
Polynomial Interpretations for Higher-Order
Rewriting ∗

Carsten Fuhs1 and Cynthia Kop2

1 University College London, Gower Street, London WC1E 6BT, UK
2 Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract
The termination method of weakly monotonic algebras, which has been defined for higher-order
rewriting in the HRS formalism, offers a lot of power, but has seen little use in recent years.
We adapt and extend this method to the alternative formalism of algebraic functional systems,
where the simply-typed λ-calculus is combined with algebraic reduction. Using this theory, we
define higher-order polynomial interpretations, and show how the implementation challenges of
this technique can be tackled. A full implementation is provided in the termination tool WANDA.

Keywords and phrases higher-order rewriting, termination, polynomial interpretations, weakly
monotonic algebras, automation

1 Introduction

One of the most prominent techniques in termination proofs for first-order term rewriting
systems (TRSs) is the use of polynomial interpretations. In this method, which dates back
to the seventies [24], terms are mapped to polynomials over (e.g.) N. The method is quite
intuitive, since a TRS is usually written with a meaning for the function symbols in mind,
which can often be modeled by the interpretation. In addition, it has been implemented
in various automatic tools, such as AProVE [14], TTT2 [22] and Jambox [8]. Polynomial
interpretations are an instance of the monotonic algebra approach [9] which also includes for
instance matrix interpretations. They are used both on their own, and in combination with
dependency pair approaches [1].

In the higher-order world, monotonic algebras were among the first termination methods
to be defined, appearing as early as 1994 [26]; an in-depth study is done in van de Pol’s 1996
PhD thesis [27]. Surprisingly, the method has been almost entirely absent from the literature
ever since. This is despite a lot of interest in higher-order rewriting, witnessed not only by
a fair number of publications, but also by the recent participation of higher-order tools in
the annual Termination Competition [30]. Since the addition of a higher-order category,
two tools have participated: THOR [4], by Borralleras and Rubio, and WANDA [18], by the
second author of this paper. So far, neither tool has implemented weakly monotonic algebras.

In this paper we aim to counteract this situation, by both studying the class of polynomial
interpretations in the natural numbers, and implementing the resulting technique in the
termination tool WANDA. Van de Pol did not consider automation of his method (there
was less focus on automation at the time), but there are now years of experience of the
first-order world to build on; we will lift the parametric first-order approach [6], and make
some necessary adaptations to cater for the presence of higher-order variables.

∗ This research is supported by the Netherlands Organisation for Scientific Research (NWO-EW) under
grant 612.000.629 (HOT).

© Carsten Fuhs and Cynthia Kop;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Polynomial Interpretations for Higher-Order Rewriting

Paper Setup Section 2 discusses preliminaries: Algebraic Functional Systems, the higher-
order formalism we consider, reduction pairs and weakly monotonic algebras for typed λ-terms.
In Section 3 we extend these definitions to AFSs, and define a general termination method. Sec-
tion 4 defines the class of higher-order polynomials, and in Section 5 we show how suitable
polynomial interpretations can be found automatically. Experiments with this implementation
are presented in Section 6, and an overview and ideas for future work are given in Section 7.

The main contribution of this paper are the techniques for automation, discussed in
Section 6. For simplicity of the code, these techniques are limited to the (very common)
class of second-order AFSs, although extensions to systems of a higher order are possible. As
far as we know, this is the first implementation of higher-order polynomial interpretations.

This is a pre-editing version of [13], including some proof extensions in the appendix.

2 Background

2.1 Algebraic Functional Systems
We consider algebraic higher-order rewriting as defined by Jouannaud and Okada, also called
Algebraic Functional Systems (AFSs) [16]. This formalism combines the simply-typed λ-calcu-
lus with algebraic reduction, and appears in papers on e.g. HORPO [17], MHOSPO [5] and
dependency pairs [20]; it is also the formalism in the higher-order category of the annual ter-
mination competition. We follow roughly the definitions in [29, Ch. 11.2.3], as recalled below.

Types and Terms The set of simple types (or just types) is generated from a given set B of
base types and the binary, right-associative type constructor⇒; types are denoted by σ, τ and
base types by ι, κ. A type with at least one occurrence of ⇒ is called a functional type. A
type declaration is an expression of the form [σ1× . . .×σn]⇒τ for types σi, τ ; if n = 0 we just
write τ . Type declarations are not types, but are used to “type” function symbols. All types
can be expressed in the form σ1⇒ . . .⇒σn⇒ ι (with n ≥ 0 and ι ∈ B). The order of a type is
order(ι) = 0 if ι ∈ B, and order(σ⇒τ) = max(order(σ)+1, order(τ)). Extending this to type
declarations, order([σ1 × . . .× σn]⇒τ) = max(order(σ1) + 1, . . . , order(σn) + 1, order(τ)).

We assume a set V of infinitely many typed variables for each type, and a set F disjoint
from V which consists of function symbols, each equipped with a type declaration. Terms
over F are those expressions s for which we can infer s : σ for some type σ using the clauses:

(var) x : σ if x : σ ∈ V
(app) s · t : τ if s : σ⇒τ and t : σ
(abs) λx. s : σ⇒τ if x : σ ∈ V and s : τ
(fun) f(s1, . . . , sn) : τ if f : [σ1 × . . .× σn]⇒τ ∈ F and s1 : σ1, . . . , sn : σn

Note that a function symbol f : [σ1 × . . .× σn]⇒τ takes exactly n arguments, and τ is not
necessarily a base type (a type declaration gives the arity of the symbol). λ binds occurrences
of variables as in the λ-calculus. Terms are considered modulo α-conversion; bound variables
are renamed if necessary. Variables which are not bound are called free, and the set of free
variables of s is denoted FV (s). Application is left-associative, so s · t · u should be read
(s · t) · u. Terms constructed without clause (fun) are also called (simply-typed) λ-terms.

A substitution [~x := ~s], with ~x and ~s finite vectors of equal length, is the homomorphic
extension of the type-preserving mapping ~x 7→ ~s from variables to terms. Substitutions are
denoted γ, δ, and the result of applying γ to a term s is denoted sγ. The domain dom(γ) of
γ = [~x := ~s] is {~x}. Substituting does not bind free variables. A context C[] is a term with a
single occurrence of a special symbol 2σ. The result of replacing 2σ in C[] by a term s of
type σ is denoted C[s]. Free variables may be captured; if C[] = λx.2σ then C[x] = λx. x.

C. Fuhs and C. Kop 3

Rules and Rewriting A rewrite rule is a pair of terms l→ r such that l and r have the same
type and all free variables of r also occur in l. In [19] some termination-preserving transforma-
tions on the general format of AFS-rules are presented; using these results, we may additionally
assume that l has the form f(l1, . . . , ln)·ln+1 · · · lm (with f ∈ F andm ≥ n ≥ 0), that l has no
subterms x·s with x a free variable, and that neither l nor r have a subterm (λx. s)·t. Given a
set of rules R, the rewrite or reduction relation →R on terms is given by the following clauses:

(rule) C[lγ] →R C[rγ] with l→ r ∈ R, C a context, γ a substitution
(β) C[(λx. s) · t] →R C[s[x := t]] with s, t terms, C a context

An algebraic functional system (AFS) is the combination of a set of terms and a rewrite
relation on this set, and is usually specified by a pair (F ,R), or just by a set R of rules. An
AFS is terminating if there is no infinite reduction s1 →R s2 →R . . .

An AFS is second-order if the type declarations of all function symbols have order ≤ 2.
In a second-order system, all free variables in the rules have order ≤ 1 (this follows by the
restrictions on the left-hand side), and all bound variables have base type (this holds because
free variables have order ≤ 1 and we have assumed that the rules do not contain β-redexes).

I Example 2.1. One of the examples considered in this paper is the AFS shuffle. This
(second-order) system for list manipulation has five function symbols, nil : natlist, cons :
[nat× natlist]⇒natlist, append : [natlist× natlist]⇒natlist, reverse : [natlist]⇒natlist, shuffle :
[(nat⇒nat)× natlist]⇒natlist, and the following rules:

append(cons(h, t), l) → cons(h, append(t, l)) append(nil, l) → l

reverse(cons(h, t)) → append(reverse(t), cons(h, nil)) reverse(nil) → nil
shuffle(F, cons(h, t)) → cons(F · h, shuffle(F, reverse(t))) shuffle(F, nil) → nil

2.2 Reduction Pairs
To prove termination, modern approaches typically use reduction pairs, in one of three setups:

For rule removal, we consider a strong reduction pair : a pair (%,�) of a quasi-ordering
and a well-founded ordering on terms, such that % and � are compatible: % · � is included
in � or � · % is, both % and � are monotonic, both % and � are stable (preserved under
substitution), and in the higher-order case, % contains β: (λx. s) · t % s[x := t].

If R = R1]R2 and l � r for rules in R1, and l % r for rules in R2, then there is no →R-
sequence which uses the rules in R1 infinitely often; this would contradict well-foundedness
of �. Thus, →R is terminating if →R2 is terminating. In practice, we try to orient all rules
with either � or %, and then remove those ordered with � and continue with the rest.

The second setup, dependency pairs, is more sophisticated. In this approach, dependency
pair chains are considered, which use infinitely many “dependency pair” steps at the top of a
term. It is enough to orient the resulting constraints with a weak reduction pair : a pair (%,�)
of a quasi-ordering and a compatible well-founded ordering where both are stable, and % is
monotonic and contains β. The dependency pair approach was defined for first-order TRSs
in [1], and has seen many extensions and improvements since. For higher-order rewriting,
two variations exist: static dependency pairs [23] and dynamic dependency pairs [28, 21].

The static dependency pair approach is restricted to plain function passing systems;
slightly simplified, whenever a higher-order variable F occurs in the right-hand side of a rule
f(l1, . . . , ln)→ r, then F is one of the li. Static dependency pairs may have variables in the
right-hand side which do not occur in the left (such as a dependency pair I](s(n))→ I](m)), but
always have the form f](l1, . . . , ln)→ g](r1, . . . , rm). The static approach gives constraints
of the form l % r or l � r for dependency pairs l→ r, and l % r for rules l→ r.

The dynamic dependency pair approach is unrestricted, but right-hand sides of dependency

4 Polynomial Interpretations for Higher-Order Rewriting

pairs may be headed by a variable, e.g. collapse](cons(F, t))→ F · collapse(t), and sometimes
subterm steps are needed. Thus, the dynamic approach not only gives constraints l � r or
l % r for dependency pairs and l % r for rules, but also two further groups of constraints:

f(s1, . . . , sn) ·t1 · · · tm % si ·cσ1 · · · cσki if both sides have base type, si : σ1⇒ . . .⇒σki⇒ ι

and f is a symbol in some fixed set S (the cσj are special symbols which may occur in
the right-hand sides of dependency pairs but do not occur in the rules)
s · t1 · · · tn % ti · cσ1 · · · cσki if both sides have base type, and ti : σ1⇒ . . .⇒σki⇒ ι

A third setup, which also uses a sort of reduction pair rather than the traditional reduction
ordering, are the monotonic semantic path orderings from Borralleras and Rubio [5]. This
method is based on a recursive path ordering, but uses a well-founded order on terms rather
than a precedence on function symbols; this gives constraints of the form s �I t, s �Q t, s �Q
t, where �I and �Q are quasi-orderings and s �I t implies f(. . . , s, . . .) �Q f(. . . , t, . . .).

In this paper, we focus on the first two setups, which have been implemented in WANDA.
However, the technique could be used with the monotonic semantic path ordering as well.

2.3 First-order Monotonic Algebras - Idea Sketch
In the first-order definition of monotonic algebras [9], terms are mapped to elements of a
well-founded target domain (A, >,≥). This is done by choosing an interpretation function
J (f) for all function symbols f that is monotonic w.r.t. > and ≥, and extending this
homomorphically to an interpretation J·K of terms; for polynomial interpretations, J (f) is
always a polynomial. If JlKJ ,α > JrKJ ,α for all valuations α of the free variables of l, then
JC[lγ]KJ > JC[rγ]KJ for all contexts C and substitutions γ. Thus, the pair (%,�) where
s % t if JsKJ ,α ≥ JtKJ ,α and s � t if JsKJ ,α > JtKJ ,α can be used as a strong reduction pair.

For example, to prove termination of the TRS consisting of the two append rules from
Example 2.1, we might assign the following interpretation to the function symbols: J (nil) =
2, J (cons) = λλnm.n + m + 1 and J (append) = λλnm.2 · n + m + 1. Here, the λλ syntax
indicates function creation: cons, for instance, is mapped to a function which takes two
arguments, and returns their sum plus one. Calculating all JlKJ ,α, JrKJ ,α, and noting that
(N, >,≥) is a well-founded set and that all interpretations are monotonic functions, we see
that the TRS is terminating because for all h, t, l: 4+l+1 > l (for the rule append(nil, l)→ l),
and 2·h+2·t+2+l+1 > h+2·t+l+1 (for append(cons(h, t), l)→ cons(h, append(t, l)).

2.4 Weakly Monotonic Functionals
In higher-order rewriting we have to deal with infinitely many types (due to the type
constructor⇒), a complication not present in first-order rewriting. As a consequence, it is
not practical to map all terms to the same target set. A more natural interpretation would
be, for instance, to map a functional term λx. s : o⇒o to an element of the function space
N⇒ N. However, this choice has problems of its own, since it forces the termination prover
to deal with functions that absolutely nothing is known about. Instead, the target domain
for interpreting terms, as proposed by van de Pol in [27], is the class of weakly monotonic
functionals. To each type σ we assign a set WMσ and two relations: a well-founded ordering
=σ and a quasi-ordering wσ. Intuitively, the elements of WMσ⇒τ are functions which
preserve w.

I Definition 2.2 (Weakly Monotonic Functionals). [27, Def. 4.1.1] We assume given a well-
founded set: a triple A = (A, >,≥) of a non-empty set, a well-founded partial ordering on

C. Fuhs and C. Kop 5

that set and a compatible quasi-ordering.1 To each type σ we associate a setWMσ of weakly
monotonic functionals of type σ and two relations =σ and wσ, defined inductively as follows:

For a base type ι, we have WMι = A; =ι = >, and wι = ≥.
For a functional type σ⇒τ , WMσ⇒τ consists of the functions f from WMσ to WMτ

such that: if x wσ y then f(x) wτ f(y). Let f =σ⇒τ g iff f(x) =τ g(x), and f wσ⇒τ g iff
f(x) wτ g(x) for all x, y ∈ WMσ.
Thus, WMσ⇒τ is a subset of the function space WMσ ⇒ WMτ , consisting of functions
which preserve w. Note that both WMσ and the relations =σ and wσ should be considered
as parametrised with A; the complete notation would be (WMAσ ,=Aσ ,wAσ). For readability,
A will normally be omitted, as will the type denotations for the various =σ and wσ relations.
The phrase “f is weakly monotonic” means that f ∈ WMσ for some σ.

It is not hard to see that an element λλx1 . . . xn.P (x1, . . . , xn) of the function space
WMσ1 ⇒ . . .⇒WMσn ⇒ A is weakly monotonic if and only if:

∀N1,M1 ∈ WMσ1 , . . . , Nn,Mn ∈ WMσn :
if each Ni wMi then P (N1, . . . , Nn) w P (M1, . . . ,Mn)

By Lemmas 4.1.3 and 4.1.4 in [27] we obtain several pleasant properties of w and =:
I Lemma 2.3. For all types σ, the relations =σ and wσ are compatible, =σ is well founded,
wσ is reflexive, and both =σ and wσ are transitive.

Comment: the definition in [27] actually assigns a different set Aι to each base type ι
(although there must be an addition operator +ι,κ,ι for every pair of base types). We use the
same set for all base types, as this gives a simpler definition, and it is not obvious that using
different sets gives a stronger technique; we could for instance choose A = Aι] Aκ instead.

Also, in [27] WMσ⇒τ consists of functions f in a larger function space Iσ ⇒ Iτ 2 such
that f(x) ∈ WMτ if x ∈ WMσ and f preserves w. Our definition is simpler, but essentially
equivalent; every function in WMσ ⇒WMτ can be extended to a function in Iσ ⇒ Iτ .
I Example 2.4 (Some Examples of Weakly Monotonic Functionals).
1. Constant Function: For all n ∈ A and types τ = τ1⇒ . . .⇒τk⇒ ι, let nτ := λλ~x.n. Then

nτ ∈ WMτ , since nτ (N1, . . . , Nk) = n w n = nτ (M1, . . . ,Mk) if all Ni wMi.
2. Lowest Value Function: Suppose A has a minimal element 0 for the ordering >. Then

for any type τ = τ1⇒ . . .⇒ τk ⇒ ι the function λλf.f(~0), which maps f ∈ WMτ to
f(0τ1 , . . . , 0τk) (where each 0τi is a constant function), is in WMτ⇒o by induction on k.

3. Maximum Function: In the natural numbers, the function max which assigns to any
two numbers the highest of the two is weakly monotonic, since max(a, b) ≥ max(a′, b′)
if a ≥ a′ and b ≥ b′. For any type τ = τ1⇒ . . .⇒ τk⇒ ι (with ι ∈ B) let maxτ (f,m) =
λλx1 . . . xk.max(f(x1, . . . , xk),m). This function is in WMτ⇒ι⇒τ by induction on k.

The constant and lowest value function appear in [27]; the maximum function appears in [20].
I Definition 2.5 (Interpreting a λ-Term to a Weakly Monotonic Functional). Given a well-
founded set A = (A, >,≥), a simply-typed λ-term s and a valuation α which assigns to all
variables x : σ in FV (s) an element of WMσ, let [s]α be defined by the following clauses:

[x]α = α(x) if x ∈ V
[s · t]α = [s]α([t]α)
[λx. s]α = λλn.[s]α∪{x 7→n} if x /∈ dom(α) (always applicable with α-conversion)

1 Van de Pol defines ≥ as the reflexive closure of >. In contrast, here we generalise the notion of a
well-founded set to include an explicitly given compatible quasi-ordering ≥.

2 Here, Iι = Aι if ι ∈ B, and Iσ⇒τ is the full function space Iσ ⇒ Iτ .

6 Polynomial Interpretations for Higher-Order Rewriting

Definition 2.5 is an instance of a definition in [27] which suffices for the extension to AFSs.
By Lemma 3.2.1 and Proposition 4.1.5(1) in [27], we have:

I Lemma 2.6 (Facts on λ-Term Interpretations).
1. (Substitution Lemma) Given a substitution γ = [x1 := s1, . . . , xn := sn] and a valuation

α whose domain does not include the xi: [sγ]α = [s]α◦γ. Here, α ◦ γ is the valuation
α ∪ {x1 7→ [s1]α, . . . , xn 7→ [sn]α}.

2. If s : σ is a simply-typed λ-term, then [s]α ∈ WMσ for all valuations α.

3 (Weakly and Extended) Monotonic Algebras for AFSs

The theory in [27] was defined for Nipkow’s formalism of Higher-order Rewrite Systems
(HRSs) [25], which differs in several ways from our Algebraic Functional Systems. Most
importantly, in the setting of HRSs terms are equivalence classes modulo β; thus, the
definitions in [27] are designed so that JsK = JtK if s and t are equal modulo β. This is not
convenient for AFSs, since then for instance J(λx. 0) · tK = J(λx. 0) · uK regardless of t and u.

Fortunately, we do not need to redesign the whole theory for use with AFSs; rather, we
can transpose the result using a transformation. We will need no more than Lemma 2.6.

Note: some of the results of this section have also been stated in [20], but the results there
are limited to what is needed for the dynamic dependency pair approach; here, we are more
general, by not fixing the interpretation of application and also studying strong monotonicity.

I Definition 3.1 (Weakly Monotonic Algebras for AFSs). A weakly monotonic algebra for
an AFS with function symbols F consists of a well-founded set A = (A, >,≥) and an
interpretation function J which assigns an element of WMσ1⇒...⇒σn⇒τ to all f : [σ1× . . .×
σn]⇒τ ∈ F , and a value in WMσ⇒σ to the fresh symbol @σ for all functional types σ.

Given an algebra (A,J), a term s over F and a valuation α which assigns to all variables
x : σ in FV (s) an element of WMσ, let JsKJ ,α be defined recursively as follows:

JxKJ ,α = α(x) if x ∈ V
Jf(s1, . . . , sn)KJ ,α = J (f)(Js1KJ ,α, . . . , JsnKJ ,α) if f ∈ F
Js · tKJ ,α = J (@σ)(JsKJ ,α, JtKJ ,α) if s : σ
Jλx. sKJ ,α = λλn.JsKJ ,α∪{x7→n} if x /∈ dom(α)

This definition, which roughly follows the ideas of [27] and extends the definition of a weakly
monotone algebra in [9] to the setting of AFSs, assigns to every function symbol and variable
a weakly monotonic functional, and calculates the value of the term accordingly. For the
purposes of the interpretation, application is treated as a function symbol @σ. As in [27],
the interpretation function J is separate from the valuation α, as we will quantify over α.

I Example 3.2. Consider the shuffle signature from Example 2.1, extended with symbols
0 and s for the natural numbers. Let A = (N, >,≥). By way of example, choose: J (0) =
1, J (s) = λλn.n+ 2, J (cons) = λλnm.n+m, J (shuffle) = λλFn.F (n) and α(z) = 37. Then
Jshuffle(λx. s(x), cons(s(0), z))KJ ,α = JF (n)KJ ,{F 7→λλm.m+2,n7→40} = 42.

I Lemma 3.3 (Weakly Monotonic Algebras for AFSs). Let (A,J) be a weakly monotonic
algebra for F , and s, t terms over F . For all valuations α as described in Definition 3.1:
1. JsKJ ,α ∈ WMσ if s : σ.
2. JsKJ ,α◦γ = JsγKJ ,α (where α ◦ γ = α ∪ {x 7→ Jγ(x)KJ ,α | x ∈ dom(γ)})
3. If JsKJ ,δ w JtKJ ,δ for all valuations δ, then JsγKJ ,α w JtγKJ ,α.

If JsKJ ,δ = JtKJ ,δ for all valuations δ, then JsγKJ ,α = JtγKJ ,α.
4. If JsKJ ,δ w JtKJ ,δ for all valuations δ, then JC[s]KJ ,α w JC[t]KJ ,α.

C. Fuhs and C. Kop 7

Proof. The proof proceeds by translating (arbitrary) terms to simply-typed λ-terms, and
then reusing the original result. Interpretation of function symbols (J) is translated to
assignment of variables (α), and application is treated as a function symbol.

Consider the following transformation:

ϕ(x) = x (x ∈ V) ϕ(f(s1, . . . , sn)) = xf · ϕ(s1) · · ·ϕ(sn) (f ∈ F)
ϕ(λx. s) = λx. ϕ(s) ϕ(s · t) = x@,σ · ϕ(s) · ϕ(t) (s : σ)

Here, the xf is a new variable of type σ1⇒ . . .⇒ σn⇒ τ for f : [σ1 × . . . × σn]⇒ τ ∈ F ,
and x@,σ is a variable of type σ⇒σ. For any substitution γ, let γϕ denote the substitution
[x := ϕ(γ(x)) | x ∈ dom(γ)] (the xf are left alone). We make the following observations:

(**) ϕ(sγ) = ϕ(s)γϕ for all substitutions γ.
(***) JsKJ ,α = [ϕ(s)]δ, if δ(x) = α(x) for x ∈ FV (s), δ(xf) = J (f), δ(x@,σ) = J (@σ)
Both statements hold by a straightforward induction on the form of s.

(1) holds by (***) and Lemma 2.6(2). (2) holds because JsγKJ ,α = [ϕ(sγ)]δ by (***),
= [ϕ(s)γϕ]δ by (**), = [ϕ(s)]δ◦γϕ by Lemma 2.6(1), which is exactly JsKJ ,α◦γ by (***). (3)
holds by (2): JsγKJ ,α = JsKJ ,α◦γ by (2), w JtKJ ,α◦γ = JtγKJ ,α, and similar for =. (4) holds
by a straightforward induction on the form of C (this result has no counterpart in [27]). J

The theory so far allows us to use weakly monotonic algebras in a weak reduction pair.

I Theorem 3.4. Let a weakly monotonic algebra (A,J) be given such that always J (@σ) w
λλfn.f(n), and define the pair (%,�) by: s % t if JsKJ ,α w JtKJ ,α for all valuations α, and
s � t if JsKJ ,α = JtKJ ,α for all α. Then (%,�) is a weak reduction pair.

Proof. (%,�) is a compatible combination of a quasi-ordering and a well-founded ordering by
Lemma 2.3 and % is monotonic by Lemma 3.3(4). Also, % contains beta: for all valuations
α, J(λx. s) · tKJ ,α = J (@σ)(Jλx. sKJ ,α, JtKJ ,α) w Jλx. sKJ ,α(JtKJ ,α) by assumption, which
equals JsKJ ,α∪{x 7→JtKJ ,α} = JsKJ ,α◦[x:=t], and this equals Js[x := t]KJ ,α by Lemma 3.3(2). J

Comment: if we choose J (@σ) = λλfn.f(n), we have a system very similar to the one
used for simply-typed λ-calculus (and HRSs). By not fixing the interpretation of @σ we have
a choice, which, depending on the setting (rule removal, static dependency pairs, dynamic
dependency pairs) may be essential; we will see different choices in Examples 3.5, 3.6 and 4.4.

I Example 3.5. Using the static dependency pair framework of [23] to deal with shuffle, we
obtain several sets of requirements. HORPO [17] runs into trouble with the dependency pair
shuffle](F, cons(h, t))→ shuffle](F, reverse(t)), where we need a weak reduction pair satisfying:

shuffle](F, cons(h, t)) � shuffle](F, reverse(t))
append(cons(h, t), l) % cons(h, append(t, l)) append(nil, l) % l

reverse(cons(h, t)) % append(reverse(t), cons(h, nil)) reverse(nil) % nil
Using Theorem 3.4, we choose the following interpretation J in the natural numbers:
J (shuffle]) = λλfn.n J (cons) = λλnm.m+ 1 J (nil) = 0
J (reverse) = λλn.n J (append) = λλnm.n+m J (@σ) = λλfn.f(n) for all σ

Quantifying over the valuation, it suffices to show that for all F ∈ WMnat⇒nat, h, t ∈ N:
t+ 1 > t, t+ l + 1 ≥ t+ l + 1, t+ 1 ≥ t+ 1, l ≥ l, 0 ≥ 0. This is obviously the case!

I Example 3.6. For a case where we cannot choose J (@σ) = λλfn.f(n), consider collapse:

0 : nat min : [nat× nat]⇒nat cons : [(nat⇒nat)× flist]⇒flist
s : [nat]⇒nat diff : [nat× nat]⇒nat build : [nat]⇒flist

nil : flist gcd : [nat× nat]⇒nat collapse : [flist]⇒nat

8 Polynomial Interpretations for Higher-Order Rewriting

min(x, 0) → 0 gcd(s(x), 0) → s(x)
min(0, x) → 0 gcd(0, s(x)) → s(x)

min(s(x), s(y)) → s(min(x, y)) gcd(s(x), s(y)) → gcd(diff(x, y), s(min(x, y)))
diff(x, 0) → x build(0) → nil
diff(0, x) → x build(s(x)) → cons(λy. gcd(y, x), build(x))

diff(s(x), s(y)) → diff(x, y) collapse(nil) → 0
collapse(cons(F, t)) → F · collapse(t)

This AFS is not plain function passing, so we cannot use static dependency pairs. Using
dynamic dependency pairs, HORPO runs into trouble when faced with the constraints:

collapse](cons(F, t)) (%) F · collapse(t)
collapse](cons(F, t)) (%) collapse](t) l % r for all rules l→ r listed above

The (%) relation denotes that the constraint can either be oriented with % or with �; to make
progress, at least one of these constraints must be oriented with �. Recall that in the dynamic
dependency pair approach the constraints must be satisfied with a reduction pair that also
has s · t1 · · · tn % ti · c1 · · · cm if both sides have base type, for fresh constants cj ; moreover, we
must have gcd(x, y) % x, y. To guarantee this, we choose J (@σ⇒τ) = λλfn.maxτ (f(n), n(~0)),
where n(~0) and maxτ were defined in Example 2.4. Then J (@σ⇒τ) w λλfn.f(n), and if we
assign J (cj) = 0σ for cj : σ, then Js · ~tKJ ,α w Jti · ~cKJ ,α is indeed satisfied. Additionally, let
J (0) = J (nil) = 0, J (diff) = J (gcd) = λλnm.n+m, J (s) = J (build) = λλn.3 · n, J (min) =
λλnm.0, J (collapse) = λλn.n, J (collapse]) = λλn.n+ 1 and J (cons) = λλfn.f(n) + n.

With this interpretation, we have l % r for all rules. Moreover, Jcollapse](cons(F, t))KJ ,α =
1+F (t)+t > max(F (t), t) = JF ·collapse(t)KJ ,α and Jcollapse](cons(F, t))KJ ,α = 1+F (t)+t ≥
1 + t = Jcollapse](t)KJ ,α. As required, we can remove one dependency pair (the first one).

Strong Monotonicity To use weakly monotonic algebras in the setting of rule removal, we
shall need an additional requirement: = must be monotonic. This is achieved by posing a
restriction on J : each J (f) should be strongly monotonic:

I Definition 3.7 (Strongly Monotonic Functional). An element f of WMσ1⇒...⇒σn⇒ι is
strongly monotonic in argument i if for all N1 ∈ WMσ1 , . . . , Nn ∈ WMσn and Mi ∈ WMσi

we have: f(N1, . . . , Ni, . . . , Nn) = f(N1, . . . ,Mi, . . . , Nn) if Ni =Mi.

For first- and second-order functions, strong monotonicity corresponds with the notion strict
in [27]. For higher-order functions, the definition of [27] is more permissive. We have chosen
to use strong monotonicity because the strictness requirement significantly complicates the
theory of [27], and most common examples of higher-order systems are second-order. Strongly
monotonic functionals exist for all types, e.g. λλx1 . . . xn.x1(~0)+. . .+xn(~0) ∈ WMτ1⇒...⇒τn⇒ι.

An extended monotonic algebra is a weakly monotonic algebra where each J (@σ) is
strongly monotonic in its first two arguments,3 and for f : [σ1 × . . . × σn]⇒ τ ∈ F also
J (f) is strongly monotonic in its first n arguments. This notion extends the corresponding
definition from [9] for the first-order setting to the setting of AFSs. We obtain:

I Theorem 3.8. Let an extended monotonic algebra (A,J) be given such that always
J (@σ) w λλfn.f(n); the pair (%,�) from Theorem 3.4 is a strong reduction pair.

Proof. It is a weak reduction pair by Theorem 3.4, and strongly monotonic because
JC[s]KJ ,α = JC[t]KJ ,α for all α whenever JsKJ ,α = JtKJ ,α for all α (an easy induction). J

3 Note that e.g. J (@o⇒o⇒o) is an element of the function spaceWMo⇒o⇒o ⇒WMo ⇒WMo ⇒WMo;
a function which takes three arguments. It need not be strongly monotonic in its 3rd argument, because
we think of application as a symbol @σ⇒τ : [(σ⇒τ)× σ]⇒τ of arity 2, where τ may be functional.

C. Fuhs and C. Kop 9

4 Higher-Order Polynomial Interpretations

It remains to be seen how to find suitable polynomial interpretations, preferably automatically.
In this section, we will discuss the class of higher-order polynomials over N, a specific subclass
of the weakly monotonic functionals with (N, >,≥) as a well-founded base set. In the
following, we will see how suitable polynomials can be found automatically.

I Definition 4.1 (Higher-Order Polynomial over N). For a set X = {x1 : σ1, . . . , xn : σn} of
variables, each equipped with a type, the set Pol(X) of higher-order polynomials in X is
given by the following clauses:

if n ∈ N, then n ∈ Pol(X);
if p1, p2 ∈ Pol(X), then p1 + p2 ∈ Pol(X) and p1 · p2 ∈ Pol(X);
if xi : τ1⇒ . . .⇒ τm⇒ ι ∈ X with ι ∈ B, and p1 ∈ Polτ1(X), . . . , pm ∈ Polτm(X), then
xi(p1, . . . , pm) ∈ Pol(X);

here, Polι(X) = Pol(X) for base types ι, and Polσ⇒τ (X) contains functions λλy.p ∈
WMσ with p ∈ Polτ (X ∪ {y}).

We do not fix the set X. A higher-order polynomial is an element of any Pol(X).
Noting that WMσ = WMτ if σ and τ have the same “form” (so are equal modulo

renaming of base types), the following lemma holds for all ι ∈ B:

I Lemma 4.2. If p ∈ Pol({x1 : σ1, . . . , xn : σn}), then λλx1 . . . xn.p ∈ WMσ1⇒...⇒σn⇒ι.

Proof. It is easy to see that + and · are weakly monotonic. Taking this into account, the
lemma follows quickly with induction on the size of p, using Lemma 2.6(2). For the variable
case, if λλ~y.pi ∈ Polτi({~x}), then pi ∈ Pol({~x, ~y}), so the induction hypothesis applies. J

Higher-order polynomials are typically represented in the form a1 + . . .+ an (with n ≥ 0),
where each ai is a higher-order monomial: an expression of the form b · c1 · · · cm, where b ∈ N
and each ci is either a base-type variable x or a function application x(λλ~y1.p1, . . . , λλ ~yk.pk)
with all pj higher-order polynomials again. Examples of higher-order polynomials over the
natural numbers are for instance 0 and 3 + 5 ·x2 · y+F (37 +x). To find a strongly monotonic
functional, it suffices to include, for all variables, a monomial containing only that variable:

I Lemma 4.3. Let P (x1, . . . , xn) be a higher-order polynomial of the form p1(~x)+. . .+pm(~x),
where all pi(~x) are higher-order monomials. Then λλ~x.P (~x) is strongly monotonic in argument
i if there is some pj of the form a · xi(~b(~x)), where a ∈ N+.

Proof. Let xi = x′i, so also xi w x′i (since > ⊆ ≥). Let ~x := x1, . . . , xi, . . . , xl and ~x′ :=
x1, . . . , x

′
i, . . . , xl. All pk are weakly monotonic by Lemma 4.2, so pk(~x) w pk(~x′). Since

pj(~x) = pj(~x′) and + is strongly monotonic, indeed P (~x) = P (~x′). J

I Example 4.4. For rule removal on the AFS shuffle from Ex. 2.1, consider the interpretation:
J (append) = λλnm.n+m J (cons) = λλnm.n+m+ 3
J (reverse) = λλn.n+ 1 J (nil) = 0
J (shuffle) = λλFn.2n+ F (0) + nF (n) + 1 J (@σ) = λλfn~m.f(n, ~m) + n(~0) (∗∗)

(**) Here, n(~0) is the “lowest value” function from Ex. 2.4. With this interpretation, which is
a strongly monotonic polynomial interpretation by Lemma 4.3, all rules are oriented with %,
and the two shuffle rules and the reverse(nil) one even with �. Only for the main shuffle rule
this is non-trivial to see; here we have the constraint: F (h+ t+ 3) + tF (h+ t+ 3) + F (h+
t+ 3) + [h+ hF (h+ t+ 3) + 3F (h+ t+ 3)] + 2 > F (h) + tF (t+ 1) +F (t+ 1). This holds by
weak monotonicity of F : since h+ t+ 3 ≥ h always holds, we must have F (h+ t+ 3) ≥ F (h)
as well, and similarly we see that tF (h+ t+ 3) ≥ tF (t+ 1) and F (h+ t+ 3) ≥ F (t+ 1).

10 Polynomial Interpretations for Higher-Order Rewriting

5 Automation

To demonstrate that the approach is automatable, we have made a proof-of-concept imple-
mentation of polynomial interpretations in the higher-order termination tool WANDA. The
implementation only tries simple parametric shapes, does not use heuristics, and is limited to
second-order AFSs – a limitation which excludes but 5 out of the 156 higher-order benchmarks
in the current termination problem database (TPDB),4 as the class of second-order systems
is very common.5 Even with this minimal implementation, the combination of polynomial
interpretations with dependency pairs can handle about 75% of the TPDB.

To find polynomial interpretations automatically, WANDA uses the following steps:
1. assign every function symbol a higher-order polynomial with parameters as coefficients;
2. for all requirements l (%)r and l % r, calculate JlKJ ,α and JrKJ ,α as a function on

parameters and variables – this gives constraints Pi (≥)Qi and Pi ≥ Qi;
3. introduce a parameter oi for all constraints of the form Pi (≥)Qi, and replace these

constraints by Pi ≥ Qi + oi; if we also introduce the constraints o1 + . . .+ on ≥ 1 then,
when all constraints are satisfied, at least one (≥) constraint is strictly oriented;

4. simplify the constraints until they no longer contain variables;
5. impose maximum values on the search space of the parameters and use a non-linear

constraint solver to find a solution for the constraints.

These steps are detailed below, with an AFS rule for the function map as a running example.

5.1 Choosing Parametric Polynomial Interpretations
The module for polynomial interpretations in WANDA is called in three contexts: rule
removal, the dynamic dependency pair framework and the static dependency pair framework.
In the first case, function interpretations must be strongly monotonic, in the second case
they have to satisfy a subterm property, and in the third there are no further restrictions.

To start, every function symbol f : [σ1 × . . .× σn]⇒σn+1⇒ . . .⇒σm⇒ ι ∈ F is assigned
a function of the form λλx1 . . . xm.p1 + p2 + a, where a is a parameter and:

p1 has the form a1 · x1(0, . . . , 0) + . . .+ am · xm(0, . . . , 0), where the ai are parameters
(this is well-typed because we work in a second-order system);

in the rule removal setting, we add requirements: a1 ≥ 1, . . . , an ≥ 1;
in the dynamic dependency pairs setting, we add requirements: an+1 ≥ 1, . . . , am ≥ 1.

p2 = q1 + . . . + qk, where each qj has the form cj · xi1 · · ·xik · xj(xi1 , . . . , xik) + dj ·
xj(xi1 , . . . , xik), with cj , dj parameters, the xil first-order variables, and xj a higher-order
variable; every combination of a higher-order variable with first-order variables occurs.6

We must also choose an interpretation of @σ for all types. Rather than using a parametric
interpretation, we observe that application occurs mostly on the right-hand side of constraints.
There, we often have (sub-)terms F · s1 · · · sn with F a free variable; on the left-hand side,

4 See http://termination-portal.org/wiki/TPDB for details on this standard database.
5 The restriction to second-order systems is not essential, but it makes the code easier in a number of

places: we can avoid representing function-polynomials λλ~x.P (~x), stick to simple interpretation shapes,
and we do not have max in the left-hand side of constraints. Mostly, the restriction is present because
of the low number of available benchmarks of order 3 or higher, which makes it hard to select suitable
interpretation shapes, and not initially worth the added implementation effort.

6 In case the constraint solver does not find a solution for this interpretation shape, WANDA additionally
includes non-linear monomials ci,j · xi · xj (where i < j) without functional variables in the parametric
higher-order polynomials and tries again. In general, here one can use arbitrary parametric polynomials.

http://termination-portal.org/wiki/TPDB

C. Fuhs and C. Kop 11

such subterms do not occur, nor can we have applications headed by an abstraction or bound
variable (in a second-order system, bound variables have base type). Only applications of
the form f(s1, . . . , sn) · sn+1 · · · sm occur on the left; since function symbols usually have
a base type as output type, this is a rare situation. Thus, we fix the interpretation of @σ

for all types to be as small as possible. Note that we must have J (@σ) w λλfn.f(n) by
Theorem 3.4, and J (@σ) may have to be strongly monotonic, or satisfy a subterm property.

in the rule removal setting, J (@σ) = λλfn~m.f(n, ~m) + n(~0);
in the dynamic dependency pairs setting, J (@σ) = λλfn~m.max(f(n, ~m), n(~0));
in the static dependency pairs setting, J (@σ) = λλfn~m.f(n, ~m).

In the rule removal setting this choice together with the constraints on the parameters guar-
antees that all J (f) are strongly monotonic in the arguments required by the definition of an
extended monotonic algebra and Theorem 3.8. In the dynamic dependency pairs setting, we
obtain the required subterm property as demonstrated in Example 3.6. Moreover, in this set-
ting always Jf(s1, . . . , sn) ·sn+1 · · · smKJ ,α = max(J (f)(Js1KJ ,α, . . . , JsnKJ ,α, Jsn+1KJ ,α, . . . ,
JsmKJ ,α), Jsn+1KJ ,α(~0), . . . , JsmKJ ,α(~0)) = J (f)(Js1KJ ,α, . . . , JsmKJ ,α) by the restriction on
the parameters. Thus, although we now also need to deal with the max-operator, it will only
ever occur on the right-hand side of a constraint! Since this avoids the need for conditional
constraints as used in [11] (without losing any power), it both simplifies the automation and
creates smaller constraints.

From these parametric higher-order polynomials, we calculate the interpretations of
terms, and simplify the resulting higher-order polynomials into a sum of monomials. For the
constraints l (%)r, in general we use constraints JlKJ ,α ≥ JrKJ ,α + o for some fresh bit o (a
parameter whose value ranges over {0, 1}), and require that the sum of these bits is positive.

I Example 5.1 (Running Example). To demonstrate the technique, consider rule removal on
the recursive rule of the common map example, which gives the constraint map(F, cons(h, t)) (%)

cons(F · h,map(F, t)). We assign: J (cons) = λλnm.a1 · n + a2 · m + a3 and J (map) =
λλfn.a4 · f(0) + a5 · n+ a6 · n · f(n) + a7.7 This leads to the following constraints:

a1, a2, a4, a5 ≥ 1, o1 ≥ 1 (we could also immediately replace o1 by 1).
a7 + a3 · a5 + a1 · a5 · h+ a2 · a5 · t+ a4 · F (0) + a1 · a6 · h · F (a1 · h+ a2 · t+ a3) + a2 · a6 ·
t · F (a1 · h+ a2 · t+ a3) + a3 · a6 · F (a1 · h+ a2 · t+ a3) ≥ a3 + a2 · a7 + o1 + a1 · h+ a2 ·
a5 · t+ a2 · a4 · F (0) + a1 · F (h) + a6 · t · F (t)

5.2 Simplifying Polynomial Requirements
We obtain requirements that contain variables as well as parameters; they should be read
as “there exist ai, ok such that for all h, t, F the inequalities hold”. To avoid dealing with
claims over all possible numbers or functions we simplify the requirements until they contain
no more variables. To a large extent, these simplifications correspond to the ones used
with automations of polynomial interpretations for first-order rewriting [6], but higher-order
variables in function application present an extra difficulty. To deal with application of
higher-order variables, we will use Lemma 5.2:

I Lemma 5.2. Let F be a weakly monotonic functional and all p, q, pi, qi, si, ri polynomials.
1. F (r1, . . . , rk) · p ≥ F (s1, . . . , sk) · q if r1 ≥ s1, . . . , rk ≥ sk, p ≥ q.
2. r1 · p1 + . . .+ rn · pn ≥ s1 · q1 + . . .+ sm · qm if there are ei,j for 1 ≤ i ≤ n, 1 ≤ j ≤ m with:

a. for all i: ri ≥ ei,1 + . . .+ ei,m;

7 To ease presentation, in contrast to WANDA here we do not use an addend ai · f(n) for map.

12 Polynomial Interpretations for Higher-Order Rewriting

b. for all j: e1,j + . . .+ en,j ≥ sj;
c. either ei,j = 0 or pi ≥ qj.

Proof. (1) holds by weak monotonicity of F . As for (2), r1·p1+. . .+rn·pn ≥
∑n
i=1

∑m
j=1 ei,j ·

pi by (a), and since ei,j = 0 whenever not pi ≥ qj by (c),
∑n
i=1

∑m
j=1 ei,j ·pi ≥

∑n
i=1

∑m
j=1 ei,j ·

qj =
∑m
j=1

∑n
i=1 ei,j · qj . Using (b),

∑m
j=1

∑n
i=1 ei,j · qj ≥

∑m
j=1 sj · qj as required. J

Lemma 5.2, together with some observations used in the first-order case, supplies the theory
we need to simplify the requirements to constraints which do not contain any variables. Here,
a “component” of a monomial a1 · · · an is any of the ai (but p is not a component of F (p)).

1. Do standard simplifications on the constraints, for instance replacing 3·F (n) ≥ F (n)+a1·n
by 2 · F (n) ≥ a1 · n and p+B · p by (B + 1) · p if B is a known constant, and removing
monomials 0 · p. Remove constraints p ≥ 0 and p ≥ p which always hold.

2. Split constraints 0 ≥ p1 + . . . + pn into the n constraints 0 ≥ pi. Remove constraints
0 ≥ a where a is a single parameter, and replace a by 0 everywhere else.
This is valid because, in the natural numbers, 0 ≥ a implies a = 0, and 0 + . . .+ 0 = 0.

3. Replace constraints P ≥ Q[max(r, s)] by the two constraints P ≥ Q[r] and P ≥ Q[s].
This is valid because for any valuation Q[max(r, s)] equals Q[r] or Q[s].

4. Given a constraint p1 + . . . + pn ≥ pn+1 + . . . + pm where some, but not all, of the
monomials pi contain a component x or x(~q) for some fixed variable x, let A contain the
indices i of those monomials pi which have x or x(~q). Replace the constraint by the two
constraints

∑
i∈A,i≤n pi ≥

∑
i∈A,i>n pi and

∑
i/∈A,i≤n pi ≥

∑
i/∈A,i>n pi. For example,

splitting on n, the constraint 3 · n ·m+ a2 · F (a3 · n+ a4) ≥ 2 + a7 ·m+ F (n) is split
into 3 · n ·m ≥ 0 and a2 ·F (a3 · n+ a4) ≥ 2 + a7 ·m+F (n); subsequently, splitting on F ,
the latter is split into a2 · F (a3 · n+ a4) ≥ F (n) and 0 ≥ 2 + a7 ·m.
This is valid because p1 + p2 ≥ q1 + q2 certainly holds if p1 ≥ q1 and p2 ≥ q2.

5. If all non-zero monomials on either side of a constraint have a component x, “divide
out” x. For example, replace the constraint a1 · n + n · n · f(a3, n) ≥ n + a3 · n by
a1 + n · f(a3, n) ≥ 1 + a3, and replace 0 ≥ a5 ·m by 0 ≥ a5.
This is valid because p ·n ≥ q ·n holds if p ≥ q (cf. the absolute positiveness criterion [15]).

6. Replace a constraint s ·x1(p1,1, . . . , p1,k1) · · ·xn(pn,1, . . . , pn,kn) ≥ s ·x1(q1,1, . . . , q1,k1) · · ·
xn(qn,1, . . . , qn,kn) by the constraints s · pi,j ≥ s · qi,j for all i, j.
This is valid by Lemma 5.2(1) and case analysis whether s = 0 or not.

7. Let p1, . . . , pn, q1, . . . , qm be monomials of the form x1(~r1), . . . , xk(~rk), for fixed x1, . . . , xk.
Replace a constraint r1 · p1 + . . .+ rn · pn ≥ s1 · q1 + . . .+ sm · qm with n,m ≥ 1 by the
following constraints, where the ei,j are fresh parameters:

for 1 ≤ i ≤ n: ri ≥ ei,1 + . . .+ ei,m
for 1 ≤ j ≤ m: e1,j + . . .+ en,j ≥ sj
for 1 ≤ i ≤ n, 1 ≤ j ≤ m: ei,j · pi ≥ ei,j · qj (which can be handled with clause 6)

This is valid by Lemma 5.2(2).8

It is easy to see that while a constraint still has variables in it, we can apply clauses to
simplify or split it (taking into account that max does not appear in the left-hand side of
a constraint), and that the clauses also terminate on a system without variables. These
simplifications are not complete: for example, a universally valid constraint F (n) ·n ≥ F (1) ·n
is split into constraints n ≥ n (which holds), and n ≥ 1 (which does not).

8 In the cases where n = 1 or m = 1, some of these parameters are unnecessary; for instance, if n = 1, we
can safely fix e1,j = sj for all j. Our actual implementation uses a few of such special-case optimisations.

C. Fuhs and C. Kop 13

I Example 5.3. Let us simplify the constraints from Example 5.1. First, using clause 4 to
group monomials by their variables, we obtain:

a1, a2, a4, a5, o1 ≥ 1
a7 + a3 · a5 ≥ a3 + a2 · a7 + o1
a1 · a5 · h ≥ a1 · h
a2 · a5 · t ≥ a2 · a5 · t
a4 · F (0) + a3 · a6 · F (a1 · h+ a2 · t+ a3) ≥ a2 · a4 · F (0) + a1 · F (h)
a1 · a6 · h · F (a1 · h+ a2 · t+ a3) ≥ 0
a2 · a6 · t · F (a1 · h+ a2 · t+ a3) ≥ a6 · t · F (t)

The 4th and 6th requirements are trivial and can be removed with clause 1. After dividing
away the non-functional variables using clause 5 we have the following constraints left:

a1, a2, a4, a5, o1 ≥ 1
a7 + a3 · a5 ≥ a3 + a2 · a7 + o1
a1 · a5 ≥ a1
a4 · F (0) + a3 · a6 · F (a1 · h+ a2 · t+ a3) ≥ a2 · a4 · F (0) + a1 · F (h)
a2 · a6 · F (a1 · h+ a2 · t+ a3) ≥ a6 · F (t)

The first three are completely simplified. Clauses 7 and 6 replace the last two constraints by:
a4 ≥ e1,1 + e1,2, a3 · a6 ≥ e2,1 + e2,2, e1,1 + e2,1 ≥ a2 · a4, e1,2 + e2,2 ≥ a1
e1,1 · 0 ≥ e1,1 · 0, e1,2 · 0 ≥ e1,2 · h
e2,1 · (a1 · h+ a2 · t+ a3) ≥ e2,1 · 0, e2,2 · (a1 · h+ a2 · t+ a3) ≥ e2,2 · h
a2 · a6 ≥ k1,1, k1,1 ≥ a6, k1,1 · (a1 · h+ a2 · t+ a3) ≥ k1,1 · t

Using clauses 1, 4 and 5, we can simplify the constraints further, and obtain:

a1, a2, a4, a5, o1 ≥ 1
a7 + a3 · a5 ≥ a3 + a2 · a7 + o1

a1 · a5 ≥ a1
a4 ≥ e1,1

a3 · a6 ≥ e2,1 + e2,2
e1,1 + e2,1 ≥ a2 · a4

e2,2 ≥ a1
e2,2 · a1 ≥ e2,2

a2 · a6 ≥ k1,1
k1,1 ≥ a6

k1,1 · a2 ≥ k1,1

Thus, using a handful of clauses, the requirements are simplified to a number of constraints
with parameters over the natural numbers. In the actual WANDA implementation a few
small optimisations are used; for example, some simplifications are combined, and if max(r, s)
occurs more than once in the same polynomial, all occurrences are replaced by r or s at the
same time. However, these optimisations make no fundamental difference to the method.

After imposing bounds on the search space, we can solve the resulting non-linear con-
straints using standard SAT- [10] or SMT-based [3] techniques (WANDA uses a SAT encoding
similar to [10] with the solver MiniSAT [7] as back-end). If the problem is satisfiable, the
solver returns values for all parameters, so it is easy to see which requirements have been
oriented with >. For map, the solver could provide for example the solution a7 = e2,1 = 0,
a1 = a2 = a3 = a4 = a6 = e1,1 = e2,2 = k1,1 = o1 = 1, and a5 = 2. This results in the
interpretation J (cons) = λλnm.n+m+ 1 and J (map) = λλfn.f(0) + 2 · n+ n · f(n).

6 Experiments

For an empirical evaluation of our contributions, we conducted a number of experiments
with our implementation in WANDA using an Intel Xeon 5140 CPU with four cores at
2.33 GHz (cf. also http://aprove.informatik.rwth-aachen.de/eval/HOPOLO/ for details
on the evaluation). As underlying benchmark set, we used the 156 examples from the higher-
order category of the TPDB version 8.0.1 together with Examples 2.1 and 3.6. WANDA
invokes the SAT solver MiniSAT [7] and the first-order termination prover AProVE [14] as

http://aprove.informatik.rwth-aachen.de/eval/HOPOLO/

14 Polynomial Interpretations for Higher-Order Rewriting

back-ends. As in the Termination Competition, we imposed a 60 second timeout per example.
The module for polynomial interpretation is called potentially twice with different poly-

nomial shapes, as described at the start of Section 5.1 (cf. Footnote 6). The search space
for the parameters is {0, . . . , 3}. Our first experiment is designed to analyse the impact of
polynomial interpretations coupled with a higher-order dependency pair framework.

Configuration YES NO MAYBE TIMEOUT Avg. time
WANDA full 124 9 23 2 3.19 s

WANDA no poly 119 9 30 0 2.40 s
WANDA no horpo 118 9 28 3 3.59 s

Figure 1 Experimental results of full WANDA with and without polynomials or horpo

Fig. 1 shows the results of WANDA full, which includes both polynomial interpretations
and HORPO, the other main class of orderings implemented by WANDA (other than that,
WANDA only uses the subterm criterion as an ordering-based technique). They are compared
to versions of WANDA where either polynomials or HORPO are disabled. Although WANDA
already scored highest in the Termination Competition of 2011, adding the contributions of
this paper gives an additional 5 examples on the benchmark set. It is interesting to note that
even without HORPO, WANDA with polynomials can still show termination of 118 examples.

Using the contributions of [12], WANDA delegates the first-order part of a higher-order
rewrite system to the first-order termination tool AProVE, where it is commonplace to use
polynomial interpretations. The setup of our second experiment deals with the impact of
higher-order polynomial interpretations if WANDA does not use a first-order tool.

Configuration YES NO MAYBE TIMEOUT Avg. time
WANDA no [12] full 118 9 29 2 2.32 s

WANDA no [12] no poly 107 9 42 0 1.09 s
WANDA no [12] no horpo 111 9 35 3 2.89 s

Figure 2 Experimental results of WANDA without first-order back-end

Fig. 2 juxtaposes the results of WANDA without the first-order prover AProVE in three
configurations. We see that if we disable the first-order back-end, the increase in power by
polynomial interpretations goes up from 5 examples in the first experiment to 11 examples in
the second. Thus, the gain of using a first-order tool can at least partially be compensated
by using native higher-order polynomial interpretations.

Our third experiment investigates the impact of higher-order polynomial interpretations
if no dependency pairs are used (which also excludes first-order termination tools). Here we
compare to the version of HORPO implemented in WANDA.

Configuration YES NO MAYBE TIMEOUT Avg. time
Rule Removal both 76 9 70 3 3.60 s

Rule Removal horpo 69 9 80 0 1.01 s
Rule Removal poly 47 9 97 5 3.64 s

Figure 3 Experimental results of WANDA with rule removal (and without dependency pairs)

Using just rule removal, HORPO clearly trumps polynomial interpretations. However, in
part this may be due to the limited choice in interpretation shapes this first implementation
of polynomial interpretations supports.

Discussion Analysing the termination problem database, it is perhaps not surprising that
the gain from using polynomial interpretations in the first experiment is not larger: the
majority of the benchmarks which WANDA cannot already handle is non-terminating, or
not known to be terminating (for example, state-of-the-art first-order tools cannot prove
termination of the first-order part). For others, type-conscious methods such as accessibility
(see e.g. [2]) are required; the method described in this paper ignores differences in base types.

C. Fuhs and C. Kop 15

For cases where polynomial interpretations are needed, but only for the (truly) first-order
part, passing this first-order part [12] to a modern first-order tool already suffices – as is
evident by comparing the numbers in the first and second experiments. With higher-order
polynomial interpretations, we have gained three out of the remaining seven benchmarks.

7 Conclusion

In this paper, we have extended the termination method of weakly monotonic algebras
to the class of AFSs, simplifying definitions and adding the theory to use algebras with
rule removal and dependency pairs; some efforts towards this were previously made in [20],
but only for the setting of dynamic dependency pairs. Then, we introduced the class of
higher-order polynomial interpretations, and discussed how suitable interpretations can be
found automatically. The implementation of polynomial interpretations increases the power
of WANDA by a respectable five benchmarks, including the two examples in this paper.

Thus, weakly monotonic algebras form an elegant method for proving termination by hand
and, as demonstrated by the implementation in WANDA and the results of the experiments,
a feasible automatable termination method as well.

Future Work We have by no means reached the limit of what can be achieved with this
technique: we might consider different interpretation shapes, possibly coupled with heuristics
to determine a suitable shape. Or we may go beyond polynomials; we could for instance use
max in function interpretations as done in e.g. [11], or (for a truly higher-order alternative),
use repeated function application; this leads to interpretations like λλnmf.max(m, fn(m))9.

Another alley to explore is to combine polynomial interpretations with type interpretations:
rather than collapsing all base types into one, we might translate them, e.g. mapping a
base type funclist to o⇒o. WANDA already does this in very specific cases, and one could
simultaneously search for polynomial interpretations and for a type interpretation – this could
parallel the search for type orderings in implementations of the recursive path ordering [2].

Moreover, in the first-order world, there are many more applications of monotonic algebras,
e.g. matrix, arctic, rational, real and integer interpretations. . . There is no obvious reason
why these methods cannot be lifted to the higher-order case as well!

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236(1-2):133–178, 2000.
2 F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: The end of

a quest. In Proc. CSL 2008, LNCS 5213, pages 1–14, 2008.
3 C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. SAT mod-

ulo linear arithmetic for solving polynomial constraints. Journal of Automated Reasoning,
48(1):107–131, 2012.

4 C. Borralleras and A. Rubio. THOR – a higher-order termination tool. http://www.lsi.
upc.edu/~albert/term.html.

5 C. Borralleras and A. Rubio. A monotonic higher-order semantic path ordering. In Proc.
LPAR 2001, LNAI 2250, pages 531–547, 2001.

6 E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving termination
using polynomial interpretations. Journal of Automated Reasoning, 34(4):325–363, 2005.

9 The max is essential in this interpretation because λλnmf.fn(m) is not weakly monotonic. A case
analysis whether m ≥ f(m) or f(m) ≥ m shows that λλnmf.max(m, fn(m)) is weakly monotonic.

http://www.lsi.upc.edu/~albert/term.html
http://www.lsi.upc.edu/~albert/term.html

16 Polynomial Interpretations for Higher-Order Rewriting

7 N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT 2003, LNCS 2919, pages
502–518, 2004.

8 J. Endrullis. Jambox. http://joerg.endrullis.de/.
9 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination

of term rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.
10 C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT

solving for termination analysis with polynomial interpretations. In Proc. SAT 2007, LNCS
4501, pages 340–354, 2007.

11 C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Maximal
termination. In Proc. RTA 2008, LCNS 5117, pages 110–125, 2008.

12 C. Fuhs and C. Kop. Harnessing first order termination provers using higher order depend-
ency pairs. In Proc. FroCoS 2011, LNAI 6989, pages 147–162, 2011.

13 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc. RTA
2012, LIPIcs, 2012. To appear.

14 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs
in the dependency pair framework. In Proc. IJCAR 2006, LNAI 4130, pages 281–286, 2006.

15 H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated Reas-
oning, 21(1):23–38, 1998.

16 J.-P. Jouannaud and M. Okada. A computation model for executable higher-order algebraic
specification languages. In Proc. LICS 1991, pages 350–361, 1991.

17 J.-P. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings. Journal
of the ACM, 54(1):1–48, 2007.

18 C. Kop. WANDA – a higher order termination tool. http://few.vu.nl/~kop/code.html.
19 C. Kop. Simplifying algebraic functional systems. In Proc. CAI 2011, LNCS 6742, pages

201–215, 2011.
20 C. Kop and F. van Raamsdonk. Higher order dependency pairs for algebraic functional

systems. In Proc. RTA 2011, LIPIcs 10, pages 203–218, 2011.
21 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional sys-

tems. Logical Methods in Computer Science, 2012. Special Issue of the 22nd International
Conference on Rewriting Techniques and Applications (RTA 2011). To appear.

22 M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In Proc.
RTA 2009, LNCS 5595, pages 295–304, 2009.

23 K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on
strong computability for higher-order rewrite systems. IEICE Transactions on Information
and Systems, 92(10):2007–2015, 2009.

24 D. Lankford. On proving term rewriting systems are Noetherian. Technical Report MTP-3,
Louisiana Technical University, Ruston, LA, USA, 1979.

25 T. Nipkow. Higher-order critical pairs. In Proc. LICS 1991, pages 342–349, 1991.
26 J. van de Pol. Termination proofs for higher-order rewrite systems. In Proc. HOA 1993,

LNCS 816, pages 305–325, 1994.
27 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of

Utrecht, 1996.
28 M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair method for

proving termination of higher-order rewrite systems. IEICE Transactions on Information
and Systems, E84-D(8):1025–1032, 2001.

29 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

30 Wiki. Termination portal. http://www.termination-portal.org/.

http://joerg.endrullis.de/
http://few.vu.nl/~kop/code.html
http://www.termination-portal.org/

C. Fuhs and C. Kop 17

A Appendix

Something that is worth noting, in particular when considering the proofs in the following
section, is that we use the mathematical definition of a function as a set of pairs; a function
is specified entirely by its domain and values. Thus, if F and G are both functions in some
WMσ, and F (x) = G(x) for all x in their domain, then F = G. We will use the notation
λλx.P (x) for a function that takes one argument x, and returns P (x).

A.1 Changing the Definition of ≥.
In Section 2.4 we used slightly different restrictions on the orderings > and ≥ than in [27]:
van de Pol required that ≥ was the reflexive closure of >, while we merely require that ≥ is
compatible with >. Is it certain we can do this?

The answer is yes, it is. In fact, of the theory in [27] we use but three results: Lemma 3.2.1
(the substitution lemma), Lemma 4.1.4 (which gives facts about the interaction of = and w)
and Proposition 4.1.5 (which states that JsKJ ,α is a weakly monotonic functional if J and α
map to weakly monotonic functions).

Lemma 3.2.1 is completely independent of the definition of WM (in fact, WM is only
defined a chapter later). Lemma 4.1.4 is used only for Lemma 2.3, which we will rederive
below (in fact, Lemma 2.3 as it is already is not literally what appears in [27]). As for
Proposition 4.1.5, it uses only reflexivity of w, which remains valid, and the following facts:

if f ∈ WMσ⇒τ and x ∈ WMσ, then f(x) ∈ WMτ ;
if f wσ⇒τ g and x ∈ WMσ, then f(x) w g(x);
if f =σ⇒τ g and x ∈ WMσ, then f(x) = g(x);
if f ∈ WMσ⇒τ and x, y ∈ WMσ and x w y then f(x) w f(y).

These facts are all immediately clear from the definition of WM, and they do not depend
on the way > and ≥ interact.

The one thing we do have to see is that Lemma 2.3 stays valid. Recall:
≥ is a quasi-ordering, so a reflexive and transitive binary relation;
> is a well-founded partial ordering, so a transitive binary relation, such that there
is no infinite decreasing sequence a1 > a2 > . . . (> must also be non-reflexive and
anti-symmetric, but this is implied by well-foundedness);
> and ≥ are compatible, so either a > b ≥ c implies a > c, or a ≥ b > c implies a > c;
A is non-empty.

I Lemma 2.3. For all types σ the following statements hold:
=σ is well founded;
both =σ and wσ are transitive;
wσ is reflexive (always n wσ n);
=σ and wσ are compatible.

Proof. We prove the lemma with induction on the type σ, and in addition that weakly
monotonic functionals exist for all types (a fact we will need for the other statements).
Assume (IH) that for all subtypes τ of σ, =τ is well founded, both =τ and wτ are transitive,
wτ is reflexive and =τ and wτ are compatible in the same way as > and ≥, and that WMτ

is non-empty. “In the same way” means that if > · ≥ ⊆ > then also =τ · wτ ⊆ =τ , and
otherwise wτ · =τ ⊆ =τ .

18 Polynomial Interpretations for Higher-Order Rewriting

For σ a base type, we immediately have well-foundedness, transitivity, reflexivity, com-
patibility and non-emptiness, by the assumptions on >, ≥ and A. For σ = τ ⇒ ρ, we
obtain:

=σ is well founded: Suppose, towards a contradiction, that f1 =σ f2 =σ f3 =σ Let
a ∈ WMτ (such a exists by IH). By definition of =σ, also f1(a) =ρ f2(a) =ρ f3(a) =ρ . . .,
contradicting well-foundedness of =ρ.
wσ is transitive: Suppose f wσ g wσ h. Then for all x ∈ WMτ we have f(x) wρ

g(x) wρ h(x) by definition of wσ, so by the induction hypothesis f(x) wρ h(x) for all
x ∈ WMτ . This exactly means that f wσ h.

=σ is transitive: Same as for wσ.
wσ is reflexive: Let f ∈ WMσ. Then f wσ f iff for all x ∈ WMτ : f(x) wρ f(x). But

this holds by reflexivity of wρ (IH).
=σ and wσ are compatible: Suppose > · ≥ is included in >; the case when ≥ · > is

included in > is symmetric. Let f, g, h ∈ WMσ and suppose f =σ g wσ h. Then for all
x ∈ WMσ we have f(x) =ρ g(x) wρ h(x), so f(x) =ρ h(x) by (IH), and therefore f =σ h.
WMσ is non-empty: Let a ∈ WMρ; the function g := λλn : WMτ .a is in WMσ

because if x wτ y, then g(x) = a w a = g(y) by reflexivity of wρ (IH). J

A.2 The Max function.
The maxσ function is defined for all σ in Example 2.4. The other two parts of this example
(the constant function and maximum function) are presented as weakly monotonic functionals
already in [27], but the max function is new, so it falls on us to demonstrate its weak
monotonicity.

I Example 2.4(3). maxσ ∈ WMσ⇒ι⇒σ for all types σ and base types ι.

Proof. Write σ = σ1⇒ . . .⇒σk⇒ ι with ι ∈ B. Using the observation above Lemma 2.3,
it suffices if maxσ(f, n,m1, . . . ,mk) ≥ maxσ(f ′, n′,m′1, . . . ,m′k) if f w f ′, n w n′ and each
mi w m′i (where f, f ′ ∈ WMσ, n, n

′ ∈ A and each mi,m
′
i ∈ WMσi).

But maxσ(f, n,m1, . . . ,mk) = max(f(m1, . . . ,mn), n) and maxσ(f ′, n′,m′1, . . . ,m′k) =
max(f ′(m′1, . . . ,m′k), n′); certainly n ≥ n′; by definition of max we are done if f(m1, . . . ,mk) w
f ′(m′1, . . . ,m′k).

By induction on i we have: f(m1, . . . ,mi) ∈ WMσi+1⇒...⇒σk⇒ι for all 0 ≤ i ≤ k and
f(m′1, . . . ,m′i) w f ′(m′1, . . . ,m′i):

in the base case (i = 0), f(m1, . . . ,mi) = f w f ′ = f ′(m′1, . . . ,m′i) by assumption
if i = j + 1, then f(m1, . . . ,mi) = f(m1, . . . ,mj)(mi), and since f(m1, . . . ,mj) ∈
WMσi⇒...⇒σk⇒ι by the induction hypothesis, and mi ∈ WMi by assumption, this
functional is in WMσi+1⇒...⇒σk⇒ι by definition
f(m1, . . . ,mj)(mi) w f(m1, . . . ,mj)(m′i) by the definition ofw, and since f(m1, . . . ,mj) w
f ′(m′1, . . . ,m′j) by the induction hypothesis, we obtain:
f(m1, . . . ,mi) w f(m1, . . . ,mj)(m′i) w f ′(m′1, . . . ,m′j)(m′i) = f ′(m′1, . . . ,m′i)

Taking i := k this provides what we need. J

A.3 Weak and Strong Monotonicity: claims in Lemma 3.3(4) and
Theorem 3.8

I Lemma 3.3(4). Let (A,J) be a weakly monotonic algebra. If JsKJ ,α w JtKJ ,α for all
valuations α, then JC[s]KJ ,α w JC[t]KJ ,α for all valuations α and contexts C.

C. Fuhs and C. Kop 19

This Lemma has no counterpart in [27], because van de Pol does not consider situations
where weak monotonicity is sufficient. Thus, this we derive ourselves. The proof is an easy
induction.

Proof. By induction on the form of C. The base case (C = 2σ) is evident, otherwise suppose
(IH) JD[s]KJ ,δ w JD[t]KJ ,δ for all valuations δ.

In the case of an abstraction, C[] = λx.D[], we have JC[s]KJ ,α = λλn.JD[s]KJ ,α∪{x 7→n}
and we are done because, by (IH) and the definition of w for functions, this function
w λλn.JD[t]KJ ,α∪{x 7→n} = JC[t]KJ ,α.

In the case of a function application, C[] = f(s1, . . . , D[], . . . , sn), we have JC[s]KJ ,α =
J (f)(Js1KJ ,α, . . . , JD[s]KJ ,α, . . . , JsnKJ ,α). Weak monotonicity of J (f) implies that if any
of the argument w-decreases, then so does the result. Thus, by (IH) also JC[s]KJ ,α w
J (f)(Js1KJ ,α, . . . , JD[t]KJ ,α, . . . , Jt1KJ ,α) = JC[t]KJ ,α.

The cases where C[] = D[] · u or C[] = u ·D[] are very similar. J

Almost the same, but using strong monotonicity, the following was stated in Theorem 3.8
as an easily derived result.

I Theorem 3.8(claim). Let (A,J) be an extended monotonic algebra. If JsKJ ,α = JtKJ ,α
for all valuations α, then JC[s]KJ ,α = JC[t]KJ ,α for all valuations α and contexts C.

Proof. By induction on the form of C. The base case (C = 2σ) is evident, otherwise suppose
(IH) JD[s]KJ ,δ = JD[t]KJ ,δ for all valuations δ.

In the case of an abstraction, C[] = λx.D[], we have JC[s]KJ ,α = λλn.JD[s]KJ ,α∪{x 7→n}
and we are done because, by (IH) and the definition of = for functions, this function
= λλn.JD[t]KJ ,α∪{x 7→n} = JC[t]KJ ,α.

In the case of a function application, C[] = f(s1, . . . , D[], . . . , sn), let J (f) = A;
a function which is strongly monotonic in its first n arguments by assumption. We
have JC[s]KJ ,α = A(Js1KJ ,α, . . . , JD[s]KJ ,α, . . . , JsnKJ ,α). By the induction hypothesis,
JD[s]KJ ,α = JD[t]KJ ,α, so because A is strongly monotonic in the corresponding argument
JC[s]KJ ,α = A(Js1KJ ,α, . . . , JD[t]KJ ,α, . . . , Jt1KJ ,α) = JC[t]KJ ,α.

The cases where C[] = D[] · u or C[] = u ·D[] are very similar, since @σ is also strongly
monotonic in its first two arguments. J

A.4 Example 3.6: dealing with dynamic dependency pairs
In Example 3.6, we made the claim that, choosing J (@σ⇒τ) = λλfn.maxτ (f(n), n(~0)) and
J (cj) = 0σ for cj : σ, we have Js · ~tKJ ,α w Jti · ~cKJ ,α.

To see that this holds, consider the following lemma:

I Lemma: Interpretation of Application. for all n we have:

Js · t1 · · · tnKJ ,α = λλ~m.max(JsKJ ,α(Jt1KJ ,α, . . . , JtnKJ ,α, ~m), Jt1KJ ,α(~0), . . . , JtnKJ ,α(~0))

Proof. We see this with induction on n.
n = 0 (base case): JsKJ ,α = λλ~m.JsKJ ,α(~m), since functions are defined by their values.
n = k + 1: Js · t1 · · · tnKJ ,α = maxτ (Js · t1 · · · tkKJ ,α(JtnKJ ,α), JtnKJ ,α(~0)), which by the

definition of maxτ equals λλ~m.max(Js·t1 · · · tkKJ ,α(JtnKJ ,α, ~m), JtnKJ ,α(~0)). By the induction
hypothesis,

Js · t1 · · · tkKJ ,α(JtnKJ ,α, ~m)
= [λλ~x.max(JsKJ ,α(Jt1KJ ,α, . . . , JtkKJ ,α, ~x), Jt1KJ ,α(~0), . . . , JtkKJ ,α(~0))](JtnKJ ,α, ~m)
= max(JsKJ ,α(Jt1KJ ,α, . . . , JtnKJ ,α, ~m), Jt1KJ ,α(~0), . . . , JtkKJ ,α(~0)).

20 Polynomial Interpretations for Higher-Order Rewriting

Thus, the function we have is exactly:
λλ~m.max(max(JsKJ ,α(Jt1KJ ,α, . . . , JtnKJ ,α, ~m), Jt1KJ ,α(~0), . . . , JtkKJ ,α(~0)), JtnKJ ,α(~0))
= λλ~m.max(JsKJ ,α(Jt1KJ ,α, . . . , JtnKJ ,α, ~m), Jt1KJ ,α(~0), . . . , JtnKJ ,α(~0)) J

Thus we see, if s · ~t and ti · ~c both have base type, then:

Js · ~tKJ ,α = max(JsKJ ,α(Jt1KJ ,α, . . . , JtnKJ ,α), Jt1KJ ,α(~0), . . . , JtnKJ ,α(~0))
≥ JtiKJ ,α(~0)
= max(JtiKJ ,α(~0), 0, . . . , 0)
= max(JtiKJ ,α(Jc1KJ ,α, . . . , JckKJ ,α), Jc1KJ ,α(~0), . . . , JckKJ ,α(~0))
= Jti · ~cKJ ,α

To see that the given interpretation indeed orients all rules:

Jmin(x, 0)KJ ,α = 0 ≥ 0 = J0KJ ,α
Jmin(0, x)KJ ,α = 0 ≥ 0 = J0KJ ,α
Jmin(s(x), s(y))KJ ,α = 0 ≥ 3 · 0 = Js(min(x, y))KJ ,α
Jdiff(x, 0)KJ ,α = x ≥ x = JxKJ ,α
Jdiff(0, x)KJ ,α = x ≥ x = JxKJ ,α
Jdiff(s(x), s(y))KJ ,α = 3 · x+ 3 · y ≥ x+ y = Jdiff(x, y)KJ ,α
Jgcd(s(x), 0)KJ ,α = 3 · x ≥ 3 · 0 = Js(0)KJ ,α
Jgcd(0, s(x))KJ ,α = 3 · x ≥ 3 · 0 = Js(0)KJ ,α
Jgcd(s(x), s(y))KJ ,α = 3 · x+ 3 · y ≥ x+ y + 3 · 0 = Jgcd(diff(x, y), s(min(x, y)))KJ ,α
Jbuild(0)KJ ,α = 3 · 0 ≥ 0 = JnilKJ ,α
Jbuild(s(x))KJ ,α = 9 · x ≥ 4 · x+ 3 · x = Jcons(λy. gcd(y, x), build(x))KJ ,α
Jcollapse(nil)KJ ,α = 0 ≥ 0 = J0KJ ,α
Jcollapse(cons(F, t))KJ ,α = F (t) + t ≥ max(F (t), t) = Jcollapse(t)KJ ,α

A.5 Proofs for Section 4
The proofs in Section 4 were somewhat minimal. Here follow the complete proofs.

I Lemma 4.2. If p ∈ Pol({x1 : σ1, . . . , xn : σn}), then λλx1 . . . xn.p ∈ WMσ1⇒...⇒σn⇒ι.

Proof. First note (**): λλnm.n + m and λλnm.n ·m are weakly monotonic functionals in
WMι1⇒ι2⇒ι3 for any three base types ι1, ι2, ι3. This is easy to see (take into account that
WMι1⇒ι2⇒ι3 just consists of those functions f in the function space A⇒ A⇒ A such that
f(a, b) ≥ f(a′, b′) if a ≥ a′ and b ≥ b′).

The lemma holds by induction on the derivation of p ∈ Pol({~x}).
If p ∈ N, then λλ~x.p is a constant function; its weak monotonicity was demonstrated in

Example 2.4(1).
If p1, p2 ∈ Pol({~x}), then by the induction hypothesis λλ~x.p1 and λλ~x.p2 are both weakly

monotonic functionals. Consider the λ-term L := λy1 . . . yn. A · (F1 · ~y) · (F2 · ~y), and let
α = {A 7→ λλnm.n+m, F1 7→ λλ~x.p1, F2 7→ λλ~x.p2}. By Lemma 2.6(2), [L]α = λλ~x.p1 + p2 is
a weakly monotonic functional. In the same way (using a valuation with A 7→ λλnm.n ·m),
λλ~x.p1 · p2 is a weakly monotonic functional.

Finally, suppose p1 ∈ Polτ1(~x), . . . , pm ∈ Polτm(~x), and xi has type τ1⇒ . . .⇒ τm⇒ ι.
Since we can write pi = λλ~y.p′i with p′i ∈ Polτi(~x, ~y), the induction hypothesis tells us that
each λλ~x.pi ∈ WM~σ⇒~τ⇒ι. Thus, λλ~x.xi(~p) = [λ~x. xi · (z1 · ~x) · · · (zm · ~x)]{z1 7→p1,...,zm 7→pm} is a
weakly monotonic functional by Lemma 2.6(2). J

C. Fuhs and C. Kop 21

I Lemma 4.3. Let P (x1, . . . , xn) be a higher-order polynomial of the form p1(~x)+. . .+pm(~x),
where all pi(~x) are higher-order monomials. Then λλ~x.P (~x) is strongly monotonic in argument
i if there is some pj of the form a · xi(~b(~x)), where a ∈ N+.

Proof. Let weakly monotonic functionals N1, . . . , Nn,Mi be given, and some i, j such
that pj = a · xi(~b(~x)) with a ∈ N+. It suffices to see that if Ni = Mi, then also
P (N1, . . . , Ni, . . . , Nn) > P (N1, . . . ,Mi, . . . , Nn). In the following, ~N is short notation
for N1, . . . , Ni, . . . , Nn and ~N ′ is short notation for N1, . . . ,Mi, . . . , Nn.

By Lemma 4.2, λλ~x.pk(~x) is a weakly monotonic functional for all k, and this implies that
pk(~N) ≥ pk(~N ′). If, moreover, pj(~N) > pj(~N ′), then we obtain P (~N) > P (~N ′), as required,
by the nature of the addition operator.

Write pj(~x) = a · d(xi, ~x), where d(y, ~x) = y(λλ~y1.b1(~x, ~y), . . . , λλ ~ym.bm(~x, ~y)). Since all
bj are polynomials, Lemma 4.2 provides that λλ~yj .bj(~N, ~y) ≥ λλ~yj .bj(~N ′, ~y), so by weak
monotonicity of Ni we know d(Ni, ~N) ≥ d(Ni, ~N ′). By the definition of Ni = Mi, we also
see that d(Ni, ~N ′) > d(Mi, ~N ′). Since for a > 0 we have a · k > a · j if k > j, it follows that
pj(~N) = a · d(Ni, ~N) > a · d(Mi, ~N ′) = pj(~N ′) as required. J

	Introduction
	Background
	Algebraic Functional Systems
	Reduction Pairs
	First-order Monotonic Algebras - Idea Sketch
	Weakly Monotonic Functionals

	(Weakly and Extended) Monotonic Algebras for AFSs
	Higher-Order Polynomial Interpretations
	Automation
	Choosing Parametric Polynomial Interpretations
	Simplifying Polynomial Requirements

	Experiments
	Conclusion
	Appendix
	Changing the Definition of .
	The Max function.
	Weak and Strong Monotonicity: claims in Lemma 3.3(4) and Theorem 3.8
	Example 3.6: dealing with dynamic dependency pairs
	Proofs for Section 4

