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Abstract
We extend the termination method using dynamic dependency pairs to higher order rewriting
systems with beta as a rewrite step, also called Algebraic Functional Systems (AFSs). We
introduce a variation of usable rules, and use monotone algebras to solve the constraints generated
by dependency pairs. This approach differs in several respects from those dealing with higher
order rewriting modulo beta (e.g. HRSs).

Keywords and phrases higher order rewriting, termination, dynamic dependency pairs

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

An important method to (automatically) prove termination of first order term rewriting is
the dependency pair approach by Arts and Giesl [3]. This approach transforms a rewrite
system into groups of ordering constraints, such that rewriting is terminating if and only
if the groups of constraints are (separately) solvable. Various optimizations of the method
have been studied, see for example [7, 6].

This paper contributes to the study of dependency pairs for higher order rewriting.
Higher order rewriting comes in different shapes. First, there is rewriting modulo αβη as
in the higher order rewrite systems (HRSs) defined by Nipkow [20]; Klop’s CRSs [13] and
Khasidashvili’s ERSs [12] are in some aspects similar. Various definitions of dependency pairs,
often with optimizations, have been given for HRSs [23, 22, 17, 15, 24]. Second, applicative
term rewriting systems with functional variables but no abstraction are sometimes considered
as a (restricted) form of higher order rewriting. Also in this setting several definitions
of dependency pairs exist [16, 18, 19, 1, 2, 8]. The aim of the present paper is to study
dependency pairs for a third variant of higher order rewriting: algebraic functional systems
(AFSs), introduced by Jouannaud and Okada [10]. In AFSs we consider simply typed terms,
which are rewritten both using specific rewrite rules and β-reduction, with matching modulo
α. While higher order versions of the recursive path ordering are commonly studied in the
setting of AFSs [11, 5], there is little work on dependency pairs for this formalism.

We briefly discuss the ideas from studies of dependency pairs for HRSs and for applicative
systems in Section 2; we also explain why those approaches do not quite, or not at all apply to
the setting with AFSs. We define dependency pairs for AFSs in the so-called dynamic style,
where functional variables in the right-hand side of a rewrite rule may give rise to dependency
pairs. We study the notions of dependency chains, dependency graphs and reduction orders
for AFSs with dynamic dependency pairs. To demonstrate that the dynamic approach has
adequate strength even without restrictions, we also define a variant of usable rules and
apply van de Pol’s monotone algebra approach [21] to solve constraints generated by the
method. The result is a method to prove termination (a complete method for left-linear
systems), which may serve as a basis for further definitions – for example static dependency
pairs, or dynamic pairs with restrictions that allow us to drop the subterm property.
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2 Dynamic Higher Order Dependency Pairs

2 Background and Related Work

The extension of dependency pairs to the higher order case is not entirely straightforward and
thus many variations exist. This work can roughly be split along two axes. On the one axis,
the higher order formalism (we distinguish between applicative rewriting, rewriting modulo
β (HRSs), and with β as a separate step (AFSs)), on the other the style of dependency pairs
(with the common styles being dynamic and static). Figure 1 gives an overview.

Applicative HRS AFS
Dynamic [16] [23] [15] this paper

Static [18] [19] [4] [22] [17] [24] [4]
Other [1] [2] [8] – –

Figure 1 References on Higher Order Dependency Pairs

The dynamic and static
approach differ in the treat-
ment of leading variables in
the right-hand sides of rules
(subterms x·s1 · · · sn with n >
0 and x a free variable). In the
dynamic approach, such subterms lead to a dependency pair; in the static approach they do
not. Consequently, first order techniques like argument filterings and usable rules are easier
to extend to a static approach, while equivalence results tend to be limited to the dynamic
style. Static dependency pairs can only be applied on systems satisfying certain restrictions.

Dependency pairs for applicative term rewriting We first say some words about
applicative term rewriting. In applicative systems, terms are built from variables, constants
and a binary application operator. Functional variables may be present, as in x · a, but there
is no abstraction, as in λx. x. There are various styles of applicative rewriting.

A dynamic approach was defined both for untyped and simply-typed applicative systems
in [16], along with a definition of argument filterings. A first static approach appears in [18]
and is improved in [19]; the method is restricted to ‘plain function passing’ systems where,
intuitively, leading variables are harmless. Due to the lack of binders, it is also possible
to eliminate leading variables by instantiating them, as is done for simply typed systems
in [1, 2]; in [8], an uncurrying transformation from untyped applicative systems to normal
first order systems is used. These techniques have no parallel in rewriting with binders.

Unfortunately, they are not directly useful in the setting of AFSs, since termination may
be lost by adding λ-abstraction and β-reduction. For example, the simply typed applicative
system app · (abs ·F ) ·x→ F ·x, with F : ι⇒ ι a functional variable, x : ι a variable, and app,
abs constants, is terminating because in every step the size of a term decreases. However,
adding λ-abstraction and β-reduction spoils this property: with ω = abs · (λx. app · x · x) we
have app · ω · ω = app · (abs · (λx. app · x · x)) · ω → (λx. app · x · x) · ω → app · ω · ω.

Dynamic Dependency Pairs for HRSs A first, very natural, definition of dependency
pairs for HRSs is given in [23]. Here termination is not equivalent to the absence of infinite
dependency chains, and a term is required to be greater than its subterms (the subterm
property), which makes many optimizations impossible. Consequently, most of the focus
since has been on the static approach. However, with restrictions on the rules the subterm
property may be weakened, as discussed in [15] (extended abstract).

Static Dependency Pairs for HRSs The static approach in [18] is moved to the setting
of HRSs in [17], and extended with argument filterings and usable rules in [24]. The static
approach omits dependency pairs f#(~l) ; x(~r) with x a variable, which avoids the need of a
subterm property. The technique is restricted to plain function passing HRSs; for example the
(terminating) rule foo(bar(λx. F (x)))→ F (a) cannot be handled. In addition, bound variables
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may become free in a dependency pair. For instance, the rule I(s(n)) → twice(λx. I(x), n)
generates a pair I#(s(n)) ; I#(x) which admits an infinite dependency chain.

The definitions for HRSs [23, 17] do not immediately carry over to AFSs, since AFSs may
have rules of functional type and β-reduction is a separate rewrite step. A short paper
by Blanqui [4] introduces static dependency pairs on a form of rewriting which includes
AFSs, but it restricts to base-type rules. The present work considers dynamic dependency
pairs and is most related to [23], but is adaptated for the different formalism. Our method
conservatively extends the one for first order rewriting and provides a characterization of
termination for left-linear AFSs. We have chosen for a dynamic rather than a static approach
because, although the static approach is stronger when applicable, the dynamic definitions
can be given without restrictions. It would be nice for future work to integrate the two
approaches; for the moment they co-exist with each their own advantages and disadvantages.

3 Preliminaries

We consider higher order rewriting as defined by Jouannaud and Okada, also called Algebraic
Functional Systems (AFSs). Terms are built from simply typed variables, abstraction and
application (as in simply typed λ-calculus), and in addition function symbols which take a
fixed number of typed arguments. Terms and matching are modulo α, and β is a rewrite
step. We follow roughly the definitions in [25, Chapter 11], as recalled below.

Types and Terms The set of simple types (or just types) is generated from a given set B of
base types and the binary type constructor⇒, which is right-associative. Types are denoted
by σ, τ and base types by ι, κ. A type with at least one occurrence of ⇒ is called a functional
type. A type declaration is an expression of the form (σ1 × . . . × σn)⇒ τ ; if n = 0 this is
written as just τ . Type declarations are not types, but are used for typing purposes.

We assume a set V, consisting of infinitely many typed variables for each type, and a
set F disjoint from V, consisting of function symbols each equipped with a type declaration.
Variables are denoted by x, y, z and function symbols by f, g, h or using more suggestive
notation. To stress the type (declaration) of a symbol a we may write a : σ. Terms over F
are those expressions s for which we can infer s : σ for some type σ using the clauses:

(var) x : σ if x : σ ∈ V
(app) s · t : τ if s : σ⇒τ and t : σ
(abs) λx. s : σ⇒τ if x : σ ∈ V and s : τ
(fun) f(s1, . . . , sn) : τ if f : (σ1 × . . .× σn)⇒τ ∈ F and s1 : σ1, . . . , sn : σn

Note that a function symbol f : (σ1 × . . .× σn)⇒τ takes exactly n arguments, and τ is
not necessarily a base type. λ binds occurrences of variables as in the λ-calculus. Terms
are considered modulo α-conversion; bound variables are renamed if necessary. The set of
variables of s which are not bound is denoted FV (s). Application is left-associative.

A substitution [~x := ~s], with ~x and ~s non-empty finite vectors of equal length, is the
homomorphic extension of the type-preserving mapping ~x 7→ ~s from variables to terms.
Substitutions are denoted γ, δ, and the result of applying γ to a term s is denoted sγ. The
domain dom(γ) of γ = [~x := ~s] is {~x}. Substituting does not capture free variables.

We assume a fresh symbol 2σ : σ for every type σ. A context C[] is a term with a single
occurrence of some 2σ. The result of replacing 2σ in C[] by a term s of type σ is denoted
C[s]. Free variables may be captured; if C[] = λx.2σ then C[x] = λx. x. If s = C[t] we say t
is a subterm of s, notation s� t, or s� t (strict subterm) if C[] is not the empty context 2.
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4 Dynamic Higher Order Dependency Pairs

Rules and Rewriting A rewrite rule is a pair of terms l→ r such that l and r are terms
of the same type and do not contain a subterm of the form (λx. s) · t, all free variables of r
also occur in l, and l has the form f(l1, . . . , ln) · ln+1 · · · lm (with m ≥ n ≥ 0). Given a set of
rules R, the rewrite or reduction relation →R on terms is given by the following clauses:

(rule) C[lγ] →R C[rγ] with l→ r ∈ R, C a context, γ a substitution
(beta) C[(λx. s) · t] →R C[s[x := t]]

We sometimes use the notation s→β t for a rewrite step using (beta). An algebraic functional
system (AFS) is the combination of a set of terms and a rewrite relation on this set, and is
usually specified by a set of rules (perhaps with function symbols). A function symbol f is a
defined symbol of an AFS if there is a rule with left-hand side f(l1, . . . , ln) · ln+1 · · · lm. A
function symbol that is not a defined symbol is a constructor symbol. The sets of defined or
constructor symbols are denoted by D or C respectively. A rewrite rule l→ r is left-linear if
every free variable occurs at most once in l; an AFS is left-linear if all its rewrite rules are.

I Example 3.1. Throughout this paper, we will consider as an example the AFS twice. It has
four function symbols, o : nat, s : (nat)⇒nat, I : (nat)⇒nat, twice : (nat⇒nat)⇒nat⇒nat,
and three rewrite rules:

I(o) → o twice(F ) → λy. F · (F · y)
I(s(n)) → s(twice(λx. I(x)) · n)

An example reduction: I(s(o))→ s(twice(λx. I(x))·o)→ s((λy. (λx. I(x))·((λx. I(x))·y))·o)→β

s((λx. I(x)) · ((λx. I(x)) · o))→β s((λx. I(x)) · I(o))→ s((λx. I(x)) · o)→β s(I(o))→ s(o).

The symbol I represents the identity function, and therefore no infinite reduction exists.
However, this is not trivial to prove; neither orderings like HORPO [11] nor a static dependency
pair approach can handle the second rule, due to the subterm I(x). The static approach gives
a requirement I#(s(n)) > I#(x), where the right-hand side contains a variable which does
not occur in the left-hand side. Since > must be closed under substitution, this is impossible
to satisfy, as s(n) might be substituted for x. Applying HORPO leads to a similar problem.

4 Dependency Pairs

An intuition behind the dependency pair approach is to identify those parts of the right-hand
sides of rewrite rules which may give rise to an infinite reduction. These are subterms headed
by a defined symbol (as in first order term rewriting), and also subterms headed by a free
variable, because such a variable can be instantiated by a defined symbol or abstraction. The
latter is typical for the dynamic approach to higher order dependency pairs.

In this section we will extend the concepts of dependency pairs and dependency chains to
AFSs. We show that an AFS is terminating if it does not have an infinite dependency chain,
and that absence of dependency chains characterizes termination for left-linear AFSs.

Completed Rules An AFS is completed by adding for each rule of the form l→ λx1 . . . xn. r

with n > 0 and r not an abstraction the n new rules l ·x1 → λx2 . . . xn. r, . . . , l ·x1 ·· · ··xn → r.
We do this to avoid creating dependency pairs containing a β-redex. Completing does not
affect termination. For example, the system twice is completed by adding twice(F ) ·m →
F · (F ·m). In the remainder of the paper, we work with completed AFSs.
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Candidate terms The definition of a dependency pair uses the notion of candidate terms,
intuitively those subterms which might cause non-termination. Subterms that cannot be
reduced at the root are omitted, because they are not a minimal starting point of an infinite
reduction. Bound variables that become free by taking a subterm are replaced by fresh
constants. We denote by C the set consisting of infinitely many fresh symbols cx with cx the
same type as x, where x in cx is not bound and is not subject to α-conversion.

I Definition 4.1. We say t[x1 := cx1 , . . . , xn := cxn ] is a candidate term of s if s � t,
and x1, . . . , xn are the variables which occur bound in s but free in t, and either t =
f(t1, . . . , tn) · tn+1 · · · tm with f a defined symbol and m ≥ n ≥ 0, or t = x · t1 · · · tn with x
free in s and n > 0. We denote the set of candidate terms of s by Cand(s).

In the AFS twice we have Cand(F ·(F ·m)) = {F ·(F ·m), F ·m} and Cand(s(twice(λx. I(x)) ·
n)) = {twice(λx. I(x)) ·n, twice(λx. I(x)), I(cx)}. Note that for example x ·y is not a candidate
term of g(λx. x · y) because x occurs only bound.

Dependency Pairs The definition of dependency pair also uses marked function symbols
as in the first order case. Let F# = F ∪ {f# : σ | f : σ ∈ D}, so F extended with a marked
version for every defined symbol, having the same type declaration. The marked counterpart
of a term s, notation s#, is f#(s1, . . . , sn) if s = f(s1, . . . , sn) with f in D, and just s
otherwise. For example, (twice(F ))# = twice#(F ) and (twice(F ) ·m)# = twice(F ) ·m.

I Definition 4.2 (Dependency Pair). The set of dependency pairs of a rewrite rule l → r,
notation DP(l→ r), consists of:

all pairs l# ; p# with p ∈ Cand(r),
all pairs l · y1 · · · yk ; r · y1 · · · yk with 1 ≤ k ≤ n if r : σ1⇒ . . .⇒ σn⇒ ι, and either
r = x · r1 · · · rm with m ≥ 0 or r = f(r1, . . . , ri) · ri+1 · · · rm with m ≥ i ≥ 0 and f ∈ D.

We use DP(R) (or just DP) for the set of all dependency pairs of rewrite rules of an AFS R.

I Example 4.3. The set of dependency pairs of the AFS twice consists of:

I#(s(n)) ; twice(λx. I(x)) · n twice#(F ) ; F · (F · cy)
I#(s(n)) ; twice#(λx. I(x)) twice#(F ) ; F · cy
I#(s(n)) ; I#(cx) twice(F ) ·m ; F · (F ·m)

twice(F ) ·m ; F ·m

The last two dependency pairs originate from the rule added by completion.

To illustrate the second form of dependency pair, consider the system with function
symbols app : (o)⇒ o⇒ o and abs : (o⇒ o)⇒ o, and one rewrite rule: app(abs(x)) → x.
This system has no dependency pairs of the first form, but does admit a two-step loop:
s := app(abs(λx. app(x) · x)) · abs(λx. app(x) · x)→ (λx. app(x) · x) · abs(λx. app(x) · x)→β s.

Comparing our approach to static dependency pairs as defined in [17], the two main
differences are that we avoid bound variables becoming free, and that we include dependency
pairs where the right-hand side is headed by a variable. We call such pairs collapsing.

Dependency Chains We can now investigate termination by means of dependency chains:

I Definition 4.4. A dependency chain is a sequence [(ρi, si, ti) | i ∈ N] such that for all i:
1. ρi ∈ DP ∪ {beta},
2. if ρi = li ; pi ∈ DP there exists γ with domain FV (li) such that si = liγ and ti = piγ

RTA’11



6 Dynamic Higher Order Dependency Pairs

3. if ρi = beta then si = (λx. u) · v · w1 · · ·wk and either
a. k > 0 and ti = u[x := v] · w1 · · ·wk, or
b. k = 0 and there is w such that u� w and x ∈ FV (w) and w#[x := v] = ti, but w 6= x

4. ti →∗in si+1

A step→in is obtained by rewriting some si inside a term of the form f(s1, . . . , sn)·sn+1 · · · sm.

I Theorem 4.5. If R is non-terminating there is an infinite dependency chain over DP(R).

Proof Sketch. Say a term s is minimally non-terminating (MNT) if s is terminating but all
its subterms are not. Let u−1 be any MNT term, and subsequently for every i ∈ N, given an
MNT term ui−1, we define ρi ∈ DP ∪ {beta} and terms si and ti. Note (**): if an MNT
term is reduced at any other position than the top, the result is also MNT, or terminating.

If ui−1 = (λx. s) · t then s[x := t] is also non-terminating (because eventually a topmost
step must be done, and we can see that s[x := t] reduces to the result); let ui be an MNT
subterm of s[x := t] and define ρi, si, ti := beta, ui−1, u

#
i . If ui−1 = (λx. s) · t · v0 · · · vk

then by (**) ui := s[x := t] · v0 · · · vk is also MNT, so choose ρi, si, ti := beta, ui−1, ui.
Otherwise ui−1 = f(v1, . . . , vn) · vn+1 · · · vm; then ui−1 →∗in some term lγ · w1 · · ·wk, with
rγ · ~w still non-terminating. If k > 0 then by (**) rγ · ~w is MNT, so choose ui := rγ · ~w and
ρi, si, ti := l · x1 · · ·xk ; r · x1 · · ·xk, lγ · ~w, rγ · ~w. Otherwise let r′ be the smallest subterm
of r such that p := r′δ is still non-terminating, where δ replaces the newly free variables xi
by cxi . Then some analysis shows that p is a candidate of r and pγ is also MNT; choose
ui := pγ and ρi, si, ti := l# ; p#, l#γ, p#γ. This process generates a dependency chain. J

The converse of Theorem 4.5 does not hold. Consider the AFS with rules:
f(x, y, s(z))→ g(h(x, y), λu. f(u, x, z)) and h(x, x)→ f(x, s(x), s(s(x)))

This system has the following dependency pairs:

f#(x, y, s(z)) ; h#(x, y) h#(x, x) ; f#(x, s(x), s(s(x)))
f#(x, y, s(z)) ; f#(cu, x, z)

There is an infinite dependency chain: f#(cu, s(cu), s(s(cu))) ; f#(cu, cu, s(cu)) ; h#(cu, cu)
; f#(cu, s(cu), s(s(cu))) ; . . . However, the AFS is terminating, intuitively because the
bound variable destroys matching possibilities. The crucial point of the example is the com-
bination of bound variables and non-left-linear rules. Theorem 4.6 shows that for left-linear
AFSs, the absence of infinite dependency chains actually characterizes termination.

I Theorem 4.6. A left-linear AFS R is terminating if and only if it does not admit an
infinite dependency chain.

Proof Sketch. In a left-linear system replacing variables by a function symbol that doesn’t
occur in any rule has no effect on applicability of →R. Thus a dependency chain effectively
produces an infinite reduction |si| →R ·� |ti| →∗R |si+1| (where | · | replaces any f# by its
unmarked counterpart), and this implies the existence of an infinite →R reduction. J

5 The Dependency Graph

As in the first order case, we use a dependency graph to organize the dependency pairs. The
definition of a dependency graph is typical for our setting here, namely AFSs with dynamic
dependency pairs, but the other notions we use are similar to the first order ones.
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The dependency graph of an AFS R has the dependency pairs of R as nodes, and an edge
from node l ; p to node l′ ; p′ if there is a finite dependency chain [(l ; p, s1, t1), (beta, s2,

t2), . . . , (beta, sk−1, tk−1), (l′ ; p′, sk, tk)] with all but the first and the last elements beta.

I Example 5.1. The dependency graph of the AFS twice:

I#(s(n)) ; twice(λx. I(x)) · n I#(s(n)) ; twice#(λx. I(x))

I#(s(n)) ; I#(cx)

twice(F ) ·m; F · (F ·m)

twice(F ) ·m; F ·m

twice#(F ) ; F · (F · cy)

twice#(F ) ; F · cy

A cycle is a non-empty set C of dependency pairs such that between every two pairs ρ, π ∈ C
there is a non-empty path in the graph using only nodes in C. A cycle that is not contained in
any other cycle is called a strongly connected component (SCC). To prove termination we must
show that cycles in a dependency graph are in some sense well-behaved (see Theorem 6.2).
Due to clause 3b in Definition 4.4, there is an edge from any node of the form l ; x ·r1 . . . ·rn
with x a variable to all other nodes. Hence a rule with a functional variable in its right-hand
side gives rise to many cycles. Here, exactly, lies the appeal of the static approach, which
eliminates the need for such pairs. However, this barrier is not impossible to overcome, and
as discussed, the dynamic approach can deal with systems where the static approach fails.

A set D ⊆ DP is looping if there is an infinite dependency chain using only dependency
pairs from D and beta. By termination of simply typed β-reduction, ∅ is not looping.

Because the dependency graph cannot be computed in general, one uses approximations
of the dependency graph, which have the same nodes but possibly more edges. A brute
method to find an approximation of the dependency graph is to have an edge between
l ; p and l′ ; p′ as soon as the head of p is a variable, or if p and l′ both have the form
f(s1, . . . , sn) · sn+1 · · · sm for some function symbol f and some m ≥ n ≥ 0. It is interesting
to study more sophisticated methods to find approximations, but this is left for future work.

In the remainder of this paper, we will assume that dependency graphs (and hence also
their approximations) have only finitely many nodes. This is the case if the AFS under
consideration has finitely many rewrite rules. However, note that also for infinite AFSs
(arising for example by instantiation of polymorphic rewrite rules) we can work with finite
dependency graphs, if (infinite) sets of dependency pairs are represented by a single node.

I Lemma 5.2. Let G be an approximation of the dependency graph of an AFS R. Suppose
that every cycle in G is non-looping. Then R is terminating.

Proof Sketch. Given an infinite dependency chain, there must be a dependency pair ρi
which occurs infinitely often (by the finiteness assumption). Then {ρj | j > i} is a cycle. J

I Example 5.3. The dependency graph (approximation) of twice from Example 5.1 admits
many cycles, such as {twice(F ) · n; F · (F · n)} or the following cycle Ctwice:

I#(s(n)) ; twice(λx. I(x)) · n twice#(F ) ; F · (F · cy)
I#(s(n)) ; twice#(λx. I(x)) twice#(F ) ; F · cy

twice(F ) ·m ; F · (F ·m) twice(F ) ·m ; F ·m


Ctwice is an SCC and includes all cycles. Therefore twice is terminating if Ctwice is non-looping.

RTA’11



8 Dynamic Higher Order Dependency Pairs

6 Reduction Orders

The challenge, then, is to prove the absence of looping cycles. We use the following definition:

I Definition 6.1. A reduction triple consists of a well-founded ordering >, a quasi-ordering
≥ and a sub-relation ≥1 of ≥, such that:
1. > and ≥ are compatible: either > · ≥ ⊆ > or ≥ · > ⊆ >;
2. >, ≥ and ≥1 are all stable (that is, closed under substitution);
3. ≥1 is monotonic: (that is, if s ≥1 t with s, t sharing a type, then C[s] ≥1 C[t]);
4. ≥1 contains beta (that is, always (λx. s) · t ≥1 s[x := t]).

A reduction pair is a pair (>,≥) such that (>,≥,≥) is a reduction triple; this corresponds
with the original (first order) notion of reduction pair. The reduction triple is a generalisation
of this notion, where ≥ itself is not required to be monotonic; we will need a non-monotonic
≥ in Section 6.1 to compare terms with different types. To deal with subterm reduction in
dependency chains, an additional definition is needed. We say ≥ has the limited subterm
property if: for all x, s, t, u such that s�u and u is neither an abstraction nor a single variable,
there is a substitution γ such that (λx. s) · t ≥ (u#)γ[x := t]. Intuitively, the substitution γ
is used to replace free variables in u that are bound in s by fresh constants cx. However, we
will also use a more liberal replacement of those variables, hence the general γ.

The following theorem shows how reduction triples can be used with dependency pairs.

I Theorem 6.2. A set D = D1]D2 of dependency pairs is non-looping if D2 is non-looping,
and there is a reduction triple (>,≥,≥1) such that

l > p for all l ; p ∈ D1,
l ≥ p for all l ; p ∈ D2,
l ≥1 r for all l→ r ∈ R,
either D is non-collapsing or ≥ satisfies the limited subterm property.

Proof Sketch. If D is looping it has an infinite chain which (as D2 is non-looping) contains
infinitely many pairs in D1. If D is non-collapsing we can find such a chain without beta steps,
and have si ≥ ti ≥ si+1 for all i, and if ρi ∈ D1 even si > ti, contradicting well-foundedness
of >. If D is collapsing then let [(ρi, si, ti)|i ∈ N|i ≥ j] be an infinite dependency chain over
D; if ρj ∈ D1 then sj > tj ≥ sj+1, if ρj ∈ D2 then sj ≥ tj ≥ sj+1 and if ρj = beta then
there is some substitution δ such that sj ≥ tjδ ≥ sj+1δ. Since [(ρi, siδ, tiδ)|i ∈ N|i ≥ j + 1]
is also a dependency chain we can continue this reasoning recursively, obtaining a decreasing
≥ sequence with infinitely many > steps, contradicting well-foundedness. J

Theorem 6.2 can be used to prove that every cycle in the dependency graph approximation
of an AFS is non-looping; termination follows with Lemma 5.2. See also Section 9 for an
algorithm. For left-linear AFSs, we even have a characterization of termination.

I Theorem 6.3. A left-linear AFS with dependency graph approximation G is terminating
if and only if for every cycle in G the requirements of Theorem 6.2 are satisfied.

I Example 6.4. Termination of twice is proved if there is a reduction triple (>,≥,≥1) with
the limited subterm property, such that l ≥1 r for all rules, and l > p for every dependency
pair in Ctwice from Example 5.3 (choosing D2 = ∅, which is non-looping).
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6.1 Type Changing
The situation so far is not completely satisfactory, because both > and ≥ may have to compare
terms of different types. Consider for example the dependency pair twice#(F ) ; F · cy from
twice where the two sides have a different type. Moreover, the comparison in the definition of
limited subterm property may concern terms of different types. This is problematic because
term orderings do not usually compare terms of arbitrary different types; neither any version
of the higher order path ordering [11, 5] nor monotone algebras [21] are equipped for this.

A solution is to manipulate the ordering requirements. Let (�,�) be a reduction pair (so
a pair such that (�,�,�) is a reduction triple). Define >, ≥, and ≥1 as follows:

s > t if there are fresh variables x1, . . . , xn and terms u1, . . . , um such that s · x1 · · ·xn �
t · u1 · · ·um and both sides have some base type;
s ≥ t if there are fresh variables x1, . . . , xn and terms u1, . . . , um such that s ·x1 · · ·xn R
t · u1 · · ·um and both sides have some base type, where R is � ∪ � · � ∪ � · �;
s ≥1 t if s � t and s, t have the same type.

I Lemma 6.5. (>,≥,≥1) as generated from a reduction pair (�,�) is a reduction triple.

Proof. This is easy, noting: (1) if s ≥1 t then by monotonicity s~x � t~x, (2) if s > t then for
any ~u there are ~v such that s · ~u � t · ~v (by stability of �), (3) similar for ≥. J

The relations > and ≥ are not necessarily computable, but we will not need to work
with them directly. To prove some set of dependency pairs D non-looping, we can choose
for every pair l ; p ∈ D a corresponding base-type pair l ; p, and prove either l � p or
l � p. For example, we could assign l := l · x1 · · ·xn and p := p · cy1 · · · cym , where the cyi are
chosen arbitrarily. This is the choice we will use in examples in this paper. Other choices for
p, for instance made in such a way as to duplicate existing requirements, are also possible.

To make sure that ≥ satisfies the limited subterm property, we consider a base-type
version of subterm reduction, which is strongly related to β-reduction.

I Definition 6.6. �! is the relation on base-type terms (and �! its reflexive closure) generated
by the following clauses:

(λx. s) · t0 · · · tn �! u if s[x := t0] · t1 · · · tn �! u

f(s1, . . . , sm) · t1 · · · tn �! u if si · ~c�! u

s · t1 · · · tn �! u if ti · ~c�! u (s may have any form)

Here, s ·~c is a term s applied to constants cy of the right type. Note that if s�t and s has base
type, there are terms u1, . . . , un and substitution γ such that s�! tγ ·u1 · · ·un. Consequently,
≥ satisfies the limited subterm property if � ∪ � contains �! and f(~x) � f#(~x) for all
f ∈ D (the marking property). We can derive the following theorem.

I Theorem 6.7. A set of dependency pairs D = D1 ]D2 is non-looping if D2 is non-looping
and there is a reduction pair (�,�) such that:
1. l � p for all l ; p ∈ D1;
2. l � p for all l ; p ∈ D2;
3. l � r for all l→ r ∈ R;
4. if D is collapsing, then � ∪ � contains �!, and f(~x) � f#(~x) for all f ∈ D.

I Example 6.8. To prove that Ctwice is non-looping it suffices to find a reduction pair (�,�)
such that l � r for all rules, � satisfies the subterm and marking properties, and furthermore:

I#(s(n)) � twice(λx. I(x)) · n twice#(F ) · x � F · (F · cy)
I#(s(n)) � twice#(λx. I(x)) · cz twice#(F ) · x � F · cy

twice(F ) ·m � F · (F ·m) twice(F ) ·m � F ·m

RTA’11
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This completes the basis of dynamic dependency pairs for AFSs. But is this approach
any easier than proving l > r for all rewrite rules? Unless the dependency graph has no
cycles we still have to prove l ≥ r for all rules and with an ordering like HORPO [11] this is
barely an improvement. In Section 7 we will therefore discuss a variation of usable rules,
which allows us to drop a number of ordering requirements. In Section 8 we will define a
variation of the monotone algebra approach that is especially suited to dependency pairs.

7 Formative Rules

In the first order setting, the result corresponding with Theorem 6.2 is optimized: it is
sufficient to consider for a cycle only its usable rules instead of all rules. The definition of
usable rules cannot easily be extended to our setting, because we admit collapsing dependency
pairs. Therefore we take a different approach with the same goal of restricting attention to
rules which are in some way relevant to a set of dependency pairs. Where usable rules are
defined from the right-hand sides of dependency pairs, our formative rules are based on the
left-hand sides. We will use the notion of simple terms:

I Definition 7.1. A term s is simple if:
it is linear,
it has no subterm of the form x · s1 · · · sn with n > 0 and x a free variable,
there is no occurrence of a free variable below an abstraction.

Many examples of AFSs, such as rules from functional programming, have a simple left-hand
side. The intuition behind formative rules is that, for rewrite rules with a simple left-hand
side, only the formative rules can contribute to the creation of its pattern.

I Definition 7.2. For β-normal terms s, let Symb(s) be recursively defined as follows:

Symb(λx. s : σ) = {〈ABS , σ〉} ∪ Symb(s)
Symb(f(s1, . . . , sn) · sn+1 · · · sm : σ) = {〈f, σ〉} ∪ Symb(s1) ∪ . . . ∪ Symb(sm)

Symb(x · s1 · · · sn : σ) = {〈VAR, σ〉} ∪ Symb(s1) ∪ . . . ∪ Symb(sn) (n > 0)
Symb(x) = ∅

The formative symbols and rules of any term are defined by a (possibly) infinite process:
the starting point: FS0(s) = Symb(s)
for all n ≥ 0, the set FRn(s) consists of rules l · x1 · · ·xk → r · x1 · · ·xk if l→ r ∈ R and
k = 0, r = λx. r′ : σ and 〈ABS , σ〉 ∈ FSn(s), or
r = f(~u) · ~v : σ1⇒ . . .⇒σk⇒τ and 〈f, τ〉 ∈ FSn(s), or
r = x ·~v : σ1⇒ . . .⇒σk⇒τ and 〈f, τ〉 ∈ FSn(s) for some f ∈F∪{ABS ,VAR}; |~v| ≥ 0

FSn+1(s) = FSn(s) ∪
⋃
l→r∈FRn(s) Symb(l)

Now FR(s) is defined as the union of all FRn(s) (this is a finite union for finite AFSs) in the
case that both s is simple and all rules in this union have a simple left-hand side. Otherwise,
FR(s) = R. The set of formative rules of a dependency pair, FR(f(l1, . . . , ln)·ln+1 · · · lm ; p),
is defined as

⋃
1≤i≤m FR(li). For a set D of dependency pairs, FR(D) =

⋃
l;p∈D FR(l ; p).

Note that FRn(s) and FSn+1(s) can easily be calculated (automatically) from FSn(s); to
compute FR(s) a tool would simply repeat this process until either a rule with a non-simple
left-hand-side is included (in which case FR(s) = R), or until no new symbols are added.
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I Example 7.3. Recall the rules for the (completed) system twice:

(A) I(o) → o (C) twice(F ) → λy. F · (F · y)
(B) I(s(n)) → s(twice(λx. I(x)) · n) (D) twice(F ) ·m → F · (F ·m)

In this context, let l = s(n). Then

FS0(l) = {〈s, nat〉} FS1(l) = {〈s, nat〉, 〈twice, nat〉, 〈I, nat〉}
FR0(l) = {(B), (D)} FR1(l) = {(B), (D)} = FR0(l)

We have FR(I#(s(n)) ; p) = FR(s(n)) = {(B), (D)} for any p. Note that for a dependency
pair with left-hand side twice(F ) · n or twice#(F ) the set of formative rules is empty (since
Symb(F ) = Symb(n) = ∅). Therefore, the formative rules of the SCC Ctwice are (B) and (D).

Using formative rules Formative rules are constructed in such a way that to reduce to a
term of the form lγ we only need its formative rules:

I Lemma 7.4. If s is terminating and s →∗R lγ, then there exists a substitution δ on the
same domain as γ such that each δ(x)→∗R γ(x) and s→∗FR(l) lδ.

Proof Sketch. We assume l is simple and not a variable (otherwise this is trivial). Transform
the reduction s→∗R lγ into a reduction without any headmost steps with a rule l′ → λx. r′

(this is possible because the rules have been completed). Then perform induction on s first,
using →R ∪�, the length of the reduction second. If s is headed by a beta-redex we can
start with a β-step because lγ is not (and complete with IH1), if s reduces to lγ without
any headmost steps we use the � part of IH1 (variable capture is not an issue because γ
can be assumed to have empty domain if l is an abstraction) and if s→∗R l′γ′ · t1 · · · tn →R
r′γ′ · t1 · · · tn →∗R′ lγ with either r′ headed by a variable or the latter part not using any
headmost steps, then l′′ := l′ ·x1 · · ·xn → r′ ·x1 · · ·xn =: r′′ is a formative rule of l and can be
assumed simple, so we use the second induction hypothesis to get s→∗FR(l′′) l

′′δ′ →R r′′δ′ and
the first induction hypothesis to have r′′δ′ →∗FR(l) lδ; this suffices because FR(l′′) ⊆ FR(l). J

With this we can strengthen the definition of dependency chains, and adapt Theorem 4.5:

I Lemma 7.5. If R is non-terminating, there is an infinite dependency chain over DP(R)
such that for all i: ti →∗in si+1 using only rules from FR(li+1).

Thus, we can restrict attention to dependency chains using only formative rules, and
adapt the definition of looping and the results of Sections 5 and 6 accordingly. We obtain:

I Theorem 7.6 (Complete Result). A set of dependency pairs D = D1 ]D2 is non-looping
if D2 is non-looping and there is a reduction triple such that:
1. l > p for l ; p ∈ D1,
2. l ≥ p for l ; p ∈ D2,
3. l ≥1 r for l→ r ∈ FR(D),
4. If D is collapsing, then ≥ additionally satisfies the limited subterm property.
Also ∅ is non-looping. An AFS with rules R and dependency graph approximation G is
terminating if all cycles in G are non-looping, which holds if all SCCs are non-looping.

In requirement (3) in Theorem 6.7 we can also restrict attention to the formative rules of D
instead of considering all rules. It remains to find a suitable reduction triple or pair.
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8 Monotone Algebras

A semantical method to prove termination of rewriting is to interpret terms in a well-founded
algebra, and show that whenever s→ t their interpretations decrease: JsK > JtK. For TRSs,
such an algebra is called a termination model if JlK > JrK for all rules l → r and some
additional properties guarantee that this implies JC[lγ]K > JC[rγ]K for all contexts C and
substitutions γ. A TRS is terminating if and only if it has a termination model [9, 26]. Van
de Pol [21] generalizes this approach to HRSs, with higher order rewriting modulo αβη, and
shows that a HRS is terminating if it has a termination model; the converse does not hold.

Here we consider interpretations of AFS terms in a monotone algebra, and use the
orderings to solve dependency pair constraints. Since > does not have to be monotonic when
using dependency pairs, the theory of [21] can be significantly simplified. We interpret all
base types with the same algebra to avoid problems with comparing differently-typed terms.

I Definition 8.1 (Weakly Monotonic Functionals). Let A be an algebra with a well-founded
partial order > and minimum element 0. We assume there is a binary operator ∨ on A such
that x ∨ y ≥ x, y for all x, y ∈ A and x ∨ 0 = x. Terms will be interpreted by elements of,
and weakly monotonic functionals over, A. Intuitively, a functional f is weakly monotonic
if f(x) ≥ f(y) whenever x ≥ y; however, f only needs to be defined on weakly monotonic
input. We inductively define the weakly monotonic functionals for all types, and relations
=wm and wwm on these functionals:

the interpretation for base types: WMι = A for all ι ∈ B,
the orderings on WMι (with ι ∈ B): =wm equals >, and wwm is its reflexive closure,
the interpretation for functional types: WMσ⇒τ consists of the functions mapping
elements of WMσ to elements of WMτ , such that wwm is preserved (that is, if x wwm y

in WMσ then f(x) wwm f(y) in WMτ ),
the orderings on WMσ⇒τ : we have f =wm g iff f(x) =wm g(x) for all x ∈ WMσ, and
f wwm g iff f(x) wwm g(x) for all x ∈ WMσ.

=wm and wwm are an order and quasi-order respectively, and strongly compatible. If either
x =wm y or x = y then x wwm y, but the converse implication does not hold.

Constant functions are weakly monotonic functionals: for n ∈ A and σ = τ1⇒ . . .⇒τk⇒ ι

(note that ι always refers to a base type), let nσ = λλx1 . . . xk.n (the function inWMσ taking
k arguments and returning n). The function λλf.f(~0) is also in WMσ⇒ι, where f(~0) is short
for f(0τ1 , . . . , 0τk). A weakly monotonic functional not defined in [21], but which will be
needed to deal with term application, is max:

maxι(x, y) = x ∨ y (for x, y ∈ A)
maxσ⇒τ (f, y) = λλx.maxτ (f(x), y) (for f ∈ WMσ⇒τ , y ∈ A)

Using induction on the type of the first argument, it is easy to see that maxσ ∈ WMσ⇒ι⇒σ.

Term Interpretation. Using an interpretation J of function symbols, van de Pol associates
to each closed term a weakly monotonic functional. Although the definition in [21] considers
terms modulo αβη, this is not a significant blockade because we can handle application as a
function symbol. The following is our own adaptation of the translation in [21]:

I Definition 8.2. For all function symbols f : (σ1 × . . .× σn)⇒τ let Jf ∈ WMσ, where σ
is σ1⇒ . . . σn⇒τ . A valuation is a function α with a finite domain of variables, such that
α(x) ∈ WMσ for x : σ in its domain. For any AFS-term s and valuation α whose domain
contains all x ∈ FV (s), let JsKJ ,α be the weakly monotonic functional defined as follows:
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JxKJ ,α = α(x) if x ∈ V
Jf(s1, . . . , sn)KJ ,α = Jf (Js1K, . . . , JsnK)
Jλx. sKJ ,α = λλn.JsKJ ,α∪{x7→n} if x /∈ dom(α)
Js · tKJ ,α = max(JsKJ ,α(JtKJ ,α), JtKJ ,α(~0))

I Example 8.3. In our running example, consider an interpretation into the natural numbers
Say JI = λλn.n and Js = λλn.n+ 1. Then JI(s(x))KJ ,α = α(x) + 1.

Reduction Pair Since this definition uses weak rather than strict monotonicity it cannot be
used directly like in first order rewriting: JlK =wm JrK does not in general imply JC[lγ]K =wm
JC[rγ]K. This issue (which van de Pol works around by definining an additional relation)
disappears in the context of dependency pairs. Using Theorem 6.7 we obtain a number of
requirements JlK =wm JrK or JlK wwm JrK, and additionally, for collapsing D, the subterm
and marking properties must be satisfied. The latter is a simple restriction, the former holds
if the value of a function is always greater than or equal to the value of its arguments.

I Theorem 8.4. Let J be a symbol interpretation such that:
Jf wwm Jf# for all f ∈ D
J maps each cx to the appropriate 0σ
for all f : (σ1 × . . . × σn)⇒ τ1⇒ . . .⇒ τm⇒ ι ∈ F , all 1 ≤ i ≤ n and all n ∈ WMσi :
Jf (0σ1 , . . . , n, . . . , 0σn , 0τ1 , . . . , 0τm) wwm n(~0).

Define s � t if JsKJ ,α =wm JtKJ ,α for all valuations α and s � t if JsKJ ,α wwm JtKJ ,α for
all valuations α. Then (�,�) is a reduction pair which satisfies the subterm and marking
properties from Theorem 6.7.

Proof. Compatibility is evident, weak monotonicity holds by a simple case distinction and
stability by the substitution Lemma [21, Theorem 3.2.1]. By the interpretation of application
also→β is contained in �, and subterm reduction is included by an inductive argument which
uses the last two requirements. The marking property is given by the first requirement. J

It is not immediately obvious how to use monotone algebras automatically; a lot will
depend on the chosen interpretation for the function symbols. Common first order methods,
like polynomial or matrix interpretations, are not likely to be succesful in the presence of
functional variables. However, it is very likely that higher order parallels exist, such as an
interpretation with primitive recursive functions. While a proper study of such methods is
beyond the scope of this paper, the example below might give some initial ideas.

I Example 8.5. Suppose we have to satisfy a requirement map(F, cons(x, y)) � cons(F ·
x,map(F, y)), where F : nat⇒nat. We consider an interpretation in the natural numbers
(with standard >, 0, and ∨ giving the highest of two numbers) using primitive recursive
functions. Let G(f,m, n) be the recursive function defined by: G(f,m, 0) = max(f(m),m)
and G(f,m, n+1) = f(n+1, 2G(f,m, n)). This function is weakly monotonic in each of
f , m and n, and moreover G(f,m, n+k) ≥ G(f,m, n)+G(f,m, k) for all n, k > 0. Also
G(f,m, n) ≥ m, and G(f,m, n) ≥ f(0) if f is weakly monotonic. Choose Jcons = λλnm.n+m+1
and Jmap = λλfn.G(f, n, n+1), and let α = {F 7→ f, x 7→ n, y 7→ m} be a valuation. Then:

Jmap(F, cons(x, y))KJ ,α = G(f, n+m+1, n+m+2)
wwm G(f, n+m+1, n+1) +G(f, n+m+1,m+1)
= f(n+1) + 2G(f, n+m+1, n) +G(f, n+m+1,m+1)
wwm f(n) + 2(n+m+1) +G(f,m,m+1)
=wm max(f(n), n) +G(f,m,m+1) + 1
= Jcons(F · x,map(F, y))KJ ,α
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9 Conclusion

A Termination Algorithm The combination of Theorem 7.6 and Section 6.1 provides an
algorithm to prove termination of an AFS. First calculate the system’s dependency pairs
and take an approximation of the (finite) dependency graph. Then:
1. remove all nodes from G which are not on a cycle;
2. if G is empty return terminating; otherwise find an SCC C;
3. determine a partition in C = C1 ] C2 and find a reduction pair (�,�) such that l � p for

l ; p ∈ C1, l � p for l ; p ∈ C2, l � r for l→ r ∈ FR(C) and either C is non-collapsing,
or � ∪ � contains �! and f(~x) � f#(~x) for all f ∈ D; if this step fails, return fail;

4. remove all pairs in C1 from the graph, since any cycle C′ which includes such a pair is a
subcycle of C and thus also proved non-looping by (�,�); continue with (1).

The algorithm iterates over a graph approximation, simplifying SCCs until none remain;
note that this moves in the direction of the dependency pair framework as defined in [6].

I Example 9.1. Consider our running example twice, whose dependency graph was shown
in Example 5.1. As instructed in step (1) of the algorithm, we remove nodes not on a cycle.

I#(s(n)) ; twice(λx. I(x)) · n I#(s(n)) ; twice#(λx. I(x))

twice(F ) · n; F · (F · n)

twice(F ) · n; F · n

twice#(F ) ; F · (F · cn)

twice#(F ) ; F · cn

In step (2) we choose the SCC of all pairs in the graph; its formative rules are calculated in Ex-
ample 7.3. For step (3) let C1 := {I#(s(n)) ; twice(λx. I(x)) ·n, I#(s(n)) ; twice#(λx. I(x))}
and C2 the set containing the other pairs. We have the following proof obligations:

A. I#(s(n)) � twice(λx. I(x)) · n E. twice#(F ) · x � F · (F · cy)
B. I#(s(n)) � twice#(λx. I(x)) · cz F. twice#(F ) · x � F · cy
C. twice(F ) ·m � F · (F ·m) G. I(s(n)) � s(twice(λx. I(x)) · n)
D. twice(F ) ·m � F ·m H. twice(F ) ·m � F · (F ·m)

Requirement (H) is a duplicate of (C). Using an interpretation in functionals over the natural
numbers where each Jcx = 0, and assuming Jtwice = Jtwice# , (B) is implied by (A), and (E)
by (C), and (F) by (D). The remaining requirements are satisfied with JI# = JI = λλn.n and
Js = λλn.n+ 1 and Jtwice# = Jtwice = λλf.λλn.f(f(n)):

A. n+ 1 > max((λλn.n)((λλn.n)n), n) = max(n, n) = n

C. max(F (F (n)), n) ≥ max(F (max(F (n), n)),max(F (n), n))
D. max(F (F (n)), n) ≥ max(F (n), n)
G. n+ 1 ≥ max(n, n) + 1 = n+ 1

The calculations for (A) and (G) are obvious. With some reasoning (distinguishing the
cases n > F (n), and F (n) ≥ n and noting that F (n) ≥ n implies F (F (n)) ≥ F (n) by weak
monotonicity), (C) and (D) also hold.

Thus we move on to step (4) and remove the two nodes in C1 from the graph:
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twice(F ) · n; F · (F · n)

twice(F ) · n; F · n

twice#(F ) ; F · (F · cn)

twice#(F ) ; F · cn

All nodes are still interconnected, so we continue with the SCC of all pairs. Interestingly,
FR(C) = ∅. Therefore it suffices to find a reduction pair with the usual properties and:

twice(F ) · n � F · (F · n) twice#(F ) · n � F · (F · cy)
twice(F ) · n � F · n twice#(F ) · n � F · cy

This is satisfied with an algebra interpretation with Jtwice# = Jtwice = λλfn.max(f(f(n)), n)+
1. Thus we remove the final four nodes from the graph, and conclude that twice is terminating.

Summary and Future Work We have defined a first basic dependency pair method for
AFSs, with a variation of usable rules which takes into account the possible presence of
collapsing dependency pairs. We have explained that besides orderings such as HORPO also
monotone algebras can be used to solve the ordering constraints.

We intend to further study dependency pairs for AFSs with restrictions. For example,
if function symbols have a base output type we can drop requirements, yielding an easier
method. If we restrict to rules without abstractions in the left-hand sides, we may weaken the
subterm property to obtain a stronger method, and define for instance argument filterings
(in the extended abstract [15] a first step in this direction is given for HRSs).

A preliminary version of the dependency pair method with argument filterings is imple-
mented in the tool WANDA v1.0 [14]. We intend to improve the implementation by taking
into account also the dependency graph, strongly connected components and formative rules.

This work aims to contribute to the larger goal of understanding dependency pairs for
higher order rewriting, and creating tools to automatically prove termination in this setting.
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A Appendix: complete proofs

A.1 Some Lemmas about Variable Replacement
To start this appendix, we consider subterm reduction and replacing variables with symbols
cx. First of all we note again that α-substitution does not affect the symbols cx. Thus, the
candidate terms of any given term are not preserved under α-substitution. However, this is
not a problem, because we only require a single representative for any candidate.

In this section we will discuss some Lemmas which will primarily be used for Theorem
4.6.

I Definition 1.1. A substitution χ is a variable replacement if χ(x) is in C for all x ∈ dom(χ).

I Definition 1.2. Let � be the relation such that s� t if there are a term u and variable
replacement χ such that s � u and t = uχ, and dom(χ) ⊆ FV (u) \ FV (s). Let � be its
transitive closure.

I Lemma 1.3. Let s be a term, l a linear term not containing any symbols cx, γ a substitution
whose domain contains only variables in FV (l) and χ a variable replacement. Suppose
sχ = lγ. Then there is a substitution δ on the same domain as γ such that s = lδ and each
γ(x) = χ(δ(x)) for all x.

Proof. Induction over the form of l. If l is a variable in the domain of γ, then γ(l) = sχ; we
can choose δ(l) = s. This suffices because dom(γ) = {l}. If l is a variable not in the domain
of γ, then γ is the empty substitution, and sχ = s = l (since l = lγ is not a constructor cx).
We choose δ the empty substitution as well. If l = λx. l′ then s cannot be a variable (since cy
is not an abstraction), so s = λx. s′. We can assume x is fresh, so the induction hypothesis
provides δ such that γ = χ ◦ δ (and therefore x does not occur in either domain or range of
δ) and s′ = l′δ; then also s = lδ.

If l = l1 · l2 then let γi = γ�FV (li). By linearity of l each γi has disjunct domain, and
they contain only variables occurring in FV (li). We have sχ = (l1γ) · (l2γ), so s can only
have the form s1 · s2, with siχ = liγ (note, after all, that if s were a variable, then sχ would
either be a variable or a constructor symbol, not an application). The induction hypothesis
supplies δ1, δ2 on the same domains as γ1, γ2 such that si = liδi and γi(x) = χ(δi(x)) for x
in the respective domains. Due to disjunct domains we can safely define δ := δ1 ∪ δ2. Finally,
if l = f(l1, . . . , ln) we again use left-linearity to split γ into γ1, . . . , γn and inductively find
δ1, . . . , δn; choosing δ := δ1 ∪ . . . ∪ δn suffices. J

I Lemma 1.4. If R is left-linear, s, t terms and χ a variable replacement, and sχ →R t,
then there exists a term t′ such that s→R t′ and t = t′χ.

Proof. By induction on the derivation of sχ →R t. If sχ →R t by a topmost step, so
sχ = lγ and t = rγ, then according to Lemma 1.3 we can find δ, t′ such that s = lδ and
χ(δ(x)) = γ(x) for x ∈ dom(γ). We can safely assume that dom(δ) = FV (l), and therefore
s = lδχ and t = rδχ; defining t′ := rδ we have satisfied the requirements.

Next, consider the inductive cases; since a term cx does not have any strict subterms, sχ
has the same form (application, abstraction or function application) as s. Each of the cases
is immediate with the induction hypothesis (and demonstrated hereafter). If s = s1 · s2 and
t = t1 · (s2χ) with s1χ→R t1, then the induction hypothesis provides t′1 such that s1 →R t′1
and t′1χ = t1. Let t′ := t′1 · s2. Then s→R t′ and t′χ = t′1χ · s2χ = (t1 · s2)χ = t. The case
when s = s1 · s2 and t = s1χ · t2 with s2χ→R t2 is exactly the same. If s = f(s1, . . . , sn) and
t = f(s1χ, . . . , ti, . . . , snχ) and siχ →R ti, the induction hypothesis provides t′i such that
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si →R t′i and t′iχ = ti. We are done defining t′ := f(s1, . . . , t
′
i, . . . , tn). Finally, if s = λx. s0

and t = λx. t0 then the induction hypothesis provides t′0 and we can define t′ = λx. t′0. J

I Lemma 1.5. If sχ� t, then there exists t′ such that s� t′ and t′χ = t (for χ a variable
replacement).

Proof. With induction over the size of s. First suppose sχ = t; then we are done choosing
t′ := s. Otherwise, sχ = C[t] for some non-empty context C; s cannot be a variable since
neither variables nor symbols cx have subterms. Thus, s is a functional term, an application,
or an abstraction. If s = f(s1, . . . , si, . . . , sn) and siχ = D[t], then siχ� t, so the induction
hypothesis supplies t′ with s�D[t]� t′ and t′χ = t. If s = s1 · s2 then we complete similarly.
If s = λx. s′ and s′χ = D[t], then still the induction hypothesis supplies suitable t′. J

I Lemma 1.6. Assume R is left-linear. If there is an infinite →R ·� reduction starting in
s, then there is an infinite →R reduction starting in s.

Proof. Reasoning from contradiction, let s be a term from which no infinite →R reduction
originates; we must prove there is no infinite →R ·� reduction starting in s. We can
perform induction on s by →R, so any →R-reduct t of s can be assumed not to start an
infinite →R ·� reduction. Towards a contradiction, assume there is an infinite sequence
s →R t�u →R v�w . . .. Expanding the definition of � we find C[], u′, χ such that
t = C[u′] and u = u′χ, with dom(χ) ⊆ FV (u′) \ FV (t). By Lemma 1.4 there is v′ such
that u′ →R v′ and v = v′χ. Since v�w we can write v = �w′ for some w′ with w = w′ε,
with ε a variable replacement such that dom(ε) ⊆ FV (w′) \ FV (v). But according to
Lemma 1.5 there is a term w′′ such that v′ = D[w′′] and w′ = w′′χ. Define δ as the
restriction of χ ∪ ε to FV (w′′). Then w = w′ε = w′′δ. Looking back to where we started,
we have s →R t = C[u′] →R C[v′] = C[D[w′′]]. Since dom(δ) contains only variables in
dom(χ) ∪ dom(ε), it contains no variables in FV (C[v′]), which after all is a subset of FV (s).
Thus, C[D[w′′]]�w. Consequence, t does start an infinite →R ·� reduction, contradicting
our assumption! J

I Lemma 1.7. If r�p′ and p′χ = p, for χ a variable replacement substitution whose domain
contains only variables in FV (p′) \ FV (r), then rγ� pγ for any substitution γ.

Proof. Write r = C[p′] and assume the variables bound in r are fresh (so do not occur in
either domain or range of γ). By definition of substitution rγ = Cγ[p′γ], so rγ� p′γχ. Since
the range of χ does not contain any variables at all, and because the range of γ does not
contain variables in dom(γ), this equals p′δγ = pγ as required. J

A.2 Proofs for Section 4
Proof of Theorem 4.5. We must see that if R is non-terminating, then there is an infinite
dependency chain over DP(R). Given any non-terminating term, let u−1 be a minimal
subterm that is still non-terminating (u−1 is MNT). Now, for any i ∈ N, let ui be a given
MNT term, and consider an infinite reduction starting in ui. It cannot be that ui is an
abstraction, since abstractions can only be reduced by reducing their immediate subterm,
contradicting minimality of ui. For the same reason ui cannot have the form x · v1 · · · vn
with x a variable, or the form f(v1, . . . , vn) · vn+1 · · · vm with f a constructor symbol. What
remains are the forms ui = (λx. s) · t · v1 · · · vn or ui = f(v1, . . . , vn) · vn+1 · · · vm with f ∈ D.

In the first case, note that by minimality of ui eventually a headmost step must be taken;
therefore, any infinite reduction starting in ui has the form ui →∗R (λx. s′) · t′ · v′1 · · · v′n →β
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s′[x := t′] · v′1 · · · v′n →R . . .. Since also s[x := t] · v1 · · · vn →∗R s′[x := t′] · v′1 · · · v′n the
immediate beta-reduct of ui is also non-terminating. If n > 0, this reduct is minimal: any
strict subterm of s[x := t] · v1 · · · vn is either a subterm of some vj (and therefore also of
ui) or a subterm of s[x := t] · v1 · · · vj with j < n (and therefore a subterm of a reduct of
(λx. s) · t · v1 · · · vj , which is a subterm of ui)). Choose ui+1 := s[x := t] · v1 · · · vn and let
ρi+1, si+1, ti+1 := beta, ui, ui+1. Note that s#

i = si and t#i = ti. On the other hand, if n = 0,
let w be a minimal subterm of si such that w[x := t] is still non-terminating. Since both w and
t are terminating (by minimality of ui), w 6= x, but FV (w) does contain x. If w = λy.w′ then
also w′[x := t] is non-terminating, contradicting minimality of w. Therefore w can only be an
application w1 ·w2 or a functional term f(w1, . . . , wn) and we have (w[x := t])# = w#[x := t].
Noting that all wi[x := t] are terminating by minimality of w, we see that w[x := t] is MNT.
Thus, we choose ui+1 := w[x := t] and ρi+1, si+1, ti+1 := beta, ui, u

#
i+1.

In the second case, ui = f(v1, . . . , vn) · vn+1 · · · vm, only finitely many steps in the vj
can be taken before a head step appears in any infinite reduction, say ui →∗in f(v′1, . . . , v′n) ·
v′n+1 · · · v′m = lγ · v′j+1 · · · v′m with n ≤ j ≤ m and rγ · v′j+1 · · · v′m still non-terminating
(l → r ∈ R). Since the rules were completed, we can always find such a rule that either
m = j or r is not an abstraction: if m > j then we know that rγ · v′j+1 · · · v′m is still MNT,
so if r = λx. r′ eventually a headmost →β step must be taken. Like above, we then see that
r′γ[x := v′j+1] · v′j+2 · · · v′m is also non-terminating, so we might instead have used the rule
l · x→ r′. If r′ is still an abstraction and also m > j + 1 we can repeat this change, until we
eventually (as m − j decreases in every step) find a rule l → r, substitution γ and j such
that ui →∗in lγ · v′j+1 · · · v′m →R rγ · v′j+1 · · · v′m and either r is not an abstraction or m = j.

First suppose m > j, so as observed above rγ · v′j+1 · · · v′m is still MNT. Then, after a
finite number of internal steps it must be possible to reach a head step; therefore rγ cannot
be headed by a variable or a functional term g(~w) with g a constructor; either rγ is headed
by an abstraction, or by a functional term f(~w) with f ∈ D. Since we know that r itself is
not an abstraction, this can only be the case if r is (headed by) a variable, or (headed by) a
functional term f(~w) with f ∈ D. Therefore l · xj+1 · · ·xm ; r · xj+1 · · ·xm is a dependency
pair. Define ρi+1, si+1, ti+1 := l · ~x; r · ~x, lγ · v′j+1 · · · v′m, rγ · v′j+1 · · · v′m.
Finally, suppose m = j, so ui →∗in lγ and rγ is non-terminating. As in the definition of
candidate terms, write r with all bound variables different symbols and let r′ be a minimal
subterm of r such that pγ is still non-terminating, where p = r′δ and δ is a substitution
[x1 := cx1 , . . . , xn := cxn ] with {x1, . . . , xn} = FV (r′) \ FV (r) – since r itself is non-
terminating such an r′ exists. Then r′ cannot be a variable free in r, as γ(r′) would be a
strict subterm of l (contradicting minimality of ui). Also r′ cannot be an abstraction λx. r′′,
as then r′′δγ would also be non-terminating, and (since →R is preserved under substitution)
so would r′′δ[x := cx]γ be. By minimality of r′ we also see that r′ cannot have the form
f(r1, . . . , rn) · rn+1 · · · rm with f ∈ C (as then some riδγ would have to be non-terminating),
nor can it have the form x · r1 · · · rn with x bound since there is no rule to reduce cx · r1 · · · rj .
We see that r′ can only be x · r0 · · · rm with x a variable free in r or f(r1, . . . , rn) · rn+1 · · · rm
with f a defined symbol, and therefore p ∈ Cand(r). In either case, pγ is MNT as well.
Choose ui+1 := pγ and define: ρi+1, si+1, ti+1 := l# ; p#, l#γ, p#γ. Note that, since l
and p are not single variables, p#γ and l#γ are exactly (lγ)# and (pγ)#.

Due to the construction of [ρi, si, ti|i ∈ N] it is easy to see that this chain forms an infinite
dependency chain. We merely need to observe that in every step ti = u#

i , and that by the
definition of →∗R.in it immediately follows that ui →∗R,in lγ implies u#

i →∗R,in lγ#. J

Proof of Theorem 4.6. By Theorem 4.5 non-termination of R implies the existence of an
infinite dependency chain, whether R is left-linear or not. For the other direction, let an
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infinite dependency chain [ρi, si, ti|i ∈ N] be given. Note that for a candidate term p of r we
have rγ� pγ for any substitution γ by Lemma 1.7, regardless of the choice for the cx in the
definition of candidate term. Also the normal subterm reduction relation � is included in � .
Therefore, whether ρi ∈ DP or ρi = beta, |si| →R ·� |ti| for all i ∈ N, where |u| is u with
function symbols f# replaced by just f . When ti →∗R si+1 it is clear that also |ti| →∗R |si+1|.
Since every →R step is also a →R ·� step, this procedure generates an infinite →R ·�
reduction, which by Lemma 1.6 implies non-termination of →R. J

A.3 Proofs of Section 5
The following Lemma was stated as fact in the text.

I Lemma 1.8. ∅ is not dangerous.

Proof of Lemma 1.8. Any infinite dependency chain with all ρi = beta has ti = si+1 for
all i: if si+1 is headed by an abstraction, ti →+

in cannot hold. Also, either si →β ti or
si →β · � |ti| = ti (since ti = si+1 is an application, it is equal to its marked version).
Therefore we can find contexts C1, C2, . . . such that s0 →β C1[s1]→β C1[C2[s2]]. But such a
chain can not exist, as typed β-reduction is terminating. J

The text mentions that we will assume the dependency graph is finite, but that this is
not necessary as it may be finitely approximated. In this appendix, we will give the proofs
for a potentially infinite graph, but with a finite approximation.

I Definition 1.9 (Revised Dependency Graph Approximation). An approximation of a (possibly
infinite) dependency graph is a graph with a finite number of nodes, each representing a
set of dependency pairs. There is an edge from node A to node B if the original graph
contains an edge from any element of A to any element of B (but more edges than this may
be present).

An infinite system often corresponds with a finite polymorphic system, in which case the
group splitting is quite natural. Evidently any dependency graph has a finite approximation,
for example the graph with a single node representing all nodes in the original graph, and an
edge to itself.

Proof of Lemma 5.2. In the infinite definition, a cycle C in G corresponds with the set
C′ = {ρ|ρ ∈ DP(R)| some node in C represents ρ}. The assumption in the lemma gives that
any such set is non-looping.

By Theorem 4.6 R is terminating if there is no infinite reduction chain. So suppose
(towards a contradiction) there is one, say [(ρi, si, ti)|ρi ∈ DP(R)]. Since the graph approx-
imation G is finite, there will be some node A such that infinitely many ρi are in A; say
ρi1 , ρi2 , . . . are all in A. Let C be the set of nodes corresponding with some ρj such that
j > i1. Then C is a cycle in the graph:

If C = {A}, so all ρj with j > i are either beta or in C, then the complete graph has an
edge between ρi1 and ρi2 , so G has an edge from A to itself. Thus, C is a cycle.
If C contains some B 6= A, then there is a path in G from A to B and a path from B to A.
This because for any ρj ∈ B we can find k such that ik < j < ik+1 (since i1 < i2 < . . . is
infinite and j is not in this sequence). But then there is a path in the dependency graph
from ρik to ρj and a path from ρj to ρik+1 .
Consequently, there is a path from A to A (via B) and for any two other nodes B,C
there is a path from B to C (via A); C is a cycle.
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Thus there is an infinite dependency chain {(ρj , sj , tj)|j > i1} using only elements of C′,
contradicting the assumption that all cycles are non-looping. J

A.4 Proofs of Section 6, part 1
Proof of Theorem 6.2. Let D = D1 ] D2 such that D2 is non-looping, and a reduction
triple (>,≥,≥1) exists such that l > p for all l ; p ∈ D1, l ≥ p for all l ; p ∈ D2, l ≥1 r

for all l→ r ∈ R and either D is non-collapsing or ≥ satisfies the limited subterm property.
We must prove that D is non-looping as well. First some observations:

1. If s →R t then s ≥ t: either s = C[lγ] and t = C[rγ] for some context C, substitution
γ and rule l → r, or s = C[(λx. u) · v] and t = C[u[x := v]]. In the first case, l ≥1 r by
assumption, lγ ≥1 rγ by stability of ≥1 and then s ≥1 t by monotonicity of ≥1; in the
second case s ≥ t because ≥1 contains beta and is monotonous (note that ≥1 is included
in ≥, so s ≥1 t implies s ≥ t).

2. If D is not collapsing, any infinite dependency chain with all ρi ∈ D ∪ {beta} has only
finitely many beta steps: by Lemma 1.8 some ρi in such a chain is not beta, ρi = l ; p.
Since D is non-collapsing, p has the form f(p1, . . . , pn) · pn+1 · · · pm, and therefore ti is
headed by a functional term. But then ti →∗in si+1 and ρi+1 also cannot be beta. Using
induction we see that all of the following ρj are in D.

Now we show that D is non-looping. Towards a contradiction, assume there is an infinite
dependency chain with all ρi ∈ D ∪ {beta}. If D is non-collapsing, we can assume all ρi are
in D, as by observation 2 every such chain has a beta-free tail.

Define δ0 as the empty substitution. For i ∈ N, consider ρi. If ρi = l ; p ∈ D1,
then siδi = lγδi > pγδi for some substitution γ because > is stable. If ρi = l ; p ∈ D2,
then siδi = lγδi ≥ pγδi because ≥ is stable. If ρi = beta, so D is collapsing, there are
two possibilities: either si →β ti by a head-most reduction, or si = (λx. u) · v, u � w and
ti = w#[x := v], with x ∈ FV (w) and w 6= x. In the first case, siδi ≥ tiδi because ≥1
contains beta and is stable. In the second case, the limited subterm property provides γ
such that si (> ∪ ≥) w#[x := t]γ. By monotonicity of > ∪ ≥ then siδi (> ∪ ≥) tiγδi.

Now define δi+1 := γδi in the last case and δi+1 := δi otherwise. We have seen that
always siδi (> ∪ ≥) tiδi+1, and if ρi ∈ D1 even siδi > tiδi+1. Since →∗R is included in ≥
by observation 1 also ti+1δi+1 ≥ si+1δi+1. Thus, an infinite dependency chain over D leads
to an infinite >,≥ reduction, and if infinitely many dependency pairs in D1 occur, this
gives an infinite > reduction (by compatibility of > and ≥), contradicting well-foundedness.
If only finitely many dependency pairs in D1 occur, eventually all ρi ∈ D2 ∪ {beta}, and
consequently D2 is dangerous, contradicting the assumption. J

Proof of Theorem 6.3. Let (F ,R) be a system with left-linear rules and dependency graph
approximation G. If the requirements of Theorem 6.2 are satisfied for all cycles in G, then
by Theorem 6.2 all cycles in G are non-looping, so by Lemma 5.2 R is indeed terminating.

For the other direction, suppose R is terminating; we will define a reduction triple
(>,≥,≥1) with the limited subterm property such that l > p for all l ; p ∈ DP and l ≥1 r

for all rules l→ r; this same reduction triple can then be used for all cycles in G (in fact, for
all subsets of DP). Let = be the restriction of the relation →R ·� where all variables from
the right-hand side occur in the left-hand side (that is, where the � step replaces all newly
freed variables by terms cx - � was defined at the start of this appendix). By Lemma 1.6
termination of →R implies well-foundedness of =. Defining s > t iff |s| =+ |t| and s ≥1 t

iff |s| →∗R |t| and ≥ as > ∪ ≥1 (where | · | just removes markings), we definitely have a
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well-founded ordering and a quasi-ordering, and it is easy to see that > and ≥ are compatible,
that all three relations are stable and that ≥1 is monotonic (even though > is not). Clearly
beta is contained in ≥1 and if s� u then (λx. s) · t→R s[x := t]�u[x := t][~y := ~c] (where
{~y} = FV (u) \ FV (s)). It is also clear that l ≥1 r for all l → r ∈ R and also l = p (and
therefore l > p) for l ; p ∈ DP. J

A.5 Proofs of Section 6.1
Proof of Lemma 6.5. First note (**): if s > t, then for any u1, . . . , un such that s · ~u is of
base type, there are v1, . . . , vm such that s · ~u � t · ~v: we know s · ~x � t · ~w for some ~x, ~w
with all xi occurring neither in s or t, so s · ~u = s · ~x[~x := ~u] � t · ~w[~x := ~u] by stability,
which = t · (~v[~x := ~u]) because all xi were fresh (not occurring in s or t). Similarly if
s ≥ t, then for any u1, . . . , un such that s · ~u has base type, there are v1, . . . , vm such that
s · ~u (� ∪ � · � ∪ � · �) t · ~v (both � and � are stable).

Now consider >. Evidently > is transitive: if s > t > u then by (**) s · ~x � t · ~v � u · ~w,
and by transitivity of � we conclude s · ~x � u · ~w. Also > is well-founded, since every
sequence s1 > s2 > . . . implies the existence of a sequence s1 · ~x � s2 · ~t � s3 · ~u � . . .;
therefore > is also non-reflexive. Finally, > is stable, for if s > t and γ is a substitution,
then for fresh ~x there are terms ~u such that s · ~x � t · ~u; as � is closed under substitution
also s · ~y � t · ~u[~x := ~y], where ~y are variables which occur neither in s, t or anywhere in the
domain or range of γ. Then sγ · ~y = (s · ~y)γ � (t · ~u[~x := ~y])γ = tγ · (~u[~x := ~y]γ) as required.

Now considering ≥1, first note that if s � t then by monotonicity of � also s · ~x � t · ~x,
so ≥1 is indeed a subrelation of ≥. Furthermore, ≥1 inherits reflexivity, transitivity, stability
and monotonicity from �, as well as the property that it contains beta.

For compatibility of > and ≥, note that either � · � is in � or � · � is in �. Assume
the former. Then s > t ≥ u implies that s · ~x � t ·~v R u · ~w, where R is one of �, � or � · �.
In the first case we use transitivity of �, in the second the assumption, in the third both the
assumption and transitivity of �. If � · � is included in � the reasoning is symmetric.

Finally, stability of ≥ follows from (**) in the same way as with >. For transitivity,
suppose s ≥ t ≥ u. This implies s ·~xR1t ·~vR2u · ~w, where both R1 and R2 are either �, � · �
or � · �. We must see that R1 · R2 is included in � ∪ � · � ∪ � · � for each of the nine
combinations. But this can easily be seen to hold by compatibility and transitivity of the
two relations involved. J

Towards proving some statements in the text, we study �!. The following Lemma is a
useful property of the definition of �!.

I Lemma 1.10. �! is stable.

Proof. With a straightforward induction over the definition of �!; evidently if s = t also
sγ = tγ, so we can assume the induction hypothesis holds for �! as well. Consider the
clause used to derive s �! t. If s = (λx. u) · v0 · · · vn and u[x := v0] · v1 · · · vn �! t, then
by induction uγ[x := v0γ] · v1γ · · · vnγ = (u[x := v0] · v1 · · · vn)γ �! tγ, and therefore
sγ = (λx. uγ)·v0γ · · · vnγ�! tγ by the same clause. If s = f(u1, . . . , um)·v1 · · · vn and ui ·~c�! t,
then sγ = f(u1γ, . . . , umγ) ·v1γ · · · vnγ and by the induction hypothesis uiγ ·~c = (ui ·~c)γ�! t;
thus sγ�! tγ by the same clause. Finally, if s = u · v1 · · · vn and vi ·~c�! t we equally complete
with the induction hypothesis. J

The following Lemma was stated as fact in the text.
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I Lemma 1.11. If s� t and s has base type, there are terms u1, . . . , un and substitution γ
such that s�! tγ · u1 · · ·un.

Proof. If s� t then there is a non-empty context C such that s = C[t]. We prove the Lemma
by induction over the “measure” of C, where the measure µ(C) is inductively defined as
follows:

µ(2) = 0
µ(D[] · v) = µ(D[])
µ(λx.D[]) = µ(D[]) + 1
µ(f(v1, . . . , D[], . . . , vm)) = µ(D[]) + 1
µ(v ·D[]) = µ(D[]) + 1

Clearly all contexts have non-negative measure.
If C[] = (λx.D[]) · v · w1 · · ·wm then s�! tγ · ~u as required if D[t][x := v] · ~w �! tγ · ~u. If

D[] = 2 this is satisfied with γ = [x := v] and ~u = ~w (note that x is bound in s, so the
requirement on γ holds). IfD[] is not the empty context, note that µ(C[]) = µ(D[])+1 whereas
µ(D[]· ~w) = µ(D[]), and moreover this context has base type. Thus we can apply the induction
hypothesis and find γ, ~u such that D[t] · ~w�! tγ · ~u. But then D[t][x := t] · ~w = (D[t] · ~w)[x :=
v] �! (tγ · ~u)[x := v] by Lemma 1.10, and this term equals (t(γ ∪ [x := v])) · ~u[x := v] and
thus has the required form.

If C[] = f(v1, . . . , D[], . . . , vm) ·w1 · · ·wk, then µ(C[]) = µ(D[] ·~c) + 1. It suffices to show
that D[t] · ~c� tγ · ~u for suitable γ, ~u, which holds immediately (choosing γ empty and ~u = ~c)
if D[] is the empty context and by the induction hypothesis otherwise.

Since s has base type the only other form C[] can have is v ·D[] · w1 · · ·wm (for some
choice of v, possibly an application), and again it is clear that µ(C[]) = µ(D[] · ~c) + 1. If D[]
is the empty context we have s�! t · ~c immediately, otherwise the induction hypothesis gives
that D[t] · ~c�! tγ · ~u for suitable γ, ~u as required. J

The following was also stated without proof:

I Lemma 1.12. If � ∪ � contains �! and f(x) � f#(~x) for all f ∈ D, then ≥ satisfies the
limited subterm property.

Proof. We must see that for all x, s, t and s � u with u not an abstraction or a variable,
∃γ[(λx. s) · t ≥ u#γ[x := t]]. Now, if s has base type and s = u then s � u by reflexivity.
Otherwise s·y1 · · · yn�u, and therefore by Lemma 1.11 there are γ,~v such that s·y1 · · · yn�!uγ·
~v, so by assumption s·~y (� ∪ �) uγ ·~v. Since � contains beta and is monotonous, and because
� ∪ � is stable, (λx. s)·t·~y � ·(� ∪ �) (uγ ·~v)[x := t] = uγ[x := t]·(~v[x := t]) =: uγ[x := t]· ~w.

So either way, s(� ∪ � · �)uγ[x := t]. Because always f(~x) � f#(~x) and by stability and
reflexivity u � u#, so by stability and monotonicity uγ[x := t] · ~w � u#γ[x := t] · ~w. Since,
by compatibility � · � · � is always included either in � · � or in � · � (by compatibility)
we thus have (λx. s) · t ≥ u#γ[x := t]. J

Proof of Theorem 6.7. Let (�,�) be a reduction pair satisfying the requirements in the
Theorem, and let (>,≥,≥1) be the associated reduction triple. By Theorem 6.2 D is
non-looping if:
1. l > p for all l ; p ∈ D1, which is satisfied if l � p;
2. l ≥ p for all l ; p ∈ D2, which is certainly satisfied if l � p;
3. l ≥1 r for all l→ r ∈ R, which is satisfied if l � r;
4. either D is non-collapsing, or ≥ satisfies the limited subterm property, which by Lemma

1.12 holds if the conditions of the Theorem are satisfied.
J
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A.6 Proofs of Section 7
First we note some properties of FS and FR which are reasonably obvious, but nevertheless
should be stated and proved:

I Lemma 1.13. The following statements hold:
1. If FSn(s) ⊆ FSm(t), then FRn(s) ⊆ FRm(t).
2. FRn(s) is included in FRn+1(s).
3. If Symb(s) ⊆ FSk(t), then for any N , FSN (s) ⊆ FSN+k(t).
4. If l→ r ∈ FRk(s), then FRN (l) ⊆ FRN+k+1(s)
5. For any n: →∗FRn(s) is included in →∗R.

Proof.
(1) holds because FRk(u) is entirely defined by symbols in FSk(u): given R and 〈f, σ〉 we
could define a set of rules Af,σ such that FRk(u) =

⋃
〈f,σ〉∈FSk(u) Af,σ (there may well be

some overlap between different Af,σ). Having this, it is evident that FRn(s) ⊆ FRm(t) when
FSn(s) ⊆ FSm(t).
(2) is a consequence of (1): FSn(s) ⊆ FSn+1(s) by the recursive definition.
(3) is proved with induction over N . If N = 0, the assumption provides what we need
immediately. If we know the statement holds for given N , note that FSN+1(s) is the union of
FSN (s) and FS0(l) for l→ r ∈ FRN (s). By the induction hypothesis also FSN (s) ⊆ FSN+k(t)
and therefore by 1) FRN (s) ⊆ FRN+k(t). As such, each symbol added to FSN+1 is also
added to FSN+k+1.
(4) can be derived from (1) and (3): if l→ r ∈ FRk(s) then Symb(l) ∈ FSk+1(s), so by (3)
also FSN (l) ⊆ FSN+k+1(s). By (3), then, FSN (l) ⊆ FRN+k+1(s) as required.
For (5) we first observe that whenever l→ r ∈ R and x1, . . . , xn variables such that l · ~x is
well-typed, we also have l · ~x→R r ~x, by monotonicity of →R. Since →∗R is transitive also
the multistep relation →∗FRn(s) is included in →∗R. J

Let FR∞(s) =
⋃
n∈N FRn(s). The following was stated without proof:

I Lemma 1.14. In a system with finitely many rules we can always find N such that
FR∞(s) = FRN (s).

Proof. In a system with finitely many rules there are only finitely many different pairs
l · ~x→ r · ~x (counting rules equal if they are equal under renaming of variables). All rules in
any FRn(s) have this form. Therefore, eventually FRN (s) = FRN+1(s) and from that point
on it is easy to see that FRN+K(s) stays the same. J

Proof of Lemma 7.4. Given a terminating term s, a term l and substitution γ such that
s →∗R lγ, we must show there is a substitution δ such that δ →∗R γ and s →∗FR(l) lδ. If
FR∞(l) contains any rule l′ → r′ with l′ not simple or l itself is not simple this is obvious,
because FR(l) = R, so δ := γ suffices. Thus we can safely assume that l is simple, and

(**) l′ is simple for any l′ → r′ ∈ FR∞(l).
For a given set of variables X, we say a term s is simple using X if s has no subterms x · ~t
with x ∈ X nor any subterms λy. t with FV (t) ∩X 6= ∅. A simple term l is simple using
FV (l).

It suffices to find δ such that s→∗FR∞ lδ and δ →∗R γ. We can additionally assume that
dom(γ) contains no variables not occurring in l, as we could simply say γ = γ1 ∪ γ2 with
lγ = lγ1, find suitable δ1 with the procedure below, and take δ := δ1 ∪ γ2.

Thus, let dom(γ) ⊆ X ⊆ FV (l) for l a simple term using X such that (**) holds, and
assume s→∗R lγ. Performing induction on s, ordered by →R ∪�, we will find some N and
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substitution δ such that s→∗FRN (l) lδ and δ →∗R γ. First suppose l is a variable in dom(γ),
so dom(γ) = X = FV (l); choosing δ := {l 7→ s} and n = 0 we are done. Otherwise, noting
that l is simple using X, l is either an abstraction not containing any variables x ∈ X, a
term x · l1 · · · ln with x /∈ X (so also x /∈ dom(γ)!) or a term f(l1, . . . , lm) · lm+1 · · · ln.

We alter the derivation s →∗R lγ a bit. For now (only in this proof), let us call a step
uχ · t0 · · · tn →R vχ · t0 · · · tn (with u→ v ∈ R) unpleasant if v is an abstraction. Unpleasant
steps can be avoided, because the rules have been “completed” in Section 4. Suppose
s →∗R uχ · ~t →R vχ · ~t →∗R lγ and the reduction s →∗R uχ · ~t does not use any (headmost)
unpleasant steps. Since lγ is not headed by a beta-redex there must be a headmost β-step in
the next reduction, vχ·~t = (λx.w)·t0 · · · tn →∗R (λx.w′)·t′0 · · · t′n →β w

′[x := t′0] · · · t′n →∗R lγ.
But then also uχ · t0 · · · tn →R w[x := t0] · t1 · · · tn →∗R lγ. Using induction first over s (by
→R), then over the depth of the redex in s (if s = u the choice of a different rule lowers the
depth by one) this procedure always leads to a reduction s→∗R lγ without any unpleasant
steps.

Now we pay special attention to variable-focussed steps. If uχ · t1 · · · tn →R vχ · t1 · · · tn
(with u→ v ∈ R) and head(v) ∈ V this is a so-called variable-focussed step (we only use this
terminology in this proof). Suppose s→∗R uχ ·~t→R vχ ·~t→∗R lγ with head(v) a variable and
the reduction s→∗R uχ not containing any headmost variable-focussed steps. Then note that
v : σ1⇒ . . .⇒σn⇒σ where l : σ; whether l is an abstraction, headed by a bound variable or
headed by a functional term, there is some f ∈ F ∪ {ABS ,VAR} such that 〈f, σ〉 ∈ FS0(l).
Therefore l′ := u · x1 · · ·xn → v · x1 · · ·xn =: r′ ∈ FR0(l). By (**) l′ is simple and by Lemma
1.13(4) FRm(l′) ⊆ FRm+1(l), so (**) also holds for l′. Let γ′ := χ ∪ [x1 := t1, . . . , xn := tn].
Now suppose we can find N ′, δ′ such that s →∗FRN′ (l′)

l′δ′ and δ′ →∗R γ′. Then we know
s→∗FRN′+1(l) l

′δ′ →FR0(l) r
′δ′ →∗R r′γ′ →∗R lγ. Since →∗FRk(l) is included in →∗R for any k by

Lemma 1.13(5) we can apply the induction hypothesis on the reduction r′δ′ →∗R lγ to find
M and δ such that r′δ′ →∗FRM (l) lδ and δ →∗R γ. By Lemma 1.13(2) we can then conclude
s→∗FRk(l) lδ, where k = max(N ′ + 1,M).
What remains to be seen is only that such N ′, δ′ really exist. We can safely assume that γ′
has domain FV (l′) and take X ′ = FV (l′) as well. Then l′ is simple using X ′, (**) holds,
and s→∗R l′γ′, so also s→∗R l′γ′. We will go on with l′, γ′, X ′ instead of l, γ,X.

The gain of the procedure detailed above is that the reduction s→∗R lγ can now be assumed
not to have any headmost unpleasant or variable-focussed steps. If s itself is headed by a
beta-redex, then as explained above eventually a β-step is done: s = (λx. t) · u · v1 · · · vn →∗R
(λx. t′) · u′ · v′1 · · · v′n →∗β t′[x := u′] · v′1 · · · v′n →∗R lγ. We might as well have done the
β-step immediately, and the induction hypothesis provides N and suitable δ such that
t[x := u] · ~v →∗FRN (l) lδ; since →β is included in →FRN (l) this completes the induction step.

Thus, we can safely assume that s is not headed by a beta-redex and s→∗R lγ without any
headmost unpleasant or variable-focussed steps, so no headmost beta-redex is ever created
either. Consequently, either s→∗R lγ purely by internal steps, or whenever s→∗R l′γ′ · ~t→R
r′γ′ · ~t→∗R lγ the head of r′ is a functional term f(~u). Our aim is still to find some N and
substitution δ such that s→∗FRn(l) lδ and δ →∗R γ. We perform a second induction on the
length of the reduction. Consider the form of l.

If l is an abstraction λx. l′, then X = FV (l′)∩X = ∅, so γ is the empty substitution and
we are actually trying to prove s→∗FRN (l) l for some N . If also s = λx. s′ then we apply the
� part of the first induction hypothesis (which we can do, because still l′ is simple using
X = ∅, and (**) holds because FS0(l′) ⊆ FS(l) and therefore FRn(l′) ⊆ FRn(l) for any n
by Lemma 1.13(1)). We see that s′ →∗FRN (l′) l

′ for some N , and since FRN (l′) ⊆ FRN (l)
therefore s→∗FRN (l) l = lγ. Alternatively, if s is not an abstraction, there must be a topmost
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step reducing to an abstraction. Since there would be no headmost (and thus also no
topmost) β-steps in the reduction this can only be the case if the reduction has the form
s →∗R uχ →R vχ →∗R lγ with u → v ∈ R and v an abstraction. But v has the same
type σ as l, and since 〈ABS , σ〉 ∈ FS0(l) therefore u → v ∈ FR0(l). Thus (**) still holds
for u and u is simple over FV (u) = dom(χ) =: X ′. We can apply the second induction
hypothesis to find M and a substitution ε such that s→∗FRM (u) uε and ε→∗R χ, and noting
that FRM (u) ⊆ FRM+1(l) by Lemma 1.13(4) also s→∗FRM+1(l) uε→FR0(l) vε→∗R vχ→∗R lγ.
Now the first induction hypothesis provides suitable K, δ such that vε→∗FRK(l) lδ and δ →∗R γ.
Defining N = max(M + 1,K), we have s→∗FRN (l) lδ as required, by Lemma 1.13(2).

Alternatively, l either has the form x · l1 · · · lm with x a variable not in dom(γ), or
f(l1, . . . , ln) · ln+1 · · · lm. Since all headmost steps in the reduction s →∗R lγ use a rule
u → f(v1, . . . , vn) · vn+1 · · · vm, the first form, l = x · l1 · · · lm is only possible if this form
was present from the beginning: s = x · s1 · · · sn and each si →∗R liγ. Note that l is simple
using X, so it is linear over X ⊇ dom(γ). We can define Xi = X ∩ FV (li) and γi := γ�Xi for
1 ≤ i ≤ m to have a number of substitutions on disjunct domains. FS(li) ⊆ FS(l) for all i so
by Lemma 1.13(1, 3) all FRk(li) ⊆ FRk(l). Hence (**) applies on li too, and we can apply
the induction hypothesis to get N1, . . . , Nm and δ1, . . . , δm such that each si →∗FRNi (l) liδi

and δi →∗R γi. Define N := max(N1, . . . , Nm) and δ := δ1 ∪ . . . ∪ δm (which is well-defined
because all γi and therefore also all δi have disjunct domains, and has the same domain as γ
because dom(γ) ⊆ FV (l)). Then δ →∗R γ and by Lemma 1.13(2) also s→∗FRN (l) lδ. If l has
the form f(l1, . . . , lk) · ln+1 · · · lm and s→∗in lγ we equally complete with the � part of the
first induction hypothesis.

What remains is the case s →∗R uχ · t1 · · · tn →R vχ · t1 · · · tn →∗in lγ. We can write
v = f(v1, . . . , vm) · vm+1 · · · vk : σ1⇒ . . .⇒ σn⇒ σ and l = f(l1, . . . , lm) · lm+1 · · · lk+n : σ.
Therefore 〈f, σ〉 ∈ FS0(l) and thus u · x1 · · ·xn → v · x1 · · ·xn ∈ FR0(l). Define l′ := u · ~x
and γ′ := χ ∪ [x1 := t1, . . . , xn := tn]. As we did before (in the case of a head step reducing
to an abstraction), we apply the second part of the induction hypothesis to find find M, δ′

such that s→∗FRM (l) l
′γ′ and then the first part of the induction hypothesis to find a suitable

K, δ such that r′δ′ →∗FRK(l) lδ; as before, we choose N := max(M,K). J

Proof of Lemma 7.5. We must see that if R is non-terminating, then there is an infinite
dependency chain over DP(R) such that ti →∗FR(li+1),in si+1 (rather than just ti →∗R,in si+1).
We use the same approach as in the proof of Theorem 4.5. Given any non-terminating term,
let u−1 be an MNT subterm. Now, for any i ∈ N, let ui be a given MNT term, and consider
an infinite reduction starting in ui. Then ui is either headed by a β-redex, or has the form
f(v1, . . . , vn)·vn+1 · · · vm with f ∈ D. In the first case we proceed exactly as done in the proof
of Theorem 4.5, which gives si+1 = ti. In the second case, ui = f(v1, . . . , vn)·vn+1 · · · vm, only
finitely many steps in the vj can be taken before a head step appears in any infinite reduction,
say ui →∗in f(v′1, . . . , v′n) · v′n+1 · · · v′m = lγ · v′j+1 · · · v′m with j ≤ m and rγ · v′j+1 · · · v′m still
non-terminating. As explained before, we can always find such a rule that either m = j or r
is not an abstraction. Define l′ := l · xj+1 · · ·xn and r′ := r · xj+1 · · ·xn for fresh xj+1 · · ·xn.
If FR(l′) = R let δ = γ ∪ [xj+1 := vj+1, . . . , xm := vm]; then certainly ui →∗FR(l′),in l

′δ and
r′δ is still non-terminating (since it reduces to rγ · v′j+1 · · · v′m). Otherwise l′ must be simple,
so it is left-linear; write l′ = f(l1, . . . , ln) · ln+1 · · · lj · xj+1 · · ·xm. Assuming (w.l.o.g.) that
dom(γ) = FV (l) we can define γi = γ�FV (lk) for 1 ≤ k ≤ j and have γ = γ1∪. . .∪γj and all γk
have disjunct domains. Since ui is MNT all vk are terminating, so by Lemma 7.4 we can find
substitution δk on the same domain as γk such that vk →∗FR(li) liδk and all δk(x)→∗R γk(x).
By Lemma 1.13(1,3) FR(li) ⊆ FR(l′), so defining δ := δ1 ∪ . . .∪ δj ∪ [xj+1 := vj+1, . . . , xm :=
vm] we have ui →∗FR(l′),in l

′δ for all 1 ≤ i ≥ m and δ →∗R γ ∪ [xj+1 := v′j+1, . . . , xm := v′j+1],
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so r′δ is non-terminating.
If m > j then in either of the two cases above r′δ is MNT (as discussed in the original

proof), so l′ ; r′ is a dependency pair and we can define ui+1 := r′δ and ρi+1, si+1, ti+1 :=
l′ ; r′, l′δ, r′δ. Ifm = j, so l = l′, r = r′, let p := p′[~y := ~c] with r�p′, FV (p′)\FV (r) = {~y}
and p′ minimal such that pδ is still non-terminating. As discussed before, pδ is MNT, and
l# ; p# is a dependency pair. Choose ui+1 := pγ and define ρi+1, si+1, ti+1 := l# ;

p#, l#δ, p#δ. The chain constructed in this way is an infinite dependency chain satisfying
the requirement in the Lemma. J

Proof of Theorem 7.6. Note: this Theorem introduces a new definition of “non-looping”.
First we see: if D is non-looping, then there is no usable dependency chain with all pairs in
D. This holds with induction over the derivation that D is non-looping: evidently there is no
usable chain over ∅ (since any usable chain is a dependency chain), and the existence of such
a split and ordering implies there cannot be a usable chain, in the same way as Theorem 6.2
was proved but noting that, since only rules in FR(D) are used in every step, l ≥1 r is only
required for these rules. J

A.7 Proofs of Section 8
I Lemma 1.15 (Examples of Weakly Monotonic Functionals). The following functions are
weakly monotonic.
1. For any element n ∈ Aι and σ = τ1⇒ . . .⇒τk⇒ ι the function nσ.
2. Any typing of the function λλf.f(~0).
3. Any maxσ,ι.

Proof. (1) is Lemma 4.2.2(1) in [21]. (2) is an immediate consequence of (1) and Lemma
4.1.6 in [21], writing λλf.f(~0) = JλF. F · o1 · · · onKJ where Joi = 0σi . (3) holds by induction
on σ, noting that maxι,κ is certainly weakly monotonic, and using once more Lemma 4.1.6
in [21] for the induction step. J

I Lemma 1.16 (Property of max). maxσ(f, n) wwm f, nσ

Proof. By induction on σ. If σ is a base type, then maxσ(f, n) wwm f, n by the assumption
on ∨. If σ = τ⇒ τ ′, then maxσ(f, n) = λλx.max(f(x), n), which by induction wwm both
λλx.f(x) = f and λλx.nτ = nσ. J

I Definition 1.17 (Translation). Introduce a new symbol @σ,τ : (σ⇒τ)⇒σ⇒τ for all types
σ, τ and let f ′ : σ1⇒ . . .⇒σn⇒τ be the flattened version of f : (σ1 × . . .× σn)⇒τ . For any
term s, let its lengthened version [s] be defined as follows: [s] = s if s : ι and [s] = λx. [s · [x]]
if s : σ⇒ τ and x a fresh variable. Now define the following translation of AFS-terms to
HRS-terms:

φ(x) = [x]
φ(f(s1, . . . , sn)) = [f ′ · φ(s1) · · ·φ(sn)]

φ(λx. s) = λx. φ(s)
φ(s · t) = [@(φ(s), φ(t))]

Then evidently φ(s) is in long β/η-normal form for all s, and thus can be seen as an
HRS-term. Assuming J@σ,τ = λλf.λλn.maxτ (f(n), n(~0)) the definition of J·K as given in
Definition 8.2 corresponds with the definition in [21], as the following Lemmas show:

I Lemma 1.18. Using Pol’s interpretations, JsK = J[s]K.
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Proof. By induction on the type of s; obvious for base types, and if s : σ ⇒ τ then
Jφ([s])K = Jφ(λx. [s·[x]])K = λλn.J[s·[x]]Kx:=n = (IH) λλn.Js·[x]Kx:=n = λλn.JsKx:=n(J[x]Kx:=n) =
λλn.JsK(J[x]Kx:=n) = (IH) λλn.JsK(JxKx:=n) = λλn.JsK(n) = JsK, since functions are extensional.

J

I Lemma 1.19. If J ′f ′ = Jf for all f , then JsKJ ,α from Definition 8.2 equals Jφ(s)Kα,J ′
from [21].

Proof. With induction on the size of s. The case where s is a variable is immediate,
if s is an abstraction we use the induction hypothesis. If s = f(s1, . . . , sm) then JsK =
Jf (Js1K, . . . , JsmK) = Jf (Js1K) . . . (JsmK) = (IH) Jf (Jφ(s1)K) . . . (Jφ(sm)K) = (Lemma 1.18,
and because J ′f ′ = Jf ) Jφ(s)K. If s = t · u then JsK = max(JtK(JuK), JuK(~0)) = J ′@(JtK, JuK) =
(IH) J@(φ(t), φ(s))K = (Lemma 1.18) Jφ(s)K as required. J

We continue with some additional properties of the interpretation and the max function,
which will be necessary for the proof of Theorem 8.4.

I Lemma 1.20. Let J be an interpretation function which maps all cx to 0σ if x : σ. Then
for all s and valuations α: Js · cx1 · · · cxnKJ ,α = JsKJ ,α(0σ1 , . . . , 0σn).

Proof. By induction on n; the base case is immediate. If A := Js · cx1 · · · cxn−1KJ ,α =
JsKJ ,α(0σ1 , . . . , 0σn−1), then Js · cx1 · · · cxnKJ ,α = max(A(JcxnKJ ,α), JcxnKJ ,α(~0)) = (by as-
sumption) max(A(0σn), 0) = (definition of ∨) A(0σn) = JsKJ ,α(~0). J

I Lemma 1.21. If s = t · u1 · · ·un and has base type, then JsKJ ,α wwm JuiKJ ,α(~0) for each
1 ≤ i ≤ n and JsKJ ,α wwm JtKJ ,α(Ju1KJ ,α, . . . , JunKJ ,α).

Proof. By induction on k we see that Jt · u1 · · ·ukKJ ,α(Juk+1KJ ,α, . . . , JunKJ ,α) wwm each
JuiK(~0) for i ≤ k and also wwm JtK(Ju1KJ ,α, . . . , JunKJ ,α); for k = n this gives the Lemma. For
k = 0 the statement is evident (the first claim holds because there is no 1 ≤ i ≤ k, the second
because wwm is reflexive). If 0 < k ≤ n and the statement holds for k − 1, then note that
Jt · u1 · · ·ukKJ ,α(Juk+1KJ ,α, . . . , JunKJ ,α) = max(Jt · u1 · · ·uk−1KJ ,α(JukKJ ,α), JukKJ ,α(~0))(
Juk+1KJ ,α, . . . , JunKJ ,α). By Lemma 1.16 this term wwm both Jt · u1 · · ·uk−1KJ ,α(JukKJ ,α)(
Juk+1KJ ,α, . . . , JunKJ ,α) = Jt·u1 · · ·uk−1KJ ,α(JukKJ ,α, . . . , JunKJ ,α) and also wwm (λλxk+1 . . .

xn.JukKJ ,α(~0))(Juk+1KJ ,α, . . . , JunKJ ,α) = JukKJ ,α(~0). This proves one part of the Lemma,
the rest is given by the induction hypothesis. J

I Lemma 1.22. Let J be a non-decreasing interpretation function which maps all cx to 0σ
of the corresponding type. Suppose s�! t. Then JsKJ ,α wwm JtKJ ,α for all valuations α.

Proof. By induction over the derivation of s �! t. The claim is evident if s = t, since
wwm is reflexive. If s = (λx. u) · v · w1 · · ·wn and u[x := v] · ~w �! t, then by the induction
hypothesis Ju[x := v] · ~wKJ ,α wwm JtK, so by transitivity of wwm we are done if JsKJ ,α wwm
Ju[x := v] · ~wKJ ,α. By weak monotonicity of the function K := λλf.λλn.max(f(n), n(~0))
(which holds by weak monotonicity of max and [21, Lemma 4.1.6]) this is certainly true if
J(λx. u) · vKJ ,α wwm Ju[x := v]KJ ,α. But this follows from the substitution Lemma (3.2.1)
in [21]: J(λx. u) · vKJ ,α = max(Jλx. uKJ ,α(JvKJ ,α), JvKJ ,α(~0)) wwm Jλx. uKJ ,α(JvKJ ,α) (by
Lemma 1.21), = (λλn.JuKJ ,α[x7→n])(JvKJ ,α) = JuKJ ,α◦[x:=v] (where α◦ [x := v] is the valuation
α[x := JvKJ ,α]), which by the substitution Lemma equals Ju[x := v]KJ ,α.

If s = f(u1, . . . , un) · v1 · · · vm and ui · ~c �! t, then by transitivity of wwm and the
induction hypothesis we are done if JsKJ ,α wwm Jui · ~cKJ ,α. By Lemma 1.21 JsKJ ,α wwm
Jf(~u)KJ ,α(Jv1KJ ,α, . . . , JvmKJ ,α) = Jf (Ju1KJ ,α, . . . , JunKJ ,α, Jv1KJ ,α, . . . , JvmKJ ,α). Noting
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that Jf is weakly monotonic and that any JwKJ ,α wwm 0σ, this termwwm Jf (0σ1 , . . . , JuiKJ ,α,
. . . , , 0σn , 0τ1 , . . . , 0τm), which by non-decreasingness wwm JuiKJ ,α(~0) = (by Lemma 1.20)
Jui · ~cKJ ,α as required.

If neither of those is the case, we can write s = u · v0 · · · vn and vi · ~c �! t. By Lemma
1.21 JsKJ ,α wwm JviKJ ,α(~0), which by Lemma 1.20 = Jvi · ~cKJ ,α. J

Proof of Theorem 8.4. � is an ordering by its definition, and is well-founded because if
f =wm g then also f(~0) =wm g(~0), and we assumed that =wm is a well-founded order in
A. � is a quasi-ordering by its definition, and is monotonic as we see with a simple case
distinction; if JsKJ ,α wwm JtKJ ,α for all α, then:

Jλx. sKJ ,α = λλn.JsKJ ,α◦[x:=n] wwm λλn.JtKJ ,α◦[x:=n] = JtKJ ,α.
Js · uKJ ,α wwm Jt · uKJ ,α by weak monotonicity of K := λλf.λλn.max(f(n), n(~0)).
Ju · sKJ ,α wwm Ju · tKJ ,α by weak monotonicity of K.
Jf(. . . , s, . . .)KJ ,α wwm Jf(. . . , t, . . .)KJ ,α by weak monotonicity of Jf .

In addition, wwm contains beta by Lemma 1.21, as we also saw in the first part of the proof
of Lemma 1.22.

As for compatibility, if s � t � u, then for all valuations α we have: JsKJ ,α =
λλn1 . . . nk.f(n1, . . . , nk) =wm JtKJ ,α = λλn1 . . . nk.g(n1, . . . , nk) wwm JuKJ ,α = λλn1 . . . nk.h(
n1, . . . , nk); since =wm and wwm are compatible both ways (wwm on A just being the
reflexive closure of =wm), thus f(n1, . . . , nk) � h(n1, . . . , nk), and s � u follows.

Finally, stability. Here, we use the substitution Lemma ((3.2.1) in [21]): always JuγKJ ,α =
JuKJ ,α◦γ , so if JsKJ ,α =wm JtKJ ,α for all α, then this must also hold for a valuation of the
form α ◦ γ. The same holds for wwm.

The subterm property is Lemma 1.22 and the marking property, Jf(~x)KJ ,α wwm Jf#(~x)KJ ,α
is immediate with the assumption Jf wwm Jf# . J

RTA’11
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