an abstraction, or
* @ is a function symbol and s = a(f) - ¢, or

* head(s) is a meta-variable application.

6.4. Formative Rules

173

For instance the single meta-variable Z : ¢ has shapes (ABS,o), (VAR, o) and
(f,o) for all f € F). The pair (a, o) is called a typed symbol.

Consider a fixed set of rules R. For two typed symbols A, B, write A Ty, B if
there is a rule [= r € R such that » has shape A, and B € Symb(l), or [is not
both linear and fully extended. Let T}, denote the reflexive-transitive closure of
C,. Intuitively, A T3 B (or: B Q}O A) can be read as: a term containing the
typed symbol B may lead to the formation of a term with shape A.

The formative symbols of a pattern s are the typed symbols B such that A C},
B for some A € Symb(s).

The formative rules of a pattern s, notation FR(s), are the rules | = r € R™
such that r has shape B for some formative symbol B of s, provided s is linear
and fully extended. If this is not the case, then FR(s) = R.

The set of formative rules of a dependency pair f(l1,...,l,) lpt1- lm = p (A)
is FR(l;) U ... U FR(l,,), or just R if any of the /; is not both linear and fully

extended. For a set P of dependency pairs, FR(P) = U p FR(p).

Note that in a finite system, it is easy to calculate the formative symbols of a term,
and consequently the formative rules can easily be found automatically. Rather
than FR(s) or FR(p) we will sometimes have to write FR(s,R) or FR(p,R),
when the set R is not clear from context.

Example 6.39. Recall the rules for the ($-saturated) system twice:

(4)) = 0

(B) I(s(X)) = s(twice(Az.I(z)) X)
(@) twice(F) = Ay.F-(F-y)

(D) twice(F)-X = F-(F-X)

Here, Rt = R, since the only rule of functional type reduces to an abstraction.
In this context, let | = s(X). Then Symb(l) = {(s,nat)}, and:

* the right-hand sides of (B) and (D) both have shape (s, nat), so (s,nat) Ty,
(s,nat), (I,nat), (twice,nat);

* the right-hand side of rule (D) does have shapes (I,nat) and (twice,nat),
but no other rules do, so nothing further is added.

All in all, the formative symbols of | are (s,nat), (I,nat), (twice,nat), and thus
! has (B) and (D), but not (A) and (C), as formative rules.

Formative rules are constructed in such a way that to reduce to a term of a certain
form, we only need to use its formative rules. With an eye on future extensions,
we split the proof into two parts: first we see that, to reduce to a term of a
certain form, we can use a reduction of a certain form; second we observe that
reductions of such a form use only formative rules.

174

Chapter 6 — Dependency Pairs

Definition 6.40. For [a fixed meta-term, s a term and ~ a substitution whose
domain contains only meta-variables, we say that s =% [y by a formative -
reduction if AZ.l is not a fully extended linear pattern (where {z#} = FV(I)), or
one of the following holds:

1. s =lv and [is a meta-variable application;

2.5 = f(s1,.-,8n) - Snt1- - Sm and I = f(ly,...,ln) - lpy1 -1, and each
s; =% l;y by a formative /;-reduction;

3.s=x-s1---spandl=ux-1;---1, for avariable z and each s; =% l;¥ by
a formative [;-reduction;

4. s = Azx.s’ and | = Az.l’ and s’ =% !’y by a formative !’-reduction (and =
does not occur in domain or range of 7);

5. s = (A\z.t) - ¢- U, and t[z := ¢] - ¥ =% ly by a formative /-reduction;

6. [is not a meta-variable application and there arearule!’ = ' € R™ and a
substitution ¢ such that s =% [’d by a formative /’-reduction and 7’0 =%, Iy
by a formative [-reduction which does not use clause 6.

If [is a meta-variable application, a formative [-reduction can only be the empty
reduction. Roughly, a formative /-reduction avoids steps which do not contribute
to the pattern of [and, as we will see later, uses only formative rules of /.

Lemma 6.41. Let R be a set of rules and [a closed pattern, s a terminating term
and ~y a substitution on domain FMV (I). If s =% lv, then there is a substitution ¢
such that s =% 16 by a formative l-reduction, and § =%, v (each §(Z) =%, v(Z)).

Proof. We can safely assume that [is fully extended and linear, for if not we
might simply take ¢ := . We can also assume that R is S-saturated, because R
and its S-saturated extension R’ generate the same (transitively closed) rewrite
relation, and R+ = R'™.

Towards an induction hypothesis, let X = {z1,...,2,} be a set of variables
such that AZ.l is a fully extended linear pattern, and the range of v does not
freely contain any variables in X. We will find some 6 whose range also does
not freely contain any of the variables in X, such that s =% [by a formative
l-reduction, and moreover each §(Z) =% v(Z). The lemma follows for X = 0.

We use induction on s, ordered with = U > (which is well-founded because
s is terminating by assumption). Since A\Z.l is a fully extended pattern, [either
has the form Z(xy,...,2,) with X = {z;,...,2,}, or [is not a meta-variable
application at all. In the first case, choosing §(Z) = Ax; ... x,.s, all requirements
are satisfied (as dom(y) = FMV(l) = {Z}, and all variables in X are bound).

Alternatively, [is a variable, abstraction, application or functional term, and
thus /v has the same form. Moreover, since [is a pattern, [y cannot be headed
by a f-redex. Thus, we can transform the reduction: using the fact that R is

6.4. Formative Rules

175

(B-saturated, we can make sure that this reduction does not use any steps of the
form I~y -ty---t, = ry-t1---t, where n > 0 and r an abstraction, or n > 0 and
r headed by a 8-redex (we can replace such steps one by one, and by induction
on s with =5 we eventually obtain a reduction without such steps).

To prove the claim, we now use a second induction on the length of the
resulting =% reduction. Suppose there are no headmost steps in the reduction
s = lv, so all reductions take place in a strict subterm. There are three cases:

e Ifi = Az’ and s = Az.s’ and ¢ =% I’y (with z not occurring in either
domain or range of v), then the first induction hypothesis with X’ := X U
{z} provides ¢, which = does not occur in, such that s’ =% {0 with a
formative !’-reduction. Since x does not occur in § we have 6§ = Az.(I'd).

e Ifl = f(ly,...,0n) lpy1--lm and s = f(s1,...,8,) * Spt1 - Sm, then
write v = y1 U ... U ¥y, where dom(~;) is the restriction of ~ to the meta-
variables occurring in /;. By linearity of [, all ~; have disjoint domains. The
first induction hypothesis provides 41, . .., d,, such that each s; =% [;4; by
a formative /;-reduction, and ¢; =% ;. We can choose § := 6, U... U,
because the §; have disjoint domains.

e Ifl=x-1;- -1, for some variable x, we can use a similar reasoning as in
the case with a function symbol.

Finally, suppose there are headmost steps in this reduction.

If s has the form (A\x.t) - ¢ - uy - - - u,, then note that the first headmost step
must be a 3-step. We might as well do a 3-step immediately (as in the proof of
Lemma 6.60) and by the first induction hypothesis we can find a suitable ¢ such
that s =3 t[x := ¢| - @ =: v and v =% 1§ by a formative /-reduction as required.
By clause 5 we are done.

If s does not have this form, there must be at least one headmost step which
is not a f-reduction. Suppose the reduction has the form s =% t = ¢ =% I,
wheret =1y -uy---u, and ¢ = 7'y’ - uy - - - u,, for some rule I’ = r'.

Let!":=1'"-Zy---Z,and " :=71'-Zy --- Z, for suitably typed meta-variables
Zi,...,Zn, and choose v := v U [Z; := w1,...,Z, := u,]. Then t = {"+" and
g = r"+", and moreover I"” = r"" € R™: r’ is not headed by a 3-redex (since we
previously replaced such rules by a 8-reduced version if possible), so if r’ is not
an abstraction this is evident, and if v’ is an abstraction then n = 0 (for the same
reason), so !” =" and r”" =1'.

We can apply the second induction hypothesis, and obtain that s =% "
by a formative I”-reduction for some substitution y which reduces to v”. Since
s =1 "y and r"x =% r"y" =% lv, the =g-part of the first induction hypoth-
esis provides that "y =% 1§ by a formative /-reduction for some substitution ¢.
Together, s =% 16 by a formative /-reduction. This holds by a separate induction:
if s =% l;71 by a formative l;-reduction, /y = 1 € R*, and r1y; =% l272 by a
formative ls-reduction, then s =% Iy, by a formative [,-reduction using induc-
tion on the number of topmost non-beta steps in r;y1 =% ls72, and Clause 6. [J

176

Chapter 6 — Dependency Pairs

Lemma 6.41 provides the first part of the claim made before: that to reduce
to a term of a certain form I, we only need the formative rules of /. The second
part is provided by Lemma 6.42.

Lemma 6.42. If s =% ly by a formative l-reduction, then this reduction only uses
rulesin FR(I,R).

That is, if a formative [-reduction uses only rules in R for some given set R,
then actually it uses only rules in FR(l, R).

Proof. We make two observations:

(**) If L > 1" then FR(I') C FR().

This is obvious because all typed symbols occurring in {’ also occur in [.

(***) If I = ' is a formative rule of I, then FR(I") C FR(I).

This holds by transitivity of C7 .

We prove the statement by induction on the definition of a formative I-reduc-
tion. If s = I then the reduction uses no rules at all. If [is not a fully extended
linear pattern, then FR(!) = R, and we are done because the relations =%, and
=7, are the same. If s =% [is a formative /-reduction by clauses 2, 3 or 4 of
Definition 6.40, then we are done by the induction hypothesis and observation
(**). If it holds by clause 5, then s =% ¢t =% [y, where ¢t =% [y uses only
formative rules by the induction hypothesis, and the 3-step uses no rules.

Finally, suppose s =% [y by clause 6 of Definition 6.40, so there are a rule
= " € R* and substitution ¢ such that s =% 1’0 by a formative !’-reduction
and r'§ =% lv by a formative [-reduction without any headmost steps other than
perhaps 3. Suppose we can see that I’ = ' € FR(l). Then by the induction
hypothesis, the reduction s =% 1’ uses only rules in FR(!’), which also are in
FR(l) by (***). Also, the reduction 6 =% lv uses only rules in FR(I) by the
induction hypothesis. Thus, if we can indeed prove this, we are done.

First suppose that head(r’) is a meta-variable application. Then note that,
whatever the form of [is, Symb(l) contains a pair (f, o), where ¢ is the type of
! (and also the type of s, I’ and '), and f € F U {ABS,VAR}. Since 7’ has any
shape of type o, we immediately see that I’ = ' € FR().

If head(r’) is an abstraction, then r’ has shape (ABS, o). Since q is an abstrac-
tion, /-y must also be one, and this can only be the case if / is an abstraction. But
then Symb(l) indeed contains (ABS, o), so I’ = r’ € FR(l) for that reason.

Finally, if head(r’) is a function symbol, then ¢ is not a S-redex. As the reduc-
tion ¢ =% Iy does not use other headmost steps, we must have ¢ =% ;. I, and
I must have the form f(ly,...,l;) - lx41- - - lm, where f is also the head-symbol of
r’. But then (f, o) € Symb(l), so also I’ = ' € FR(1). O

Definition 6.43. Let p be a dependency pair or beta. We say that s =%, ¢ by a
formative p-reduction if either p = beta and s = ¢, or p = [= p, t has the form
lv, and s =% Iy by a formative [-reduction.

6.4. Formative Rules

177

A dependency chain is called formative if for all ¢, t; =% ;. s;+1 by a formative
pir1-reduction.

We can now see that a system is terminating, if and only if there is a minimal
formative dependency chain. When using a reduction pair, this means we only
have to prove [- r for all formative rules of the set P, rather than for all rules.

Theorem 6.44. An AFSM R is non-terminating if and only if DP(R) admits a
minimal formative dependency chain.

Proof. If there is a minimal formative dependency chain then by Lemma 6.27
the AFSM is non-terminating. For the other direction, we adapt the proof of
Lemma 6.25. Given a non-terminating term a, we will construct a minimal for-
mative dependency chain. Let ¢_; be an MNT subterm of a.

For any ¢ € NU {—1}, let ¢; be some MNT term, and suppose t; = qf. We
consider an infinite reduction starting in ¢;. As in the proof of Lemma 6.25, g;
can only have the form (Az.q)-u-vy - v, 0r ¢; = f(ug, ..., up) Upt1 - - Uy With
f € D. In the first case, we take s;;1 = t;; the reduction ¢; =% s;41 is empty,
so formative. Proceeding exactly as in the proof of Lemma 6.25, we also find
pit1, Giv1and tiqg.

In the second case, any infinite reduction starting in ¢; must eventually take
a headmost step. That is, we can find a rule I = r and term ¢}’ := Iy u}, - uy,
such thatg; =7, ¢/, and ry-uj, - - - uy, is still non-terminating. As before, we can

K3

safely assume that either m = j or r is not an abstraction or application headed

by a f-redex. Let !’ :==1- Z; 1 --- Z,, for fresh meta-variables Z;,,...,Z,, and
r’ Z:T'Zj+1 Zm Letry/ ;:'yU [Zj+1 = u;-+1,...,Zm = Ufm}
Recall that ¢; = f(u1,...,Un) - Upt1 - Um. We can write I = f(l1,...,1,) -

ln+41 -+ - lm, and have that u; =% [,/ for all 4. If I’ is not linear, then the reduction
4 =R.in ¢ is a formative /’-reduction; in this case, we choose ¢; := ¢;’. If I" is
linear, then we can write v’ = v; U ... U v where all v; have disjoint domains
containing all meta-variables in /,. By Lemma 6.41 we can find substitutions
d1,. .., 0 on the same domains, such that for each ¢, v; =% [;6; by a formative ;-
reduction, and §; =% ~;. Taking ¢ := J, U...Ud, (which is unproblematic due to
the different domains), we have that ¢; =7 ;,, I'0 using a formative /’-reduction,
and 7’6 =% 'y = ry-ul,, - -uy,, so is still non-terminating. We take ¢; := 1"0.

The rest of the proof continues exactly as in Lemma 6.25: the proof is not
affected by the exact choice for ¢/, it suffices if ¢; admits a headmost step without
losing termination. The resulting dependency pair p;41 has left-hand side I'*,
and s;41 = qgﬁ. We thus indeed have that t; =% ;, si+1 by a formative p;:-
reduction. O

Defining the notion of a formative chain-free set of dependency pairs as a set P
which does not admit a minimal formative dependency chain, we quickly obtain
improved variations of Theorems 6.31 and 6.36. I will only pose the formative
version of Theorem 6.36, as this is the one we will primarily use:

178

Chapter 6 — Dependency Pairs

Theorem 6.45. A set of dependency pairs P = Py W Py is formative chain-free if
P, is formative chain-free and there is a reduction pair (7, >) such that:

1. [=pforl=p(A) ePy

2. [pforl=p(A) € Py

3. lzrforall=reFR(P,R)

4. if P is collapsing, then (=, >) respects >7, and f(Z) = f(Z) for all f € D.

Here, [=1-Z,--- Z, for fresh meta-variables such that | - Z has base type, and p
may be any base-type meta-term of the form (px) - t1 - - - t,,, where x replaces the
free variables in p by symbols c7, and the t; are meta-terms (which may use the
meta-variables 71, ..., Z,).

Proof. In the proof of Theorem 6.31 (resp. 6.36), the constraint [=~ r is only
used to obtain that ¢; 7~ s;11. When considering formative dependency chains,
we have t; =~ FR(P,R)s;;+1 for all i: if p;11 = beta because the reduction is
empty, if p;y1 = | = p with [non-linear because R C FR(P,R) and if p; 11 =
fly, .. 0n) - lyyr -+ - Ly, with a linear left-hand side, then we merely need the
formative rules of all /; by Lemma 6.42 — all of these are included in FR(P). O

Comment: Note that we do not have the result that a set P is chain-
free if and only if it is formative chain-free and certain requirements are
met: Theorem 6.45 can only be used at the start of a termination proof
using dependency pairs. I have not been able to prove or disprove that
it is possible to transform (minimal) dependency chains into formative
chains.

Example 6.46. Consider the set P consisting of the collapsing dependency pair
of the eval system:

P = {eval’(fun(\z.F(z), X,Y), Z) = don*(X,Y, Z) {F :1}}
The formative rules of this set are:

dom(X,Y,0)
dom(0, 0, Z)
eval(fun(F, X,Y),Z) = F-dom(X,Y,2)

= X
= 0

Thus, to prove that this set is formative chain-free, we merely need to find a
reduction pair with [- r for these three rules, and ! > p for the dependency pair.
This saves two additional constraints.

6.4. Formative Rules

179

Example 6.47. Recall the result from Example 6.37, which goes through with

formative chain-freeness as well as chain-freeness. To prove termination of twice,

it suffices to prove that P is formative chain-free, where P consists of the four
dependency pairs involving twice. Since Symb(l) = @) for all argument positions
of the left-hand sides of these dependency pairs, FR(P) = . Thus, using the
type changing transformation, it suffices to orient the following constraints:

tuicef(F)- X » F- (- cB)
tuicef(F)- X = F.c&
twice(F)-X > F-(F-X)
twice(F)- X » F-X

We do not need to consider any rules! These constraints are easily handled
with for example a recursive path ordering (which follows the constraints from
Chapter 6.6.2). For instance the first clause, choosing twicef » @ for all o:

T(p(twice! (F) - X))

@*(twice!(F), X)

= put @*(twicen*(F), X)

= abs Q@*(\z.twicet] (F,z), X)

= cetect twice! (F,@*(Az.twicel . (F,z), X))
= cotect twicel” (F,X)

= copy @(wlceﬁnaHnat(F, X), twice!" (F, X))
Q(F, twice! (F, X))

=copy Q(F, @(tmceﬁmmt(ﬂ X), twice! (F, X)))
=cerect Q(F, Q(F, twice!” (F, X)))

=bot Q(F,Q(F, Lpat))

= T(p(F - (F - c5)))

= select

Note that both the eval and the twice examples are unfortunate when using
formative rules, because there is only one base type. In systems with only one
base type, if there are formative rules, then every collapsing rule is formative.
Nevertheless, even in such cases, there is something to gain, as the last two
examples have demonstrated. In the case of twice the use of formative rules
was even essential: if we had to prove [- r for all rules in addition to the
dependency pair constraints, we could not succeed with StarHorpo; nor have I
been able to find any proof using polynomial interpretations.

Comment: The use of formative rules is by no means restricted to the
higher-order setting. In particular for many-sorted TRSs (which use
types), or innermost rewriting (where types may be added by [39]), the
method might also give advantages in the first-order case. However, at
the moment the relative power of formative rules in this setting has not
been investigated.

180

Chapter 6 — Dependency Pairs

6.5 The Dynamic Dependency Pair Approach for
Abstraction-simple AFSMs

Now let us move on to a very important improvement: a way to weaken the
subterm property. Both in Theorem 6.36 and in Theorem 6.45, the reduction
pair used must respect >7, a rather strong restriction. This is due to subterm
reduction steps which may occur in a dependency chain.

However, an important observation about these subterm reduction steps is
the following: they only happen when substituting a previously bound variable.
The subterm property of]Definition 6.30 does not use this fact at all. But it does
create some potential, which we will exploit in this section.

To use the potential from this observation, we will pay special attention to
abstraction-simple systems. In an abstraction-simple AFSM we can (mostly) avoid
reducing terms below an abstraction. Knowing this, a subterm step in a depen-
dency chain only concerns terms which have never been reduced. Thus, we could
for instance use argument filterings, provided we do not filter inside abstractions.

6.5.1 Intuition

The ideas behind the abstraction-simplicity restriction originates in the notion of
weak reductions, defined in [26] (following a definition from Howard in 1968).
A weak reduction in the A-calculus does not use steps between a A-abstraction
and its binder. This notion generalises to AFSMs in the obvious way.

Consider AFSMs where the left-hand sides of all rules are linear (so no free
variables occur more than once), and free of abstractions (so the A symbol does
not occur in them, except perhaps in the form AZ.F(Z)). As it turns out, we can
prove the following statement:

Claim: in a left-linear, left-abstraction-free AFSM, if there is a minimal depen-
dency chain, then there is one where the reduction t; =%, s;41 is a weak reduction.

To see why this matters, let us consider a colouring of the function symbols.
In a given term s, make all symbol occurrences either red or green: red if the
symbol occurs between an abstraction and its binder, green otherwise. So if
s = C[f(t1,...,tn)], make the f red if some ¢; contains freely a variable which
is bound in s, green if not. We say s is well-coloured if it uses this colouring.
Colour the rules in the same way; by the restrictions, the left-hand sides are
entirely green, while the right-hand sides may contain red symbols.

Now consider a weak reduction step on a well-coloured term. If the term is
reduced by a coloured rule, then the result is also well-coloured. If the term is
reduced with a §-step, then the result may have some red symbols outside an
abstraction. However, it can become well-coloured again by painting these red
symbols green. We never have to paint green symbols red. Inventing notation,
we can summarise this as follows:

Claim: if s =R weak t, then colour(s) =g © = ake_green Colour(t).

Combining the two claims, we can colour dependency chains. In the two

colour

6.5. The Dynamic Dependency Pair Approach for Abstraction-simple AFSMs

181

cases where we need a subterm step (2d and 3b), we take a term which was
originally below an abstraction, reduce it to a subterm which still contains the
bound variable, and substitute it. Importantly, the subterm clause ¢ > u can be
derived with steps A\z.s>>s, s1-sa>s; and f(s1, ..., s,)>s;, where the f is always
a red symbol.

Considering the red and green symbols as different symbols altogether (re-
lated only by the make_green rules) we thus see that it will not give problems to
use an argument filtering, provided we use it only for the green symbols!

This summarises the ideas which we shall use to simplify the limited subterm
property. Since colours do not work so well in black-and-white print, let us use
tags instead: a red symbol f corresponds with a symbol f~, and a green symbol
remains unchanged. Moreover, if we focus on the colours, and forget about
the weak reductions, it turns out that we do not need to require that the left-
hand sides of rules contain no A-abstractions at all: it suffices if the rules are
abstraction-simple.

6.5.2 Abstraction-simple AFSMs

To avoid reductions below an abstraction, we will have to restrict attention to
systems where, intuitively, matching is local. That is, we should not need to
use a reduction somewhere deep inside a term (possibly inside an abstraction)
to make it possible to do a reduction at the top. Additionally, we should avoid
matching on an abstraction.

Formally, the AFSM should be left-linear, fully extended and have simple meta-
applications. Each of these restrictions we have seen before, and they are all
satisfied by many, if not most, common examples. In the termination problem
database 8.0.1 (which only supports AFSs, so systems which have simple meta-
variables by definition), 143 out of 156 systems satisfy all requirements.

Moreover, to restrict to weak reductions, AFSs should satisfy one additional
technical requirement, which is automatically satisfied by AFSMs which originate
from an AFS, HRS, CRS or CRSX: all rules should have base type, or all meta-
variables in the rules take at most one argument. This excludes systems like:

g(0,0) = h(\z.f(x))
£1(2) = Myg(Z,y)
h(Azy.F(z,y)) = F(0,0)

In the infinite reduction g(0,0) = h(A\z.f(z)) = h(\zy.g(z,y)) = g(0,0) = ...
we cannot avoid reducing below an abstraction, because the f-step is needed
to create the abstraction required for the h-rule. However, systems like this, if
they ever occur in practice (which is unlikely, given that systems in all common
formalisms satisfy the clause), can be n-expanded to obtain a system where the
clause is satisfied by Transformation 2.14.

182 Chapter 6 — Dependency Pairs

Definition 6.48. An AFSM with rules R is abstraction-simple if for all left-hand-
sides [of a rule:

e [is linear: no meta-variable occurs twice in [;

* [is fully extended and has simple meta-variable applications: meta-variable
applications occur only in the form A\z;...xz,.Z(z1,...,z,), and do not
occur below another abstraction;

* either all meta-variable applications in [/ take 0 or 1 arguments, or all rules
in R have base type.

Example 6.49. Both the systems twice and eval are abstraction-simple.

6.5.3 Tagging Unreducable Symbols

Obviously, when there are rules where the left-hand side contains an abstraction,
such as f(Az.g(x),F) = r, it may be impossible to avoid reducing inside an
abstraction in order to create a redex. However, the colouring intuition still goes
through; we merely need to “paint symbols green” a few times more.

Following the colouring intuition, we will mark all function symbols which
occur between a A-abstraction and its binder with a special tag (“colouring red”).
The symbol can only be reduced by removing its tag first (“painting green”).

Definition 6.50. Let 7~ be theset {f~ : o | f : 0 € F}, so a set containing a
“tagged” symbol f~ for all function symbols f € F. For a set of variables A and
a meta-term s, define tag ,(s) as follows:

tag,(z) = =
taga(s-t) = taga(s) taga(t)
tag 4 (Az.s) =)\x.tagAU{x}(s)
tag (£ (s 5) = f(taga(s1),...,tags(sn)) i FV(f(3)NA=0
AL oS = (tagas1), - taga(sa)) I FV(f(5))NA#D
tag 4 (Z(s1,.--,8n)) = Z(taga(s1),...,taga(sn))

We denote tag(s) := tagy(s). Define R*€ := {l = tagy(r) |l = r € R} U
{f(Z4,....Z,) = f(Z1,...,Z,) | f~ € F~}. For a meta-term of the form
s := fA(t) also tag(s) is defined: since at the top-level no variables are bound,

tag(s) = fjj (tag(t1)7 ve ’tag(tn))'

Note that, apart from the untagging rules, R*¢ is not all that different from
R: tag(r) is almost exactly r, only the symbols below an abstraction may be
marked with a — sign.

Example 6.51. tag(f(A\z.g(z,g(0)))) = £(Az.g (x,g(0))).

6.5. The Dynamic Dependency Pair Approach for Abstraction-simple AFSMs 183

Example 6.52. Consider our running example twice (with S-saturated rules):

I0) = 0O
I(s(X)) = s(twice(Az.I(x)) X)
twice(F) = My.F-(F-y)
twice(F)- X = F.-(F-X)

These rules are left-linear, fully extended and have simple meta-variable applica-
tions. Moreover, all meta-variables take at most one argument. Thus, the system
is abstraction-simple. R*& consists of the following rules:

I10) = © 0" = 0
I(s(X)) = s(twice(Az.I"(z)) X) s (Z2) = s(2)
twice(F) = Ay.F-(F-y) I(2) = I1(2)
twice(F)- X = F.(F-X) twice (F) = twice(F)

Note that, when we prove termination, we would typically ignore the symbols
0~,s ,twice : they do not occur in any other rules, so we could just merge
them with their untagged symbol.

In the proofs later on in this section, we will use a number of properties of
R*2¢, given by Lemmas 6.53-6.60.

Lemma 6.53. tagyy (s) =Fkus tagx (s) for any set of rules R. If the variables in
Y do not occur in s, then even tagy v (s) = tagx(s).

Proof. Easy induction on the size of s. We only use the untagging rules f~(Z) =

12 0
Lemma 6.54. Let s be a term and -~y a substitution whose domain contains only
variables. Then tag(s)y"& = tag(svy). Here, 78 = [z := tag(y(x)) | = € dom(Y)).

Proof. We prove by induction on the size of s: for any set of variables A whose
elements do not occur in either domain or range of v, we have tag,(s)y"*& =
tag,(s7).

If s is a variable not in dom(~y), both sides are just s.

If s is a variable in dom(v), we must see that tag(y(s)) = tag,(y(s)), which
holds by the second part of Lemma 6.53.

If s is an application ¢-g, then tag 4 (s)7" = (tag 4 (t)7"8)-(tag 4 (¢)7**€), which
by the induction hypothesis equals tag(tv) - tag(qy) = tag((tv) - (¢7)) = tag(s7).

If s is a functional term f(sy,...,s,) then also the induction hypothesis on
each of the s; suffices, because AN FV (s) = AN FV (sy), which is easy to see by
the requirements on A.

Finally, if s is an abstraction \z.t, then tag,(s)7"™8 = Av.tag 4 (,}(5)7"8. By
a-conversion, we can assume the z is fresh, so does not occur in domain or
range of v. Thus, by the induction hypothesis this term equals Az.tag 4, ¢,y (t7) =

tag(Ax.ty) = tag(svy).

184

Chapter 6 — Dependency Pairs

Lemma 6.55. Let s be a term, and ~ a substitution on domain A, which con-
tains only variables. Let B be a set of variables disjoint from A. Let v := [z :=

tagg(v(z)) | z € A]. Then tag,,5(S)Y =fus tagp(sy).

Proof. By induction on the size of s.

If s is a variable not in A, then both sides are just s.

If s is a variable in A, then tag 4 ,5(s)Y =7/ (s) = tagg(7(s)) = tagg(sy).

If s is an application, we merely apply the induction hypothesis.

If s is an abstraction Az.t, then tag,,p(s)Y = Az.(tagaupug.y(t)7'). By
Lemma 6.53 (note that z is fresh), this equals Az.(tagaypuay(t)y”), where

7" = [z = tagpuy(v(2)) | * € A]. By the induction hypothesis this term
reduces to \z.tagp () (t7) = tagp(sy).
If s is a function application f(si,...,s,), consider two possibilities: either

ANFV(s)=0or ANFV(s) #0.

In the first case, tagyz(s)y = tagg(s)y’ by Lemma 6.53, = tagg(s) =
tagz(s7v) because the variables in dom(v) do not occur in s.

In the second case, tag, 5(s)Y = [~ (tagaup(s1)7,-- -, tagaup(sn)y'), and
by the induction hypothesis this =%.. f~(tagg(s17),...,tagg(sny)). If BN
FV(s) # () this term equals tag z(s), otherwise it reduces to it in one untagging
step. O

Lemma 6.56. If s =3 t by a headmost step, then tagp(s) =5 - = tagp(t) for
all rule sets R and sets of variables B.

Proof. We can write s = (Az.q) - u - ¥, and t = g[z := u| - ¥. Thus:

tagp(s) = (Az.tagpuisy(9)) - tagp(u) - tagp(v)
=5 tagpu(e)(9)[r = tag(u)] - tagp(7)

—

=hee tagp(qlr :=u]) - tagp(U) = tagp(t) by Lemma 6.55
O

Lemma 6.57. Let s be a meta-term, and ~ a substitution whose domain contains
all meta-variables in FMV (s), and no variables. Then tag(s)y™& =%.. tag(s7).

Proof. We prove the following claim by induction on the size of s: for any set of
variables A, which do not occur in the range of +: tag,(s)7"8 =%, tag,(sy).
We use only the untagging rules f~(Z) = f(Z). Consider the form of s.

If s is a variable, both sides are just s.

If s is an abstraction, application or functional term, we use the induction
hypothesis as was done in Lemma 6.54.

Finally, if s is a meta-variable application Z(sy,...,s,), then let v(Z) =
AT1...x,.t. We have:

6.5. The Dynamic Dependency Pair Approach for Abstraction-simple AFSMs

185

tag 4 (s)y"e

= Z(taga(s1), - .., taga(sn))y™ 8
= tag{xl,...,xn}(t)[xl = tagA(Sl)fYtagv sy dp = tagA(Sn)’ytag]
=Res 138y, o,y (D71 :=taga(517), ... 20 = tag(sny)]

(by the induction hypothesis)
= tagzua(t)[T == tag,(57)] (by Lemma 6.53)
=%u tag,(t[Z :=5v]) (byLemma 6.55)
= tag 4 (s7y) as required.

O

We now have most of the preparations for Lemma 6.60, which expresses that a
reduction in a term of a certain form [can be done by only reducing subterms
headed by untagged (“green”) symbols. Later on, we will use this to see that
the reduction ¢; =% s;41 in a dependency chain can be assumed to reduce only
untagged symbols. To immediately combine the result with formative rules, we
will need the following extension of the notion of a formative reduction.

Definition 6.58. For [a fixed meta-term, s a term and ~ a substitution whose
domain contains only meta-variables, we say that tag(s) =75, (7" by a tagged
formative l-reduction if one of the following clauses holds:

1. tag(s) = [v*®& and [has the form \Z.Z(Z);

2.8 = f(s1,--,8n) * Sn+1- - Sm and I = f(ly,...,1p) - lpy1 - -1, and each
tag(s;) = 1i7™€ by a tagged formative /;-reduction;

3.s=x-s1---spmandl=x-1y---1, for a variable z and each tag(s;) =%us
1;7"€ by a tagged formative /;-reduction;

4. s = Az.s’ and | = Az.l’ and tag(s') =%, !'y*8 by a tagged formative
I’-reduction, and x does not occur in domain or range of ~;

5.5 = (A\z.t) - ¢ - 4, and tag(tlz = ¢] - 4) =% (7™ by a tagged formative
l-reduction;

6. | is not a single meta-variable Z, and there are a rule I’ = ' € R*
and a substitution ¢ such that tag(s) =75« ['6"8 by a tagged formative
!'-reduction and tag(r'd) =%., Iy by a tagged formative /-reduction which
does not use clause 6;

7.1=Xry...2,.Z(%) and s = Azy ... 2;.(A\y.qQ) - u- U and tag(Azy . .. z;.q[x :=
u]-¥U) =7 178 is a tagged formative [-reduction which only uses clauses 1
and maybe 7, and i < n.

This definition extends on Definition 6.40 and is somewhat technical. Let us first
make some observations:

186

Chapter 6 — Dependency Pairs

Lemma 6.59. If tag(s) =%us (7™ by a tagged formative l-reduction, then indeed
tag(s) =% (™. Moreover, we have s =% lv by a formative l-reduction, and the
tagged formative l-reduction can be done using only rules in FR(I, R)*.

Proof. For the first claim; we use induction on the length of the reduction. It is
obvious if tag(s) =%us 7€ by case 1, in case 2 we note that tag(f(s1,...,sn)) =
f(tag(s1),...,tag(sn)), and in case 3 tag(s) = x - tag(sy) - - - tag(s,,). In case 4
tag(s) = Az.tagy,)(s’) reduces to Az.tag(s’) by the untagging rules (according to
Lemma 6.53), and in case 6 it holds because for I’ = 1’ € R we have I’y :>£tag
tag(r’)x for any substitution y (by Lemma 6.56 if I’ = »' was obtained from the
underlying rule using 5-reduction, otherwise immediately), and tag(r’)§"8 =7 ..,
tag(r’d) using the untagging rules by Lemma 6.57. As for clauses 5 and 7, we
have that tag(s) =%us tag(tjz := ¢| - @) and tag(s) =k tag(Az1...2;.q[x =
u] - U) respectively, by Lemma 6.56.

For the second claim, we also use induction on the definition of a tagged for-
mative [-reduction, using that whenever a rule [= r is used in the corresponding
(untagged) formative [-reduction, then ! = tag(r) € FR(I, R)"™®8 by Lemma 6.42.
The only non-obvious part is when using clause 7, sol = A\xy ... 2. Z(21,...,Zp)
and s = Ax; ...x;.t with ¢ < n. In this case, the reduction s =%, ¢ uses only 3-
steps, and always at the highest headmost position where this is possible. Using
clauses 1, 4 and 5 of Definition 6.40, also s =% [by a formative [-reduction. [

We could now prove a result very similar to Lemma 6.41: if we can reduce to
a term of a certain form [, then we can do this with a tagged formative reduction.
But we have even more: a formative reduction can be transformed into a tagged
formative reduction. This will become very relevant in the next chapter, when
we consider transformations of dependency chains.

Lemma 6.60. Let R be an abstraction-simple AFSM and | a pattern satisfying
the constraints from Definition 6.48. If s =% lv by a formative [-reduction, then
tag(s) =% (7€ by a tagged formative I-reduction.

Proof. We prove this by induction on the definition of a formative /-reduction;
we additionally show that the tagged formative reduction tag(s) =%, {7 does
not use clause 6 if the original reduction does not use the corresponding clause.
If s = Iy by clause 1 of Definition 6.40, then [can only be a single meta-
variable, and tag(s) = [v*# by clause 1 of Definition 6.58. If the reduction uses
clause 2, s = f(3), I = f(I) and each s; =% l;7y, then by the induction hypothesis
each tag(s;) =%, li7; ¢, where v; is the restriction of v to FMV (I;). We conclude
that tag(s) = [7"€ by case 2 of Definition 6.58. Clause 3 is similar. If s =3
s’ =% ly by clause 5, then tag(s’) =%, 7" by a tagged formative /-reduction
by the induction hypothesis, so we are done with clause 5 of Definition 6.58.
Alternatively, suppose s = [y by clause 6 of Definition 6.40. Then [is not a
meta-variable and there are I’ = r’ € R™ and a substitution ¢ such that s =% 6
by a formative reduction and ' =% Iy by a formative reduction which does

6.5. The Dynamic Dependency Pair Approach for Abstraction-simple AFSMs

187

not use clause 6. By the induction hypothesis, tag(s) =7 ['0"*¢ by a tagged
formative ’-reduction, and tag(r’'d) =%.. (0'€ by a tagged formative [-reduction
without clause 6. Thus, tag(s) =%, {7'¢ by a tagged formative I-reduction.

Only case 4 remains. Suppose first that | = Az ...2,.Z(21,...,2,). Then
both s and [are abstractions; there are two possibilities:

* s = Azy...x,.t. Since the only formative /-reductions starting in an ab-
straction use clause 4, and the only formative Z(Z)-reductions use clause 1
or 5, we can find ¢’ such that ¢ =% ¢’ with headmost 3-steps, and v = [Z :=
s'], where 8" = A7.t']. Thus, tag(s’) = A\i'tagz (t') = 7", so we have a
tagged formative [-reduction by clause 1 and possibly 7.

* s = Ary...7;.q, where 1 < i < n and ¢ is not an abstraction. Therefore
n > 2, so we are in the situation that R does not contain functional rules.
Since ¢ reduces to an abstraction, but is itself not an abstraction, it must
head-reduce at some point. Since it cannot head-reduce with a rule step,
head(q) is a S-redex. The shape of a formative reduction dictates that a
B-step is taken immediately: ¢ = (A\y.u) - v - @ =5 ulz = v] - T =%
AZiy1...2,.Z(Z)y by a formative [-reduction. Continuing this argument,
the reduction uses only = steps. We conclude: tag(s) =%us 78 by a
tagged formative [-reduction, by clause 7.

Either way, the induction hypothesis holds.

Alternatively, suppose ! does not have this form. Since [is an abstraction
(we are still dealing with clause 4), by the restrictions from Definition 6.48 the
only alternative is that [= AZ.t with FMV (¢t) = (), so v and +*¢ are empty.
Thus, s = Az.s’ and | = Az.l’ and s’ =%, I’ by a formative /’-reduction. By the
induction hypothesis, tag(s’) =% I’ by a tagged formative !’-reduction as well,
S0 tag(s) = Az.tagy,y(s’) =Ruw Av.tag(s) (by Lemma 6.53) =%, Az.l’ (by the
induction hypothesis), = 1. O

6.5.4 Revised Dependency Pairs for Abstraction-simple AFSMs

Using Lemma 6.60 we will now define tagged dependency chains, and see that
non-termination corresponds to the existence of a tagged dependency chain.

Definition 6.61. A tagged dependency chain is a sequence [(p;, si,t;) | © € N] such
that for all ¢:

1. p; € DP U {beta};
2. if p; =1; = p; (A) € DP then there exists a substitution « such that:

a) dom(vy) = FMV(l;) U FMV (p;) U FV(p;);
b) s; = 1iy"E;
¢) if p; is an application or functional term, then ¢; = tag(p;7);

188

Chapter 6 — Dependency Pairs

d) ifp; = F(uy,...,u,) with F' a meta-variable, and v(F) = Azy ... 2p.q,
then there exists a term v such that ¢ > v and {Z} N FV (v) # 0 and
t; = tag(v*[Z := iiv]), but v is not a variable;

e) all variables in dom () are mapped to fresh variables;
f)if F:ie Aand y(F) = Az1...zy.q, then x; € FV(q);

3. if p; = beta then s; = tag((Az.q) - u - vy - - - vy) and either

a) k> 0andt; =tag(g[z :==u]-vy---vg), 0Or

b) k = 0 and there exists a term v such that ¢ > v and © € FV(v) and
t; = tag(v¥[z := u]), but v is not a variable;

4. ti :>;<gtag7in Si4+1;

A tagged dependency chain is minimal if moreover the strict subterms of all s;,
with tags removed, are terminating in =, and is formative if the reduction
ti =Re, Si+1 1S @ tagged formative p-reduction (that is, a tagged formative
I-reduction if p = [= p and an empty reduction otherwise).

This definition is similar to the original definition of a dependency chain, but
uses tags for s; and ¢;, and tagged rules in the = ;,, reduction. By Lemma 6.60
we can transform an existing (minimal) formative dependency chain into a tagged
(minimal) formative dependency chain.

In the following, we say that a set of dependency pairs P is abstraction-simple
if all left-hand sides of dependency pairs in P satisfy the requirements of Defini-
tion 6.48. This is for example the case if P C DP(R).

Theorem 6.62. Let R be an abstraction-simple AFSM and P an abstraction-simple
set of dependency pairs. Then there is a formative dependency chain over (P,R)
if and only if there is a tagged formative dependency chain over (P,R), and the
former is minimal if and only if the latter is.

Proof. If we remove the tags from a tagged formative dependency chain we ob-
tain a normal formative dependency chain, so one direction follows by Lemma
6.27. For the other direction, we take an existing formative dependency chain,
replace ¢; by tag(t;), and if originally p; = I; = p; and s; = l;7;, then we replace
s; by 1;7;°8. If p; = beta then we replace s; by tag(s;). This gives a dependency
chain with the required properties, minimal if and only if the original dependency
chain is minimal. O

Thus, an abstraction-simple AFSM R is terminating if and only if there is a
minimal tagged formative dependency chain over DP(R). More than that, an
existing formative dependency chain can be transformed into a tagged formative
dependency chain, and back.

6.5. The Dynamic Dependency Pair Approach for Abstraction-simple AFSMs

189

Example 6.63. We consider once more the system from Example 6.26:
£(0) = g(hz.f(z),a) gFb) = F-0 a = b
Noting that R™8& consists of the rules

£(0) = gAz.f(x)2) g(F,
a = b £ (x)

as well as some other rules A~ (%) = h(Z), we have the following tagged depen-
dency chain:

(£(0) = g0t (),a), F4(0), g O\t~ (2),a))
(gl(F,b)= F-0, g(Ax.f7(x),b), (Az.f (x))-0)
(beta, (A\z.f(z))-0, £%0))
()

£(0) = g'(\e.£~(2),2), fH(0), g (\r£ (), 2)

Here, the beta step uses case 3b with v = £(x).

By Theorem 6.62 we can prove termination of an abstraction-simple system by
showing that it does not admit a minimal formative tagged dependency chain. As
before, we can use a reduction triple, but we have a different subterm property:

Definition 6.64 (Tagged Subterm Property). = has the tagged subterm property
if: for all variables 1, ..., z, and terms s, ¢, t1, .. ., t, such that s>¢ and FV (¢)N
{Z} # 0 and ¢ not a variable, there is a substitution v on domain FV (q) \ FV(s)
such that: tag (s)[Z := tag(f)] = tag(¢*[Z :=]7)

As we will see shortly, the tagged subterm property is an improvement over the
limited subterm property because we do not have to take the subterms of un-
tagged functional terms f(5). We can adapt the proof of Theorem 6.31 to obtain
the following result:

Theorem 6.65. An abstraction-simple set P = P; W Py of dependency pairs is
formative chain-free if Py is formative chain-free and there is a reduction triple
(zz, =, >) such that:

* |~ tag(p/) foralll = p (A) € Py,
* | =tag(p/) foralll = p (A) € Py,
* | = tag(r) forall=r e FR(P,R),

2z f(Z) forall f~ € F,
* P is non-collapsing, or 77 satisfies the tagged subterm property.

Here, p' is p with free variables replaced by arbitrary ci of suitable type.

190

Chapter 6 — Dependency Pairs

Proof. This proof is derived in much the same way as Theorem 6.31, using that a
minimal formative dependency chain can be transformed into a tagged minimal
formative dependency chain.

Towards a contradiction, assume that P, is formative chain-free while P is
not. By Lemma 6.60 this means a minimal formative tagged dependency chain
exists over P —say [(pi, S, ti) | © € N] — but not over P, so this chain contains in-
finitely many p; € P;. As before, we assume that the variables in the dependency
pairs do not freely occur in any of the s;,t;, and that if P is non-collapsing then

all p; € P. We will define for all i some substitution §; such that s;6;* >~ s;416;35,
‘6tag - . 6tag ‘6tag — . 6tag ‘(Stag — . — . — . 6tag . th t : t
OF 80,8 = 8;410505 OF 8;0:°8 75 8410415 OF 8;05°8 7%+ = - 7 84105, the stric

inequality occurs whenever p; € P;. We distinguish three cases:

* If p; is a non-collapsing dependency pair [= p (A), then s; = ('8 and

t; = tag(py) for some substitution . Let x be the substitution such that
p = px.
Then, if p; € P; we have: 5;0,°% = [7285:°® - tag(py)7'80;°® = tag(pxy)d;
by Lemma 6.57, which is equal to tag(pyx)J;"® (swapping the substitutions
as before), and by Lemma 6.54 this is equal to tag(py)x'85;°® = t;x'8J;°®.
If p; € P2 we have the same, but with > instead of .

We choose §;1 := xJ;.

* If p; is a collapsing dependency pair | = F(uq,...,um,) (A), then P is col-
lapsing, so > satisfies the tagged subterm property. There is a substitution
~ such that s; = (7" and y(F) = Az1 ...2%,.q, and there is a subterm v
of ¢ such that {#} N FV(v) # () and ¢; = tag(v*[Z := uv]), and v is not a
variable. We can also write p’ = px as in the previous case.

If p; € Py then 5,0;°% = [7285°® ~ tag(px)y'%86;°8 = tag(p)x'*8'%€4;®
by Lemma 6.54, = tag(p)y'8x'85;*® (swapping the substitutions is safe
as before), and this we can rewrite to tagz (¢)[Z := tag(i)y™&]x"€0; .
Using Lemma 6.57, each tag(u;)y"® =7, tag(u;7y), so we have: s;0; > - =
tag s (¢)[7 = tag(i7y)]x'?€5;°%. By Lemma 6.54 and the observation that
FV(q) = {7} this equals tagz (¢)[7 := tag(uyxd;)]-

Now the tagged subterm property gives us a substitution ¢ such that:
tag s (@17 = tag(iyxdy)] = tag(vi[¥ := dyxd;]¢) = tag(v![Z := @y]xdiC).
Since this is a substitution of variables, this term is equal to tag(v![z :=
7)) xt80;°8¢*?¢ by Lemma 6.54. This is exactly ¢;(xd;¢)*®.

We choose §;1 := xd;C.
Then, by transitivity of = and compatibility with -, we find: s;6;* > ;6,5
The case where p; € P, is parallel, but has > in the place of .

* If p; = beta, then 5,6, = tag(((\z.q) - u-¥)5;) = (Az.tagy,y(qdy))-tag(ud;)-
tag(U0;) 2 tagy,(qdi)[x := tag(ud;)] - tag(vd;) because 7 contains beta.

6.5. The Dynamic Dependency Pair Approach for Abstraction-simple AFSMs

191

If this was not a topmost step, so ¢; = tag(q[x := u] - ¥), then note that
by Lemma 6.55 this term = tag(qd;[x := ud;]) - tag(00;) = tag(t;0;) =
tag(¢;)0;°%. In this case, choose 0,41 := ;.

If this was a topmost step, so || = 0, then we can write ¢; = tag(w*[x := u])
for some subterm w of ¢ which is not a variable, but which contains x. By
the tagged subterm property, tagy,,(¢d;)[z := tag(ud;)] = tag(whs;[z =
ud;]¢) for some substitution ¢, and since the domain of ¢; and ¢ contains
only variables, this is equal to tag(ti)ézaggtag . In this case choose §;11 := §;C.
We have s;0;° = tag(t;)0;.5
It is not hard to derive — using Lemma 6.59 to observe that only formative rules
and untagging rules are used in the reduction ¢; =%, s; — that moreover each
t;0;i+1 77 Si+10;,+1- Thus, we complete as before. O

6.5.5 Type Changing

Theorem 6.65 is comparable to Theorem 6.31, and as before, the result is likely
not immediately usable due to typing problems. Moreover, it is not evident that
the tagged subterm property is really weaker than the normal subterm property.
Thus, to finish the work of this section, we should re-examine the results of
Section 6.3.4. To start, let us reconsider the definition of >7.

Definition 6.66 (Refinement of >7). Let S be a set of function symbols. >° is
the relation on base-type terms generated by the following clauses:

o (M\x.s) -tg-ty DY qif sfxi=tg] -ty t, > ¢
o f(S1,...,8m)t1---t,>%qifs;-é>%qand f € S <« here we differ from >"
o 5.ty -ty > qift;- @ >° ¢ (s may have any form)

Here, >>° is the reflexive closure of >°. Note that our original definition of > is
just a special case of this definition. For abstraction-simple AFSMs, we can limit
ourselves to >7 , shortly denoted >~. We obtain the following result:

Theorem 6.67. An abstraction-simple set of dependency pairs P = P W Po is
formative chain-free if Ps is formative chain-free and there is a reduction pair (7, =)
such that:

1. 1 > tag(p) forl = p (A) € Py;

2. 1 7 tag(p) for 1 = p (A) € Pa;

3. Iz tag(r) foralll = r € FR(P,R);
4

5

. fi(Zla"'aZ'n,)r>\-/f(Z17"'7Zn)f0rallf7G-Fi;

. if P is collapsing, then (=, >) respects >~, and f~(Z) = f#(Z) for all f € D.

192

Chapter 6 — Dependency Pairs

Here, [= 1 - Zy --- Z, for fresh meta-variables such that | - Z has base type, and
tag(p) may be any base-type meta-term of the form (tag(p)x) - t1 - - - t,,, where x
replaces the free variables in tag(p) by symbols c7, and the t; are meta-terms (which
may use the meta-variables Z, ..., Z,).

Proof. Let (7, =) be a reduction pair satisfying the requirements in the theorem,
and let (>, 2/, >') be the reduction triple generated by (-,) as was defined
in Section 6.5.5. This triple clearly satisfies the first four requirements of The-
orem 6.65 (using the observation that tag(px) = tag(p)x if x maps variables to
symbols ¢¢). For the last requirement, let P be collapsing. We must see that >’
satisfies the tagged subterm property.

That is, given terms s, q, t1,...,t, and variables {x1,...,z,} such that s > ¢
and FV(q) N {#} # 0 and q is not a variable, and given terms uy,...,u,, such
that s - i/ has base type, there must be a substitution v on domain FV (g) \ FV(s)
and terms vy, ..., v; such that:

tag () ([= tag(D)] - @ = tag(¢/[a := i) - @

We prove this statement by induction on s - #, ordered with >~ (a relation
which it is not hard to prove well-founded, using for instance a computability
argument).

Base Case: suppose s = ¢ - wy - - - w;.

Then tagz (s)[& == tag(t)] - @ = tagz (q)[F = tag(£)] - wh - w, - uy - U,
where each w; = tagz (w;)[7 = tag(f)]. Let @ denote the sequence wi, ..., w},
ut, ..., Uy. Then we thus have: tag; (s)[7 := tag(t)]-i = tagz (q)[7 == tag(1)]-
v.

Now, if ¢ does not have the form f(q) with f € D, then ¢ = ¢!, so by
Lemma 6.55 and the assumption that always f~(Z) = f(Z) we have:
tagz (s)[T == tag((t)] - @ - tag(qf[Z := t]) - ¥ which suffices if we take for
the empty substltutlon

If ¢ does have this form, then note that by assumption some x; occurs in q,

so tagrz(q) = f (tag#(9) Z fﬁ(tag{f}((j')). Thus, tagz (¢)[7 = tag()] -7 =
fH(tag s ([= tag(t)]) - ¥, and by Lemma 6.55 this term fﬁ(tag((ﬂx =
t])) - 7 = tag(q*[# := t]) - ¥, which suffices by taking for the empty substitution.
Induction Case: We consider all ways where ¢ is a subterm, and not just the
head of s:

1. s=(A\y.v) - wp-wy - wy, and v > g;

2. s = f(vi,...,0p) wy - w, and some v; > q.

3. s=w-wvy---v, and one of the v; > ¢;

These are the only forms s can have. In very general terms, each of these cases
is easy because > U 77 includes >~ (in case 2 we use that F'V (f(¢)) contains z,
so the tagging function replaces f by f~). Precise derivations are given below.

6.5. The Dynamic Dependency Pair Approach for Abstraction-simple AFSMs 193

In case 1,
tagz (s)[7 := tag(f)] - @
(tag s,y (v)[y = tagzy (wo)] - tag z (W))[7 := tag(()] - @
(since -, contains beta)
7 (tagay (vy == wo]) - tagy,y (0))[7 == tag ()] - @ by Lemma 6.55
= tagz (v[y := wo] - W)[7 := tag(()] -q
Here, w denotes wq, . .., w,,, so it does not include wyg. .
Since vy := wg] > ¢y := wo] we can use the induction hypothesis to find 7/, v’
such that this last term (- U =)* tag(q[y := wo]*y/[Z := #]) - /. This proves the
lemma for v := [y := woly’ because q[y := wyl* = ¢*[y := wo] when ¢ is not a
variable.
In case 2,
tag sy (s)[:= tag(®)-a
= I (tag{x}(ﬂ)[l‘ = tag(?))) - (tagz) (@)[Z := tag(#)])
because FV (v;) N {Z} # 0
(mUx) tagm(v)[d = tag)] -¢ becaﬁuse (rZ,>) respects >~
(=UX)* tag(¢*[¥ := t]y) - v/ for some v’ and v
by the induction hypothesis
Finally, case 3.
tag 7 (s)[7 := tag(f)] - @
= (tagz (w)o) (tag (g (v1)d) - - - (tagz) (vn)d) - (U0)
where 0 := [x = tag({)] L)
(~Ux) taggm(vi)d-c beciluse (=, >—)Hrespects >
(=uUx)* tag(¢*[# :=t]y) - v’ for some v’ and v
by the induction hypothesis

Y

Example 6.68. Recall the rules of eval from Example 6.14, whose dependency
pairs were calculated in Example 6.22 and its formative rules in Example 6.46.
This system is already (-saturated, and is abstraction-simple. To prove termi-
nation we must see that DP(R) is formative chain-free, and by Theorem 6.67
it suffices to find a reduction pair which respects >~ and orients (choosing
P, = DP(R) and P = 0):

domf(s(X),s(Y),s(2)) = dom*(X,Y,Z)
dom*(0,s(Y),s(Y)) = domf(0,Y,2)
eval?(fun(\z.F(x),X,Y),Z) = dom*(X,Y,)
eval?(fun(\z.F(z),X,Y),Z) = F(dom(X,Y,Z))
dom(X,Y,0) = X
dom(0,0,Z) = O
eval(fun(A\z.F(2),X,Y),Z) = F(dom(X,Y,Z))
f(Z) = f(Z) forall feF
f~(Z) = f4Z2) forall feD

194

Chapter 6 — Dependency Pairs

As in Example 6.37, we consider a polynomial interpretation. Since the f~ do
not occur in the right-hand side of any requirement (in the original system, there
are no abstractions in the right-hand side), the last two sets of constraints are
easy. They are satisfied with J(f~) = AZ.J(f)(Z) + T(f)(@) + 21 + ... + 7.
As in Example 6.37, we choose J(c,) = 0, and J(Q") = Afnm.
max, o+ (f(n,m),n(0)), which together with the choice for 7(f~) guarantees
that (77, =) respects >~. Having fixed these values, we can choose the remaining
J(f) as arbitrary (so not necessarily strongly monotonic!) weakly monotonic
functionals. All requirements are oriented with the following interpretation:

JO0) = 0 J(dom) = Anmkn+m
J(s) = Ann+1 J(dom*) = Anmk.m
J(fun) = Afnm.f(n+m)+n+m J(eval) = Anm.n
J(eval®) = Anm.n+1
Y+1 > Y
Y+1 > Y
FX+Y)+X+Y+1 > Y
FX+Y)+X+Y+1 > F(X+Y)
X+Y > X
0 > 0
FIX+Y)+X+Y > F(X+Y)

Thus, the system is indeed terminating.

Theorem 6.67 is a real improvement over Theorem 6.45 because (A) the require-
ment that >~ is included in > U 7 is significantly weaker than the requirement
for > to be included, and (B) the requirement that f(Z) = f*(Z) was replaced
by a requirement that f~(Z) = f#(Z), which removes the direct relationship
between a defined symbol and its marked version.

Thus, we can use a weak reduction pair rather than a strong reduction pair,
and deal with systems which were previously beyond reach, as demonstrated by
Example 6.68. In the next section we will see precisely how to use weakly mono-
tonic algebras and also path orderings in such a way that >~ is respected. More-
over, we will generalise the notion of argument functions from Chapter 5.6, to
be used with any strong reduction pair (which satisfies a number of constraints).

6.6 Finding a Reduction Pair

Both in the basic dependency pair approach and its improvements, we use a
weak reduction pair to prove that a given set of dependency pairs is (formative)
chain-free. In Chapters 4 and 5 we have seen two different ways to create a
weak reduction pair: either by using weakly monotonic algebras without the
strong monotonicity constraint (Theorem 4.10), or by using path orderings with
an argument function which need not be argument preserving (Theorem 5.39).

6.6. Finding a Reduction Pair

195

For a set of non-collapsing dependency pairs, these results suffice. But for col-
lapsing dependency pairs, both the basic (formative) dependency pair approach
(Theorems 6.36 and 6.45) and the tagged dependency pair approach (Theo-
rem 6.67) pose additional constraints on the reduction pair that is used. In this
section, we will see some systematic ways to satisfy these additional constraints.

First, let us put the results of Theorems 6.45 and 6.67 in a different form.

Definition 6.69. Let R be a set of rules, and P; and P, sets of triples | = p (A),
where [is a pattern of the form f(5)-7, r a meta-term and A a set of meta-variable
conditions.

A standard reduction pair for (P;, P2, R) is a weak reduction pair (7, >) for
which we can find [,p for all [= p (A) € P;1 U Py, such that the following
inequalities are satisfied:

s [>~pforl=p(A) e P

s [=pforl= p(A) € Py

e [mrforl=reR;

e all pairs in P; U P, are non-collapsing, or:

- f(s1y-..y8m) - t1---tyn ZZ s; - € for all f € F if both sides have base
type (note that f € F, so marked symbols are not included);

- s-t1---t, = t; - € if both sides have base type;

- f(Z) = f4(Z) forall f € D.

Each | = p must be a pair of base-type meta-terms, such that{ = - Z - - - Z,, for
fresh meta-variables 7, ..., Z,, and p has the form (py) - s;1 - - - s, where the s;
are arbitrary meta-terms, and Y is a substitution 6 which maps free variables in p
to symbols c?.

Definition 6.70. A tagged reduction pair for (P1, P2, R) is a weak reduction pair
(zz,>) for which we can find [,p for all I = p (A) € Py U Pa, such that the
following inequalities are satisfied:

[> tag(p) forl = p (A) € Py;

o [= tag(p) for 1 = p (A) € Py;

* [= tag(r) forl=reR,;

* f(s1,.-.y8m) t1---t, = s; - Cforall f € F~ if both sides have base type;
* s-ty---t, 7 t; - € if both sides have base type;

s f~(2) = f(Z)forall f € Fand f~(Z) = f4(Z) forall f € D.

196

Chapter 6 — Dependency Pairs

Each [= tag(p) must be a pair of base-type meta-terms, such that | = [- Z; - -- Z,,
for fresh meta-variables 7, ..., Z, and tag(p) has the form (tag(p)x) - s1-* - Sm
where the s; are arbitrary meta-terms, and y is a substitution which maps free
variables in p to symbols c¢.

With these two definitions, we can simplify the phrasing both for the basic
and for the tagged result, and combine them in one theorem.

Theorem 6.71 (Reduction Pairs). Let P = P; & Py be a set of dependency pairs
for the system (F,R).

The set P is formative chain-free if Ps is formative chain-free, and a standard
reduction pair exists for (P1, P2, FR(P,R)).

If P and R are abstraction-simple, then P is formative chain-free if P> is forma-
tive chain-free, and a tagged reduction pair exists for (P1, P2, FR(P,R)).

Proof. This is a consequence of the combination of Theorems 6.45 and 6.67. [

Note that in the definition of a tagged reduction pair, there is no special case for
non-collapsing P; U P,. This is because in a non-collapsing system, there are no
subterm steps anyway, so we might as well use the standard reduction pair and
not have to deal with tagged constraints.

To find a suitable reduction pair, if the set P under consideration is non-collap-
sing, is simply a matter of choosing the right interpretation function (in the case
of weakly monotonic algebras), or the right precedence, status function and ar-
gument function (in the case of path orderings).

In the case of a collapsing set, P, we have potentially infinitely many con-
straints. Apart from the constraints of the form [> r and [-~ r for dependency
pairs and rules, we also have:

A. constraints of the form f(Z) = f(Z) for f € D in the case of a standard
reduction pair, or otherwise f~(Z) == f(Z) for f € D and f~(Z) = f(Z) for
fer;

B. base-type constraints f(si,...,Sm) -t s;-cforall f either in F (in the case
of a standard reduction pair), or in 7~ (in the case of a tagged reduction
pair);

C. base-type constraints of the form s -¢; ---¢, = t; - .

The aim, now, is as follows: to find a (finite!) number of constraints which an
algebra interpretation or path ordering should satisfy, which immediately give us
A-C. Ideally, these constraints should be as few and simple as possible.

Sections 6.6.1 and 6.6.2 will provide standard choices and constraints when
using algebra interpretations and path orderings respectively. In Section 6.6.3
we will generalise the argument functions from Chapter 5.6 to be used with
an arbitrary strong reduction pair, and discuss the requirements needed for the
resulting pair to satisfy A-C.

6.6. Finding a Reduction Pair

197

6.6.1 Weakly Monotonic Algebras

In Examples 6.37 and 6.68, we used weakly monotonic algebras to orient the
dependency pair constraints. The theory for this is supplied by Theorem 4.10,
which provides a weak reduction pair; the fact that strong monotonicity is not
required gives us more freedom than we have with rule removal. To some extent
this was already used in these examples: the interpretation for the application
symbols, 7(Q7) = A fnm. max(f(n,m),n(0)), is not strongly monotonic.

As in Chapter 4, we will focus on interpretations in N. To start, let us fix a
number of requirements for the interpretation functions.

Definition 6.72 (Default Requirements). An interpretation function 7 satisfies
the default requirements for F and (Py,Ps, F) if the following constraints are
satisfied:

1. J(c?) = 0, for all types o (that is, the constant function in WM, that
returns 0 for all inputs);

2. in the case of a tagged reduction pair, for all f : [o1 X ... X 0] — 71 —
...—Tm—t € F such that f~ does not occur in P;, Py or R:

a) J(f7) = AZj. max(J (f)(Z, §),21(0), ..., 2 (0)) if f ¢ D;

b) J(f7) = AZj. max(JT (f)(&,), T (f*)(Z,), 21(0), . .., 2, (0))

if f € D;
3. for all functional types o:

a) J(@%) J Afz.f(x) for all o (as required by Theorem 4.10 to orient
the B-rule);

b) J(@%) I Afzij.z(0) for all o;
c) j(@g)(fa 001) = f(offl)'

Choosing the interpretations for the symbols c¢{ as small as possible seems rea-
sonable, as they only appear on the right-hand side of constraints. The inter-
pretations for unused symbols are not very important; especially in hand-written
termination proofs, we would ideally ignore such symbols. By fixing their in-
terpretation immediately, we can do just that. As for the interpretation of @7,
the requirements are satisfied for example by the choice Afzy.f(x,7) + =(0),
which appeared in Example 4.11. Alternatively, we might choose J7(@%) =
Afzg. max(f(z,7), z(0)), as in Examples 6.37 and 6.68.3

3Recall that 7(@?) must be a function in WM. Thus, if for example o = 0 — 0 — o, then
the interpretation function is a weakly monotonic function in WMo—s050 = WM - WM, —
WM., which takes three arguments. With the interpretation of application as addition, we have
eg [s-t-q] = J(@7°([s-t],[a])) = [s-t]([q]) + [q] = T(@°>7°7°)([s], [t])([al) + [q] =
(Ay-[sI(MtD,) + [(Dal) + [al = [sICMeD, [al) + [¢] + [al.-

198

Chapter 6 — Dependency Pairs

Using the default requirements, we can make two observations which will
prove very useful. First, for any term s - ¢, - --t,, we can see that [s -] T I
[sl7.a(lt1]7.as- - -, [tn] 7.o)- This holds by induction on n, using clause 3a.

In addition, for any term s : 07 —...— 0, —¢ we have that [s-c]* - -- C?j]]J’a
= Azjy1.. . 20.[5]7,0(05,, -+, 00,5 Zjq1,. .., 2,). This holds by induction on j,
and clauses 1 and 3c. Consequently, [s - €] 7. = [5]7.a(0).

Constraint A. Here, let us distinguish between the cases for a tagged reduction
pair and a standard reduction pair.

When creating a standard reduction pair for (P1,P2,R), we simply add the
following constraints:

Forall f € D: J(f) 3 J(f*%).

Since D is finite if R is finite, this only adds finitely many constraints, unless
we already had infinitely many to deal with. Obviously, choosing .7 like this, all
constraints of the form f(Z) = f#(Z) are satisfied.

When creating a tagged reduction pair for (Py, P2, R), we add the following
constraints:

For all f~ which actually occur in Py, P, or R:
J(f) 2T
it feD: J(f)IT(fH.

Again, this only adds finitely many constraints if R is finite, even if F is infi-
nite. With these constraints, certainly f~(Z) = f(Z) if f~ occurs in Py, P or
R, and similarly f~(Z) = f*(Z) (if necessary). For the unused symbols, the
constraints also hold, provided 7 satisfies the default requirements: J7(f~) 3

ATy T (f)(Z,7) = J(f) by the nature of the max function (and similar for f*).

Constraint B. Again, we distinguish depending on the setting.
When creating a standard reduction pair for (P1, P2, R), we add the following
constraints:

J(f) 3 Azy...xnfx;(0) forall f:[oy x ... x0,)—T€F

Alternatively, we can choose 7 in such a way that this constraint is systemati-
cally satisfied. For example, a polynomial interpretation with the restrictions of
Theorem 4.20 has this property.

If 7 satisfies the default requirements, and additionally these constraints,
then [f(s1,...,8n) - t1~--tm]}g7a 3 0fGs1,u8)]galti]z.ar -5 [Emlge) =
J([s1]7.as- - [tm]7.0) 2 5i(0) = [s; - €] 7.a, using the (in-)equalities we previ-
ously derived.

When creating a tagged reduction pair for (P1, P2, R), we add the following
constraints:

6.6. Finding a Reduction Pair 199

J(f7) 3 Ay ... 2, 7.24(0)
forall f:[oy X ... X 0,]—>7 € F such that f~ occurs in Py, P; or R

This choice works for the same reasons as before, and is also satisfied by the fixed
interpretation for the symbols f~ which do not occur in Py, P, or R.

Constraint C. The last constraint is directly satisfied with any interpretation func-
tion which satisfies the default requirements:

[[S'tl"'tn]]j,a

Jls-t1 - tilg,altivilg.a;- - [tn] 7.a) as we saw before

=J(@)([s-t1-tit1] 7,0, [til7,a)(. ..) for some type o

= max([[s ctp - ti—i—lﬂj,a(- . .), [[tiﬂj)a(ﬁ)) by clause 3b

3 1)1, (0)

= [[t; - 0] 7,o as we saw before

Thus, using weakly monotonic algebra interpretations in N we can find a weak
reduction pair that satisfies all the requirements for Theorem 6.71, simply by
making sure that the interpretation function satisfies the default requirements
and including a few additional constraints (only finitely many, provided R is
finite). Moreover, we can forget about unused tagged symbols f—, as their re-
quirements are automatically satisfied!

Since we no longer have the requirement that 7 is strongly monotonic, we
have a far greater freedom in the choice of interpretations. We saw this used in
Example 6.68, where a polynomial was used that was not strongly monotonic.
But also, we can go beyond polynomials. One example is the max, function
which we used for interpreting application. Or we could use repeated function
application, such as A fnm.max(m, f*(m)) (a case analysis whether m > f(m)
or f(m) > m shows that this function is indeed weakly monotonic).

6.6.2 Path Orderings

Next, let us consider the (recursive or iterative) path ordering. The definition of
Chapter 5 natively includes argument functions, an extension of the argument
filterings discussed in Section 6.2.4, and thus provides a weak reduction pair.
To satisfy constraints A-C, we consider the reduction pair generated by Theo-
rem 5.39 using an argument function m, a precedence » with a well-founded
strict part, and a status function stat with the following properties:

1. n(c?) = L, forall i, 0;
2. @777 » @7, Q" for all types o, 7 (or similar for @¢ .);

3. in the case of a standard reduction pair, let S := F, and in the case of
a tagged reduction pair, let S consist of those symbols f~ which actually
occur in the rules; then for all f : [o7 X ... X 0,,] — 7 € St 7(f) has the
form A\x; ... 2,.95(5) with {Z} C {5} and for all i € {1,...,n} g5 » Q%

200

Chapter 6 — Dependency Pairs

4. in the case of a tagged reduction pair, for all f~ which do not occur in
Py, Pyor R, if m(f) = A\vy...x,.s and, if f is a defined symbol, 7(f*) =

AL ... Tn.t:

a) fixw(f~) = Av1...2y.groups(1,...,25,8)if f ¢ D;
b) fix 7(f7) = Az1...xp.group (1, ..., 7y, s,t) if f € D.

Here, group; is some otherwise unused symbol, such that group, » @ for

all types o.

By fixing the argument function used for the unused symbols f~, we guarantee
that all constraints involving them are satisfied, so the termination prover (which
may be a person or an automatic tool) can essentially ignore these symbols.

Constraint A. We simply add the following constraints:

Forall f € D: f(Z1,...,Z,) = fH(Z1,. .., Zy).
For all f € D such that f~ occurs in Py, Ps or R:
F (20, Z0) % f (20, Z).

For all f € F such that f~ occurs in Py, P, or R:
fi(Zh..wZn) if(Zl»aZn)

These are only finitely many constraints if R is finite. Depending on the choice
of 7 these constraints can also be guaranteed by a restriction on », for example
choosing f~ » f, f* if the argument function at most permutes arguments. It is
obvious, using the (Select) clause, that the constraints are also satisfied for those
symbols f~ which do not occur in any of Py, P, or R.

Constraint B. We must see that f(sq,...,8,) - t1-- tm 7 s; - € for a function f
such that 7 (f) has the form Az, ...xz,.97(¢) with z; € {¢} and g; » @°, which
is the type of s; (note that these constraints are satisfied by definition if f € 5,
but are also satisfied by the fixed choice of 7(f~) for unused symbols f~).

Using the definition of Theorem 5.39, we first observe: if 7(u(u)) =, g*(v),
then for all w we have: 7(u(u - w)) = Q7(T(u(u)),T(u(w))) =« g*(7T(u(7)),
7(p(w))), or similar with @3, . Thus, writing t for T(p(t1)), ..., w(1u(tm)), we
have:

T(u(f(5) - 1) z g5(@.7) with7(u(s:)) € {q}

Leto, =71 —...—Tm— k. Then T(pu(s; - ©)) = Q™75 (...Q% (85, L) ... Ly,).
By clause 2, gy » each instance of @ used here, and therefore the (Copy) rule
provides that g3(q,) = T(u(s - ©)).

Constraint C. Finally, to see that always s - t1 ---t, = t; - C, we might observe,
similar to the reasoning in the previous constraint:

(s - 8)) = @ T F als - -t T () F((t)

6.6. Finding a Reduction Pair

201

Here, o is the type of ¢;, and also as before, we see that @ 7 p @* for all occur-
rences of some @ in 7(u(t;-¢)) = Q™ 7#(...Q%(t;,¢cr,) ...y,). Thus, using the
(Copy) clause m times, and the observation that both Q7™ (..., 7 (u(t:)), - ..) =«
T(1(t;)) by (Select), we find the required inequality.

As with the weakly monotonic algebra case, we can satisfy the additional re-
quirements merely by posing some standard restrictions on « and », and adding
a handful of constraints. We can forget about the unused tagged symbols f~.

Compared to the theory of Chapter 5, we have gained the ability to use ar-
gument functions which are not argument preserving. Most importantly, we can
use argument filterings as defined in Section 6.2.4.

Example 6.73. In Example 6.68 we proved termination of eval with a poly-
nomial interpretation. Let us now try the same thing with StarHorpo, using
argument filterings. We have the following constraints:

domf(s(X),s(Y),s(Z2)) = dom*(X,Y,Z)
dom?(0,s(Y),s(Y)) > domf(0,Y,2)
eval?(fun(\z.F(7),X,Y),Z) = donf(X,Y,2)
eval’(fun(\z.F(x),X,Y),Z) = F(dom(X,Y,Z))
dom(X,Y,0) = X
dom(0,0,Z) I O
eval(fun(Az.F(x),X,Y),Z) = F(dom(X,Y,Z2))

Note that the tagged symbols f~ do not occur in any of these constraints at all.

Thus, we can forget about them, and merely need to choose an argument func-

tion which maps each c¢ to 1,, and a precedence which has @°~7 p» @7, Q7.

We choose an argument function which maps dom(z, y, z) to dom’(x, y), and oth-

erwise maps f(Z) to itself (except the c7, which are mapped to L, as required).
This leaves the following ordering constraints:

domt(s(X),5(Y),5(2)) = dom(X,Y,2)
dom* (0, s(Y), (Y)) =, dom*(0,Y,2)
eval®(fun(\z.F(z), X,Y),Z) =, dom*(X,Y,Z)
eval’(fun(\z.F(x),X,Y),Z) =, F(dom'(X,Y))
don'(s(X).5(Y)) = s(don'(X.Y))
dom’(0,s(Y)) =, s(dom'(0,Y)))

dom'(X,Y) », X

dom’(0,0) >, O
eval(fun(Az.F(x), X,Y),Z) =, F(dom'(X,Y))

These constraints are oriented using a symbol precedence fun » dom’ » s,0. To
demonstrate for example the last one:

202

Chapter 6 — Dependency Pairs

eval(fun(A\x.F(x), X,Y), Z)

= put eval*(fun(Az.F(z), X,Y), Z)
Sselect fun(Azr.F(z),X,Y)

= put fun*(\x.F(x), X,Y)

Sgelect F(fun*(Az.F(z), X,Y))

=copy F(dom(fun*(Az. F(), X,Y), fun*(A\x.F(x), X,Y)))
select F(dom(Xa fun (.I‘),)))
Sselect F(dom(X,Y))

6.6.3 General Argument Functions

The argument functions from Chapter 5.6 are not just useful in combination
with path orderings; they could be used with any reduction pair. We could for
example simplify a termination proof with polynomial interpretations by using
argument functions first, or add argument filterings to a reduction pair that is
not discussed in this thesis. Argument functions for AFSMs are defined almost
exactly as before. In this definition, we consider terms over some signature F ;4.
In the case of a standard reduction pair, this is the set F¥, in the case of a tagged
reduction pair the set FAU {f~ | f € F}.

Definition 6.74 (Argument Function). Let F,., be a set of function symbols.
An argument function is a function = which maps every function symbol f :

[01 X ... X 0] — T € Fpiqg to @ term Axy...2,.8 : 01 = ... —> O — T OVEr
Frew such that FV(s) C {zy,...,z,}. An argument function is extended to
meta-terms as follows:
T(r) = = forx eV
T(Az.s) = Ix.7(s)
(t) = 7(s)-7(t)
T(Z(81,..-y80)) = Z(@(s1),...,7(sn)) for Z e M
ﬁ(f(sl,.. $n)) = tlor:=T(s1),. .2 =T(s,)] Hw(f)=Ax1...2pt

Note that the substitution in the last clause is actually a meta-substitution.
An argument filtering is an argument function where each «(f) has the form
ALY ... Zp.T; OF AX ... Zn. f'(2iy, ..., x;,), Where iq,...,1i is a sub-sequence of

1,...,n.

Theorem 6.75. Let (7Z,>) be a reduction pair on terms over Fey, and let (Zn,

=) be given by: s 7=, tiff ™(s) = 7(¢t), and s =, t iff T(s) = 7(¢).
Then (7, >) is a reduction pair.

~T

Proof. We first make the following observation (**): 7(sy) = 7(s)y™, where
~™(x) = 7(v(x)). This holds by induction on the form of s. The only non-
obvious case is when s = f(s1,...,s,) and 7(f) = Azy...z,.p. Then T(sy) =
p[‘rl = ﬁ(31’7)7 sy T = ﬁ(Sn’)’)] = p[xl = ﬁ(sl)fyﬂa sy Iy = ﬁ(sn)f}/ﬂ by the
induction hypothesis, = 7(s)~".

6.7. Overview

203

Having this, it is easy to see that —, and >, are both meta-stable, and
compatibility, well-foundedness, transitivity and (anti-)reflexivity are inherited
from the corresponding properties of >~ and . As for monotonicity of -, the
only non-trivial question is whether f(s1,...,s,) = f(s},...,s),) when each
s; Zx s, but this is clear by monotonicity of 7-: writing 7(f) = Axy...2,.p, if
each 7(s;) = 7(s}), then 7(f(5)) = pl# == ()] & pl& == ()] = ().
Also - contains beta by (**): w((Az.s) - t) = (A\x.7(s)) - 7(t) = 7(s)[x := 7(¢)]
(as 7 contains beta), and this equals 7(s[z := ¢]) as required. Thus, (ZZ,>) is a
reduction pair. O

Moreover, if always s - £ =~ t; - ¢, and 7(c7) = c?, then also s - ¥, t; - €: this
is because 7(s - t) = @(s) - W(t1) - -7(tn) = (L) - € = T(t;) - ©(C). To satisfy
constraints A and B, we might pose restrictions either on the argument function,
or on the underlying reduction pair. Alternatively, we can add these requirements
as ordering constraints. As typically F is finite when R is finite, this is not likely
to lead to problems.

6.7 Overview

In this chapter we have explored a definition of dependency pairs for AFSMs.
This definition follows the dynamic style, where collapsing dependency pairs are
included. The method is complete: an AFSM is terminating if and only if it does
not admit an infinite dependency chain.

The higher-order case provides many challenges not present in the first-order
case: collapsing dependency pairs, dangling variables, functional rules, typing
issues... we have seen how to solve these issues, and gain a method which
makes use of weak reduction pairs rather than strong ones. Moreover, we have
discussed a restriction to the class of abstraction-simple systems where we can
strengthen the method, which for example allows us to use almost unrestricted
argument filterings. We have considered formative reductions, which allow us to
drop certain rules from dependency chains. And we have seen how the methods
of Chapters 4 and 5 can be used with dependency pairs, both in the basic and the
abstraction-simple setting, and considered a set of standard constraints for both
methods to satisfy the (tagged) subterm property.

It is worth noting that the “basic” definitions in this chapter are a fair bit more
complicated than in the first-order case. They could be significantly simplified,
for example by n-normalising the system beforehand, not keeping track of the
meta-variable conditions (which we have not even used so far!) and replacing
free variables in dependency pairs by symbols c® immediately. The reason not
to do so is twofold. First, the completeness result depends on the full definition,
which includes all these features — and since dependency pairs in the first-order
setting are often used for non-termination [47], this is very important for future
extensions. Moreover, in the next chapter we will consider the dependency graph,
which can make use of these features.

Improving Dependency
Pairs

Or, Can we do even better?

In Chapter 6 we have seen a basic extension of the dependency pair approach
to the higher-order setting. Although this method already provides many advan-
tages over simply using rule removal, it is not yet as powerful as it could be.

In the first-order world, the original definition of dependency pairs has been
extended and improved in a variety of ways. For example, the dependency
graph [9], usable rules [48, 53] and the subterm criterion [53] all provide meth-
ods to manipulate dependency chains, and make it easier to prove chain-freeness.
Modern definitions feature the dependency pair framework [46], where groups of
tuples (P, Q, R, flag) are iteratively transformed by dependency pair processors,
until either termination of all groups is proved, or a proof of non-termination is
obtained. The framework is used both for innermost and full termination.

Several of these first-order techniques can be lifted to the higher-order set-
ting, although some to a greater extent than others. For another direction in the
higher-order world, we might look at the static dependency pair approach (which
was discussed to some extent in Chapter 6.1). This method avoids collapsing
dependency pairs, and therefore has the potential to add significant extra power.

This chapter seeks to build on the work we did in Chapter 6 and provide
improvements in three ways:

* (partially) extending the first-order dependency pair framework to the
higher-order setting;

* extending existing first-order processors to the higher-order setting;

* transposing the static dependency pair approach to AFSMs, and discussing
how it can be analysed in the same framework as the dynamic approach.

Where Chapter 6 mostly introduced new ideas, in this chapter we will primarily
adapt existing ideas to the current setting. Of course, significant changes to these
techniques are still needed, and a few new methods are discussed as well.

205

206

Chapter 7 — Improving Dependency Pairs

Chapter Setup. To start off, Section 7.1 discusses a simplified version of the
first-order dependency pair framework, as well as a number of existing tech-
niques within this framework. In Section 7.2 I will introduce a dependency pair
framework for higher-order rewriting. We will also rephrase the results so far as
dependency pair processors.

As a first new result, Section 7.3 lists some modifications to collapsing depen-
dency pairs, phrased as dependency pair processors.

Next, we study a number of techniques lifted from the first-order dependency
pair approach: the dependency graph (Section 7.4), the subterm criterion (Sec-
tion 7.5), and usable rules (Section 7.6). These techniques, especially the latter
two, have limited applicability in the presence of collapsing dependency pairs,
but they are useful when we consider a set of non-collapsing dependency pairs.
In particular, usable rules offer additional power when considering the first-order
part of an AFSM. This is explored more fully in Section 7.7.

Finally, in Section 7.8, I will briefly present the static dependency pair ap-
proach, which was originally defined for HRSs in [87]. As we will see, the static
and dynamic approaches can be combined in the same general framework.

This chapter is primarily based on [80]; the dependency graph already appears
in the conference version of this paper, [79]. However, where [79, 80] concern
higher-order rewriting in the AFS formalism, here of course AFSMs are considered.
Section 7.7 is based on a separate paper, [41].

7.1 The First-order Dependency Pair Framework

Let us start this chapter by considering the first-order dependency pair frame-
work, and those processors for which we will derive higher-order extensions.
As in Chapter 6.2, we will consider as an example the system quot:

minus(z,0) = =
minus(s(z),s(y)) = minus(z,y)
quot(0,s(y)) = O
quot(s(z),s(y)) = s(quot(minus(z,y),s(y)))

7.1.1 The Dependency Pair Framework

So far, we have considered the notion of chain-free (and, in the higher-order case,
formative chain-free) sets of dependency pairs. That is, we study the question
whether a minimal dependency chain over a given set P exists. The dependency
pair framework takes this a step further, and considers dependency pair problems,
where also the underlying set of rules R is a parameter. Dependency pair prob-
lems are transformed and simplified by dependency pair processors.

7.1. The First-order Dependency Pair Framework

207

Definition 7.1. A (first-order) dependency pair problem is a triple (P, R, flag)*
of a set of dependency pairs, a set of rules, and a flag that is either minimal
or arbitrary. A dependency pair problem (P, R, flag) is finite if there is no
dependency chain, such that:

* all p; € P;
* each s; =% t;;
¢ if flag = minimal, then the dependency chain is minimal.

A dependency problem (P, R, flag) is infinite if it is not finite, or R is non-
terminating.?

A dependency pair processor is a function which takes a dependency pair problem
and returns either a set of dependency pair problems, or NO. A processor Proc is
called sound if for all dependency pair problems A: if Proc(A) is not NO, and all
elements of Proc(A) are finite, then also A is finite. A processor Proc is called
complete if for all dependency pair problems A: if Proc(A) is NO, or any of the
elements of Proc(A) is infinite, then A is infinite. To prove termination, we must
use sound processors; for non-termination complete ones are necessary.

We could use roughly the following algorithm to prove termination of a first-
order term rewriting system R:

1. let A be the set {(DP(R), R,minimal)};
2. while A is non-empty:

* select a problem P from A,;

* choose a sound processor S and let A := A\ {P} U S(P)
(if S(A) = NO, then this processor cannot be applied);

3. if step 2 completes, conclude termination.

The first step in this algorithm defines a set A such that R is terminating if all
dependency pair problems in A are finite; the second step iteratively transforms
A while always preserving this property.

Similarly, for non-termination we can use the following algorithm:

1. let A be the set {(DP(R), R,minimal)};

2. while A is non-empty:

IThe usual definition of the dependency pair framework in e.g. [46] considers an additional
parameter Q, which is used for instance for innermost termination. We will ignore this parameter
because this thesis considers only full termination. Moreover, since in the first-order setting depen-
dency pairs, like rules, are just pairs of terms where the right-hand side contains all variables in the
left-hand side, and the left-hand side is not a variable, P is there simply assumed to be a TRS.

2Thus, a DP problem can be both finite and infinite. For a discussion of this I refer to [46].

208

Chapter 7 — Improving Dependency Pairs

* select a problem P from A;

* choose a complete processor S; if S(P) = NO then conclude non-
termination, otherwise let A := A\ {P} U S(P).

Here, A always has the property that if R is terminating, there is an infinite
DP problem in A.
An example of a dependency pair processor is the following:

Theorem 7.2 (Empty Set Processor). The function which maps a dependency pair
problem (P, R, flag) to 0 if P = 0 is a sound and complete processor.

Note: In this theorem, as in all other processors that will be presented in this
chapter; a processor is phrased as “a function which maps a problem C with certain
properties to S”. This should be read as: “a function which maps a problem C to S
if C satisfies the given properties, and otherwise to {P}”.

7.1.2 Processors with a Reduction Pair

Theorem 6.7, which allows us to use a reduction pair to prove that a set of
dependency pairs is chain-free, can be generalised to the following processor:

Theorem 7.3 (Reduction Pair Processor). The function which maps a dependency
pair problem (P, R, flag) to {(P2, R, flag)} if:

e P=PLyPy,

* there is a weak reduction pair (¥, =) such thatl >~ pforalll = p e Py, L 7 p
forl=pePyandl zrforallrulesl =reR

is a sound and complete processor.

Reduction pairs can also be used to simplify a dependency pair problem by only
altering R: if we can orient the rules and dependency pairs with a strong reduc-
tion pair, then we can remove all those rules which were oriented strictly.

Theorem 7.4 (Rule Removal Processor). ([119]) The function which maps a de-
pendency pair problem (P, R, flag) to (P2, R, flag) provided:

e P=P1wWPy, R=TR1WR,,

* there is a strong reduction pair (;Z,>) such l > r for all | = r € P; and
l=reRyandlzrforalll=rePyandl=r € Ro.

is a sound and complete processor.

This processor could not be phrased in the old “chain-free” terminology as it
involves a (possible) change to R.

7.1. The First-order Dependency Pair Framework

209

Another method for the first-order setting which we have seen so far are the
usable rules from Chapter 6.2.5, an idea which found a parallel (although not
an extension) in the formative rules we saw later on. The idea that a minimal
dependency chain can be transformed into a dependency chain which uses only
usable rules can be reflected in a processor which alters the set R:

Theorem 7.5 (Usable Rules Processor). ([119]) The function which maps a de-
pendency pair problem (P, R,minimal) to {(P, UR(P) U {p(x,y) = =, p(z,y) =
y},arbitrary)} is a sound processor.

This processor is not, however, complete: the new dependency pair problem may
be infinite even when the original one is not. And since it loses minimality, it is
probably better to use the following processor instead:

Theorem 7.6 (Reduction Pair Processor with Usable Rules). The function which
maps a dependency pair problem (P, R,minimal) to {(P2, R,minimal)} if:

s P=PLyPy,

* there is a reduction pair (77, >) such that | > p foralll = p € P1, | - p for
I=pePy, lnrforalrulesl = r € UR(P)and p(x,y) - x,y for a fresh
symbol p

is a sound and complete processor.

The notion of chain-free used so far corresponds to finiteness of the dependency
pair problem (P, R,minimal), where R is the original set of rules. As demon-
strated by for instance the rule removal processor, the dependency pair frame-
work can go further. We can mix and match processors and alter each of the
three components of the problem (and also the fourth, for innermost termina-
tion, which is omitted here).

In the rest of Section 7.1 we will study two more extensions, in the form of
dependency pair processors: the dependency graph and the subterm criterion.

7.1.3 The Dependency Graph

To see whether a system has an infinite dependency chain, it makes sense to
ask what form such a chain would have. This question is studied by means of a
dependency graph.

The dependency graph of a pair (P, R) of a set of dependency pairs and a set
of rules, is a directed graph whose nodes are the elements of P, and which has an
edge from [= p to u = v if there are substitutions - and ¢ such that py =% ué.
For example, the dependency graph of (DP(Rquot), Rquot) is as follows:

210 Chapter 7 — Improving Dependency Pairs

C [minusﬁ(s(z)7 s(y)) = minus(z, y)]
T
[quotn(s(x), s(y)) = minusf(z, y)]

T

([quoti(s(x),s(y)) = quott(minus(z,y),s(y)) |

Now, if there is a dependency chain [(p;, s;,t;) | ¢ € N], then there will always be
an edge in the graph from dependency pair p; to p; 1. Since the graph is finite
(which always holds if the original TRS is finite), an infinite chain corresponds
to a cycle in the graph. Here, a cycle is a non-empty set P of dependency pairs
such that for all pq, po € P there is a (non-empty) path in the graph from p; to
p2 which only traverses pairs from P. We might phrase this idea as follows:

Theorem 7.7. (Adapted from [9, 46]) A set of dependency pairs is chain-free if and
only if all cycles in its dependency graph are chain-free.

The dependency graph is not in general computable, which is why approxima-
tions are often used. An approximation of the dependency graph G is a graph
with the same nodes as GG, but which may have additional edges.

The dependency graph of our running quot example has two cycles. In
order to prove termination, it is sufficient to find a reduction pair such that
minusf(s(x),s(y)) = minus?(z,y) and [= r for all rules, and a(nother) reduction
pair such that quot?(s(z),s(y)) = quotf(minus(z,v),s(y)) and [= r for all rules.
The fact that we can deal with groups of dependency pairs separately can make
it significantly simpler to find reduction pairs.

It is worth observing that, if a set of de-

pendency pairs P is chain-free, the same

holds for all subsets P’ of P. Moreover,

a dependency graph might have exponen- G SN @ Gl - Q
tially many cycles, as demonstrated by the Ny

graph on the right (which has 30 cycles 1 Xi A8~ i >< i
and originates from a system with only 910 13— 14

5 rules). Therefore modern approaches (JA Ak) Q 0
consider only maximal cycles, also called
strongly connected components. In the graph

on the right, the strongly connected compo-
nents are {7,8,9,10} and {11,12,13, 14}.

This reasoning leads to the following processor:

Theorem 7.8. ([46]) The function which maps (P,R,flag) to ({C | C is a
strongly connected component of an approximation of the dependency graph of
(P,R)}, R, flag) is a sound and complete processor.

Figure 7.1: Dependency Graph in [53]

7.1. The First-order Dependency Pair Framework

211

7.1.4 The Subterm Criterion

Rather than going to the trouble of finding a reduction pair, most automated
tools which implement dependency pairs first attempt to prove that a given set
of dependency pairs does not admit a dependency chain by using the subterm
criterion. Finding out whether a set of dependency pairs satisfies the subterm
criterion is typically easy.

Definition 7.9. Let v be a function which assigns, to every n-ary dependency

pair symbol f*, one of its argument positions i € {1,...,n} (v is a projection
function). We extend v to a function on terms by defining (f*(sy,...,s,)) = s;
if v(f*%) =i.

The phrase subterm criterion refers to the follow theorem:

Theorem 7.10 (Subterm Criterion Processor). (Adapted from [53]) The function
which maps (P1 U Pz, R,minimal) to {(P2, R,minimal)} provided a projection
function v exists such that v(1) > v(p) for | = p € Py and v(l) = v(p) for | = p €
Po, is a sound and complete processor.

This holds because for all s;,¢; in a minimal dependency chain, 7(s;) and 7(¢;)
are strict subterms of s; and ¢;, and therefore terminating.

The subterm criterion on itself is not sufficient to show termination of the
quot example, but at least we can use it to eliminate some dependency pairs:
choosing v(minus*) = v(quot!) = 2 we obtain:

v(minus’(s(z),s(y))) = s(y) > y = D(minus'(z,y))
v(quotf(s(z),s(y))) = s(y) = s(y) = v(quot!(minus(z,y),s(y)))
7(quot?(s(x),s(y))) s(y) > y = vU(ninus’(z,y))

This shows that the TRS quot is terminating if and only if there is no depen-
dency chain where every step uses the dependency pair quot®(s(z),s(y)) =

quot!(minus(z,y),s(y)).

7.1.5 A Termination Proof with the Framework

To demonstrate how the dependency pair framework works in practice, let us try
it out on a small example. We consider the TRS with symbols £, g, h,a and b, and
rules:

gh(a(z)) = g=)
gla(z)) = glh(g(z)))
h(b(z)) = h(f(h(z),z))
gz) = a(z)
h(z) = Db(x)

212

Chapter 7 — Improving Dependency Pairs

To start, we calculate the dependency pairs: the set P; := DP(R) consists of:

g'(h(a(z))) = gi(2)
g'a@) = g(n(g)))
g'a(z)) = bi(g(@)
ga@) = g(x)
bi(b(x)) = bi(f(h(x) x))
¥(b(x)) = n¥(z)

We thus know: R is terminating if (P;, R,minimal) is a finite dependency pair
problem.

We use the dependency graph processor on this problem. Observing that a term
of the form g(s) cannot reduce to a term of the form b(¢), we make the following
approximation:

1 giha@) = &)

> gale) = ghlg))
3 gialz) = higl)

4 gal) = g

5 wi(b(z) = bi(£(h(x),x))

6 hi(b(z)) = hi(a) @)

The graph has two SCCs: {1,2,4} and {6}.
Thus, let us define:

The dependency graph processor maps (P;, R,minimal) to the set consisting of
(P2, R,minimal) and (P5, R,minimal).

Thus, R is terminating if (P, R,minimal) and (Ps3, R,minimal) are both finite
dependency pair problems.

We select the problem (P, R,minimal) and use the reduction pair processor. For
the reduction pair, let us use polynomial interpretations; we will use an interpre-
tation with J(£) = Azy.0, J(g) = J(a) = Az.z + 1 and J(h) = J(g') = Az.2.
With this interpretation, [I] s > [r]s for all rules I = r. For the dependency
pairs we have:

[gf(h(a(2)] = z+1 > = = [g*(2)]
[gf(a(2)] = z+1 > a+1 = [g(n(g(@))]
lgf(a(=)] = z+1 > « = [g*()]

7.2. The Dependency Pair Framework

213

Thus, the reduction pair processor maps (P2, R,minimal) to {(Ps, R,minimal)},
where P, = {gf(a(x)) = g'(h(g(z)))}. This gives:

R is terminating if (Ps, R,minimal) and (P4, R,minimal) are both finite de-
pendency pair problems.

Now, let us consider the problem (P3;, R,minimal), with the subterm criterion
processor. If v(h?) = 1, we have:

71 (b(x))) = b(a) B> & = F(8(2))

Thus, the subterm criterion processor maps (Ps, R,minimal) to (§, R,minimal).
We have: R is terminating if (), R,minimal) and (P4, R,minimal) are both finite
dependency pair problems.

Using the finite set processor on (), R, minimal), we obtain:

R is terminating if (P4, R,minimal) is a finite dependency pair problem.

We select the remaining dependency pair problem (P;,R,minimal), and con-
sider the dependency graph processor. The dependency graph of P, has no
edges! Thus, the dependency graph processor maps (P, R,minimal) to (). We
conclude:

‘R is terminating.

In this example, we did not use any R-altering steps: we could have done all
this with the original “chain-free” notion. This is not always the case. In the
higher-order setting, we will for instance use a formative rules processor, which
often allows us to throw away rules.

Conclusion. This completes the discussion of the dependency pair framework
for first-order term rewriting. In the rest of this chapter, we will consider a
higher-order extension of this framework. Moreover, several processors will be
presented: extensions of rule removal, the dependency graph, subterm criterion
and usable rules, and in addition several new ones specialised for the higher-
order setting.

7.2 The Dependency Pair Framework

The dependency pair framework in the higher-order setting is defined much like
the first-order framework presented in Section 7.1.1. There is one major differ-
ence: we will have to cater for formative dependency chains. In the last chapter,
we have seen two examples where we gain strength if we can assume that the
reductions t; =% s;+1 in a dependency chain are formative: we only need to
consider formative rules, and may use tagging to weaken the subterm criterion.
Unfortunately, the results from Chapter 6.4 do not allow us to transform a given
(minimal) dependency chain into a formative chain. Instead, we will introduce
an additional flag.

214

Chapter 7 — Improving Dependency Pairs

Definition 7.11. A higher-order dependency pair problem (or DP problem) is a
tuple (P, R, m, f) where:

* P is a set of dependency pairs;

* R is a set of rules;

* m is either minimal or arbitrary;
* fis either formative or all.

A higher-order dependency pair problem (P, R, m, f) is finiteif there is no infinite
(P, R,m, f)-chain. That is, there is no chain C' = [(p;, s, ;) | ¢ € N] such that:

* forall i: p; € P U {beta};

e foralli: t; =% siq1;

* if m = minimal then C is a minimal dependency chain;

* if f = formative then C is a formative dependency chain.

A higher-order dependency pair problem is infinite if it is not finite, or the set of
rules R is non-terminating.

Comment: This notion of an infinite dependency pair problem is copied
directly from the first-order definition. However, there has been no non-
termination research with a higher-order dependency pair approach at
all. Thus, it is not clear whether this definition of “infinite” will suffice.
It may well be revised in future versions.

The definition of a higher-order dependency pair problem is a fair bit more elab-
orate than needed to present the results we have seen so far, all of which concern
minimal, formative dependency chains. However, once we start manipulating the
set R (as is done with a number of processors in the first-order case), the various
flags will become very relevant. In this chapter, however, we will primarily see
processors which leave these flags intact.

We will typically refer to a higher-order dependency pair problem as just a
“dependency pair problem”.

Theorem 7.12. An AFSM R is terminating if and only if the dependency pair prob-
lem (DP(R), R,minimal, formative) is finite. An AFSM is non-terminating if and
only if the dependency pair problem (DP(R), R,minimal, formative) is infinite.

Proof. The first part is a reformulation of Theorem 6.44, the second part a con-
sequence of the first. O

7.2. The Dependency Pair Framework

215

Theorem 7.12 provides the basis for the higher-order version of the dependency
pair framework: to prove termination of an AFSM, it suffices to prove finiteness
of some dependency pair problem. To do the latter, we will use processors.

Definition 7.13. A dependency pair processor is a function which takes a depen-
dency pair problem and returns a set of dependency pair problems or NO.

A dependency pair processor Proc is sound if a dependency pair problem P is
finite whenever Proc(P) is not NO and all elements of Proc(P) are finite.

A dependency pair processor Proc is complete if a dependency pair problem
P is infinite whenever Proc(P) is NO or some element of Proc(P) is infinite.

When considering termination, we are mostly interested in sound processors;
when considering non-termination in complete ones. Of course, processors which
are both sound and complete, have the advantage that using them does not sac-
rifice generality.

To prove termination of an AFSM R, we can use the following algorithm:

1. let A be the set {(DP(R), R,minimal, formative)};
2. while A is non-empty:

¢ select a problem P from A;
* choose a sound processor S and let A := A\ {P}US(P)
(if S(A) = NO, then this processor cannot be applied).

3. if the second step completes (so A ends up empty), conclude termination
(if it does not complete, we cannot conclude anything).

And to prove non-termination:
1. let A be the set {(DP(R), R,minimal, formative)};
2. while A is non-empty:

* select a problem P from A;

* choose a complete processor S;

* if S(A) = NO, then conclude non-termination;
» otherwiselet A := A\ {P}US(P)

3. if the second step completes (so A ends up empty), we cannot conclude
anything.

The correctness of both algorithms follows from Theorem 7.12 and the defini-
tions of sound and complete. In the first algorithm, we constantly preserve the
property that R is terminating if all elements of A are finite. In the second,
we preserve the property that R is non-terminating if and only if A contains an
infinite element.

216

Chapter 7 — Improving Dependency Pairs

Of course, these algorithms are highly non-deterministic: at any iteration of
the while loop we must choose some processor and apply it to some problem. In
practice we will typically use a strategy to select the right processor. For exam-
ple, it makes sense to first try to use only those processors which cannot make
the problem harder (so far we have only seen processors which make the prob-
lem easier, but for instance the usable rules processor we will see in Section 7.6
does come with downsides), and from those processors, first focus on the com-
putationally easiest ones. Moreover, we may want to combine the algorithms for
termination and non-termination to avoid double work.

In the rest of this chapter, we will consider many processors, most of which
are both sound and complete. The following lemma makes it easy to quickly
conclude completeness in most cases:

Lemma 7.14. A processor which maps (P, R, m, f) to a set consisting of problems
(P',R',m, f) with P’ C P and R’ C R is complete.

Proof. The processor is complete if for any element (P, R’, m, f) of the result: if
C = (P',R',m, f) is infinite, then so is (P, R, m, f). There are two reasons why
C may be infinite: R’ is non-terminating, or C' is not finite. In the former case,
‘R is non-terminating as well, since =% contains R’. In the latter, any C-chain is
also a (P, R, m, f)-chain. O

To start, let us consider the processors we can get almost for free: those which
follow immediately from the results of Chapter 6, or are easy adaptations thereof.

Note: In each of the processors presented in this chapter, a processor is phrased
as “a function which maps a problem C with certain properties to S”. This should be
read as: “a function which maps a problem C' to S if C satisfies the given properties,
and to { P} otherwise”.

Theorem 7.15 (Empty Set Processor). The processor which maps a DP problem
(P, R,m, f) to D if P is empty, is both sound and complete.

Proof. This holds because a dependency chain with all p;, = beta cannot exist
(see also Observation II below Definition 6.28). O

Theorem 7.16 (Reduction Pair Processor). The processor which maps a DP prob-
lem (P,R,m,f) to {(P2,R,m, f)} provided the following clauses hold, is both
sound and complete:

o P="P Py
* one of the following holds:
— there is a standard reduction pair for (Py, P2, R) (Definition 6.69);

— P and R are both abstraction-simple and f = formative and there is a
tagged reduction pair for (P1, P2, R) (Definition 6.70).

7.2. The Dependency Pair Framework

217

Proof. Completeness holds by Lemma 7.14. As for soundness: this is an adapta-
tion of Theorems 6.36 and 6.67. In both theorems, we merely used the reduction
pair to show that if a dependency chain using only pairs in P and rules in R
exists, then it has a tail which uses only pairs in P». Thus, minimality and use of
formative reductions are not needed, but are preserved if present. O

Theorem 7.17 (Formative Rules Processor). The processor which maps a DP prob-
lem (P, R, m,formative) to {(P,FR(P,R), m,formative)} is both sound and
complete.

Proof. Completeness is obvious: since FR(P,R) C R™, every formative depen-
dency chain which uses only rules in FR(P,R)" is also a formative dependency
which uses only rules in R*. As for soundness, this we obtain from Lemma 6.42:
a formative [-reduction ¢; =% ,, Iy with p;y1 = [= p uses only rules in
FR(pi+1,R) C FR(P,R). O

Thus, we have summarised the main results of Chapter 6 in three processors:
one which eliminates a dependency pair problem, one which alters the set P and
one which alters the set R.

Considering Theorem 6.45 we might also think of a processor which maps a
dependency pair problem (P; UP2, R, m, formative) to {(P2, R, m, formative)}
if a standard dependency pair exists for (P1, P2, FR(P; U P2, R)). However, we
will not need that: this processor is obtained as a combination of the formative
rules processor and the reduction pair processor.

Apart from the processors corresponding to the results we have seen before, let
us consider a few new ones. In the first place, the following processor provides
an easy way to alter the minimality flag.

Theorem 7.18 (Introducing Minimality Processor). The processor which maps a
problem (P, R,arbitrary, f), where R is a terminating set of rules, to {(P, R,
minimal, f)} is both sound and complete.

Proof. This is a basic simplification: if R is terminating, then the minimality
constraint in a (P, R, m, f)-dependency chain is automatically satisfied. O

This processor originates from the first-order case (it is for instance imple-
mented in AProVE), and shows a way to restore minimality if we have lost it
through other processors. We will see a processor that loses the minimality flag
(as a price for dropping rules) in Section 7.6.

Finally, let us consider one more processor that changes R; we saw the first-
order counterpart of this processor in Section 7.1.2.

Theorem 7.19 (Rule Removal Processor). The processor which maps a DP problem
(P,R,m, f) to {(Pa,R2,m, [)} provided the follow clauses hold, is both sound and
complete:

218 Chapter 7 — Improving Dependency Pairs

® 7)27)1&J,PQ, R=RiWRso;
* there is a strong reduction pair (-, >) such that one of the following holds:

- (zZ,>) is a standard reduction pair for (Pi, P2, R2) and | > r for all
rulesl = r € Rq;

— P and R are both abstraction-simple and (Z, >) is a tagged reduction
pair for (P1, P2, R2) and | - tag(r) for all rules | = r € R;.

Proof. Completeness holds by Lemma 7.14; we consider soundness.

From the proofs of Theorem 6.31 and Theorem 6.65, as well as Theorems 6.36
and 6.67, we know that, given an infinite dependency chain over P where always
t; =% si+1, a reduction pair like this leads to an infinite 7 reduction. But every
time a rule in R, is used in the reduction t; =% ;, si+1, then by monotonicity
of =, we must have that ¢; > s;,1. The same holds in a formative reduction if
any rule in R is used (if I >~ r, then I’ = ¢/ for any rule I’ = +' generated from
[= r, since by the definition of a strong reduction pair, > is monotonic). Thus,
if this happens infinitely often, we have a contradiction to well-foundedness of
~. As before, we also obtain a contradiction if a dependency pair in P; is used
infinitely often.

We conclude that dependency pairs in P; and rules in R, can be used only
so often; the dependency chain must have a tail which uses only pairs in P> and
rules in R5. Thus we obtain soundness. O

To demonstrate how the framework can be used, let us reconsider the ter-
mination of twice, now from the different perspective using dependency pair
problems and processors!

Example 7.20. Recall the original definition of the twice system, with rules:

I(0) = 0
I(s(X)) = s(twice(Az.I(x))-X)
twice(F) = My.F-(F-y)

The dependency pairs of (the §-saturated version of) R are:

1. If(s(X)) = twice(Mz.I(z)) X 4. tuice!(F) = F-(F-y)
2. If(s(X)) = twice!(\x.I(w)) 5. tuicef(F) = F-y
3. Ifs(X) = 1) 6. twice(F)-X = F-(F-X)
7. twice(F)-X = F-X
By Theorem 7.12: R is terminating if the dependency pair problem (P, R,minimal,

formative) is finite.
We first use the formative rules processor on the dependency pair problem
(P,R,minimal, formative). By Example 6.39 R, := FR(P,R) consists of:

I(s(X)) = s(twice(Az.I(x))-X)
twice(F)- X = F-(F-X)

7.3. Optimising Collapsing Dependency Pairs

219

Thus, R is terminating if the DP problem (P, R1,minimal, formative) is finite.

We now use the reduction pair processor, with the reduction pair from Exam-
ple 6.37. This allows us to replace the dependency pair problem (P, R;,minimal,
formative) by (P;,R1,minimal, formative), where P; consists of the depen-
dency pairs 4, 5,6, 7. Thus:

R is terminating if the DP problem (P;, R1,minimal, formative) is finite.

Let us use the formative rules processor again. As we saw in Example 6.37,
FR(P1,R1) = 0. Thus we have:

R is terminating if the DP problem (P1, (), minimal, formative) is finite.

Finally, using the reduction pair processor with (-,) from Example 6.47, we
can map (P;,,minimal, formative) to {({),), minimal, formative)}. We find:

R is terminating if the DP problem ({},), minimal, formative) is finite.

Using the empty set processor we obtain:

‘R is terminating.

In this example, we are always working with one single dependency pair prob-
lem, which is iteratively simplified either in the rules or in the dependency pair
component. In the rest of the chapter we will see several more processors, which
naturally allows for more interesting proofs.

7.3 Optimising Collapsing Dependency Pairs

If we consider the way collapsing dependency pairs are used in dependency
chains, there is room for some optimisations. These results have no counter-
part in first-order rewriting, because the dependency pairs in question do not
occur in the first-order setting.

7.3.1 Extending Meta-variable Applications

The first optimisation is in particular useful in systems where meta-variables do
not take arguments, so where collapsing dependency pairs have the form ¥ =

Fopi e pa.

Consider a dependency chain [(p;, s;,t;) | i € N]. For a given 4, suppose p; = I* =
p(A)and p = F(p1,....,pn) Pni1- - Pm Withm > n, and s; = I¥y, t; = py. If
F(p1,...,pn)y is an abstraction, then by definition of = % ;,, the next step must
necessarily be a beta-step.

So let us abuse notation a little, and write F(py,...,p.) for the right-hand
side of this dependency pair, to reflect the intuitive idea that /' may “eat” all p;,
if it can. Formally, this is defined as follows:

Definition 7.21 (Extended meta-variable applications). An extended meta-term
is defined by the clauses from Definition 2.2, and additionally:
F(s1,..y8m) :TifF o X ... Xop]—0pt1—... 2 0m—T
and s1:01,...,5m : Om

220

Chapter 7 — Improving Dependency Pairs

The definition of substitution for extended meta-terms includes, in addition to
the normal clauses:
F(s1y e y8m)Y =qx1:= 817+ s T := Sy I Y(F) = Ax1 ... 2 q
F(s1,. y8m)y = q[z1:= 817, s T i= SkY] - Sk17 -+ Sm7y if
Y(F) = Az ...xz.q with k < m and ¢ not an abstraction

Theorem 7.22 (Extended Meta-application Processor). The processor which maps
a problem (P, R, m, f) to {(P’,R,m, f)} is sound, where P’ is obtained from P by
replacing all dependency pairs of the form | = F(p1,...,pn) - Pnt1 - Pm (A) by
1= F(p1s---.pm) (A).

Proof. Towards a contradiction, suppose that there is a dependency chain C' =
[(pi,siyti) | i € N] with all p; € P U {beta}. We construct a dependency chain
(which is minimal and/or formative if the original is) as follows.

Lett’ , :=to. Given j € N, we assume that we have already chosen (py, s, t;),
ooy (Ph_y, 8% 4,1 _), and that we have some 7 such that ;_; =¢;_;.

If p; is beta or a non-collapsing dependency pair, then let p, s, ¢} := p;, s, ;.
Do the same if p; = = p (A) and p has the form F(uy,...,u,). The result still
satisfies all requirements of a (minimal, formative) dependency chain, and uses
dependency pairs in P’.

If, however, p;, =1 = p (A) and p = F(u1,...,up) * Upt1 - - Uy With m > n,
then choose pj := | = F(u1,...,un) and s} := s;. Consider the substitution
given by case 2 of Definition 6.23.

If y(F) = Ax1...2%p.q, then ¢; is a S-redex. pit1,..., Pitm—n must all be
beta, and a subterm-step may only be done in step i + m — n (because before
then, the B-redex is not at the top). Then, t;1,,_n = v*[2,, = u,n7], where v is

a subterm of ¢[z; := u17,...,Zm—1 := Um—17] Which contains z,,. Since the u;y
do not contain x,,, (we can make sure of this by a-conversion), v must have the
form wlz, = w17v,...,Zm-1 = Uym—17], where w is a subterm of ¢ containing

T But then t;,,, ,, = w*[Z := iy], and we can choose t; := t;4m_n. This gives
a valid step by case 2d of the definition of a dependency chain.

Alternatively, if v(F) = Az ...x5.q with n < k < m, then p;1,..., pitk—n
are all beta, but in none of these steps a subterm step is done, because the -
redex is not at the top. Thus, ¢;4x—n = F(p1,...,pm)7, SO We can safely choose
t; = ti+k7n- O

Note that this processor is sound, but not complete: we cannot necessarily con-
vert a chain with dependency pairs | = F(p1,...,pm) backtol = F(p1,...,pn)-
Pn+1 - - Pm- For example, consider the set P of dependency pairs consisting of:

fH(F,X) = F-a-X
g@) = fayg(e)a)
Andlet R ={f(F,X)=F -a- X, g(a) = f(A\zy.g(x),a)}.

There is no infinite (P, R, m, f)-chain. This is because any infinite depen-
dency chain on these pairs would have to use the second pair at some point.

7.3. Optimising Collapsing Dependency Pairs

221

Say p; = g'(a) = ff(\ry.g(z),a). Then s;1; = ff(\xy.g(x),a) and t;4, =
(Azy.g(z))-a-a. Because of the form, p; o must be beta, and ¢;,2 = (A\y.g(a))-a
But now we get in trouble, because due to the form p;, 3 can only be beta, but
neither case 3 or case 3b of Definition 6.23 applies.

On the other hand, the corresponding set of dependency pairs P’,

tHF,X) = F(a,X)
g'a) = f(lay.g(r),a)

does admit an infinite (P’,R,minimal, formative)-chain, with s; = f£f(Axy.
g(z)), s2 = g*(a), s3 = s; and so on.

However, we do know that the dependency pair (DP(R), R, m, f) is (in-)finite
if and only if (DP(R)’, R, m, f) is. This holds by the arguments of Lemma 6.27,
combined with the observation that F'(s1,...,,) Snt1 - Sy always S-reduces
to F(s1,...,8m)y: if DP(R)’ admits a dependency chain, then there is an infinite
reduction, so by Theorem 7.12 (and the observation that dropping minimality
and formative flags is sound) the DP problem problem (DP(R), R, m, f) is finite.

The processor of Theorem 7.22 may make it easier to prove finiteness of a
DP problem using polynomial interpretations. All definitions of Chapter 4 go
through whether we work with extended meta-terms or normal meta-terms, and
[[F(pla co apm)]]J.,ot is hkely to be smaller than [[F(pla s 7pn) *Pn41c 'pm]]],a-
HORPO cannot deal with extended meta-terms, but since always (F(p1,...,pn)-
Drt1 " Pm)Y =% F(p1,...,pm)7, we could simply transform any extended meta-
terms back to normal meta-terms before applying HORPO.

Example 7.23. Consider the following toy system:

f(F,X,00 = 0O
f(F,X,s(Y)) = g(Y,either(Y,F - X))
g(X,Y) = £(A\z.s(0),Y,X)
elther(X Y) = X
either(X,Y) = Y

To prove termination of this system (which originates from an AFS, so only
uses meta-variables without arguments), we must prove that the DP problem
(P,R,minimal, formative) is finite, where P consists of:

(Y)) = g'(Y,either(Y,F X))
f9(F,X,s(Y)) = either!(Y,F-X)
Y) = F-X
) = ff(2.s7(0),Y, X)

Using the extended meta-application processor, we can replace the right-hand
side of the collapsing dependency pair by F(X), and by the formative rules pro-
cessor we can throw away all rules except the two either rules. Thus, R is

222 Chapter 7 — Improving Dependency Pairs

terminating if (Pey, Rform,minimal, formative) is finite, where:

tHFX,s(Y)) = gi(Y, either(Y,F - X))
P - f9F,X,s(Y)) = either!(Y,F X)
o fﬁ(FX Y) = F-X
Y) = ff(\z.5(0),Y, X)

s(
(X
R = { either(X,Y) = X }

e1therXY) = Y

We use the reduction pair processor (with a tagged reduction pair, since P and
‘R are both abstraction-simple). Consider the polynomial interpretation with:

J(E) = Afnm.f(n) +m+1 JOo) = 0
JE) = Anmn+1 J(either) = Anm.n+m
J(either?) = Anm.0 J(s) = Ann
J(s7) = Ann

With these interpretations, the rules are easily oriented with =, and J(s™)

J (s). Moreover, we can orient the dependency pairs; writing «(F) = f, a(X)
n, a(Y) = m, we have:

I

© [X, 5(Y))] 7.0 = f(n)+m+1 > m+1 = [g(Y, either(Y, - X))] 7,03
* [fH(F X, 5(Y))] 7.0 = f(n) + m+12>0= [either*(Y,F - X)]7 a3

* [fH(F X, 5(Y))]70 = f(n) +m+1> f(n) = [F(X)]7,;

(X, V)]ga=n+1>n+1=[tA2xs7(0),Y, X)]7.a-

Thus, we can remove the collapsing dependency pair. We could not have used
this interpretation without changing the dependency pair, because then the right-
hand side of the collapsing pair would have been interpreted to f(n) + n.

Although this modification of dependency pairs adds relatively little power (test-
ing with WANDA shows no difference on the termination problem database), it
has the advantage of being exceedingly easy to implement: when finding poly-
nomial interpretations for dependency pairs, we merely treat the right-hand side
of a constraint [7, I - p'as a meta-variable application. This often leads to easier

polynomials, and avoids using the (inefficient) max function for application.

7.3.2 Adding Meta-variable Restrictions

The next modification for collapsing dependency pairs is designed with an eye
on the dependency graph, which will be introduced for higher-order rewriting in
Section 7.4. This transformation is based on the following observation: when

7.3. Optimising Collapsing Dependency Pairs

223

a dependency pair I = F(p1,...,pm) (A) is used somewhere in a minimal de-
pendency chain, say at place p;, the right-hand side is probably substituted by a
term which does not “eat” all of the p;. For if it was, then #; would be the marked
version of a strict subterm of s;.

Theorem 7.24. The processor which maps a DP problem (P,R,minimal, f) to
(P',R,minimal, f) provided the conditions below are satisfied, is both sound and
complete:

* if a term s is terminating under =5, then there is no (P, R,minimal, f)-
chain which starts in s* or any of its subterms;>

* P = P; WPy, where P, contains only collapsing dependency pairs of the form

o PP=PU{l= F(p1,--.,pm) (AU{F :i}) |l = F(p1,...,pm) € P2, 1 <
1< m};

Proof. Whenever a dependency pair from P is used somewhere in a minimal for-
mative (tagged) dependency chain, it cannot be the case that the meta-variable
eats all its arguments: if so, s; > ¢;, and by minimality of the chain, this means ¢;
is terminating under = 5. This gives a contradiction with the first assumption of
the lemma. Thus, the dependency pair must use at least one of its arguments, so
at least one of the new dependency pairs is applicable.

For completeness, note that every one of the new dependency pairs could be
replaced by its original in a dependency chain without altering the s;, ¢;. O

This transformation is in particular useful for collapsing dependency pairs where
the meta-variable has only one argument: we can simply add the requirement
that the argument actually occurs in the meta-variable, a requirement that might
help remove some edges in the dependency graph.

Example 7.25. Consider the AFSM with two rules:

£(0) = g(A\z.0,1)
g(F,X) = F-f(X)

Initially, this system gives the following dependency pairs:

£40) = g'(\z.0,1)
gi(FX) = F-£(X)
g(FX) = fHX)

3This is the case if P C DP(R). The property is also preserved by the extended meta-application
processor.

224

Chapter 7 — Improving Dependency Pairs

The AFSM is terminating if (DP(R), R,minimal, formative) is a finite DP prob-
lem. By Theorems 7.22 and 7.24 this is the case if (P, R,minimal, formative) is
finite, where P consists of:

tf(0) = gf(\z.0,1)
gh(F.X) = F(£(X)) {F:1}
g X) = fH(X)

In Example 7.33 we will see how this transformation of P helps us.

7.3.3 General Split Transformation

A last transformation on collapsing dependency pairs that might be useful is to
split a dependency pair which uses a meta-variable with arguments in two cases:
the argument occurs in the substitute, or it does not. This way, we could for
instance replace one dependency pair

£f(\ry.F(z,y)) = F(£(A\ry.x),0) {F : 2}
by the two new dependency pairs:

tff\zy.F(z,y) = F(EAxy.x),0) {F:1, F:2}
#0uyF(y) = F0) !

Since every application of the original dependency pair could be transformed
into one of the new pairs, this transformation of a dependency pair is sound.
Because every application of one of the new pairs could be transformed into an
application of the original pair, it is complete.

Phrasing this in the most general way possible, we obtain the following result:

Theorem 7.26. The processor which maps a DP problem (P U {p}, R, m, f) to
(PU{p1,...,pn}, R,m, f) provided the conditions below are satisfied, is both sound
and complete:

* every occurrence of p in a (P, R, m, f)-chain [(p;,s:,t;) | i € N] can be re-
placed by one of the p; without changing s; and t;;

* every occurrence of some p; can be replaced by p without affecting s; and t;.
Proof. This obviously holds; the proof is in the conditions. O

Note that it is also obvious that the processor which replaces P U {p} by P U
{p1,-...,pn} if only the first of these constraints is satisfied is still sound, even if
it is not complete.

Theorems 7.24 and 7.26 will primarily be useful in combination with the
dependency graph, which we will study now.

7.4. The Dependency Graph

225

7.4 The Dependency Graph

The dependency graph, which provides a powerful dependency pair processor in
the first-order dependency pair framework, can also be extended to our setting.
The notions are very similar to the first-order case; however, in the presence of
collapsing dependency pairs, the graph is likely to be quite dense.

Definition 7.27. The dependency graph of a pair (P, R) is a graph with the pairs
in P as nodes, and an edge from node | = p (A) to node I’ = p’ (B) if either
p is headed by a meta-variable application, p = Z(s1,...,8n) - Snt1 -+ Sm With
m > n and m > 0, or there is a substitution v which respects A and a substitution
6 which respects B, such that py =% ;,, 1d.

Here, we say ~ respects A if for all conditions Z : i € A we have v(Z) =
Axy ...z, With x; € FV(s).

Example 7.28. The dependency graph of (DP(R), R) for the AFS twice:

(1%(s(X)) = T*()

O //\\ S

[twice() X=F- Ltv,uceﬁ F)=F- (Fy))

I I
(T(s(X) = twice(\r.I(x)) - X |7 {TH(s(X)) = twice!(\r.1())]
[twice(F) X=>F- Xj [twiceﬁ(F) =F.y
O S

A cycle is a set C' of dependency pairs such that between every two pairs p, m € C
there is a non-empty path in the graph using only nodes in C'. A cycle that is not
contained in any other cycle is called a strongly connected component (SCC).

Comment: The requirement to add an edge from any collapsing node
to all nodes in the graph is necessary by clauses 2d and 3b in Defini-
tion 6.23: a dependency chain could for instance have a dependency
pair of the form [= F - r followed by beta with a subterm step, and
then any other dependency pair. Hence a collapsing rule may give rise
to many cycles. If the system originates from a formalism without an
application symbol, such as the IDTSs from Chapter 3.2, then this re-
quirement may be weakened. For example, in the example used in
Chapter 3.2, it would not be necessary to draw an edge from the depen-
dency pair £f(a,g(\zy.F(z,y))) = F(a,g(\zy.F(z,y))) to itself, since
an application-free term of type bool in this system cannot have a sub-
term of type nat.

226

Chapter 7 — Improving Dependency Pairs

Because the dependency graph cannot be computed in general, it is common to
use approximations of the dependency graph, which have the same nodes but
possibly more edges. Approximations also make it possible to deal with infinite
systems, without using an infinite graph.

Definition 7.29 (Graph Approximation). A finite graph G approximates the de-
pendency graph A if for every node p in A there is a node n, in G, and whenever
there is an edge from p to 7 in A, then there is an edge in G from n, to n,.

Consequently, all dependency graphs can be approximated with
the trivial graph to the right. However, in finite systems, approxi- Q
mations typically have one node for every dependency pair.
A brute method to find an approximation of the dependency
graph is to have an edge between ! = p (4) and I’ = p’ (B) if
[= pis collapsing, or if p and I’ both have the form f(s1,...,85) Snt1 -+ Sm for
the same function symbol f and some m > n > 0.
O However, there are more sophisticated
methods, for example by making use
{fﬁ()‘x'F () = F (f()‘x'o))j of the meta-variable conditions which
come with all dependency pairs, and
which can be strengthened using the
[fﬂ()\m_F(x)) = £%(\z.0) {F : 1}j methods of Section 7.3. Consider
for instance a system with a rule
f(Az.F(x)) = F(£f(\x.0)). If we take
into account that A\z.0 cannot reduce to something of the form Az.s with
x € FV(s), we get the dependency graph on the left, where the second depen-
dency pair notably does not have a self-loop. Furthermore, first-order methods
(see e.g. [119]) for finding good approximations may be extended. Some simple
tricks will be mentioned in Chapter 8.4.
The dependency graph is useful because of the following observation:

Lemma 7.30. Let P be a set of dependency pairs, R a set of rules, and G an
approximation of the dependency graph of (P,R). If there is a dependency chain
over P and R, then it has a tail which uses only the dependency pairs in some
strongly connected component of G.

Proof. Given any dependency chain, note that, for any &, m: (**) if k < m then
there is a path in G from n,, to n, (f pi, pm # beta).

Since the graph approximation G is finite, but an infinite chain uses infinitely
many dependency pairs, every infinite chain must visit at least one node d in-
finitely often. Let ¢, j be numbers such that i < j and n,, = n,, = d. As there is
a path in G from d to itself by (**), d is on a cycle; let C' be the SCC containing
d. Then for all p;, with k& > i and p;, # beta we must have that n,, € C: there
is a path in G from d to n,, by (**) because ¢ < k, and since d occurs infinitely
often, so also some n,,, = d for m > k, there must be a path from n,, to d as
well. But then, the tail {p; | j > i} is a dependency chain in C. O

7.4. The Dependency Graph

227

This leads to the following result:

Theorem 7.31 (Dependency Graph Processor). The processor which maps a DP
problem (P,R,m, f) to {(C, R, m, f) | Cis an SCC of a dependency graph approx-
imation of (P, R)} is both sound and complete.

Example 7.32. We consider the dependency pair problem (DP(Riyice); Reuice;
minimal, formative). The dependency graph (approximation) of this problem,
which we saw in Example 7.28, has only one SCC C, consisting of:

I*(s(X)) = twice(Az.I(z))-X twice!(F) = F-(F-y)

I*(s(X)) = twicef(\z.I(x)) twice!(F) = F.y
twice(F)- X = F-(F-X)
twice(F)- X = F-X

Therefore twice is terminating if the DP problem (C,R,minimal, formative) is
finite.

Example 7.33. The system from Example 7.25 is terminating if the dependency
pair problem (P, R,minimal, formative) is terminating, where R = {£(0) =
g(Az.0,1), g(F,X) = F-£(X)}, and P consists of the dependency pairs in the
following graph:

[fﬁ(o) = gf(\z.0, 1)](\)

[(6'(F. X) = F(£(X)) {F: 1})

grx) =t

The edges from the collapsing dependency pair to the other two and itself are
necessary by definition of the dependency graph. The edges between the other
two are necessary because the right-hand side of either can be instantiated to
the left-hand side of the other. There is no edge from gf(F, X) = £#(X) to the
collapsing pair because the root-symbols do not match.

Importantly, there is also no edge from £#(0) = g*(\z.0, 1) to the collapsing
dependency pair. This is because of the meta-variable restriction F : 1, since Az.0
ignores its first argument. Thus, because of the modifications of Theorems 7.22
and 7.24, the collapsing dependency pair has no incoming edges.

Consequently, there are two strongly connected components in this graph.
The dependency graph processor maps (P, R,minimal, formative) to the set
{(P1,R,minimal, formative), (P2, R,minimal,formative)}, where P; =
{g°(F,X) = F(£(X))} and P, = {£(0) = g(\e.0,1), g(F,X) = £/(X)}.
Thus, the AFSM is finite if both these dependency pair problems are finite. Using
the formative rules processor on the first of these, we obtain:

The AFSM from Example 7.25 is terminating if the dependency pair problems
(Py,0,minimal, formative) and (P2, R,minimal, formative) are both finite.

228

Chapter 7 — Improving Dependency Pairs

Using the reduction pair processor, we quickly eliminate the first DP problem,
by considering the polynomial interpretation with 7(f) = An.n and J(g*) =
Afn.f(n) + 1. As for the second, by the reduction pair processor we can replace
this DP problem by the simpler ({g(F, X) = £*(X)}, R,minimal, formative),
provided a reduction pair exists such that:

£900) = gf(\x.0,1) f(0) = g(\z.0,1)
g X) = fHX) g(F,X) = F-1(X)

Since P is non-collapsing, this reduction pair does not need to respect >* or >~
Let us use StarHorpo with an argument function:

m(gh) = Azy.fi(y)
m(g) = Avy.@7°(z,£(y))

The other symbols are left alone, so e.g. w(f) = \xz.f(z). This gives constraints:

£50) =, £4(1) £(0) =, @°7°(A\z.0,£(1))
tHX) = f1(X) @ 7(FE(X)) . Q@7°(F£(X))

Which is satisfied if we choose £ » @°~° and 0 » 1.
Finiteness of the remaining DP problem ({gf(F, X) = £#(X)}, R,minimal,
formative) is quickly obtained, since its dependency graph has no cycles.

Example 7.34. Consider the system with a single rule £f(\z.F(z)) = F(£(\z.0))
whose dependency graph was shown in the text. To prove termination, we must
show finiteness of the dependency pair problem (DP(R), R,minimal, formative).
To this end, let us first use the formative rules processor to replace this problem
by (DP(R),0,minimal, formative), and then use the reduction pair processor.
Using HOIPO with £f » f and an argument function which maps 0 to L., we

obtain: .
87 (\x. F(x))

= select F(fu*(ACC F(J?)))

ey F(E(E (\2.F ()
Sas F(EQy" (. F(2),y)))
=bot F(£(Ay.Lyat))

tf(\z.F(z))
:>bot fﬁ (Ay-J—nat)

Thus, we obtain termination of the system if (P, (), minimal, formative) is a fi-
nite dependency pair problem, where P consists of the single dependency pair
t¥(\z.F(z)) = £%(\z.0) {F : 1}. But now the meta-variable conditions come in!
The dependency graph of (P,) has no edges, and thus the dependency graph
processor maps (P,),minimal, formative) to (); termination is proved.

7.5. The Subterm Criterion

229

Here, we see a second use for the meta-variable conditions {F' : i}. These
conditions were originally introduced primarily for the sake of getting a com-
pleteness result (which makes it possible to use the dependency pair framework
for non-termination as well as termination, even though that is not done in this
work). But as we saw in Example 7.33, they also have a use in the construction
of dependency graph approximations.

However, at this point their purpose has mostly been served. We shall not
need these conditions for any further transformations of P.

7.5 The Subterm Criterion

As in the first-order case, we may attempt to use the subterm criterion. But here,
we run into some trouble. For how should we deal with collapsing dependency
pairs? And what about dependency pairs of the form f(X;) - X3 = r (4), whose
root symbol is not marked?

A subterm criterion was defined for the static dependency approach on the
HRS formalism in [87]. In this setting, it is very natural, as there are only depen-
dency pairs of the form f ti(lﬂ) = ¢%(7). But we will have to adapt the definitions
to work with the approach in this thesis.

Unfortunately, the issue of collapsing dependency pairs is very hard, if not
impossible, to overcome. However, many higher-order systems still have sub-
systems which do not use collapsing dependency pairs. We saw this happen in
Example 7.33. Also, it is sometimes possible to delete the collapsing dependency
pairs with a reduction pair, as was done in Example 7.23. For such non-collapsing
sets, the subterm criterion may still be used.

To start, let a set P of non-collapsing dependency pairs be given, and let
‘H be the set of function symbols f such that any left- or right-hand side of a
dependency pair has the form f(3) - &. A projection function for P is a function
v which assigns to each f € H a number i such that for all dependency pairs
I = p (A) € P, the following function 7 is well-defined for both / and p:

U(f(51,--,8m) Sma1""Sn) = Su(f)

Theorem 7.35 (Subterm Criterion Processor). The processor which maps a de-
pendency pair problem (P, R,minimal, f) to (P2, R,minimal, f) provided the fol-
lowing conditions hold, is both sound and complete.

* P is non-collapsing;
e P =P Py
* a projection function v exists such that:

- 7)) >v(p) foralll = p € Py, and
- () =7(p) forl = p € Pa.

230

Chapter 7 — Improving Dependency Pairs

Proof. Completeness holds by Lemma 7.14.

If there is a minimal dependency chain over P, then by Observation III from
Section 6.3 we can assume that it does not use beta (as P is non-collapsing).
Since the left-hand side of a dependency pair is always a pattern (and therefore
its subterms are, too), 7(l) > 7(p) implies 7(l)y > ¥(p)y. Thus, from such a
dependency chain we obtain an infinite reduction: 7(s1) > 7(t1) =5 7(s2) >
7(t2) =% ... Either infinitely many of these steps are dependency pairs in P,
so take a > step, or a tail of the dependency chain uses only pairs in Ps, so
(P2, R,minimal, f) is not finite. In the latter case we are done, so, towards a
contradiction, assume the former.

The relation = U > is well-founded on the class of terms which are termi-
nating under =: = on its own is well-founded by the class restriction, > on
its own is well-founded because it decreases the size of a term, and a reduction
using both infinitely often can be rewritten to an infinite =% reduction by ob-
serving that s > t =% ¢ implies s =% C[q] > ¢ for some context C. Since we
considered a minimal chain, all 7(s;) and 7(¢;) are minimal, and thus we obtain
the required contradiction! O

Example 7.36. Recall the system from Example 7.23. We have seen that this
system is terminating if (Pes, R form,minimal, formative) is finite, where P, is
the set consisting of the non-collapsing dependency pairs:

f9(F,X,s(Y)) = gV, either(Y,F-X))
f9(F,X,s(Y)) = either!(Y,F-X)
g(X,Y) = f(us(0),Y,X)

Considering its dependency graph,

(£(F. X, s(Y)) = g! (V. either(Y, F - X))
f
((X.Y) = £(A2.5(0), Y, X) }—{ #(F, X, () = either*(Y, F - X)]

we can drop the dependency pair using either? with the dependency graph
processor. We use the subterm criterion on the remaining two dependency pairs.
Choosing v(£*) = 3 and v(g*) = 1 we have:

p(fH(F, X,s(Y)) = s(Y) > Y = v(ghY,either(Y,F - X)))
p(fH(F, X,s(Y)) = X = X = p(f'(\z.s(0),Y,X))

Thus, this system is terminating if the dependency pair problem ({gf(X,Y) =
£*(A\z2.5(0),Y, X)}, Rjorm,minimal, formative) is finite. Since the dependency
graph of this set has no cycles, this is clearly the case!

7.6. Usable Rules

231

7.6 Usable Rules

Although formative rules provide a nice higher-order counterpart of usable rules,
it would be even nicer if we had both! True, the proof for the usable rules
approach essentially breaks in the presence of collapsing rules and dependency
pairs — but, like the subterm criterion, the technique may still have some merit
when we are dealing with a set of non-collapsing dependency pairs.

A usable rules approach was defined for static dependency in [114]. But even
in this setting, where dependency pairs are always non-collapsing, the usable
rules approach doesn’t work quite as well as in the first-order case. In particular,
rules where the right-hand side has any subterms x - s with x a free variable (in
AFSMs, this would be a meta-variable application) cause trouble. The definitions
in this section use roughly the same restriction as in [114]. In particular the use
of patterns: either all rules are usable, or the right-hand side of all usable rules
is a pattern. An important difference is that here we use typed symbols, as in the
definition of formative rules.

Apart from restricting to non-collapsing sets of dependency pairs, the results
in this section are only applicable if R is finitely branching. That is, for every term
s we assume that there are only finitely many different ¢ such that s =% ¢. In
practice, this is rarely a restriction because for instance finite systems are always
finitely branching.

We consider R™+, whichistheset RU{l-Z, - Z, =121 Z, | l=1r R,
all Z; fresh meta-variables and [- Z well-typed}. Unlike the previously used
R*, this set does include rules | - Z = (Az.r) - Z if | = Az.r is a rule in R.
However, R does not need to be §-saturated. We will reuse the function Symb
from Definition 6.38.

Definition 7.37 (Usable Rules). Let (f,o) J,s; A denote that there is a rewrite
rule f(l1,...,ln) lns1 -+l = rin RTT with r : 0 where A € Symb(r) or r is not
a pattern. The reflexive-transitive closure of J,, is denoted by J7 . Overloading
notation, for a meta-term s let s 1% B denote that Symb(s) contains a typed
symbol A with A 17, B, or s is not a pattern.

The set of usable rules of a meta-term s, notation UR(s), consists of those
rules f(l1,...,ln) lnt1 -+ lym =7 € RTT such that s 3%, (f, o), where r : 0.

The set of usable rules of a non-collapsing dependency pairl = f(p1,...,pn)-
Dn+1 - Pm is the union UR(p;) U ... U UR(p,,). The set of usable rules of a set
of dependency pairs, UR(P), is the union {J . UR(p) if P is non-collapsing and
just R otherwise.

This definition should be considered parametrised with the set R. When the set
of rules under consideration is not clear from context, we might write UR(s, R)
or UR(p,R) or UR(P, R) rather than UR(s), UR(p) or UR(P) respectively.

232

Chapter 7 — Improving Dependency Pairs

Example 7.38. Consider the following toy AFSM, where all function symbols
have output type nat, and F : nat —nat:

F-.0
g(F)
With this AFSM, (h,nat) 3% (h,nat), (f,nat), (a,nat), (b,nat) only. However,

(i,nat) J,s (g,nat), and because F - 0 is not a pattern, (g,nat) J,s everything.
Thus, also (i,nat) 3% A for all typed symbols A.

fa) = (b)) g(F)

=
h(F) = f(a) i(F) =

Example 7.39. Consider an AFSM for list manipulation which has four rules:

map(Az.F(z),nil) = nil
map(Az.F(z),cons(X,Y)) = cons(F(X),map(Az.F(z),Y))
append(nil, X) = X
append(cons(X,Y),Z) = cons(X,append(Y,”2))

To prove termination of this system, we must prove finiteness of (DP, R, minimal,
formative), which by the dependency graph processor reduces to the question
whether both (P;,R,minimal, formative) and (P, R,minimal, formative) are
finite. Here,

P, — { map?(A\z.F(z),cons(X,Y)) = F(X) }
! map?(\z.F(r),cons(X,Y)) = mapf(\z.F(x),Y))

P, = {append®(cons(X,Y), Z) = append*(Y, Z)}

P, contains a dependency pair with F'(X) in the right-hand side, so UR(P;, R) =
R. For the second DP problem usable rules have a larger effect: UR(P2,R) = 0.

This definition of usable rules is very similar to the one for formative rules in
Section 6.4. Where formative rules are intuitively the rules which can contribute
to the creation of the pattern of a dependency pair, usable rules can be thought
of as the rules which some part of the right-hand side of a dependency pair can
reduce to.

In Lemma 7.42 we will see that when proving finiteness of a dependency
pair problem (P, R,minimal, f), we can mostly restrict attention to the rules in
UR(P,R). The proof of this, however, is wildly different from the similar result
for formative rules, but rather similar to the first-order setting [48, 53] and the
static setting for HRSs [114].

To start, we introduce a new symbol p,, : [c X o] — o for all types o, as well
as a fresh symbol L, of type o. The set C. consists of the (infinitely many) rules:

po(Z1,72) = 74
Po(Z1,22) = Z

Let a fixed set of dependency pairs P be given, in whose usable rules we are
interested. We also fix some set R, and assume that R ¢ UR(P,R). A usable

7.6. Usable Rules

233

symbolis any typed symbol A such that for some I = g(p1,...,Pn) Pnt1-* Pm €
P and some i: p; 3%, A. Obviously, if (f, o) is a usable symbol of P, then any
rule f(5) -t = r: 0 € RT* is a usable rule of P.

For an idea sketch, a finitely branching term which does not have the form
f(@) - ¥: o with (f, o) a usable symbol, will be encoded by the list of its reducts.
For example if s =5 t1, ..., t,, we could replace s by p(t1, p(te, ..., p(tn, L) ...)).
Using the C.-rules, this term still reduces to everything s reduces to. Doing this
replacement everywhere in a term does not affect applicability of usable rules,
yet will, in a terminating term, eventually lead to a term which only contains
usable symbols. In such a term, only usable rules and C.-rules can be applied.

To work! For any terminating term s : o, define ¢(s) as follows:

o(s) = Az.p(s') if s = \x.s';
*p(s) =z p(s1) p(sp)if s =51 8p;
¢ (3 Fl@(s1),---50(8n)) - @(Sny1) - @(sm) if s = f(s1,...,80) - Spy1

-sm : o and (f, o) is a usable symbol;

* @(s) = Po(fle(s1),- .- 0(sn) - p(sn41) - 9(sn), Do({t | s =r t})) if s =
f(s1,...,80) - Sp+1- - Sm : 0 and and (f, o) is not a usable symbol;

* o(s) =D,({t| s =r t}) if s does not have one of the forms above;

* in these definitions, D, () = L,, and D, (X) = ps(¢(t), Dy (X \ {t})) if X
is non-empty and ¢ lexicographically its smallest element

Note that {t | s = t} is finite by the assumption that = is finitely branching,
and that this definition is therefore well-defined by induction on s (which was
assumed to be a terminating term), ordered with = U >.

Lemma 7.40. If s is a pattern and ~ a substitution whose domain contains only
meta-variables (and contains all meta-variables in FMV (s)), then ¢(sv) =¢. s7%,
where v¥ = [Z := p(v(Z)) | Z € dom()]- If all elements of Symb(s) are usable
symbols of P, then even p(svy) = sv%.

Proof. By induction on the form of s, which is obvious when s is an abstraction
or variable-headed application. If s = f(s1,...,8,) * Spt1--Sm : o, then we
are also done with the induction hypothesis if (f,o) is usable, and if not (in
which case we do not need to consider the “all elements of Symb(s) are usable”
case), p(sv) =c. f(p(s1),--.,90(sn)) - ¢(Sn+1) - - - ©(Sm), which by the induction
hypothesis =% sy¥. Since s is a pattern, the only remaining case is when s =
Z(x1,...,2,) with all x; distinct bound variables. In this case, we can write
v(Z) = Axy ... x,.t, and therefore p(sv) = p(t) = sy%. O

234

Chapter 7 — Improving Dependency Pairs

Lemma 7.41. Suppose that R € UR(P). If s =x t with s terminating, then
w(s) é*fm(p)uce o(t).

Proof. First note that (**) D, (X) =¢. o(u) for all uw € X. This is obvious with
induction on the size of X. The lemma holds by induction on the form of s.
If s is an abstraction, or headed by a variable (so the reduction happens in a
subterm), this is obvious with the induction hypothesis. If ©(s) = D,(X) or
Pol(--.» Do (X)) where X = {q | s =r ¢}, we are done by (**). Otherwise, s =
f(s1,0580) Sny1 8w o and ¢(s) = f(p(s1), .-, 0(s0)) - @(Sn+1) - ©(Sm)-

If the reduction is done in one of the s;, we can use the induction hypothesis
to obtain the lemma. Otherwise a headmost step is done, SO0 s = Iy - Sg11 - Sm
and ¢t =rvy-sgy1--Sm. Letl :=1-Zy1y--- Zyand v’ :=r-Zyyq -+ - Z,, for fresh
meta-variables Zy11,...,Zy,. Let 6 := YU [Zr11 = Skt1y-- -5 Zm i= Sm]. Now,
I = r'" € R**, and because (f, o) is a usable symbol of P, even !’ = ' € UR(P).

Using Lemma 7.40, ¢(s) = p(I'0) = 1'0%Y = yr(p) r'0%.

By the assumption that R ¢ UR(P) we know that ' must be a pattern,
and since (f,o) J,s A for all A € Symb(r’'), Lemma 7.40 provides that /6% =
o(r'8) = ¢(t) as required. O

From this we easily obtain the result which allows us to restrict attention to
usable rules when trying to prove absence of a minimal dependency chain:

Lemma 7.42. Suppose P is non-collapsing and R ¢ UR(P,R) finitely branching.
If there is a minimal dependency chain [(p;, si, t;) | i € NJwith all p; € P, then there
is also a dependency chain [(p;, s;, t;) | i € N] where for all i: t; =75 p 2y, Sita-

Proof. Since R ¢ UR(P,R), we know that P is non-collapsing. Let a minimal
dependency chain [(p;, s;,t;) | ¢ € N] be given with all p; € P. Since P is non-
collapsing, no subterm steps are ever taken.

For all i, let pi =l = p; (AZ) and s; = Liviy ti = piYi- Define S;,t; =
li’}/;-p,pi’y;-p. Write pi = f(U1, - ,um) *Um41 " Un and li+1 = f(’Ul, - ,’Um) :
Um+1 " Up. By Lemmas 7.40 and 7.41, we then have:

ti =pf

7 v 1q
= f(@(ulfyi%) <P(Um%‘)) : (P(Um+1')’i) T @(un’}’i)
:>>;JR(P¢+1,R)UC5 f(@(vl’)/i)7 s v‘P(Um’Yi)) ’ @(Unz+17i) T @(Un’Yi)
=6 Ly

Since UR(p;, R) C UR(P,R), the resulting chain has the required property. [

From this lemma (and Observation III below Definition 6.28) we can easily
obtain the following processor:

Theorem 7.43 (Usable Rules Processor). The processor which maps a dependency
pair problem (P, R,minimal, f) to {(P, UR(P,R),arbitrary, all)UC.} provided
R is finitely branching is sound.

7.6. Usable Rules

235

Note that this processor is not complete, and loses both minimality, and a
possible formative tag. Although it is not avoidable to lose the minimal tag
as demonstrated in [119], it is an open question whether it may be possible to
preserve formative reductions.

Even supposing it is possible to preserve the formative rules flag, though, the
usable rules processor is very lossy. Most importantly, we lose the minimality flag
which allows us to use the usable rules processor again. It is likely that there are
situations where the ability to permanently remove non-usable rules is worth the
loss of the flags. However, in most situations, it will probably be preferable to
use the following, alternative processor.

Theorem 7.44 (Reduction Pair Processor with Usable Rules). The processor which
maps a problem (P, R,minimal, f) to (P2, R,minimal, f) provided the conditions
below are satisfied, is both sound and complete:

e P="P Py
* R is finitely branching;
* there is a standard reduction pair for (P1, P2, UR(P,R) UC,).

Proof. In Lemma 7.42, a (P,R,minimal, f)-chain is transformed into a (P,
UR(P,R) U Cc,minimal, all)-chain which uses the same dependency pairs infi-
nite often. If the latter can use the elements of P; only finitely many times (as is
demonstrated with this reduction pair), then the same holds for the former. [

The C. rules, although there are infinitely many of them, are trivial for most
reduction pairs, especially because the p, symbols don’t occur in any other rules.

Unfortunately, the restrictions to apply usable rules are fairly strong. We might
reasonably wonder whether it is really necessary for the right-hand sides of all
usable rules and dependency pairs to be patterns. The following example demon-
strates that the requirement cannot be dropped.

Example 7.45. Consider a system with the following rules:

£#(F,X,Y) = g(X,V,F,X) h(0) = a(0)
g(s(X),s(Y), Fn2) = gX,Y,F,2) h(s(X)) = a(h(X))
g(0,0,F,Z) = £(F,s(Z),F-n(Z)) i(0) = 0

i(a(X)) = s(i(X))

This system admits a minimal dependency chain, constantly iterating the depen-
dency pairs in the set P:

tHFX)Y) = g(X,Y,F X)
g'(s(X),s(Y),F,2) = g(X,Y,F,2)
g(0,0,F,Z) = f£YF,s(Z),F-n(Z))

236 Chapter 7 — Improving Dependency Pairs

This chain has the form:

f4(\z.i(x),s™(0),s™(0))

= g(s7(0), 8(0), Mavi(x), 57(0))

=* g%0,0,\z.i(x),s"(0))

= ff(x.i(z),s"T(0), (Mz.i(x)) - h(s™(0)))

=% f'(\z.i(z),s"T1(0),a"1(0))
f(A\z.i(z),s"*1(0),s"T1(0))

Note that we need the i-rules to obtain this dependency chain. Indeed, if these
two rules are omitted there is no chain at all, even if we do include the C,-rules
(this takes some effort to see as none of the reduction pairs we have used so far
can handle this system; roughly, the instantiation for ~(F') which keeps being
passed on unmodified must have the form Az.s where s reduces to s™(0) for any
n, which is not possible with the given rules). Thus, to obtain Lemma 7.42 it is
essential that all rules are usable when the right-hand side of a dependency pair
or usable rule is not a pattern.

It is an open question whether we could drop or weaken the right-hand side
pattern requirement to obtain some variation of Theorem 7.44. For example, it
may be possible to ignore the condition if a reduction pair of a certain form is
used. This is left for future research.

7.7 Splitting First-order Rules

In the given form, Theorem 7.44 is mostly relevant to those parts of a dependency
pair problem where the higher-order aspect, application of meta-variables, does
not play a role. One reason why this might happen is a higher-order system
which has a first-order subsystem. Consider for example the following system,
which is a slight adaptation of the problem Applicative_ AGO1_innermost__#4.26
which appears in the termination problem database:

true : bool prev [nat] —nat
false : bool s : [nat]—nat
nil : 1list cons [nat x list]—1list
0 : nat up [list] —1list
filter : [(nat—bool) x list]—>1list
filter2 bool X (nat —bool) X nat X list]—>1list

[
map : [(nat—nat) x list]—1list
le : [nat X nat|—>bool
minus [nat X nat] —nat

minus?2 [bool x nat x nat] —nat

7.7. Splitting First-order Rules

237

prev(0) = 0O
provis() > X
1le(0,X) = true
le(s(X),0) = false
le(s(X),5(Y)) = 1e(X,Y)
minus(X,Y) = minus2(le(X,Y),X,Y)
minus2(true, X,Y) = 0O
m1nus2(false X,Y) = s(minus(prev(X),Y))
map(F,nil) = nil
map(F, cons(X,Y)) = cons(F - X,map(F,Y))
filter(F,nil) = nil
filter(F,cons(X,Y)) = filter2(F -X,F,X,Y)
filter2(true, F, X,Y) = cons(X,filter(F,Y))
filter2(false, F, X,Y) = filter(F,Y)
up(X) = map(A\z.s(z), X)

Intuitively, only map, filter, filter2 and up use the higher-order aspect; the
other rules are really first-order. As it happens, this first-order subsystem is quite
hard to handle. All techniques we have seen so far fail to prove finiteness of
(P,R,minimal, formative), where P is the set:

minus?(X,Y) = minus2*(le(X,Y),X,Y)
minus2®(false, X,Y) = minus®(prev(X),Y)

Considering that the usable rules of this set do not include any of the higher-
order rules, it would be very nice if we could view this part as a first-order de-
pendency pair problem and use the many existing methods which have not yet
been generalised to higher-order rewriting. However, the definition of a higher-
order dependency chain allows A-abstractions and applications in the formation
of the terms in the chain, and reductions with a S-rule. It will take some work to
see that we can, in fact, ignore the higher-order aspect.

First let us define the intuitive notion of “first-order” rules and dependency
pairs. We say a meta-term s is essentially first-order if s is closed and has no
subterms of functional type. A rule [= r is essentially first-order if both [and r
are essentially first-order meta-terms. A dependency pair [= p (A) is essentially
first-order if both [and p are essentially first-order meta-terms and A is empty.

Example 7.46. In the example system above, all the prev, le, minus and minus2
rules are essentially first-order. The elements of P are essentially first-order de-
pendency pairs.

If both a set of dependency pairs P and its usable rules are essentially first-
order, then any dependency chain over P can be used to find a first-order de-
pendency chain over P, as we will see below. Write C.,,,. for the essentially
first-order subset of C.: {p,(X,Y) = X,p.(X,Y) =Y | . € B}.

238

Chapter 7 — Improving Dependency Pairs

Theorem 7.47. Let P be a set of essentially first-order dependency pairs, and R a
finitely branching set of rules. Suppose A := UR(P,R) consists only of essentially
first-order rules. Then (P, R,minimal, f) is finite if there is no dependency chain
C = [(pi, si»ti) | © € N] such that:

e all p; € P;

e foralli: t; =% ¢, sit1 without B-steps, and all terms in this reduction are
essentially first-order terms.

Proof. We define a new function) for terminating base-type terms as follows:
* (x) = x if x is a variable;
* Y(f(s1,..-,8n)) = f(¥(s1),...,9(sy)) if f is a usable symbol of P;
* U(f(s1,-58n) 2 0) = P(f((s1), .-, ¥(sn)), Du({t | £(5) == t})) if [is

not a usable symbol of P, but all s; have base types;

P(s:1) = D,({t|s=r t})if s has any other form;

* in this definition, D,(0) = L, (a fixed variable), and D,(X) = p,(¢¥(t),
D,(X\{t})) if X is non-empty and ¢ lexicographically its smallest element.

Note that 1 (s) is always an essentially first-order term. We also see that any
=¢.,...-Teduct of an essentially first-order term is an essentially first-order term.

To start, we can obtain a result very like Lemma 7.40: if s is an essentially
first-order meta-term and ~ a substitution whose domain contains only meta-
variables (and contains all meta-variables in FMV (s)), then ¢(sy) =¢_, svY;
if all elements of Symb(s) are usable symbols of P, then even v(sy) = sy?. Like
Lemma 7.40, the proof is a trivial induction on the form of s.

Using this result, we obtain a counterpart to Lemma 7.41: if s = ¢t with s a
terminating base-type term, then ¢(s) =7c_, ~ %(t); this reduction involves
only essentially first-order terms. Like in Lemma 7.41, we prove this by in-
duction on the form of s. The result is obvious if ¢(s) has the form D, (X) or
p.(..., D, (X)) with t € X; the only other case is when s = f(s1,...,s,) with f a
usable symbol. If the reduction happens in one of the s; then we use the induction
hypothesis, otherwise s = [y and ¢ = rv for some substitution v and usable rule
I = r. All symbols of r are usable symbols, s0 ¢(s) =¢ 17¥ =a 7" = (1)

Theorem 7.47 follows from this last result exactly as Lemma 7.42 was derived
from the preceding lemmas. O

Thus, we can use first-order techniques to prove that a dependency chain over
P does not exist.

However, this situation is not entirely ideal. It is typically harder to prove
absence of arbitrary dependency chains of a given form than of minimal depen-
dency chains. And we cannot easily use a first-order termination tool to de-
termine whether such a chain can exist: most termination tools for first-order

7.7. Splitting First-order Rules

239

rewriting take as input a term rewriting system, not a dependency pair problem
(and moreover, they ignore types).

To make life easier, we might observe that if P C DP(A), then a dependency
chain over P, A can exist only if A is non-terminating. Thus we obtain:

Corollary 7.48 (First-order Rules Processor). The processor which maps a DP
problem (P, R,minimal, f) to () provided some set A exists such that the following
conditions are satisfied, is both sound and complete:

* Ais a set of essentially first-order rules which contains UR(P,R) U Cepases
* R is a finitely branching set of rules;

* P CDP(A);

* A is terminating when seen as a first-order (many-sorted) TRS.

(The complete part of this holds because the resulting set does not contain
any infinite DP problems.)

Of course, a many-sorted TRS is terminating if the corresponding unsorted TRS
is terminating, and there are many highly advanced first-order tools dedicated to
finding such termination proofs. Corollary 7.48 allows us to make use of them
directly. If UR(P,R) U Ccpqs. is essentially first-order, then it is easy to find a set
A containing UR(P,R) U C¢pqs. and whose dependency pairs include P.

Example 7.49. We attempt to prove finiteness of the dependency pair problem
(P,R,minimal, formative), where R consists of the rules at the start of this
section, and P is the set we saw before:

minus?(X,Y) = minus2f(le(X,Y),X,Y)
minus2®(false, X,Y) = minus’(prev(X),Y)

We choose for A the following set:

prev(0) = 0O
prev(s(X)) = X
le(0,X) = true
le(s(X),0) = false
le(s(X),s(Y)) = 1le(X,Y)
minus(X,Y) = minus2(le(X,Y), X,Y)
minus2(false, X,Y) = minus(prev(X),Y)
Prat(X,Y) = X
Prat(X,Y) = Y

Then A satisfies the requirements from Corollary 7.48. A is terminating when
seen as a first-order, untyped TRS, as is demonstrated for example by AProVE.

240

Chapter 7 — Improving Dependency Pairs

A downside of swapping to the first-order setting with Corollary 7.48 or The-
orem 7.47 is given by the rules p,(X,Y) = X,p,(X,Y) = Y. Although these
rules seem quite harmless — the p, symbols do not occur in any other rules, and
both StarHorpo and polynomial interpretations can trivially orient them both —
they introduce non-determinism. This is inconvenient because it blocks some
very nice results, for instance the fact that a locally confluent overlay TRS is
terminating if it is innermost terminating [51].

For cases where this in particular may be relevant, let us consider a result
which avoids these extra rules: this result will be limited to AFSMs where the
rules have unique normal forms. Moreover, the dependency pairs under con-
sideration should be non-overlapping with the corresponding rules. It is not in
general decidable whether an AFSM has unique normal forms, but as we saw
in Chapter 3.7.3, we can extend existing results for CRSs to AFSMs. Thus we
have for instance that an orthogonal AFSM has unique normal forms. Moreover,
orthogonality implies non-overlappingness.

Roughly, the idea of the split is as follows: by unicity of normal forms and
non-overlappingness, the higher-order subterms of all s; in a dependency chain
with only first-order dependency pairs, can be assumed to be normalised. As top-
most first-order steps cannot create higher-order redexes, higher-order subterms
anywhere in this chain are normalised, and can be replaced by variables.

To work! We will need to consider a few more rules than UR(P,R). For any set
P of dependency pairs, we define Sp as the set of all symbols f such that g J%_ f
for any symbol g occurring in the left- or right-hand side of some dependency pair
in P. We let Ap consist of all rules f(5) -t = 7 in R where f € Sp. We are in
particular interested in sets P of essentially first-order dependency pairs where
all elements of Ap are essentially first-order rules.

We say that a set of essentially first-order dependency pairs P overlaps with
Ap if there exist a pairl = p € P and a rule u = v € Ap such that I’y = ué for
some sub-metaterm [’ of [which is not a meta-variable and substitutions ~, d.

Lemma 7.50. If for all subterms q of s we have that ¢ = f(q1,...,¢n) With f € Ap,
or q is in R-normal form, then the same holds for all reducts of s.

Proof. Suppose s has this property, and that s =% t; we use induction on the
size of s. Since s is not in normal form, s = f(s1,...,s,) with f € Sp. If
s reduces topmost to ¢, therefore, s = Iy, t = ry with [= r € Ap. Since
r is essentially first-order and contains only symbols in Ap, and the property
holds for all subterms of any v(X), the property also holds for rvy. Otherwise
t=f(s1,...,8},...,8,) with s; =g s}. By the induction hypothesis the property
holds for s}, and by assumption it holds for the other s,. O

In Lemma 7.51 we will assume that all terminating terms s have a unique
normal form. In this case we can define v(s) as s |g. If s = f(s1,...,s,) with all
s; terminating, then let v/(s) = f(v(s1),...,v(sn))-

7.7. Splitting First-order Rules

241

Lemma 7.51 (Normalising Chains). Let P be a set of essentially first-order de-
pendency pairs, and suppose Ap contains only essentially first-order rules. Suppose
moreover that all terminating terms s have a unique normal form with respect to R,
and that P does not overlap with Ap. If there exists a minimal dependency chain
[(pi,siyt;) | © € N] with all p; € P, then there also exists a minimal dependency
chain [(pi,v'(si),qi) | i € N] such that each q; =7, ;,, V' (si41)-

Proof. For given i, let p; = I* = p' and let v be such that s; = ¥y and t; = pf~.
Write y* for the substitution which maps X to v(X)|x for X € dom(v). Write
I* = fi(1y,...,1,) and p* = ¢*(p1,...,pm).

By the non-overlappingness property, I'y* cannot be an instance of the left-
hand side of a rule for any strict subterm I’ of [which is not a meta-variable, so
each [y is exactly [;v+. Thus, v/(s;) = l¥y*. Let ¢; := pPyt.

Since t =% ;,, si+1 We can write s; 1 = g*(uq,. .., uny), where each DY =k
u;. By the unique normal forms property, p;v*|r= p;j7dr= u;lr. Noting that
all subterms of ¢; are either R-normalised or are functional terms with a root
symbol in Sp, Lemma 7.50 gives us that p;v* |a,= p;7* Ir. Thus, ¢; =%
g (v(uy), ..., v(um)) = V' (s41) as required.

The resulting chain is minimal because s; (whose immediate subterms are
terminating) reduces with non-topmost-steps to v/ (s;), and p~ reduces with non-
topmost-steps to g;. O

Finally, to get rid of (normalised!) higher-order subterms, we introduce a vari-
able z, for all base types .. For a base-type term s : (, we define £(s) as
f(@(s1),...,%(sn)) if s has the form f(si,...,s,) with f € Sp, and £(s) = =z,
otherwise. It follows easily that:

Lemma 7.52 (Replacing higher-order terms). If all subterms of s are R-normalised
or have the form f(q) with f € Sp, and if s = 4, 1, then ¥ (s) =4, V(t).

Proof. With induction on ¢ it is evident that, for essentially first-order meta-terms
q containing only symbols in Sp, always £(qy) = ¢7°. Using induction on the
position of the redex in s, this provides the base case (s =>4, ¢). The induction
case, s = f(s1,...,8,...,80) =ap,in f(s1,...,8},...,8,) = t, holds by the
induction hypothesis. O

We now have all the preparations to obtain a counterpart of Theorem 7.47:

Theorem 7.53. Let P be a set of essentially first-order dependency pairs, and sup-
pose R has unique normal forms. Suppose moreover that Ap consists of essentially
first-order rules, and P does not overlap with Ap. Then there is a minimal depen-
dency chain over P where always t; =% ;,, si+1 if and only if there is a minimal
dependency chain over P which involves only essentially first-order terms, and where
forall i: t; =%, Sitl

242

Chapter 7 — Improving Dependency Pairs

Proof. One side is obvious: if P is chain-free, then no such sequence exists, since
Ap C R. For the other direction, if there is a minimal dependency chain over
P, R, then by Lemma 7.51 there is a minimal dependency chain over P which
uses only rules in Ap. By Lemma 7.52 this chain can be transformed into one
which uses only essentially first-order terms. O

The requirements for Theorem 7.53 are essential. Consider for example the
following system, where the higher-order part lacks the “unique normal forms”
property:

£(X,p) = gX,X) h(A\x.F(z)) = F(a)
g(X,a) = £(X,X) h(Az.F(z)) = F(b)

Although Rpy (which consists of the two rules on the left) is terminating and
orthogonal, there is an infinite dependency chain using only truly first-order de-
pendency pairs:

tf(h(\z.z),b) = gf(h(Ar.z),h(Az.z)) = gf(h(\z.7),a)
= ff{(h(\r.z),h(A\z.z)) = £f(h(\z.7),D)

This happens because the first-order part is duplicating, and h(\z.z, a) reduces
both to a and to b. Note that the role of the higher-order part could be taken
over by the p,-rules: Rrrg U Cepqse iS NOt terminating.

As before, we also obtain:

Corollary 7.54 (Non-overlapping First-order Rules Processor). The processor
which maps a DP problem (P, R,minimal, f) to () provided some set A exists such
that the following conditions are satisfied, is both sound and complete:

* Ais a set of essentially first-order rules which contains Ap;

* P is a set of essentially first-order dependency pairs, included in DP(A);
* R has unique normal forms;

* P and Ap are non-overlapping;

* A is terminating when seen as a first-order (many-sorted) TRS.

As a final alternative to Corollaries 7.48 and 7.54, we might be able to handle all
first-order dependency pairs of a termination problem at once.

To this end, let B be a set consisting of all function symbols f : [o03 X ... x
on] — 7 such that some o; or 7 is not a base type, or a rule f(l1,...,l,) = r
exists which is not essentially first-order. We define PHO, the set of potentially
higher-order symbols, recursively: PHO contains all symbols in B and, if there is
arule f(l,...,l,) = r where either r or one of the [; contains a symbol in PHO,
then also f € PHO. Let TFO, the set of truly first-order symbols, be defined as
F \ PHO. A (meta-)term is called truly first-order if it is built only from symbols

7.7. Splitting First-order Rules

243

in TFO and base-type (meta-)variables. A rule is truly first-order if it has the form
flly,... 1) = rwith f € TFO, and potentially higher-order otherwise; let Rrxq
denote the set of truly first-order rules. We say a set of truly first-order rules R is
overlay if for all | = r, u = v € R, substitutions v, 0 and non-empty contexts C":
if | = C[l' with Iy = ud, then I’ is a meta-variable.

Theorem 7.55 (First-Order Splitting). Suppose that one of the following holds:

* R is finitely branching and RrroU Cepqs. 1S terminating when seen as a many-
sorted first-order TRS, or

* R has unique normal forms, Rrro is overlay, and Rrrg is terminating when
seen as a many-sorted first-order TRS.

Then R is terminating if and only if the dependency pair problem (DP(Rpm), R,
minimal, formative) is finite.

Proof. We first observe that all truly first-order rules are also essentially first-
order rules, and if | = r is a truly first-order rule, then any symbol f occurring in
[or r is in TFQ; moreover, if f J,s g then also g € TF0. Thus, all rules of the form
f(8) = t are also truly first-order rules, and UR(r,R) C Rro. We then note that
for P := DP(Rzpo), both UR(p,R) C Rrro and Ap C Rrrg, as all symbols in left-
and right-hand sides of P are in TF0 and TFO is closed under 3.

In any dependency chain either all dependency pairs are in DP(Rpyg), or a
tail of the chain uses only dependency pairs in DP(Rrrg). This is because a truly
first-order dependency pair f#(I) = g¢*(p) can only be followed by another truly
first-order dependency pair: g occurs in the right-hand side of some truly first-
order rule | = 7, so all pairs of the form g*(5) = 7/ are also in DP(Rzq).

We know that R is terminating if and only if there is no minimal formative
dependency chain, so both the DP problems (DP(Rzgg), R,minimal, formative)
and (DP(Rppo), R,minimal, formative) are finite. Theorems 7.48 and 7.54 guar-
antee finiteness of the former. Thus, it suffices to prove finiteness of the latter. [

Theorem 7.55 does not cover all the cases where Theorems 7.48 or 7.54 may
be helpful, but nevertheless provides a convenient quick check: if Ry (possibly
with the extra rules of C.,,. is terminating as a many-sorted TRS, then we can
immediately throw away all truly first-order dependency pairs.

In a system with unique normal forms, where Rrry is overlay, we can truly
split the termination proof into two parts: first, prove termination of Rygg as
a many-sorted TRS; second, use the dependency pair framework, but omit the
dependency pairs for the first-order rules. Doing so does not lose generality, for
if Rrpg is not terminating as a many-sorted first-order TRS, then R itself cannot
be terminating!

And that is not all. Since Rrpg is an overlay TRS with unique normal forms,
it is terminating if it is innermost terminating: by [51] this holds for a locally
confluent overlay TRS, and by e.g. [118] an innermost terminating (so weakly

244

Chapter 7 — Improving Dependency Pairs

normalising) TRS with unique normal forms is confluent. Since [39] shows that
innermost termination is persistent (a many-sorted TRS is innermost terminating
if and only if it is innermost terminating without regarding types), an automatic
approach can send the resulting TRS to any first-order termination prover with-
out losing generality, whether or not this prover is type-conscious.

7.8 Static Dependency Pairs

To close off this chapter, let us look at an alternative approach to higher-order de-
pendency pairs. The dynamic style presented in Chapter 6 and improved in this
chapter is not the only approach to higher-order dependency pairs: as discussed
in Section 6.1, there are strong results in static dependency pairs [87, 114]. Most
importantly, in a static dependency pair approach we do not have to consider col-
lapsing dependency pairs. As we have seen, having only non-collapsing depen-
dency pairs makes life a lot easier for the termination prover: the dependency
graph is more sparse, we can use the subterm criterion, usable rules, and there is
a fairly good chance that other techniques from the first-order world, too, extend
more easily than in the presence of collapsing dependency pairs.

Since the dynamic dependency pair approach is applicable to a larger class
of systems, but the static dependency pair approach gives easier constraints, it
seems sensible for a termination prover to use both techniques. Ideally, the tech-
niques should be merged in the same framework.

Static dependency pairs having been defined for HRSs, we could use Transfor-
mation 3.6 to transpose the technique to AFSMs. But this would not give us the
ability to use formative rules with static dependency pairs, nor would we have a
parallel for the meta-variable conditions used in dynamic setting. In order to use
both formalisms in the same framework, and to give the static approach the ad-
ditional power of formative rules and meta-variable conditions, we will instead
natively derive the static dependency pair result for AFSMs here.

To start, consider the restriction we shall use:

Definition 7.56. An AFSM (F,R) is plain function passing if:

* all symbols in F have a type declaration [o; X ... X 0,,] —> ¢, with ¢ a base

type;
» for all rules f(ly,...,l,) = r in R and all functional meta-variables F’
which occur in 7, some I; = Az ... 2. F(ziy, ..., xi,).

Here, a “functional meta-variable” is a meta-variable which either has a func-
tional output type, or which takes arguments.

The first of these requirements can be satisfied by n-expanding and uncurrying
the system, as was done in Chapter 2.3 (although we may lose termination in the
process). The second, which essentially expresses that functional meta-variables

7.8. Static Dependency Pairs

245

should occur as direct arguments of the left-hand side of a rule (with an exception
if they are not actually used in a relevant way) is a more fundamental property.

Consider for instance the AFSM eval introduced in Example 6.14. This AFSM
does have the first property, but in the rule

eval(fun(A\z.F(x),X,Y),Z) = F(don(X,Y, Z))

the \x.F(x) does not occur as a direct argument of the left-hand side, and Z
occurs in the right-hand side, so this system is not plain function passing. The
same holds for the similar system eval’, which has a rule

eval(fun(F, X,Y),Z) = F -don(X,Y, 2)

The system twice satisfies the second requirement, but not the first (twice
has a functional type as output type). However, with the theory of Chapter 2.3
this can be amended. The symbol twice is assigned a type denotation twice :
[(nat —nat) x nat] —nat, and the rewrite rules become:

I(0) = 0
I(s(X)) = s(twice(Az.I(z),X))
twice(F,X) = (M\.F-(F-y))-X

If the resulting system is terminating, then so is the original.

Definition 7.57 (Static Candidate Terms). Recall the definition of 8-reduced sub-
meta-terms of a meta-term from Definition 6.18. The static candidate terms of
a closed meta-term s are those 3-reduced sub-meta-terms which have the form
f(s1,...,8,) (A) for some f € D.

As before, we consider candidate terms equal if they are equal modulo renaming
of variables, so a meta-term only has finitely many different candidate terms.

By this definition, only functional meta-terms are static candidate terms (and
they have base type by the restriction on F!). However, the price for this is paid
in the definition of a dependency pair:

Definition 7.58 (Static Dependency Pairs). The static dependency pairs of a rule
| = r are all pairs I* = p'* where p € Cand(r), p’ is obtained from p by replacing
all free variables by fresh meta-variables, and p’ is not a strict subterm of I.

The set of static dependency pairs of a set of rules R, notation DP****‘(R),
consists of the static dependency pairs of all rules in R.

Unlike the dynamic definition, free variables in the right-hand sides are re-
placed by meta-variables, which may cause trouble later. Note, however, that
static dependency pairs are still dependency pairs as defined in Definition 6.20.
In fact, this is why Definition 6.20 does not require that FMV (p) C FMV (1)
holds in a dependency pair I = p (A).

246

Chapter 7 — Improving Dependency Pairs

Example 7.59. The static dependency pairs of the altered twice system are:

(s(X)) = twice!(\z.I(z),X)
IF(s(X)) = I¥Y)

Note that both sides of a static dependency pair have base type, by the restriction
on the type declaration of the f.

A static dependency chain, now, is defined exactly like our original definition
(Definition 6.23). However, since there are no collapsing dependency pairs, we
do not have to consider steps with p; = beta, nor subterms steps, so can omit
constraints 3 and 2d, and since static dependency pairs do not contain free vari-
ables we can omit constraint 2e. What remains is a definition very close to the
first-order case, but which does have the meta-variable conditions:

Definition 7.60. A static dependency chain is a sequence [(p;, s;,t;) | i € N] such
that for all 4:

1. pi =1; = pi (4;) € Dpstatic,

2. there exists a substitution « such that s; = [;y and ¢; = p;7, and v respects
A (+9;

3. t; =% siy1 (FF);

A static dependency chain is minimal if the strict subterms of all ¢; are terminat-
ing in =, and formative if always t; =% ;,, si+1 by a formative p;-reduction.
(**) As before, the phrase “y respects A” means that for all F' : j € A the
substitute (F') = Az ...x,.q has the property that z; € F'V (q).
(***) Since all s;,t; have the form f#(g), they cannot be reduced at the top.
Thus, t; =% s;4+1 corresponds exactly with ¢; =R.in Si+1-

An example of a minimal, formative static dependency chain is the chain where
pi = I(s(X)) = 14Y), s; = I*(s(0)) and t; = 1%(s(0)) for all 4; this uses the
substitution [X := 0,Y := s(0)]. Since we have seen that twice is, in fact, ter-
minating, this demonstrates that using static dependency pairs is not complete.
However, it is sound, as demonstrated by the following result:

Theorem 7.61. If a plain function passing AFSM (F,R) is non-terminating, it
admits a minimal, formative, static dependency chain.

Proof. Recall the notion of computability with respect to =% from Definition 5.14:
* a base-type term is computable if it is terminating under =%;

* aterm s : o — 7 is computable if for all computable terms ¢ : o the term s - ¢
is computable

It is easy to see that a term s : o3 —...— 0, —¢ with ¢+ a base type is computable

7.8. Static Dependency Pairs

247

if and only if s - ¢; - - - t,, is terminating for all computable ¢; : o1,...,t, : o,, that
the reduct of a computable term is computable and, as in Lemma 5.15, that all
variables are computable and that all computable terms are terminating.

Recall, too, the notion of S-reduced sub-meta-terms. To make the induction
hypothesis easier, it will be practical to use an extension of this notion; ¢4 (s) =

Pa(t) if s=M\zxt
Ya(s1)U...Ua(sy) if s=f(s1,---,8n)
Ya(s1)U...Uva(sy) if s=x-81---8,
Ya,(s1)U...UWa, (sn) if s=2Z(s1,--,8m) Sm+1""*Sn

where A; = AU{Z : i}
Ya(tle:==ql - @) Uthalg) if s=Axt) q-u

A pair t (A) in this set is minimal with respect to some property P if s (A) has
property P, but all other meta-terms in ¢ 4(s) do not.

We assume a plain function passing, non-terminating AFSM (F, R), and con-
struct a minimal, formative, static dependency chain. Since a non-terminating
term is not computable, we are always able to find a non-computable term t.
Choose an element s (A) of ¥y(t) that is minimal with respect to the property
“Ary...x,.s is not computable”, where FV(s) \ FV(t) = {x1,...,z,}. Since
t (@) itself has this property, such an element can always be found.

We should find out what form s might have. To this end, consider the claim:

(**) Axy...x,.s is computable if and only if s[x1 := q1,...,%n := @] is com-
putable for computable terms qy, . .., Gn.

{s (A)}U

One direction is obvious: if Az; ...z, .sis computable, thensois (\x; ... xz,.s)-

d, which S-reduces to s[z1 := q1,..., T, := gy], SO the latter is computable too.
For the other direction, the statement holds because AZ.s is computable if and
only if for all computable ¢, ..., qpn,...,q the term (AZ.s) - ¢ is terminating. If
s = s|[Z :=] is computable, then both s and all ¢; are terminating, so an infinite
reduction starting in (AZ.s) - ¢ must eventually take some headmost 3-steps. As
in the proof of for instance Theorem 6.24, we can safely assume these g-steps
are done immediately, so s[z1 :=t1,...,2p := ty] - tyy1 - - - i iS nON-terminating.
But this contradicts computability of s[z1 :=t1, ..., 2, = t,]!

Now, what form could s have?
* Suppose s = A\y.q. If Axy...xz,.sis not computable, then neither is Az ...
ZTnYy.q, as this is the same term. Thus, s is not minimal.
We conclude: s cannot be an abstraction.
e Suppose s = x - 81 - - 8, With x a variable. By (**), sy is non-computable
for some computable substitution ~, but all s;y are computable. However,

whether « € dom(y) or not, z~y is computable, so sy is an application of
computable terms, and must be computable itself!

We conclude: s could not be a variable, or an application headed by a
variable.

248

Chapter 7 — Improving Dependency Pairs

* Suppose s = f(s1,...,5,) With f a constructor symbol. Using (**), sy is
non-computable for some substitution -, but all s;y are computable, and
therefore terminating. Since topmost reductions are impossible for a term
whose root symbol is a constructor symbol, there is no infinite reduction
starting in svy. As s has base type, this means s is computable, contradic-
tion.

We conclude: s cannot be a functional term with a constructor symbol as
root symbol.

* Suppose s = (Azx.q) - u - ¥. Using (**), sy is non-computable for some
substitution v, but both uy and ¢z := u| - ¥y are computable. By non-
computability of s, there are computable terms wq, . .., w, such that sv- @
is not terminating. Since each of u~, ¢v, all v;y and all w; are terminating
(by assumption for u and the w;, and for the others termination is implied
by termination of ¢[x := u] - ¥y), a headmost 3-step must eventually be
taken. As seen before, we can safely assume it happens immediately, so
(q[x := u] - ¥)y - & is non-terminating, which implies non-computability of
(q[x := u] - ¥)~, contradiction.

We conclude: s could not be an application headed by an abstraction.

Since functional terms have a base type as output type, s cannot be an application
at all, nor a variable or abstraction. The only remaining form is f(s1,...,sn)
with f € D. We see that sy is minimal non-terminating, because all s;y are
computable, so terminating, and s~ itself has base type. Let q_1 := s7.

For all 7+ € N, suppose we have a functional, base-type term ¢;_; which is minimal
non-terminating, and all whose immediate subterms are even computable. Let
tii1 = qf_l. Consider an infinite reduction starting in ¢; ;.

Eventually, a topmost step must be taken. We have: ¢;—1 =%, Iv =r
rvy =g ..., with rv still being non-terminating. By Lemma 6.41 we can assume
that the reduction ¢; 1 =% ;, [is a formative I-reduction.

Let! = f(ly,...,l,). Since the direct subterms of ¢;_; are computable, and
the reducts of a computable term are also computable, we know that all ;v are
computable. Let p (A) be a minimal pair in)y (r) with the property that (1) ~
respects A, and (2) Az;...z,.(py) is not computable, if FV(p) = {x1,...,z,}
(since 7 itself is not computable, and respects (), such p exists).

Letp’ := plxy := Z1,...,x, := Z,] for fresh meta-variables 71, ..., Z,. Sup-
pose we can see that p (A) is a candidate term of r. Then p’ is a functional term.
Moreover, since AZ.py is not computable we can find an extension § of v such
that all 6(Z;) are computable, p’d is not terminating, yet p” ¢ is computable for all
strict subterms p” of p’, by minimality of p’. Certainly p” is not a strict subterm
of [, as the direct subterms of Iy = [§ are computable, so all strict subterms are
terminating.

Thus, we can choose p; := I¥ = p't (A), s; := I*, ¢; := pd and t; := p'*é, and
with these values the inductive reasoning continues.

7.8. Static Dependency Pairs

249

It remains to be seen that if p (A) is minimal in ¢y(r) with the property that
~ respects A and Az ...x,.(py) is not computable, then p is a candidate term
of r. That is, we must see that p has the form f(p1,...,p,) with f € D. This is
enough, because all elements of ¢y (r) which have such a form are also 5-reduced
sub-meta-terms of r.

Consider what forms p could have. It cannot be an abstraction A\z.p’, as p’
would also do the job (contradicting minimality of p), and for any other form we
use (**): we must see that pd is computable when § = yU[z1 == q1, ..., Ty := Gu)
for computable terms g¢z,...,q,, and may assume that p”¢ is computable for
the immediate sub-meta-terms p”’ of p, provided this does not clash with meta-
variable conditions.

* For the case where p is a variable, application headed by a variable, appli-
cation headed by an abstraction, or a functional term with root symbol in
C, see the reasoning used above. We obtain a contradiction in the same
way here.

* If p = Z, a base-type meta-variable, then Z6 = v(Z), a strict subterm of /v,
which is terminating and therefore computable.

* Ifp=Z(p1,...,DPm) Pm+1 - i for some functional meta-variable Z, then,
because R is plain function passing, one of the /; has the form A\y; ...y,.
Z(Y1, -5 Ym). Thus, v(Z) = Ay1 . .. Ym-q, is computable.

We may assume that all p;6 with ¢ > m are computable. For smaller i, we
have that p;¢ is computable if v respects AU{Z : i}, so if y; occurs in ¢. Let
u; 1= p;0 if either 7 > m or « respects AU {Z : i}, and u; is a fresh variable
otherwise. Then all u; are computable, and therefore v(Z) - uy - - - uy is,
too. This term S-reduces to gy := U1, ..., Ym = Um] * Um41 - * - U, Which
is therefore computable. Since this term equals ¢[y1 = pi6,...,Ym =
PmY] + (Pm+19) - - - (prd) = pd (this is the case because y; does not occur in
q when u; # p;0), we have the required result.

The only remaining form for p is a functional term whose root symbol is defined.
The conclusion is that p must, indeed, be a candidate term of r. O

Thus we see: if a system is plain function passing, then it is terminating if it does
not admit a minimal, formative dependency chain on the static dependency pairs.
The beauty of this conclusion is the following: every static dependency chain is
a dynamic dependency chain - it just uses different dependency pairs. Since
neither reduction pairs, nor any of the results of this chapter use the fact that in
dynamic dependency pairs all meta-variables in the right-hand side also appear
in the left,* all results immediately apply. We could use the same dependency

4An exception is the proof of Theorem 7.24, where we use that if the right-hand side of a de-
pendency pair has the form F'(S), then F occurs in the left-hand side of the dependency pair. This is
still the case with static dependency pairs, as the fresh meta-variables are not the right-hand side of
a dependency pair.

250

Chapter 7 — Improving Dependency Pairs

pair module with static or dynamic dependency pairs. When using an automatic
tool, we could simply start with dynamic dependency pairs, call the dependency
pair algorithm, and if that fails, yet the system is plain function passing (or can be
made plain function passing by n-expanding it), calculate the static dependency
pairs and call the dependency pair framework with that instead.

But in some cases, we can do better! The examples twice and eval used in
this chapter are particularly suited for the dynamic dependency pair approach,
but let us now consider the example from Section 7.7. This system has the fol-
lowing dynamic dependency pairs:

lef(s(X),s(Y)) = 1ef(X,Y)
minus?(X,Y) = minus2f(le(X,Y),X,Y)
minus?(X,Y) = 1ef(X,Y)
minus2’(false, X,Y) = minus?(prev(X),Y)
m1nus2ﬁ(false, X)Y) = previ(X)
map “(F,cons(X,Y)) = F-X
map?(F,cons(X,Y)) = map(F,Y)
filterf(F,cons(X,Y)) = F-X
filter!(F,cons(X,Y)) = filter2!(F-X,F, X,Y)
fllterQu(true FX)Y) = filterﬁ(F,Y)
filter2f(false, F, X,Y) = filter!(FY)
upf(X) = mapf(Az.s(z), X)
And its static dependency pairs are:
lef(s(X)7S(Y)) = 1lef(X,Y)
minus?(X,Y) = minus2i(le(X,Y),X,Y)
minus*(X,Y) = 1ef(X,Y)
minus2®(false, X,Y) = minus’(prev(X),Y)
mlnuSQﬁ(false X,Y) = previ(X)
map?(F,cons(X,Y)) = map(F,Y)
filterf(F,cons(X,Y)) = filter2!(F-X,F, X,Y)
f11ter2u(true FX)Y) = filterﬁ(F,Y)
fllterzﬁ(false F,X)Y) = filter!(F)Y)
p(X) = mapt(Os(z), X)

That is, the static dependency pairs are exactly the dynamic dependency pairs,
except for the collapsing ones. Thus, if there is a (minimal formative) depen-
dency chain on the static dependency pairs, then there is also one on the dynamic
ones. In this case we might as well use only the static approach immediately.

Definition 7.62. An AFSM (F,R) is strongly plain function passing (SPFP) if
it is plain function passing, and the right-hand sides of rules in R do not have
subterms of the form Az.C[f(s1,...,5s,)] where f is a defined symbol and z €

V(f(8))-

7.8. Static Dependency Pairs

251

Theorem 7.63. A SPFP AFSM admits a (minimal, formative) static dependency
chain if and only if it is non-terminating.

Proof. One direction is Theorem 7.61; for the other, note that any static depen-
dency pair in an SPFP AFSM is also a dynamic dependency pair. Thus, any static
dependency chain in an SPFP AFSM is a dynamic dependency chain, so its exis-
tence implies non-termination of the AFSM by Theorem 6.24. O

Apart from strengthening the dynamic approach (by allowing us to remove col-
lapsing dependency pairs in an AFSM if it is strong plain function passing), this
theorem shows that the static approach is complete for the class of SPFP systems.

In summary, we can combine the static and dynamic approaches as follows:
if R is strong plain function passing:
return DPframework(STATIC)
if DPframework (DYNAMIC) = TERMINATING:
return TERMINATING
n-expand R if necessary
if R is plain function passing:
return DPframework(STATIC)

A valid question would be: can we do more? Rather than using the two ap-
proaches in sequence, or perhaps in parallel, could we combine them, and for
instance use static dependency pairs as a processor in the dynamic framework,
where the collapsing dependency pairs are dropped under certain circumstances?
Theorem 7.63 seems to come close, but can only be used when starting the de-
pendency pair framework, not as a processor.

In general, this seems like a difficult task. Consider for instance the non-
terminating AFSM with 7 = {0 : nat, f : [nat] — nat, g: [nat - nat] — nat}
and the following rules:

£(0) = g(\x.f(x))
g(Az.F(x)) = F(0)

The dynamic dependency pairs of this system are:

(0 = g'(\af(r))
90) = fi(x)
g'(\z.F(z)) = F(0)

The second of these dependency pairs has no outgoing edges in the dependency
graph (recall that variables may only be instantiated with other variables). Thus,
in the dynamic dependency pair framework, this pair would be immediately elim-
inated. In the resulting dependency pair problem, we should certainly not elimi-
nate the collapsing dependency pair, for it is essential to get a dependency chain!

This example shows that we have to watch out: the naive way of using static
dependency pairs as a processor will not be valid. So far, no better method of
combining the approaches has been proposed.

252

Chapter 7 — Improving Dependency Pairs

7.9 Overview

In this chapter we have seen a definition of the dependency pair framework
for higher-order rewriting. In addition, we have seen a variety of processors to
transform dependency pair problems. Some of these are extensions of existing
first-order techniques: the dependency graph, subterm criterion and usable rules.
Others, such as the transformations of collapsing dependency pairs, are specific
to the higher-order case. A new feature, too, is the formative rules processor.

Moreover, we have seen that the static style of dependency pairs can be used
with the same framework, and derived that formative rules and meta-variable
conditions, two features thus far limited to the dynamic style, can also be used
in this setting. As a consequence, we have obtained a completeness result for the
static approach, in the class of strong plain function passing systems.

The dependency pair framework for higher-order rewriting has a long dis-
tance to go yet. For a start, there are many first-order processors which we might
consider for extension. To name some examples (all of which appear in [119]):
a reduction pair with usable rules with respect to an argument filtering, switch-
ing to innermost termination,®> or narrowing. In the higher-order setting, too,
we might use the dependency pair framework for innermost termination and
non-termination as well as full termination.

For a different direction of research, the formative flag deserves some study.
This flag is not present in the first-order case (in fact, the technique was first
defined by Femke van Raamsdonk and me, for the higher-order setting), so little
parallel exists in the first-order world to draw from. We might consider dedicated
techniques, like formative rules in combination with an argument filtering. Or
we could investigate whether the method can be strengthened, and used as a
processor, rather than a flag. Or we may avoid including some of the collapsing
rules. There are many open questions!

SIn the higher-order setting, full termination is not equivalent to innermost termination even in
orthogonal systems, as is demonstrated by the orthogonal system f(Az.F(x)) = F(a), g(X) =
X, h(a) = £(A\z.g(h(z))). However, we may in some cases be able to do a switch to innermost weak
termination, where the innermost strategy does not affect terms beneath an abstraction.

Wanda

Or, How can we make a computer do the work?

The techniques discussed in this paper can all be used for pen-and-paper termi-
nation proofs. To prove termination of a system like map, we could manually
find a polynomial interpretation, or a symbol precedence for a path ordering,
and obtain an elegant proof. However, in practical applications of rewriting, we
might have systems with thousands of rules. This is for example the case with the
compilers specified in CRSX (see Chapter 3.5). And even for small systems, there
are situations imaginable where an application would like to check termination
without asking a human to provide a proof first.

This is why in recent years, techniques for proving termination of fir