
COMPLEXITY OF CONDITIONAL TERM REWRITING

CYNTHIA KOP, AART MIDDELDORP, AND THOMAS STERNAGEL

Department of Computer Science
University of Innsbruck, Austria?

e-mail address: kop@di.ku.dk

Department of Computer Science
University of Innsbruck, Austria
e-mail address: aart.middeldorp@uibk.ac.at

Department of Computer Science
University of Innsbruck, Austria
e-mail address: thomas.sternagel@uibk.ac.at

Abstract. We propose a notion of complexity for oriented conditional rewrite systems
satisfying certain restrictions. This notion is realistic in the sense that it measures not only
successful computations, but also partial computations that result in a failed rule application.
A transformation to unconditional context-sensitive rewrite systems is presented which
reflects this complexity notion, as well as a technique to derive runtime and derivational
complexity bounds for the result of this transformation.

1. Introduction

Conditional term rewriting [31, Chapter 7] is a well-known computational paradigm. First
studied in the eighties and early nineties of the previous century, in more recent years
transformation techniques have received a lot of attention. Various automatic tools for
(operational) termination [12, 22, 32] as well as confluence [34] have been developed.

In this paper we consider the following question: What is the greatest number of steps
that can be done when evaluating terms, for starting terms of a given size? For unconditional
rewrite systems this question has been investigated extensively and numerous techniques have
been developed that give an upper bound on the resulting notions of derivational and runtime
complexity (e.g. [6, 15, 16, 25, 26]). Tools that support complexity methods ([4, 29, 39]) are
under active development and compete annually in the complexity competition.1

1998 ACM Subject Classification: F.4.2 Grammars and Other Rewriting Systems.
Key words and phrases: conditional term rewriting, complexity.
This article is an extended version of [17], with a more elegant transformation including a completeness

proof in Section 5 and a drastic extension of the interpretation-based methods in Sections 6–8.
This research is supported by the Austrian Science Fund (FWF) project I963 and partially supported by

the Marie Sk lodowska-Curie action “HORIP”, program H2020-MSCA-IF-2014, 658162.
? Author’s present affiliation: Department of Computer Science, University of Copenhagen, Denmark.

1http://cbr.uibk.ac.at/competition/

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© C. Kop, A. Middeldorp, and T. Sternagel
Creative Commons

1

http://cbr.uibk.ac.at/competition/

2 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

We are not aware of any techniques or tools for conditional (derivational and runtime)
complexity—or indeed, even of a definition for conditional complexity. This may be for
a good reason, as it is not obvious what such a definition should be. Of course, simply
counting steps without taking the conditions into account will not do. Counting successful
rewrite steps both in the reduction and in the evaluation of conditions is a natural idea. This
two-dimensional view is seen for instance in studies of (operational) termination [21, 22]
and certain transformations from conditional rewrite systems to unconditional ones (e.g.,
unravelings [23, 31]). However, we will argue that this approach—considering only the
successful evaluation steps—still gives rise to an unrealistic notion of complexity. Modern
rewrite engines like Maude [7] that support conditional rewriting can spend significant
resources on evaluating conditions that in the end prove to be useless for rewriting the term
at hand. This should be taken into account when defining complexity.

Contribution. We propose a new notion of conditional complexity for a relatively large
class of reasonably well-behaved conditional rewrite systems. This notion aims to capture the
maximal number of rewrite steps that can be performed when reducing a term to normal form,
including the steps that were computed but turned out to be ultimately not useful. In order
to reuse existing methodology for deriving complexity bounds, we present a transformation
into unconditional rewrite systems that can be used to estimate the conditional complexity,
building on the ideas of structure-preserving transformations [1, 8] but including several
new ideas. The transformed system is context-sensitive (Lucas [19, 20]), which is not yet
supported by current complexity tools; however, ignoring the corresponding restrictions, we
still obtain an upper bound on the conditional complexity.

Organization. The remainder of the paper is organized as follows. In the next section
we recall some preliminaries. Based on the analysis of conditional complexity in Section 3,
we introduce our new notion formally in Section 4. Section 5 presents a transformation to
context-sensitive rewrite systems, and in Section 6–8 we present an interpretation-based
method targeting the resulting systems, as well as two optimizations of the technique to
demonstrate that we can obtain tight bounds on realistic systems. Section 9 concludes with
initial experiments, related work, and suggestions for future work.

2. Preliminaries

We assume familiarity with (conditional) term rewriting and all that (e.g., [5, 31, 36]) and
only shortly recall important notions that are used in the following.

In this paper we consider oriented conditional (term) rewrite systems (CTRSs for short).
Conditional rewrite rules have the form `→ r ⇐ c, where c is a sequence a1 ≈ b1, . . . , ak ≈ bk
of equations. An oriented CTRS is a set R of conditional rules. The rewrite relation →R
associated with R is formally defined as the union of a series of approximations →Ri , where

• R0 = ∅,

• Ri+1 = {`σ → rσ | `→ r ⇐ c ∈ R and aσ →∗Ri
bσ for all a ≈ b ∈ c}.

In the sequel we will primarily use the observation that s→R t if and only if there exist a
position p in s, a rule `→ r ⇐ c in R, and a substitution σ such that s|p = `σ, t = s[rσ]p,

and R ` cσ, where the latter denotes that aσ →∗R bσ for all a ≈ b ∈ c. We may write s
ε−→ t

for a rewrite step at the root position and s
>ε−→ t for a non-root step.

COMPLEXITY OF CONDITIONAL TERM REWRITING 3

Given a (C)TRS R over a signature F , the root symbols of left-hand sides of rules in
R are called defined symbols and every other symbol in F is a constructor symbol. These
sets are denoted by FD and FC, respectively. For a given symbol f , we write R�f for the
set of rules in R whose left-hand sides have root symbol f . A constructor term consists of
constructor symbols and variables. A basic term is a term f(t1, . . . , tn) where f ∈ FD and
t1, . . . , tn are constructor terms. We call R semi-finite if R�f is finite for every f ∈ FD. Let
Σ(F ,V) be the set of substitutions mapping to T (F ,V). For substitutions σ and τ we write
σ →∗R τ to denote σ(x)→∗R τ(x) for all variables x ∈ V. A term s is terminating if there is
no infinite reduction s→R s1 →R s2 →R · · · . A normal form is a term s such that there is
no term t with s →R t. We say that t is a normal form of s if s →∗R t and t is a normal
form. Note that it is possible for a normal form to instantiate the left-hand side of a rule,
which is not true for TRSs.

A (C)TRS is finitely branching if there are only finitely many distinct terms reachable
in one rewrite step from any given term. All semi-finite (C)TRSs are finitely branching,
but they may have an infinite signature. Given a terminating and finitely branching TRS
R over a signature F , the derivation height of a term t is defined as dh(t) = max {n |
t→n u for some term u}. This leads to the notion of derivational complexity dcR(n) =
max {dh(t) | |t| 6 n}, where |t| is the number of symbols occurring in t. If we restrict the
definition to basic terms t we get the notion of runtime complexity rcR(n) [14].

Rewrite rules ` → r ⇐ c of CTRSs are classified according to the distribution of
variables among `, r, and c. In this paper we consider 3-CTRSs, where the rules satisfy
Var(r) ⊆ Var(`, c). A CTRS R is deterministic if for every rule `→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk
in R we have Var(ai) ⊆ Var(`, b1, . . . , bi−1) for 1 6 i 6 k.

We write s �−→ t if there exist a position p in s, a rule `→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk, a
substitution σ, and an index 1 6 i 6 k such that s|p = `σ, ajσ →∗ bjσ for all 1 6 j < i, and
t = aiσ. A CTRS is quasi-decreasing if there exists a well-founded order > with the subterm
property (i.e., � ⊆ > where s� t if t is a proper subterm of s) such that both → and �−→ are
included in > [9]. We additionally define here that a term s is quasi-decreasing if there is no
infinite sequence s = u0 (→ ∪ �−→) u1 (→ ∪ �−→) · · · . Clearly, a CTRS is quasi-decreasing if
and only if all its terms are, but individual terms may be quasi-decreasing even if the CTRS
is not. Quasi-decreasingness ensures termination and, for finite CTRSs, computability of the
rewrite relation. Quasi-decreasingness coincides with operational termination [21]. We call a
CTRS constructor-based if the right-hand sides of conditions as well as proper subterms of
the left-hand sides of rules are constructor terms.

Limitations. We restrict ourselves to constructor-based deterministic 3-CTRSs, where the
right-hand sides of conditions use only variables not occurring in the left-hand side or in
earlier conditions. That is, for every rule f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk ∈ R:

• `1, . . . , `n, b1, . . . , bk are constructor terms without common variables,
• Var(r) ⊆ Var(`1, . . . , `n, b1, . . . , bk) and Var(ai) ⊆ Var(`1, . . . , `n, b1, . . . , bi−1) for

1 6 i 6 k.

We will call such systems CCTRSs. Furthermore, we will focus on strong CCTRSs: semi-finite
CCTRSs such that, for every rule f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk ∈ R,

• f(`1, . . . , `n) and b1, . . . , bk are linear terms: no variable occurs more than once in
them.

Note that, even in strong CCTRSs, the left-hand sides of conditions are not required to be
linear. We will develop a complexity notion for the general case of CCTRSs, but limit the

4 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

work on transformations (in Section 5 and beyond) to strong CCTRSs. We will particularly
consider confluent CCTRSs. While confluence is not needed for the formal development in
this paper, without it the complexity notion we define is not meaningful, as discussed below.

To appreciate the limitations, note that in CTRSs which are not deterministic 3-CTRSs,
the rewrite relation is undecidable in general, which makes it hard to define what complexity
means. The restrictions with regards to variables and constructors in strong CCTRSs are the
natural extension of the common restriction to left-linear constructor TRSs in unconditional
rewriting. They closely correspond to pattern guards [10], a language extension of Haskell.
Semi-finiteness actually weakens the standard restriction that R must be finite.

The limitation to CCTRSs is important because, in confluent CCTRSs, the approach
to computation is unambiguous: To evaluate whether a term `σ reduces with a rule
` → r ⇐ a1 ≈ b1, . . . , ak ≈ bk of a CCTRS, we start by reducing a1σ and, finding an
instance of b1, extend σ to the new variables in b1 resulting in σ′, continue with a2σ

′, and
so on. Assuming confluence, if there is an extension of σ which satisfies all conditions then,
no matter how we reduce, this procedure will either find it or—if `σ is not quasi-decreasing—
enter into an infinite reduction, a possibility which is also interesting from a complexity
standpoint. However, if confluence or any of the restrictions on the conditions were dropped,
this would no longer be the case and we might be unable to verify the applicability of a rule
without enumerating all possible reducts of its conditions. The restrictions are needed to
obtain Lemma 3.4, which will be essential to justify the way we handle failure.

We do not limit interest to quasi-decreasing CCTRSs—which would correspond to the
usual approach of limiting interest to terminating TRSs in the unconditional setting—but
will rather define the complexity of non-quasi-decreasing terms to be infinite. This is done
in order to unify proof efforts, especially for Theorem 5.12.

Example 2.1. The CTRS Rfib consisting of the rewrite rules

0 + y → y (2.1)

s(x) + y → s(x+ y) (2.2)

fib(0)→ 〈0, s(0)〉 (2.3)

fib(s(x))→ 〈z, w〉 ⇐ fib(x) ≈ 〈y, z〉, y + z ≈ w (2.4)

is a quasi-decreasing and confluent strong CCTRS. The requirements for quasi-decreasingness
are satisfied (e.g.) by the lexicographic path order with precedence fib > 〈·, ·〉 > + > s.
Because the 3-CTRS Rfib is orthogonal, right-stable, and properly oriented, confluence
follows from the result of [35].

Notation. To simplify the notation and shorten proofs, we will use the following convention
throughout the paper. Given a rule ρ : `→ r ⇐ c,

• the conditional part c consists of the conditions a1 ≈ b1, . . . , ak ≈ bk for some k > 0
(which depends on ρ),

• for all 0 6 j 6 k, c6j denotes the sequence a1 ≈ b1, . . . , aj ≈ bj .
In addition, we will sometimes refer to ` as b0 and to r as ak+1.

With these conventions, the limitations on rules can be reformulated as follows. For
every rule `→ r ⇐ c:

• b1, . . . , bk and the proper subterms of b0 are constructor terms,

• Var(bi) ∩ Var(bj) = ∅ for all 0 6 i, j 6 k with i 6= j and, in a strong CCTRS, the
terms b0, . . . , bk are linear,

• Var(ai) ⊆ Var(b0, . . . , bi−1) for all 1 6 i 6 k + 1.

COMPLEXITY OF CONDITIONAL TERM REWRITING 5

3. Analysis

Before we can define a notion of complexity, we must consider a model of computation.
Unlike unconditional term rewriting, it is not obvious how a term in a CTRS is reduced to
normal form. Even taking the approach for confluent CCTRSs sketched in Section 2 as a
basis, some unresolved questions remain. In this section, we will study both computation
and complexity by an appeal to intuition. In the next section we will formalize the results.

We start our analysis with a deceivingly simple CCTRS to illustrate that the notion of
complexity for conditional systems is not obvious.

Example 3.1. The CCTRS Reven consists of the following six rewrite rules:

even(0)→ true (3.1)

even(s(x))→ true ⇐ odd(x) ≈ true (3.2)

even(s(x))→ false ⇐ even(x) ≈ true (3.3)

odd(0)→ false (3.4)

odd(s(x))→ true ⇐ even(x) ≈ true (3.5)

odd(s(x))→ false ⇐ odd(x) ≈ true (3.6)

If, like in the unconditional case, we count the number of steps needed to normalize a
term, then a term tn = even(sn(0)) has derivation height 1, since tn → false or tn → true in
a single step. To reflect actual computation, the rewrite steps to verify the condition should
be taken into account. Viewed like this, normalizing tn takes n+ 1 rewrite steps.

However, this still seems unrealistic as a rewriting engine cannot know in advance which
rule to attempt first. For example, when rewriting t9, rule (3.2) may be tried first, which
requires normalizing odd(s8(0)) to verify the condition. After finding that the condition fails,
rule (3.3) is attempted. Thus, for Reven, a tool implementing conditional term rewriting
with a random rule selection strategy would select a rule with a failing condition about half
the time. If we assume a worst possible selection and count all rewrite steps performed
during the computation, we need 2n+1 − 1 steps to normalize tn.

Although this exponential upper bound may come as a surprise, a powerful rewrite
engine like Maude [7] does not perform much better, as can be seen from the data in Table 1.
Unlike term rewriting (which is non-deterministic by nature), Maude employs a top-down
rule selection strategy, so the order in which the rules are presented makes a difference in the
outcome—although, as it turns out, not a substantial one for Example 3.1 or other examples
in this paper. For rows three and four we presented the rules to Maude in the order given in
Example 3.1. If we change the order to (3.4), (3.6), (3.5), (3.1), (3.3), (3.2) we obtain the
last two rows, showing an exponential number of steps in all cases. Regardless of the order
on the rules, we never obtain the optimal linear bound for all tested terms.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

2n+1 − 1 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191

even(sn(0)) 1 3 3 11 5 37 7 135 9 521 11 2059 13

odd(sn(0)) 1 2 6 4 20 6 70 8 264 10 1034 12 4108

even(sn(0)) 1 2 7 8 31 32 127 128 511 512 2047 2048 8191

odd(sn(0)) 1 3 4 15 16 63 64 255 256 1023 1024 4095 4096

Table 1: Number of steps required to normalize even(sn(0)) and odd(sn(0)) in Maude.

6 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

From the above we conclude that a realistic definition of conditional complexity should
take failed computations into account. This conclusion opens new questions, however; most
pertinently, the question of how to handle repeated failed attempts. It is obvious that
we cannot allow repeatedly trying (and failing) the same rule at the same position. For
instance, it would be foolish to attempt to reduce even(s(0)) with rule (3.2), fail, then try
the same rule again ten more times before turning to (3.3) and count the steps for all the
failed attempts in the reduction cost. Thus, we must impose some restrictions on duplicated
attempts. To this end, let us consider what constitutes a duplicated attempt.

Example 3.2. The CCTRS Rfg consists of the following two rewrite rules:

f(x)→ x (3.7) g(x)→ a ⇐ x ≈ b (3.8)

Consider tn,m = fn(g(fm(a))). As we have not imposed an evaluation strategy, one approach
to evaluate this term could be as follows. We try using (3.8) on the subterm g(fm(a)). This
fails in m steps. With (3.7) at the root position we obtain tn−1,m. We again attempt (3.8),
failing in m steps. Repeating this scenario results in n ·m rewrite steps before we reach t0,m.

In the above example we keep attempting—and failing—to rewrite an unmodified copy
of a subterm we tried before, with the same rule. Even though the position of the subterm
g(fm(a)) changes, we already know that this reduction will fail. Hence, once we fail a
conditional rule on given subterms, it is reasonable not to try the same rule again on (copies
of) the same subterms, even after a successful step. In our model of computation we should
therefore keep track of previous failed attempts. This will be made formal in Section 4.

Example 3.3. Continuing with t0,m from the preceding example, we could try to use (3.8),
which fails in m steps. Next, (3.7) is applied on a subterm, and we obtain t0,m−1. Again we
try (3.8), failing after executing m− 1 steps. Repeating this alternation results eventually
in the normal form t0,0, but not before computing 1

2(m2 + 3m) rewrite steps in total.

Like in Example 3.2, we keep coming back to a subterm which we have already tried before
in an unsuccessful attempt. The difference is that the subterm has been rewritten between
successive attempts. According to the following general result, we need not reconsider a
failed attempt to apply a conditional rewrite rule if only the arguments were changed.

Lemma 3.4. Given a CCTRS R, suppose s
>ε−→∗ t and let ρ : `→ r ⇐ c be a rule such that

s is an instance of `. If t
ε−→ρ u then there exists a term v such that s

ε−→ρ v and v →∗ u.

So if we can rewrite a term at the root position eventually, and the term already matches
the left-hand side of the rule with which we can do so, then we can rewrite the term with
this rule immediately and obtain the same result. Note that this lemma does not assume
confluence, quasi-decreasingness or left-linearity, and so is broadly applicable.

Proof. Suppose s = `σ with dom(σ) ⊆ Var(`), and let τ be a substitution such that t = `τ ,
u = rτ , and R ` cτ , which exists since ρ applies to t at the root position. Because ` is a basic
term, all steps in s

>ε−→∗ t take place in the substitution part σ of `σ and thus σ(x)→∗ τ(x)
for all x ∈ Var(`). Defining the substitution σ′ as follows, we have s = `σ = `σ′ and σ′ →∗ τ :

σ′(x) =

{
σ(x) if x ∈ Var(`)

τ(x) if x /∈ Var(`)

Let a ≈ b be a condition in c. From Var(b)∩Var(`) = ∅ we infer aσ′ →∗ aτ →∗ bτ = bσ′. It

follows that R ` cσ′ and thus s
ε−→ρ rσ

′. Hence we can take v = rσ′ as rσ′ →∗ rτ = u.

COMPLEXITY OF CONDITIONAL TERM REWRITING 7

n 0 1 2 3 4 5 6 7 8 9 10 11 12

m 0 1 2 3 4 5 6 7 8 9 10 11 12

n ·m 0 1 4 9 16 25 36 49 64 81 100 121 144
1
2(m2 + 3m) 0 2 5 9 14 20 27 35 44 54 65 77 90

fn(g(fm(a))) 0 3 8 16 28 45 68 98 136 183 240 308 388

g(fm(a)) 0 2 6 13 24 40 62 91 128 174 230 297 376

Table 2: Number of steps required to normalize fn(g(fm(a))) and g(fm(a)) in Maude.

From the above observations we conclude that, to avoid unnecessary repetitions, we can
simply mark occurrences of defined symbols with the rules we have already tried without
success—or, symmetrically, with the rules we have yet to try, as we will do in Section 4.

Table 2 compares these theoretical considerations to actual computations of Rfg in
Maude. Interestingly, Maude seems to perform worse on evaluating g(fm(a)) than the
realistic m + 1 bound. Thus, it seems that Maude could benefit from incorporating the
implications of Lemma 3.4. However, it should be remarked that when presenting Rfg as a
functional module [7, Chapter 6], Maude will switch to an innermost evaluation strategy
and compute the normal form g(a) of fn(g(fm(a))) in m+ n steps.

In this paper, we will assume that rewriting takes Lemma 3.4 into account, and thus
avoids repeatedly reevaluating the same term. Also unlike Maude, we will not impose an
evaluation order on the rules, nor a strategy for the position in a term that must be rewritten
first, but allow free choice as is common in term rewriting.

Another important aspect to consider is how to define a “failed” reduction. Intuitively,
a rule `→ r ⇐ c should be considered not applicable on a term `σ if there is no extension
σ′ of σ such that R ` cσ′. Yet in Example 3.1 we already concluded that the second rule
was not applicable to t9 simply after reducing odd(s8(0)) to its normal form false, because
false does not match the right-hand side true of the condition. As remarked in Section 2,
this is possible due to our restrictions. The following lemma makes this observation formal.

Lemma 3.5. Let ρ : ` → r ⇐ c be a rule in a confluent CCTRS R and σ a substitution
such that dom(σ) ⊆ Var(`) and `σ is quasi-decreasing. Then ρ is not applicable to `σ if and

only if there is an extension σ′ of σ, and some 1 6 i 6 k such that R ` c6i−1σ and aiσ
′ →∗ u

for some normal form u which is not an instance of bi.

Proof. (Recall that c is a1 ≈ b1, . . . , ak ≈ bk and c6i−1 denotes a1 ≈ b1, . . . , ai−1 ≈ bi−1.)
We first prove the “only if” direction. So suppose that ρ is not applicable to `σ. We
define extensions σ0, . . . , σi−1 of σ such that σj(x) = σ(x) for all x ∈ Var(`), dom(σj) ⊆
Var(`, b1, . . . , bj) for all 0 6 j < i, R ` c6j σj , and aiσi−1 →∗ u for some normal form u which

is not an instance of bi. Then σ′ = σi−1 satisfies the requirements of the lemma. Let σ0 = σ
and suppose σ1, . . . , σj−1 have been defined. We have `σ = `σj−1

�−→ ajσj−1 and hence
ajσj−1 is terminating by quasi-decreasingness. Let u be a normal form of ajσj−1. If u is
an instance of bj , say u = bjτ with dom(τ) ⊆ Var(bj), then we let σj = σj−1 ∪ τ . Note that
σj is well-defined as dom(σj−1) ∩ Var(bj) = ∅. In this case σj clearly satisfies the above
conditions. If u is not an instance of bj then we are done by letting i = j. Note that the
latter must happen for some j since we assumed that ρ is not applicable.

8 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Next we prove the “if” direction. Suppose σ′, i, and u exist with the stated properties.
For a proof by contradiction, also suppose that the rule is applicable, so there is an extension
τ of σ such that R ` cτ . Define the substitution τ↓ as {x 7→ τ(x)↓R | x ∈ dom(τ)}, where
τ(x)↓R denotes the unique normal form of τ(x). (This is well-defined because `τ = `σ is quasi-
decreasing and thus ajτ and bjτ are quasi-decreasing for all 1 6 j 6 k. Therefore, all subterms
of `τ , b1τ , . . . , bkτ are terminating. Since we may assume dom(τ) ⊆ Var(`, b1, . . . , bk)—as
each aj uses only variables in Var(`, b1, . . . , bj−1)—confluence ensures that τ(x) has a unique
normal form for every x ∈ dom(τ).) Fix 1 6 j 6 k. We have ajτ →∗ bjτ →∗ bj(τ↓)
and ajτ →∗ aj(τ↓). Since bj is a constructor term, bj(τ↓) is a normal form and thus
aj(τ↓)→∗ bj(τ↓) by confluence. We claim that σ′(x)→∗ τ↓(x) for all x ∈ Var(`, b1, . . . , bi−1).
If x ∈ Var(`) then σ′(x) = σ(x) = τ(x). Hence also σ′(x)→∗ τ↓(x). Suppose the claim holds
for x ∈ Var(`, b1, . . . , bj−1) with 1 6 j < i. From Var(aj) ⊆ Var(`, b1, . . . , bj−1) we infer
ajσ
′ →∗ aj(τ↓)→∗ bj(τ↓). Also ajσ

′ →∗ bjσ′ and thus bjσ
′ →∗ bj(τ↓) by confluence. As bj

is a constructor term, σ′(x)→∗ τ↓(x) for all x ∈ Var(bj). This completes the proof of the
claim. From the claim we find aiσ

′ →∗ ai(τ↓)→∗ bi(τ↓). Using aiσ
′ →∗ u and confluence,

we obtain bi(τ↓) = u, contradicting the assumption that u is not an instance of bi.

Thus, if we reduce the conditions of a rule and find a normal form that does not
instantiate the required right-hand side, we can safely conclude that the rule does not apply.

A final aspect to consider is when to stop reducing a condition. Should we stop once we
obtain the right shape? Or should we allow—or even enforce—reductions to normal form?

Example 3.6. Consider the following CCTRS implementing addition:

plus(x, y)→ y ⇐ x ≈ 0 plus(x, y)→ s(plus(z, y)) ⇐ x ≈ s(z)

Let t = plus(plus(s9(0), 0), s(0)). To reduce t at the root with the second rule, we must evalu-
ate the condition plus(s9(0), 0)→∗ s(z). This is satisfied in a single step, reducing to s(z){z 7→
plus(s8(0), 0)}. Should we therefore reduce immediately, to s(plus(plus(s8(0), 0), s(0)))? Or
should we continue reducing the condition until we obtain a normal form s8(0) and then
reduce to s(plus(s8(0), s(0)))? Similarly, if we try to reduce t at the root with the first rule,
we obtain in one step an instance of s(z), which does not unify with 0. Since every reduct of
s(z)σ′ is still an instance of s(z), we could immediately conclude that the condition will fail.

Both questions are a matter of strategy, and different approaches might adopt different
choices. One could argue that it makes little sense to continue reducing a term for a condition
when we already know that it is satisfied, much like we said it makes no sense to keep
reevaluating the same failing condition. However, since we aim for a general definition, we
have decided not to pursue this. That is, in Example 3.6 we may choose to stop evaluating
the conditions and reduce with the rule (resp. conclude failure) once we obtain an instance
of the desired pattern (resp. a term for which we can easily see that it will never reduce to
such an instance), but this is not compulsory. Specific evaluation strategies can easily be
added to the corresponding definitions and transformations later.

Although a large part of our complexity notion deals with failed reductions, there are
many CCTRSs where this is not relevant. Consider for instance Example 2.1 in which the
conditions of the one conditional rule are not expected to fail; they merely evaluate the
result of a smaller term to a normal form (or at least a constructor instance), and use its
subterms. Correspondingly, as can be seen in Table 3, the time needed to normalize terms
in the Fibonacci CCTRS grows roughly as fast as the Fibonacci sequence itself, with no
additional exponential growth for failed attempts.

COMPLEXITY OF CONDITIONAL TERM REWRITING 9

n 0 1 2 3 4 5 6 7 8 9 10 11 12

fib(sn(0)) 1 3 7 13 23 40 69 119 205 353 607 1042 1785

Table 3: Number of steps required to normalize fib(sn(0)) in Maude.

4. Conditional Complexity

In Section 3 we have come to an intuitive understanding of how a term s in a (confluent)
CTRS can be reduced, and what the corresponding complexity should be:

• In every step we select a position p and a rule `→ r ⇐ c matching the corresponding
subterm (i.e., s|p = `σ for some σ).

• We then start evaluating the conditions in c from left to right, extending σ as we go,
until we have either confirmed all conditions or obtain a failing condition.

• In the former case, we reduce s|p by this rule (obtaining s[rσ′]p for the extension
σ′ of σ found by evaluating the conditions in c). In the latter case, we mark the
subterm s|p to indicate that we should not try the rule `→ r ⇐ c on this subterm
again.

• The complexity of a conditional reduction is then obtained by counting all rewrite
steps, including those in successful and failed condition evaluations.

In this section, we will formalize this intuition. A key aspect is the ability to mark terms,
so as to avoid continuously repeating the same reduction attempt. To achieve this, we will
label defined function symbols by subsets of the rules used to define them. Then, we define
a variation −⇀ of the rewrite relation → which explicitly includes failed computations. This
relation is used as the basis to define a complexity measure in a natural way.

This section is structured as follows. First we define labeled terms and the labeled
rewrite relation −⇀ (Section 4.1). Then we analyze how −⇀ relates to the unlabeled conditional
rewrite relation → (Section 4.2) and define derivation height and complexity (Section 4.3).

4.1. Labeled Terms and Reduction.

Definition 4.1. Let R be a CCTRS over a signature F . The labeled signature G is defined
as FC ∪ {fR | f ∈ FD and R ⊆ R�f}. A labeled term is a term in T (G,V).

Intuitively, the label R in fR records the defining rules for f which have not yet been
tried. In examples we will generally conflate the rules in R with labels identifying them.

Definition 4.2. Let R be a CCTRS over a signature F . The mapping label : T (F ,V)→
T (G,V) labels every defined symbol f with R�f . The mapping erase : T (G,V)→ T (F ,V)
removes the labels from defined symbols.

We obviously have erase(label(t)) = t for every t ∈ T (F ,V) and erase(t) = label(t) = t for
constructor terms t. The identity label(erase(t)) = t does not hold for arbitrary t ∈ T (G,V).

Definition 4.3. A labeled normal form is a term in T (FC ∪ {f∅ | f ∈ FD},V).

Example 4.4. In Rfib from Example 2.1, the labeled signature G consists of 0, s, 〈·〉, +R

for every subset R of {(2.1), (2.2)}, and fibR for every subset R of {(2.3), (2.4)}. We have

label(fib(s(0) + 0)) = fib{(2.3),(2.4)}(s(0) +{(2.1),(2.2)} 0)

Examples of labeled normal forms are s(0) and fib∅(0 +∅ s(s(0))).

10 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

The relation −⇀ will be designed so that a ground labeled term can be reduced if and
only if it is not a labeled normal form (see Lemma 4.11). First, with Definition 4.5 we can
remove rules from a label if they will never apply due to an impossible matching problem.

Definition 4.5. Let R be a CCTRS. For labeled terms s and t we write s
⊥−⇀ t if there

exist a position p ∈ Pos(s) and a rewrite rule ρ : `→ r ⇐ c in R such that

(1) s|p = fR(s1, . . . , sn) with ρ ∈ R,

(2) t = s[fR\{ρ}(s1, . . . , sn)]p, and

(3) there exist linear labeled normal forms u1, . . . , un with fresh variables and a substitu-
tion σ such that s|p = fR(u1, . . . , un)σ and f(u1, . . . , un) does not unify with `.

The last item ensures that rewriting (using −⇀) strictly below position p cannot give
a reduct that matches `, since all such reducts will still be instances of fR(u1, . . . , un).
Furthermore, if s is ground and s|p = fR(s1, . . . , sn) where R is non-empty and all s1, . . . , sn
are labeled normal forms, then either f(s1, . . . , sn) is an instance of `, or

⊥−⇀ applies to s|p.

Example 4.6. In Example 4.4 we have

fib{(2.3),(2.4)}(s(0) +{(2.1),(2.2)} 0)
⊥−⇀ fib{(2.3),(2.4)}(s(0) +{(2.2)} 0)

because s(0) + 0 does not unify with 0 + y, and both s(0) and 0 are linear labeled normal
forms. Also

fib{(2.3),(2.4)}(s(0 +{(2.1)}0) +{(2.1),(2.2)} 0)
⊥−⇀ fib{(2.3),(2.4)}(s(0 +{(2.1)} 0) +{(2.2)} 0)

since s(x) and 0 are linear labeled normal forms and s(x) + 0 does not unify with 0 + y.

Second, Definition 4.7 describes how to “reduce” labeled terms in general. This definition
is designed to reduce ground terms in the way roughly described in Section 3. Labeled terms
are reduced without any strategy, but subterms keep track of which rules have not yet been
attempted, thus implicitly avoiding duplication.

Definition 4.7. A labeled reduction is a sequence t1 −⇀ t2 −⇀ · · · −⇀ tm of labeled
terms where s −⇀ t if either s

⊥−⇀ t or there exist a position p ∈ Pos(s), rewrite rule
ρ : f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk, substitution σ, and index 0 6 j 6 k such that

(1) s|p = fR(s1, . . . , sn) with ρ ∈ R and si = `iσ for all 1 6 i 6 n,

(2) label(ai)σ −⇀∗ biσ for all 1 6 i 6 j,

and either

(3) j = k and t = s[label(r)σ]p
in which case we speak of a successful step, or

(4) j < k and there exist a linear labeled normal form u and a substitution τ such that
(a) label(aj+1)σ −⇀∗ uτ and u does not unify with bj+1, and

(b) t = s[fR\{ρ}(s1, . . . , sn)]p,

which is a failed step.
A complexity-conscious reduction is a labeled reduction complete with proofs of the sub-

requirements, i.e., a sequence (t1 −⇀ t2), . . . , (tm−1 −⇀ tm) of complexity-conscious steps, where
each complexity-conscious step s −⇀ t is a tuple combining s, t, p, ρ, j and the complexity-
conscious reductions label(ai)σ −⇀∗ biσ for 1 6 i 6 j and possibly label(aj+1)σ −⇀∗ uτ . We
will denote complexity-conscious reductions as labeled reductions, and simply assume the
underlying condition evaluations given.

COMPLEXITY OF CONDITIONAL TERM REWRITING 11

It is easy to see that for all ground labeled terms s which are not labeled normal
forms, either s

⊥−⇀ t for some term t or there are p, ρ, σ such that s|p “matches” ρ in
the sense that the first requirement in Definition 4.7 is satisfied. In the latter case, the
conditions are evaluated left-to-right; as all bj are linear constructor terms on fresh variables,
label(aj)σ −⇀∗ bjσ simply indicates that ajσ—with labels added to allow reducing defined
symbols in aj—reduces to an instance of bj . A successful reduction occurs when we manage
to reduce each label(ai)σ to biσ. A failed reduction occurs when we start reducing label(ai)σ
and obtain a term that will never reduce to an instance of bi.

Example 4.8. Continuing Example 4.4, we have the following complexity-conscious reduc-
tion:

fib{(2.3),(2.4)}(s(0) +{(2.1),(2.2)} 0)
⊥−⇀ fib{(2.3),(2.4)}(s(0) +{(2.2)} 0) (Example 4.6)

−⇀ fib{(2.3),(2.4)}(s(0 +{(2.1),(2.2)} 0)) (successful step)

−⇀ 〈s(0), s(0)〉 (successful step)

The first successful step uses the unconditional rule (2.2). The second successful step uses
rule (2.4) and the complexity-conscious reductions

fib{(2.3),(2.4)}(0 +{(2.1),(2.2)} 0) −⇀ fib{(2.3),(2.4)}(0) −⇀ 〈0, s(0)〉
and

0 +{(2.1),(2.2)} s(0) −⇀ s(0)

for the evaluation of the conditions, all by successful steps without conditions.

Example 4.9. In the CCTRS of Example 3.1 we have the following complexity-conscious
reduction:

even{(3.1),(3.2),(3.3)}(s(0)) −⇀ even{(3.1),(3.3)}(s(0)) (failed step)
⊥−⇀ even{(3.3)}(s(0)) (matching failure)

−⇀ false (successful step)

The first step fails with j = 0 because

label(odd(0)) = odd{(3.4)),(3.5),(3.6)}(0)
⊥−⇀ odd{(3.4)),(3.5)}(0) −⇀ false

and false is a linear labeled normal form which does not unify with true. The third step
succeeds because label(even(0)) = even{(3.1)),(3.2),(3.3)}(0) −⇀ true.

There is one possibility remaining which is not covered by Definition 4.7; in a non-quasi-
decreasing setting, a condition may give rise to an infinite reduction, neither failing nor
succeeding. To handle this case we introduce a third definition.

Definition 4.10. We write s �−⇀ t if there exist a position p ∈ Pos(s), rewrite rule
ρ : f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk, substitution σ and 1 6 j < k such that

(1) s|p = fR(s1, . . . , sn) with ρ ∈ R and si = `iσ for all 1 6 i 6 n,

(2) label(ai)σ −⇀∗ biσ for all 1 6 i 6 j, and

(3) t = label(aj+1)σ

We write s
∞−⇀ if there is an infinite sequence s = s0 (−⇀ ∪ �−⇀) s1 (−⇀ ∪ �−⇀) · · ·

12 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Definition 4.10 completes labeled reduction; all ground labeled terms s are either labeled
normal forms, or can be reduced using −⇀ or �−⇀. This is verified in the following lemma.

Lemma 4.11. For every ground labeled term s one of the following alternatives holds:

(1) s
∞−⇀,

(2) s −⇀ t for some term t, or
(3) s is a labeled normal form.

Proof. We non-deterministically construct a (finite or infinite) sequence s = s0, s1, s2, . . . of
ground terms as follows. Assuming si has been defined, if there is some u such that si −⇀ u
then we take any such u as si+1. Otherwise, if there is some v with si

�−⇀ v then we take
si+1 = v. If there are multiple such v, we choose one with the largest possible number j
(cf. (2) in Definition 4.10) of successful conditions with respect to a rule ρ satisfying (1) in
Definition 4.10. If no si+1 has been defined, we terminate the construction and let N = i.

If the constructed sequence is infinite then s
∞−⇀ and thus statement (1) holds. So

suppose the sequence is finite.
We claim that sN is a labeled normal form. For a proof by contradiction, assume

that sN is not a labeled normal form, so it has a subterm whose root symbol has a non-
empty label. Choosing a minimal such subterm, we find a position p ∈ Pos(sN) such
that sN |p = fR(u1, . . . , un) where u1, . . . , un are labeled normal forms and R 6= ∅, say
ρ : f(`1, . . . , `n) → r ⇐ c ∈ R. Now, if f(u1, . . . , un) does not instantiate f(`1, . . . , `n),
then sN

⊥−⇀ sN [fR\{ρ}(u1, . . . , un)]p because u1, . . . , un are ground labeled normal forms,
contradicting the fact that sN is the last element of the sequence. It follows that a
substitution σ exists such that ui = `iσ for 1 6 i 6 n. If k = 0 then sN −⇀ sN [rσ]p,
otherwise sN

�−⇀ label(a1)σ. In both cases we obtain a contradiction to the choice of N .
Next we prove si −⇀ si+1 for 0 6 i < N . Aiming for a contradiction, consider the largest

i such that si −⇀ si+1 does not hold. Then we have si
�−⇀ si+1, so there exist a position p,

a rule ρ : f(`1, . . . , `n) → r ⇐ c ∈ R, an index 1 6 j < k, and a substitution σ such that
si|p = fR(u1, . . . , un) with f(u1, . . . , un) = f(`1, . . . , `n)σ, label(al)σ −⇀∗ blσ for all 1 6 l 6 j,
and si+1 = label(aj+1)σ. We have si+1 −⇀∗ sN by the choice of i. If sN is not an instance
of bj+1 then, since sN is a ground labeled normal form, the condition has failed and we
have si −⇀ si[fR\{ρ}(u1, . . . , un)]p, contradicting the choice for si+1. So sN does instantiate
bj+1. But then, if j + 1 < k, we should have chosen si+1 = label(aj+2)σ according to the
construction of si+1, and if j + 1 = k then si+1 = si[rσ]p should have been chosen instead.

Now, if N = 0 then s = sN is a labeled normal form and thus statement (3) holds. If
N > 0 statement (2) holds as s = s0 −⇀ s1.

Note that the three alternatives in Lemma 4.11 are not exclusive: It is possible to have

s −⇀ t as well as s
∞−⇀ for a term s.

4.2. Labeled versus Unlabeled Reduction.

The relation −⇀ provides an alternative approach to evaluation which keeps track of failed rule

application attempts, whereas
∞−⇀ is the counterpart of non-quasi-decreasingness. As may

be expected, there is a strong connection between the relations → and −⇀. This connection
is made formal in Theorem 4.13 and the subsequent lemmata.

Definition 4.12. Let R be semi-finite and t ∈ T (G,V). We write ‖t‖ for the total number
of rules occurring in all labels in t.

COMPLEXITY OF CONDITIONAL TERM REWRITING 13

Semi-finiteness ensures that ‖t‖ is a well-defined natural number.

Theorem 4.13. Let R be a CCTRS.

(1) Let s, t ∈ T (F ,V).
(a) If s→ t then label(s) −⇀ label(t).
(b) If s→∗ t then label(s) −⇀∗ label(t).

(2) Let s, t ∈ T (G,V).
(a) If s −⇀ t then either erase(s)→ erase(t) or both erase(s) = erase(t) and, if R is

semi-finite, ‖s‖ > ‖t‖.
(b) If s −⇀∗ t then erase(s)→∗ erase(t).

Proof. We use induction on the total number of rewrite steps of → and −⇀, respectively.
This is the number of steps used both directly in the reduction, and those needed to verify
the conditions aiσ →∗ biσ or label(ai)σ −⇀∗ biσ.

(1) We derive cases (1a) and (1b) by simultaneous induction on the total number of
rewrite steps needed to derive s→ t and s→∗ t.
(a) There exist a position p ∈ Pos(s), a rule ρ : `→ r ⇐ c, and a substitution σ such

that s|p = `σ, t = s[rσ]p, and R ` cσ. Let σ′ be the (labeled) substitution label◦
σ. Fix 1 6 i 6 k. We have label(aiσ) = label(ai)σ

′ and label(biσ) = biσ
′ (as bi is

a constructor term). Because aiσ →∗ biσ is used in the derivation of s→ t we can
apply the induction hypothesis for part (b), resulting in label(aiσ) −⇀∗ label(biσ).
Furthermore, writing ` = f(`1, . . . , `n), we obtain label(`) = fR�f (`1, . . . , `n).
Hence label(s) = label(s)[label(`)σ′]p −⇀ label(s)[label(r)σ′]p = label(t) because
conditions (1)–(3) in Definition 4.7 are satisfied.

(b) If s = t then the result is obvious. If s → u →∗ t then label(s) −⇀ label(u)
follows by case (1a), and the induction hypothesis yields label(u) −⇀ label(t).

(2) We prove both statements by simultaneous induction on the total number of steps
required to derive s −⇀ t and s −⇀∗ t. For part (a) we distinguish two cases.

• Suppose s
⊥−⇀ t or s −⇀ t by a failed step. In either case we have erase(s) =

erase(t). Moreover, if all labels have finite size, also ‖s‖ = ‖t‖+ 1.
• Suppose s −⇀ t by a successful step. So there exist a position p ∈ Pos(s), a

rule ρ : ` → r ⇐ c in R, a substitution σ, and terms `′, a′1, . . . , a
′
k such that

s|p = `′σ with erase(`′) = `, a′iσ −⇀∗ biσ with erase(a′i) = ai for all 1 6 i 6 k,
and t = s[label(r)σ]p. Let σ′ be the (unlabeled) substitution erase ◦ σ. We
have erase(s) = erase(s)[`σ′]p and erase(u) = erase(s)[rσ′]p. Since the sequence
a′iσ −⇀∗ biσ is used as a strict subpart of the derivation of s −⇀ t, we obtain
aiσ
′ = erase(a′iσ) →∗ erase(biσ) = biσ

′ from the induction hypothesis, for all
1 6 i 6 k. Hence R ` cσ′, so indeed erase(s)→ erase(t).

Again, part (b) easily follows from part (a).

Example 4.14. In Examples 3.2 and 3.3 we encountered the reduction

tn,m = fn(g(fm(a))) →∗ g(a) = t0,0

By Theorem 4.13, we immediately obtain a labeled reduction

label(tn,m) = fn{(3.7)}(g{(3.8)}(fm{(3.7)}(a))) −⇀∗ g{(3.8)}(a) = label(t0,0)

Note that we can reduce this term further to g∅(a) and obtain a labeled normal form.

14 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Lemma 4.15. Let R be a CCTRS.

(1) If s, t ∈ T (F ,V) and s �−→ t then label(s) �−⇀ label(t).
(2) If s, t ∈ T (G,V) and s �−⇀ t then erase(s) �−→ erase(t).

Proof. (1) There exist a position p ∈ Pos(s), a rule ρ : ` → r ⇐ c, a substitution
σ, and an index 1 6 i 6 k such that s|p = `σ, t = aiσ and ajσ →∗ bjσ for all
1 6 j < i. Write σ′ = label ◦ σ. By Theorem 4.13(1), label(aj)σ

′ = label(ajσ) −⇀∗
label(bjσ) = bjσ

′ for all 1 6 j < i. Let ` = f(`1, . . . , `n) and R = R�f . Clearly,
ρ ∈ R and therefore label(s)|p = fR(label(s1), . . . , label(sn)) = fR(`1σ

′, . . . , `nσ
′) �−⇀

label(ai)σ
′ = label(t) as required.

(2) There exist a position p ∈ Pos(s), a rule ρ : f(`1, . . . , `n) → r ⇐ c, a substitution
σ, and an index 1 6 i 6 k such that s|p = fR(s1, . . . , sn) with ρ ∈ R and sj = `jσ
for all 1 6 j 6 n, label(aj)σ →∗ bjσ for all 1 6 j < i, and t = label(ai)σ. Write
σ′ = erase ◦ σ. By Theorem 4.13(2), erase(label(aj)σ) = ajσ

′ →∗ bjσ′ = erase(bjσ)
for 1 6 j < i. We obtain erase(s) = erase(s)[f(`1, . . . , `n)σ′]p

�−→ aiσ
′ = erase(t).

Lemma 4.16. A term s ∈ T (F ,V) in a semi-finite CCTRS R is non-quasi-decreasing if

and only if label(s)
∞−⇀.

Proof. If s is not quasi-decreasing then there exists an infinite sequence s = u0 (→ ∪ �−→)
u1 (→ ∪ �−→) · · · . We obtain label(u0) (−⇀ ∪ �−⇀) label(u1) (−⇀ ∪ �−⇀) · · · from Theo-

rem 4.13(1) and Lemma 4.15(1). Thus label(s) = label(u0)
∞−⇀. Conversely, if label(s)

∞−⇀
then there is an infinite sequence label(s) = u0 (−⇀ ∪ �−⇀) u1 (−⇀ ∪ �−⇀) · · · . From The-
orem 4.13(2) and Lemma 4.15(2) we obtain erase(ui) →= erase(ui+1) or erase(ui)

�−→
erase(ui+1) for every i > 0. Since erase(ui) = erase(ui+1) implies ‖ui‖ > ‖ui+1‖, this gives
an infinite sequence of → and �−→ steps starting from erase(u0) = s.

Example 4.17. Consider the CCTRS consisting of the single rule ρ : a→ b ⇐ a ≈ b. We

have label(a) = a{ρ}
�−⇀ label(a). Hence label(a)

∞−⇀ and thus a is non-quasi-decreasing.

We have now transposed conditional rewriting to an essentially equivalent relation on
labeled terms, which enables us to keep track of failed computations.

4.3. Derivation Height and Complexity.

Now we show how labeled—or rather, complexity-conscious—reduction gives rise to
conditional complexity. With failures now explicitly included in the reduction relation,
the only hurdle to defining derivation height is the question of how exactly to handle the
evaluation of conditions. To this end, we assign an evaluation cost to individual steps.

Definition 4.18. The cost cost(s −⇀∗ t) of a complexity-conscious reduction s −⇀∗ t is the

sum of the costs of its steps. The cost of a step s −⇀ t is 0 if s
⊥−⇀ t,

1 +
k∑
i=1

cost(label(ai)σ −⇀∗ biσ)

in case of a successful step s −⇀ t, and

j∑
i=1

cost(label(ai)σ −⇀∗ biσ) + cost(label(aj+1)σ −⇀∗ uτ)

in case of a failed step s −⇀ t.

COMPLEXITY OF CONDITIONAL TERM REWRITING 15

Intuitively, the cost of a reduction measures the number of successful rewrite steps, both
direct and in condition evaluations, but does not count the mere removal of a rule from a
label. This is why the cost of a failed step is the cost to evaluate its conditions and conclude
failure, while for successful steps we add one for the step itself.

Example 4.19. The cost of the reduction in Example 4.8 is 0 + 1 + 4 = 5, where the
4 = 1 + 3 includes the three steps in the conditions. The cost of the reduction in Example 4.9
is 1 + 0 + 2 = 3. Note that in both cases, the cost is simply obtained by counting the number
of successful rewrite steps, including those occurring in a condition evaluation.

Definition 4.20. The derivation height dh(s) of a labeled term s in a semi-finite CCTRS
is defined as

max ({cost(s −⇀∗ t) | t ∈ T (G,V)} ∪ {∞ | s ∞−⇀})
where ∞ > n for all n ∈ N.

That is, a labeled term s has infinite derivation height if s
∞−⇀, and the maximum cost

of any reduction starting in s otherwise. Since R is semi-finite, the set of possible values

cost(s −⇀∗ t) can only be unbounded if s
∞−⇀, in which case dh(s) = max(〈some infinite

set〉∪{∞}) =∞. In other cases, the set of costs is necessarily finite, and hence the derivation
height is well-defined, and in N. Note that for t ∈ T (F), the derivation height of label(t) is
infinite if and only if t is quasi-decreasing, by Lemma 4.16.

We have limited interest to semi-finite CCTRSs primarily to follow the standard in
complexity for unconditional term rewriting, where TRSs are assumed to be finite. It is
certainly possible to extend the definition towards non-semi-finite CCTRSs, simply by taking
the infimum instead of the maximum of the set in Definition 4.20, in which case we might
obtain an infinite derivation height even for the labeled version of a quasi-decreasing term.
This would happen both if there are reductions of arbitrarily high cost starting in label(s),
or if we obtain an infinite reduction of rule-removal steps, e.g. label(s)

⊥−→ s1
⊥−→ s2

⊥−→· · · .
One might argue that this is justified, as finding an appropriate rule to apply may take
arbitrarily long. However, in the unconditional setting, it seems unnatural to assign an
infinite derivation height to, for instance, a normal form. Given that non-semi-finite TRSs
are of very little practical interest, we prefer to leave this discussion to another work.

Definition 4.21. The conditional derivational complexity of a semi-finite CCTRS R is
defined as cdcR(n) = max {dh(label(t)) | |t| 6 n}. If we restrict t to basic terms we arrive at
the conditional runtime complexity crcR(n).

Arguably, the case where the CCTRS R is not quasi-decreasing is not very interesting
for complexity (unless perhaps all terms of interest, e.g. all basic terms, are quasi-decreasing).
The main reason why we consider systems without this restriction is to show that the
transformation methods we use preserve the fundamental properties of a CCTRS. Thus,
we can for instance guarantee that the TRS obtained in the next section is terminating if
and only if the original CCTRS is quasi-decreasing. This allows us to obtain completeness
results, and to use complexity methods to prove quasi-decreasingness as well.

Continuing the discussion in Section 3, we claim that for a ground term s ∈ T (F), the
derivation height dh(label(s)) gives a realistic and (in the absence of a reduction strategy)
narrow bound on the time needed to normalize s. That is, we can always find a normal
form of s in O(dh(label(s))) steps (by rewriting label(s) using −⇀). A worst-case derivation
following the intuition laid out at the start of this section requires Ω(dh(label(s)) steps.

16 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

5. Complexity Transformation

The notion of complexity introduced in the preceding section has the downside that we
cannot easily reuse existing complexity results and tools. Therefore, we will consider a
transformation to unconditional rewriting where, rather than tracking rules in the labels of
the defined function symbols, we will keep track of them in separate arguments, but restrict
reduction by adopting a suitable context-sensitive replacement map. This transformation
is based directly on the CCTRS (F ,R), but in Section 5.2 we will see how it relates to
the labeled system and the labeled rewrite relation −⇀. In particular, we will see that the
unconditional rewrite relation defined in Section 5.1 both preserves and reflects complexity.
To this end, however, we will have to limit interest to strong CCTRSs, as defined in Section 2,
since we rely on (e.g.) left-linearity to be able to test when rules do not apply.

Our transformation builds on the ideas of the structure-preserving transformations
in [1, 8], but differs in particular by its use of context-sensitivity, by forcing that the

conditions for different rules are evaluated separately, and by using additional symbols f ji
to mark when the evaluation of a condition is in progress—a change which significantly
simplifies for instance the method of polynomial interpretations we shall employ in Section 6.
Structure-preserving transformations are discussed in Section 9.2.

Context-sensitive rewriting restricts the positions in a term where rewriting is allowed.
A (C)TRS is combined with a replacement map µ, which assigns to every n-ary symbol
f ∈ F a subset µ(f) ⊆ {1, . . . , n}. A position p is active in a term t if either p = ε, or
p = i q, t = f(t1, . . . , tn), i ∈ µ(f), and q is active in ti. The set of active positions in a term
t is denoted by Posµ(t), and t may only be reduced at active positions.

5.1. The Unconditional TRS Ξ(R).

Definition 5.1. Let R be a strong CCTRS over a signature F . For f ∈ F , let mf

be the number of rules in R�f (so mf = 0 for constructor symbols f) and fix an order

R�f = {ρf1 , . . . , ρ
f
mf }. The context-sensitive signature (H, µ) is defined as follows:

• H contains two constants ⊥ and >,
• for every symbol f ∈ F of arity n, H contains a symbol f of arity n + mf with
µ(f) = {1, . . . , n},
• for every defined symbol f ∈ FD of arity n, rule ρfi : `→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk

in R�f , and 1 6 j 6 k, H contains a symbol f ji of arity n + mf + j − 1 with

µ(f ji) = {n+ i+ j − 1}.

Terms in T (H,V) which are involved in reducing f(s1, . . . , sn) ∈ T (F ,V) will have one

of two forms: f(s1, . . . , sn, t1, . . . , tmf
) with each ti ∈ {>,⊥}, indicating that rule ρfi has

been attempted (and failed) if and only if ti = ⊥, and

f ji (s1, . . . , sn, t1, . . . , ti−1, b1σ, . . . , bj−1σ, u, ti+1, . . . , tmf
)

indicating that rule ρfi is currently being evaluated and the first j − 1 conditions of ρfi have
succeeded; u records the current progress on the condition aj ≈ bj .

In the following we drop the superscript f from ρfi if no confusion arises.

COMPLEXITY OF CONDITIONAL TERM REWRITING 17

Definition 5.2. The maps ξ? : T (F ,V)→ T (H,V) with ? ∈ {⊥,>} are inductively defined
as follows:

ξ?(t) =

t if t is a variable,

f(ξ?(t1), . . . , ξ?(tn)) if t = f(t1, . . . , tn) and f is a constructor symbol,

f(ξ?(t1), . . . , ξ?(tn), ?, . . . , ?) if t = f(t1, . . . , tn) and f is a defined symbol.

Linear terms in the set {ξ⊥(t) | t ∈ T (F ,V)} are called ⊥-patterns.

In the transformed system that we will define, a ground term is in normal form if and
only if it is a ⊥-pattern. This allows for syntactic “normal form” tests. Most importantly, it
allows for purely syntactic anti-matching tests: If s does not reduce to an instance of some
linear constructor term t, then s→∗ uσ for some substitution σ and ⊥-pattern u that does
not unify with t. What is more, we only need to consider a finite number of ⊥-patterns u.

Definition 5.3. Let t be a linear constructor term. The set of anti-patterns AP(t) is
inductively defined as follows. If t is a variable then AP(t) = ∅. If t = f(t1, . . . , tn) then
AP(t) consists of the following ⊥-patterns:

• g(x1, . . . , xm) for every m-ary constructor symbol g different from f ,
• g(x1, . . . , xm,⊥, . . . ,⊥) for every defined symbol g of arity m in F , and
• f(x1, . . . , xi−1, u, xi+1, . . . , xn) for all 1 6 i 6 n and u ∈ AP(ti).

Here the xj are fresh and pairwise distinct variables.

Example 5.4. Consider the CCTRS of Example 2.1. The set AP(〈z, w〉) consists of the
⊥-patterns 0, s(x), fib(x,⊥,⊥), and +(x, y,⊥,⊥).

Lemma 5.5. Let s be a ⊥-pattern and t a linear constructor term with Var(s)∩Var(t) = ∅.
If s and t are not unifiable then s is an instance of an anti-pattern in AP(t).

Proof. We use induction on the size of t. If s and t are not unifiable, neither can be a
variable. So let t = f(t1, . . . , tn). If s = g(s1, . . . , sn) or s = g(s1, . . . , sn,⊥, . . . ,⊥) for
some g 6= f then s instantiates g(x1, . . . , xn) or g(x1, . . . , xn,⊥, . . . ,⊥) in AP(t). Otherwise,
s = f(s1, . . . , sn). If si and ti are not unifiable for some i, then by the induction hypothesis
si is an instance of some u ∈ AP(ti), so s instantiates f(x1, . . . , xi−1, u, xi+1, . . . , xn) ∈ AP(t).
If no such i exists, there are substitutions σ1, . . . , σn such that siσi = tiσi for all 1 6 i 6 n.
Since s and t are linear terms without common variables, this implies that s and t are
unifiable by the substitution σ = σ1 ∪ · · · ∪σn, contradicting the assumption.

We are now ready to define the transformation from a CCTRS (F ,R) to a context-
sensitive TRS (H, µ,Ξ(R)). Here, we will use the notation 〈t1, . . . , tn〉[u1, . . . , uj]i to denote

the sequence t1, . . . , ti−1, u1, . . . , uj , ti+1, . . . , tn and we occasionally write ~t for a sequence
t1, . . . , tn.

Definition 5.6. LetR be a strong CCTRS over a signature F . The TRS Ξ(R) is defined over
the context-sensitive signature (H, µ) from Definition 5.1 as follows. Let ρi : f(`1, . . . , `n)→
r ⇐ a1 ≈ b1, . . . , ak ≈ bk be the i-th rule in R�f (where 1 6 i 6 mf).

• If k = 0 then Ξ(R) contains the rule

f(`1, . . . , `n, 〈x1, . . . , xmf
〉[>]i)→ ξ>(r) (1ρ)

• If k > 0 then Ξ(R) contains the rules

f(~̀, 〈x1, . . . , xmf
〉[>]i)→ f1

i (~̀, 〈x1, . . . , xmf
〉[ξ>(a1)]i) (2ρ)

18 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

fki (~̀, 〈x1, . . . , xmf
〉[b1, . . . , bk]i)→ ξ>(r), (3ρ)

the rules

f ji (~̀, 〈x1, . . . , xmf
〉[b1, . . . , bj]i)→

f j+1
i (~̀, 〈x1, . . . , xmf

〉[b1, . . . , bj , ξ>(aj+1)]i) (4ρ)

for all 1 6 j < k, and the rules

f ji (~̀, 〈x1, . . . , xmf
〉[b1, . . . , bj−1, v]i)→ f(~̀, 〈x1, . . . , xmf

〉[⊥]i) (5ρ)

for all 1 6 j 6 k and v ∈ AP(bj) (where Var(v) ∩ Var(f(~̀,~b, ~x)) = ∅).

• Regardless of k, Ξ(R) contains the rules

f(〈y1, . . . , yn〉[v]j , 〈x1, . . . , xmf
〉[>]i)→ f(〈y1, . . . , yn〉[v]j , 〈x1, . . . , xmf

〉[⊥]i) (6ρ)

for all 1 6 j 6 n and v ∈ AP(`j) (where Var(v) ∩ Var(f(~y, ~x)) = ∅).

Here x1, . . . , xmf
, y1, . . . , yn are fresh and pairwise distinct variables. A step using rule (1ρ)

or rule (3ρ) has cost 1; other rules—also called administrative rules—have cost 0.

Rule (1ρ) simply adds the > labels to the right-hand sides of unconditional rules. To
apply a conditional rule ρi, we mark the current function symbol as “in progress for ρi”
with rule (2ρ) and start evaluating the first condition of ρi by steps inside the argument
for this condition. With rules (4ρ) we move to the next condition and, after all conditions
have succeeded, an application of rule (3ρ) results in the right-hand side with > labels. If a
condition fails (5ρ) or the left-hand side of the rule does not match and will never match
(6ρ), then we replace the label for ρi by ⊥, indicating that we do not need to try it again.

Note that the rules that do not produce the right-hand side of the originating conditional
rewrite rule are considered administrative and hence do not contribute to the cost of a
reduction. The anti-pattern sets result in many rules (5ρ) and (6ρ), but all of these are
simple. We could generalize the system by replacing each v ∈ AP(`j) by a fresh variable; the
complexity of the resulting (smaller) TRS gives an upper bound for the original complexity.
Indeed, all methods proposed in Sections 6–8, also apply to the transformation using variables
instead. The primary purpose of anti-patterns is to ensure completeness (Theorem 5.12);
by using anti-patterns instead of variables, we guarantee that a rule is only marked as
unsuccessful (by replacing its parameter by ⊥) if it truly cannot succeed anymore.

Note also that the resulting system Ξ(R) is left-linear, which is advantageous for the
potential applicability of various termination and complexity techniques.

Example 5.7. The (context-sensitive) TRS Ξ(Reven) consists of the rules below, with the
numbers in square brackets indicating the cost of the rule: 0 for administrative rules and 1
for the others.

[1] even(0,>, y, z)→ true (11)

[0] even(?1,>, y, z)→ even(?1,⊥, y, z) (61)

[0] even(s(x), y,>, z)→ even1
2(s(x), y, odd(x,>,>,>), z) (22)

[1] even1
2(s(x), y, true, z)→ true (32)

[0] even1
2(s(x), y, ?2, z)→ even(s(x), y,⊥, z) (52)

[0] even(?3, y,>, z)→ even(?3, y,⊥, z) (62)

[0] even(s(x), y, z,>)→ even1
3(s(x), y, z, even(x,>,>,>)) (23)

COMPLEXITY OF CONDITIONAL TERM REWRITING 19

[1] even1
3(s(x), y, z, true)→ false (33)

[0] even1
3(s(x), y, z, ?2)→ even(s(x), y, z,⊥) (53)

[0] even(?3, y, z,>)→ even(?3, y, z,⊥) (63)

[1] odd(0,>, y, z)→ false (14)

[0] odd(?1,>, y, z)→ odd(?1,⊥, y, z) (64)

[0] odd(s(x), y,>, z)→ odd1
2(s(x), y, odd(x,>,>,>), z) (25)

[1] odd1
2(s(x), y, true, z)→ false (35)

[0] odd1
2(s(x), y, ?2, z)→ odd(s(x), y,⊥, z) (55)

[0] odd(?3, y,>, z)→ odd(?3, y,⊥, z) (65)

[0] odd(s(x), y, z,>)→ odd1
3(s(x), y, z, even(x,>,>,>)) (26)

[1] odd1
3(s(x), y, z, true)→ true (36)

[0] odd1
3(s(x), y, z, ?2)→ odd(s(x), y, z,⊥) (56)

[0] odd(?3, y, z,>)→ odd(?3, y, z,⊥) (66)

for all

?1 ∈ AP(0) = {true, false, s(x), even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}
?2 ∈ AP(true) = {false, 0, s(x), even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}
?3 ∈ AP(s(x)) = {true, false, 0, even(x,⊥,⊥,⊥), odd(x,⊥,⊥,⊥)}

Following Definition 5.1, this TRS is equipped with the following replacement map µ:

µ(even) = µ(odd) = {1} µ(even1
2) = µ(odd1

2) = {3} µ(s) = {1}
µ(even1

3) = µ(odd1
3) = {4} µ(0) = µ(false) = µ(true) = ∅

Instead of the current rules, which pass along the various `i and bj unmodified throughout
condition evaluation, we could have opted for a more fine-grained approach where we pass
on their variables, and then only those which are needed later on, similar to what is done in
the optimized unraveling [30]. Doing so, the example above would for instance have rules

even(s(x), y,>, z)→ even1
2(x, y, odd(x,>,>,>), z) (22)

and

even1
2(x, y, ?2, z)→ even(s(x), y,⊥, z) (52)

However, this would complicate the presentation for no easily discernible gain.
In an early version of this work [17], we employed a slightly different transformation in

which the symbols f iρ were constructor symbols, used in subterms corresponding to the rule
whose conditions they evaluated. For instance, the above rules were rendered as

even(s(x), y,>, z)→ evenactive(x, y, even1
2(s(x), odd(x,>,>,>)), z) (22)

and

evenactive(s(x), y, even1
2(u, ?2), z)→ even(s(x), y,⊥, z) (52)

We simplifed this to our current definition because it is easier to work with when looking for
interpretations to establish termination as in Section 6.

20 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Definition 5.8. We define the derivation height of a terminating term s in the context-
sensitive TRS (H,Ξ(R)) as the greatest number of non-administrative steps in any reduction
starting in s, taking the replacement map into account:

dh(s) = max ({cost(s→∗R,µ t) | t ∈ T (H,V)})
Letting dh(s) = ∞ if s is non-terminating, the derivation and runtime complexities are
defined accordingly:

dcΞ(R)(n) = max {dh(s) | s ∈ T (H) and |s| 6 n}
rcΞ(R)(n) = max {dh(s) | s ∈ T (H), |s| 6 n, and s is basic}

5.2. Labeled reduction versus Ξ(R).

In order to use the translated TRS Ξ(R), we must understand how the conditional complexity
of the original CCTRS relates to the unconditional complexity of Ξ(R). To this end, we will
define a translation ζ from labeled terms to terms over H, which has the following properties:

(1) if s has (conditional) derivation height N then ζ(s) has (unconditional) derivation
height at least N (Theorem 5.11),

(2) if ζ(s) has (unconditional) derivation height N then s has (conditional) derivation
height at least N (Theorem 5.12).

Thus, we will be able to use the transformed system Ξ(R) to obtain both upper and lower
bounds for conditional complexity.

Even though →Ξ(R),µ and −⇀ were designed to be intuitively equivalent, the proofs are
rather technical. Before presenting the proof of the first result, we define the mapping ζ
from terms in T (G,V) to terms in T (H,V). It resembles the earlier definition of ξ?, but also
handles the labels.

Definition 5.9. For t ∈ T (G,V) we define

ζ(t) =

t if t ∈ V,

f(ζ(t1), . . . , ζ(tn)) if t = f(t1, . . . , tn) with f a constructor symbol,

f(ζ(t1), . . . , ζ(tn), c1, . . . , cmf
) if t = fR(t1, . . . , tn) with R ⊆ R�f

where ci = > if ρi belongs to R and ci = ⊥ otherwise, for 1 6 i 6 mf . For a substitution
σ ∈ Σ(G,V) we denote the substitution ζ ◦ σ by σζ .

It is easy to see that p ∈ Posµ(ζ(t)) if and only if p ∈ Pos(t), if and only if p ∈ Pos(ζ(t))
and ζ(t)|p /∈ {⊥,>}, for any t ∈ T (G,V).

Lemma 5.10. If t ∈ T (F ,V) then ζ(label(t)) = ξ>(t). If t ∈ T (G,V) and σ ∈ Σ(G,V) then
ζ(tσ) = ζ(t)σζ . Moreover, if t is a linear labeled normal form then ζ(t) = ξ⊥(erase(t)) is a
⊥-pattern, and if ζ(t) is a ⊥-pattern then t is a linear labeled normal form.

Proof. All four properties are easily proved by induction on the size of t.

COMPLEXITY OF CONDITIONAL TERM REWRITING 21

We are now ready for the first main result, which states that Ξ reflects complexity.

Theorem 5.11. Let R be a strong CCTRS.

(1) If s −⇀∗ t is a complexity-conscious reduction with cost N then there exists a context-
sensitive reduction ζ(s)→∗Ξ(R),µ ζ(t) with cost N .

(2) If s
∞−⇀ then there is an infinite (Ξ(R), µ) reduction starting from ζ(s).

Proof. We prove the first statement by induction on the number of steps in s −⇀∗ t. The result
is obvious when this number is zero, so suppose s −⇀ u −⇀∗ t and let M be the cost of the step
s −⇀ u and N −M the cost of u −⇀∗ t. The induction hypothesis yields a context-sensitive
reduction ζ(u) →∗Ξ(R),µ ζ(t) of cost N −M and so it remains to show that there exists a

context-sensitive reduction ζ(s) →∗Ξ(R),µ ζ(u) of cost M . Let ρ : f(`1, . . . , `n) → r ⇐ c be

the rule in R that gives rise to the step s −⇀ u and let i be its index in R�f . There exist a
position p ∈ Pos(s), terms s1, . . . , sn, and a subset R ⊆ R�f such that s|p = fR(s1, . . . , sn)
and ρ ∈ R. We have ζ(s)|p = ζ(s|p) = fR(ζ(s1), . . . , ζ(sn), c1, . . . , cmf

) where cj = > if the
j-th rule of R�f belongs to R and cj = ⊥ otherwise, for 1 6 j 6 mf . In particular, ci = >.
Note that p is an active position in ζ(s). We distinguish three cases.

• First suppose that s
⊥−⇀ u. So M = 0, u = s[fR\{ρ}(s1, . . . , sn)]p, and—by linearity of

f(`1, . . . , `n)—there exist a linear labeled normal form v, a substitution σ, and an in-
dex 1 6 j 6 n such that sj = vσ and erase(v) does not unify with `j . By Lemma 5.10,
ζ(sj) = ζ(vσ) = ζ(v)σζ = ξ⊥(erase(v))σζ . By definition, ξ⊥(erase(v)) is a ⊥-pattern,
which cannot unify with `j because erase(v) does not. From Lemma 5.5 we obtain
an anti-pattern v′ ∈ AP(`j) such that ξ⊥(erase(v)) is an instance of v′. Hence
ζ(s) = ζ(s)[f(ζ(s1), . . . , ζ(sn), c1, . . . , cmf

)]p with ζ(sj) an instance of v′ ∈ AP(`j)
and ci = >. Consequently, ζ(s) reduces to ζ(s)[f(ζ(s1), . . . , ζ(sn), 〈c1, . . . , cmf

〉[⊥]i)]p
by an application of rule (6ρ), which has cost zero. The latter term equals

ζ(s[fR\{ρ}(s1, . . . , sn)]p) = ζ(u)

and hence we are done.

• Next suppose that s −⇀ u is a successful step. So there exists a substitution σ
such that label(ai)σ −⇀∗ biσ with cost Mi for all 1 6 i 6 k, and M = 1 + M1 +
· · ·+Mk. The induction hypothesis yields reductions ζ(label(ai)σ) →∗Ξ(R),µ ζ(biσ)

with cost Mi. By Lemma 5.10, ζ(label(ai)σ) = ζ(label(ai))σζ = ξ>(ai)σζ and

ζ(biσ) = biσζ . Moreover, ζ(s)|p = ζ(s|p) = f(~̀, 〈c1, . . . , cmf
〉[>]i)σζ and ζ(u) =

ζ(s)[ζ(label(r)σ)]p with ζ(label(r))σζ = ξ>(r)σζ by Lemma 5.10. So it suffices if

f(~̀, 〈c1, . . . , cmf
〉[>]i)σζ →∗Ξ(R),µ ξ>(r)σζ with cost M . If k = 0, we can use rule

(1ρ). Otherwise, we use the reductions ξ>(ai)σζ →∗Ξ(R),µ biσζ , rules (2ρ) and (3ρ),

22 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

and k − 1 times a rule of type (4ρ) to obtain

f(~̀, 〈c1, . . . , cmf
〉[>]i)σζ →Ξ(R),µ f1

i (~̀, 〈c1, . . . , cmf
〉[ξ>(a1)]i)σζ

→∗Ξ(R),µ f1
i (~̀, 〈c1, . . . , cmf

〉[b1]i)σζ

→Ξ(R),µ f2
i (~̀, 〈c1, . . . , cmf

〉[b1, ξ>(a2)]i)σζ

→∗Ξ(R),µ · · ·

→Ξ(R),µ fki (~̀, 〈c1, . . . , cmf
〉[b1, . . . , bk]i)σζ

→Ξ(R),µ ξ>(r)σζ

Note that all steps take place at active positions, and that the steps with rules 2ρ
and 4ρ are administrative. Therefore, the cost of this reduction equals M .

• The remaining case is a failed step s −⇀ u. So there exist substitutions σ and τ , an
index 1 6 j < k, and a linear labeled normal form v which does not unify with bj+1

such that label(ai)σ −⇀∗ biσ with cost Mi for all 1 6 i 6 j and label(aj+1)σ −⇀∗ vτ
with cost Mj+1. We obtain ζ(label(ai)σ) = ξ>(ai)σζ , ζ(biσ) = biσζ , and ζ(s)|p =

f(~̀, 〈c1, . . . , cmf
〉[>]i)σζ like in the preceding case. Moreover, like in the first case,

we obtain an anti-pattern v′ ∈ AP(bj+1) such that ξ⊥(erase(v)) is an instance of
v′. We have ζ(vτ) = ζ(v)τζ = ξ⊥(erase(v))τζ by Lemma 5.10. Hence ζ(vτ) is an
instance of v′. Consequently,

f(~̀, 〈c1, . . . , cmf
〉[>]i)σζ →∗Ξ(R),µ f j+1

i (~̀, 〈c1, . . . , cmf
〉[b1, . . . , bj , ξ>(aj+1)]i)σζ

→∗Ξ(R),µ f j+1
i (~̀, 〈c1, . . . , cmf

〉[b1, . . . , bj , ζ(vτ)]i)σζ

→Ξ(R),µ f(~̀, 〈c1, . . . , cmf
〉[⊥]i)σζ

where the last step uses an administrative rule of type (5ρ). Again, all steps take place

at active positions. Note that f(~̀, 〈c1, . . . , cmf
〉[⊥]i)σζ = ζ(fR\{ρ}(s1, . . . , sn)) =

ζ(u|p). Hence ζ(s)→∗Ξ(R),µ ζ(u) as desired. The cost of this reduction is M1 + · · ·+
Mj+1, which coincides with the cost M of the step s −⇀ u.

This concludes the proof of the first statement. As for the second statement, suppose

s
∞−⇀, so there exists an infinite sequence (s)i>0 of terms such that s = s0 and si −⇀ si+1

or si
�−⇀ si+1 for all i > 0. Fix i > 0. If si −⇀ si+1 then ζ(si)→+

Ξ(R),µ ζ(si+1) follows

from the first statement. Suppose si
�−⇀ si+1. We show that ζ(si) →+

Ξ(R),µ C[ζ(si+1)]

for some context C whose hole is at an active position. There exist an active position
p ∈ Pos(si), a rule ρ : f(`1, . . . , `n)→ r ⇐ c in R, a substitution σ, and an index j such that
si|p = fR(`1σ, . . . , `nσ), label(a1)σ −⇀∗ b1σ, . . . , label(aj)σ −⇀∗ bjσ, and si+1 = label(aj+1)σ,
so ζ(si+1) = ξ>(aj+1)σζ . Let l be the index of ρ in R�f . We obtain ζ(si)|p = ζ(si|p) =
f(`1σζ , . . . , `nσζ , c1, . . . , cmf

) where cl = >, and ξ>(ad)σζ = ζ(label(ad)σ)→∗Ξ(R),µ ζ(bdσ) =

bdσζ for 1 6 d 6 j, by the first statement. Hence

si = si[f(~̀, 〈c1, . . . , cmf
〉[>]j)σζ]p →∗Ξ(R),µ si[f

j+1
l (~̀, 〈c1, . . . , cmf

〉[b1, . . . , bj , ξ>(aj+1)]l)σζ]p

and thus we can take the context

C = si[f
j+1
l (`1σ, . . . , `nσ, c1, . . . , cl−1, b1, . . . , bj ,2, cl+1, . . . , cmf

)]p

The hole is at an active position, since p is active in si and n+ l + j in µ(f j+1
l).

COMPLEXITY OF CONDITIONAL TERM REWRITING 23

Theorem 5.11 provides a way to establish conditional complexity: If Ξ(R) has complexity
O(ϕ(n)) then the conditional complexity of R is at O(ϕ(n)). This is the important direction
as it allows us to obtain an upper bound for complexity by transforming the conditional
system into an unconditional one. However, we have more. The following result shows that
complexity bounds thus obtained can be sharp.

Theorem 5.12. Let R be a strong CCTRS and s ∈ T (G).

(1) If ζ(s) is terminating and there exists a context-sensitive reduction ζ(s)→∗Ξ(R),µ t

for some t with cost N , then there exists a complexity-conscious reduction s −⇀∗ t′
for some t′ with cost at least N .

(2) If there exists an infinite (Ξ(R), µ) reduction starting from ζ(s) then s
∞−⇀.

Proof Idea. First of all, we may safely assume that t is in normal form; if it is not, we simply
extend the reduction (which can only increase the cost). Due to the context-sensitivity
restrictions and the form of the rules Ξ(R), any such normal form t must be a ⊥-pattern.

Next we transform the reduction ζ(s)→∗Ξ(R),µ t (resp. ζ(s)→Ξ(R) . . .) to a reduction

with at least the same cost (resp. an infinite reduction) which is well-behaved in the sense
that for any rule application u[`σ]p → u[rσ]p, the substitution σ can be written as ζ ◦ τ .
This is done by a reordering argument, either postponing steps in subterms (if the result of
the step is used later), or eagerly evaluating the corresponding subterm to normal form.

Having a well-behaved reduction, steps using rules (1ρ) can be translated directly to
unconditional −⇀ steps, and (6ρ) translates to

⊥−⇀. Combined steps (2ρ) followed by some (4ρ)
applications and ending with (3ρ) or (5ρ) correspond to successful or failed applications; the
restrictions of context-sensitivity guarantee that any reduction steps in between these rule
applications are either at independent positions—in which case they can be postponed—or
inside the argument for the condition in progress. Since t is assumed to be in normal form,
all such combinations are either completed—in which case they can be transformed—or give

rise to an infinite reduction inside the accessible argument of a f ji symbol—in which case we
can reduce with a

�−⇀ step to a non-terminating term ζ(aj). Either way we are done.

We refer to Appendix A for the full and rather intricate proof. Note that Theorems 5.11
and 5.12 together with Lemma 5.10 tell us that for terms s in T (F ,V), the “conditional
complexity cost” of label(s) is the same as the derivation height of ξ>(s). Consequently,
complexity notions between the original CTRS and the resulting context-sensitive TRS are
interchangeable, but only so long as we limit interest to starting terms where the additional
mf arguments of every defined symbol f are set to >:

cdc(n) = max {dh(ξ>(t)) | |t| 6 n}
crc(n) = max {dh(ξ>(t)) | |t| 6 n and t is basic}

What is more, we have gained an additional result: The transformation does not merely
relate complexity notions, but conservatively translates quasi-decreasingness to termination.

Corollary 5.13. A strong CCTRS R is quasi-decreasing if and only if the corresponding
context-sensitive TRS Ξ(R) is terminating on all terms in the set {ζ(s) | s ∈ T (G,V)}.

Thus, we can use the same transformation to prove quasi-decreasingness of CCTRSs.
Although there are no complexity tools yet which take context-sensitivity into account, we
can obtain an upper bound by simply ignoring the replacement map. Similarly, although
existing tools do not accommodate administrative rules we can count all rule applications

24 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

equally. Since for every non-administrative step reducing a term fR(· · ·) at a position p,
at most (number of rules) × (greatest number of conditions + 1) administrative steps at
position p can be done, the difference is only a constant factor. Moreover, these rules are an
instance of relative rewriting, for which advanced complexity methods do exist. Thus, it is
likely that there will be direct tool support in the future.

6. Interpretations in N

A common method to derive complexity bounds for a TRS is the use of interpretations in N.
Such an interpretation I maps function symbols of arity n to functions from Nn to N, giving
a value [t]I for every ground term t, which is shown to decrease in each reduction step. The
method is easily adapted to support context-sensitive rewriting and administrative rules.

As we will consider interpretations on different domains later on, we define interpretations
in a general way. Let A be a set (such as N) and let > be a well-founded order on this set, and
> a quasi-order compatible with > (i.e., > · > ⊆ > and > · > ⊆ >). A function f from An
to A is strictly monotone in its i-th argument if f(s1, . . . , si, . . . , sn) > f(s1, . . . , s

′
i, . . . , sn)

whenever si > s′i and weakly monotone in its i-th argument if f(s1, . . . , si, . . . , sn) >
f(s1, . . . , s

′
i, . . . , sn) whenever si > s′i.

Definition 6.1. A context-sensitive interpretation over A is a function I mapping each
symbol f ∈ F of arity n to a function If from An to A, such that If is strictly monotone in
its i-th argument for all i ∈ µ(f). Given a valuation α mapping each variable to an element
of A, the value [t]αI ∈ A of a term t is defined as usual:

• [x]αI = α(x) for x ∈ V,

• [f(s1, . . . , sn)]αI = If ([s1]αI , . . . , [sn]αI) for f ∈ F .

We say I is compatible with a set of unconditional rules R if for all rules `→ r ∈ R and
valuations α, [`]αI > [r]αI if `→ r ∈ R is non-administrative and [`]αI > [r]αI otherwise.

We easily see that if s →R,µ t then [s]αI > [t]αI , and [s]αI > [t]αI if the employed rule
is non-administrative. Consequently, if A = N, then dh(s,→R,µ) 6 [s]αI for any valuation
α. Having a derivation height for all terms, we can obtain the derivational and runtime
complexity of the original system. To take advantage of the fact that we only need to consider
terms ξ>(s), we can limit interest to “>-terms”: ground terms which have the property that
t1 = · · · = tmf

= > and s1, . . . , sn /∈ {⊥,>} for all subterms f(s1, . . . , sn, t1, . . . , tmf
). For

runtime complexity, we only have to consider basic >-terms. We let |s| denote the number
of function symbols in s not counting >. Then |s| = |ξ>(s)|.

Example 6.2. Continuing Example 5.7, we define the following interpretation over N:

I> = 1 I⊥ = Itrue = Ifalse = I0 = 0 Is(x) = x+ 1

Ieven(x, u, v, w) = Iodd(x, u, v, w) = 1 + x+ v · 3x + w · 3x

Ieven1
2
(x, u, v, w) = Iodd1

2
(x, u, v, w) = 1 + x+ v + w · 3x

Ieven1
3
(x, u, v, w) = Iodd1

3
(x, u, v, w) = 1 + x+ v · 3x + w

One easily checks that I satisfies the required monotonicity constraints: Is is monotone in
its only argument, Ieven and Iodd are monotone in x, while Ieven1

2
, Iodd1

2
are monotone in v

and Ieven1
3
, Iodd1

3
in w. Moreover, all rules in Ξ(Reven) are oriented as required. For example,

the rules generated by the unconditional rule (3.1) give the following obligations:

COMPLEXITY OF CONDITIONAL TERM REWRITING 25

(1ρ) [even(0,>, y, z)]I = 1 + 0 + y · 30 + z · 30 > 0 = [true]I ,

(6ρ) [even(?1,>, y, z)]I = 1+ϕ+y ·3ϕ+z ·3ϕ > 1+ϕ+y ·3ϕ+z ·3ϕ = [even(?1,⊥, y, z)]I
with ϕ = [?1]I .

The rules corresponding to the unconditional odd rule (3.4) give the same inequalities. As
for the other four rules, their translations and interpretations are all very similar, so we will
show only the interpretations and proof obligations for rule (3.2):

(2ρ) [even(s(x), y,>, z)]I = 2 + x+ 3x+1 + z · 3x+1 > 2 + x+ (1 + x+ 2 · 3x) + z · 3x+1 =
[even1

2(s(x), y, odd(x,>,>,>), z)]I , which follows from 3x+1 = 3x + 2 · 3x > (1 + x) +
2 · 3x,

(3ρ) [even1
2(s(x), y, true, z)]I = 2 + x+ 0 + z · 3x+1 > 0 = [true]I ,

(5ρ) [even1
2(s(x), y, ?2, z)]I = 2+x+ϕ+z ·3x+1 > 2+x+0+z ·3x+1 = [even1

2(s(x), y,⊥, z)]I
with ϕ = [?2]I > 0,

(6ρ) [even(?3, y,>, z)]I = 1 + ϕ+ 3ϕ + z · 3ϕ > 1 + ϕ+ z · 3ϕ = [even(?3, y,⊥, z)]I .

Now, towards runtime complexity, we observe that for all ground constructor terms s with
|s| 6 n we also have [s]I 6 n as If (x1, . . . , xm) 6 x1 + · · · + xm + 1 for all constructor
symbols f . Therefore, the conditional runtime complexity crcReven(n) is bounded by O(3n):

max({[f(s1, . . . , sm,>, . . . ,>)]I | f ∈ FD and s1, . . . , sm are ground constructor

terms with |s1|+ · · ·+ |sm| < n})
6 max({If (x1, . . . , xm, 1, . . . , 1) | f ∈ FD and x1 + x2 + x3 + x4 < n})
= max({1 + x+ 2 · 3x | x < n}) = n+ 2 · 3n−1 6 3n for n > 1

As to derivational complexity, we observe that [t]I 6
n3 (tetration,2 or 3 ↑↑n in Knuth’s

up-arrow notation) when t is an arbitrary ground >-term of size n.

To obtain a more elementary bound we will need more sophisticated methods, for
instance assigning a compatible sort system and using the fact that all terms of sort int are
necessarily constructor terms. A method based on separating size and space complexity is
discussed in Section 8.

The interpretations in Example 6.2 may appear somewhat arbitrary, but in fact there
is a recipe that we can most likely apply to many TRSs obtained from CCTRSs using
Definitions 5.1 and 5.6. The idea is to define the interpretation I as an extension of a “basic”
interpretation J over N with a fixed way of handling the additional arguments.

Definition 6.3 (Recipe A). Given

• a strictly monotone interpretation function J 0
f : Nn → N for every symbol f of arity

n in the original signature F ,

• weakly monotone interpretation functions J 1
f , . . . ,J

mf

f : Nn → N for every f ∈ FD,

• interpretation functions J 1
f,i, . . . ,J kf,i with J jf,i : N

n+j → N that are strictly monotone

in their last argument position (n+ j), for each rule ρi ∈ R�f with k > 0 conditions,

we construct an interpretation I for H as follows: I> = 1 and I⊥ = 0, If (x1, . . . , xn) =
J 0
f (x1, . . . , xn) for every f ∈ FC of arity n,

If (x1, . . . , xn, c1, . . . , cmf
) = J 0

f (x1, . . . , xn) +

mf∑
k=1

ck · J kf (x1, . . . , xn)

2Tetration is the next hyperoperation after exponentiation, defined as iterated exponentiation.

26 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

for every f ∈ FD of arity n, and finally

I
fji

(x1, . . . , xn, c1, . . . , ci−1, y1, . . . , yj , ci+1, . . . , cmf
) =

J 0
f (x1, . . . , xn) + J jf,i(x1, . . . , xn, y1, . . . , yj) +

mf∑
k=1, k 6=i

ck · J kf (x1, . . . , xn)

for every symbol f ji .

Using the interpretation of Recipe A for the rules in Definition 5.6, the inequalities we
obtain can be greatly simplified, and in many cases removed.

Definition 6.4. The compatibility constraints for J comprise the following inequalities, for
every rule ρi : f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk in the original system R:

(1ρ) J 0
f (
−→
[`]αI) + J if (

−→
[`]αI) > [ξ>(r)]αI if k = 0,

(2ρ) J if (
−→
[`]αI) > J 1

f,i(
−→
[`]αI , [ξ>(a1)]αI) if k > 0,

(3ρ) J 0
f (
−→
[`]αI) + J kf,i(

−→
[`]αI , [b1]αI , . . . , [bk]

α
I) > [ξ>(r)]αI ,

(4ρ) J jf,i(
−→
[`]αI , [b1]αI , . . . , [bj]

α
I) > J j+1

f,i (
−→
[`]αI , [b1]αI , . . . , [bj]

α
I , [ξ>(aj+1)]αI) for 1 6 j < k.

Here
−→
[`]αI denotes the sequence [`1]αI , . . . , [`n]αI .

Lemma 6.5. The interpretation I from Recipe A is a context-sensitive interpretation for
(H, µ). If its interpretation functions satisfy the compatibility constraints then I is compatible
with H, so

cdcR(n) = max{[ξ>(t)]I | t ∈ T (F) and |t| 6 n}
crcR(n) = max{[ξ>(t)]I | t ∈ T (F), |t| 6 n, and t is basic}

Moreover,

[ξ>(f(t1, . . . , tn))]αI =

mf∑
i=0

J if ([ξ>(t1)]αI , . . . , [ξ>(tn)]αI)

Proof. It is not hard to see that I satisfies the monotonicity requirements of Definition 6.1.
Hence it is a context-sensitive interpretation for (H, µ). The statements on cdcR and crcR
follow by compatibility and the observations at the end of Section 5, because of the inequality
dh(s,→Ξ(R),µ) 6 [s]I . The final equality claim is obtained by writing out definitions. For
the compatibility claim, note that rules obtained from clause (6ρ) are obviously oriented as
[⊥]I = 0. Compatibility is also satisfied for rules obtained from clause (5ρ), as

J jf,i(s1, . . . , sn, t1, . . . , tj) > [⊥]αI · J if (s1, . . . , sn) = 0

always holds. The requirements for the other rules follow from the compatibility constraints,
by expanding the inequality ([`]αI > [r]αI or [`]αI > [r]αI) and removing unhelpful terms on the
left. For instance, rules obtained from (1ρ) impose the inequality

J 0
f (
−→
[`]αI) + J if (

−→
[`]αI) +

mf∑
k=1,k 6=i

xk · J kf (
−→
[`]αI) > [ξ>(r)]αI

which follows from clause (1ρ) in Definition 6.4; we omitted the summation because the xi
do not appear on the right, and could well be 0.

COMPLEXITY OF CONDITIONAL TERM REWRITING 27

By the final part of Lemma 6.5, which recursively defines [ξ>(f(t1, . . . , tn))]αI purely
in terms of J , we can obtain bounds on derivation heights without ever calculating ξ>(t).
Thus, we do not even need to consider the labeled or translated systems.

Example 6.6. To demonstrate the use of the recipe, recall the CCTRS from Example 3.2:

f(x)→ x g(x)→ a ⇐ x ≈ b

The recipe gives the following proof obligations:

J 0
f (x) + J 1

f (x) > x J 1
g (x) > J 1

g,1(x, x)

J 0
g (x) + J 1

g,1(x,Jb) > Ja

Here, J 0
f and J 0

g must be strictly monotone in their first argument, J 1
f and J 1

g weakly

monotone, and J 1
g,1 must be strictly monotone in its second argument. These monotonicity

requirements are satisfied by choosing

Ja = 0 J 0
f (x) = x J 0

g (x) = x J 1
g,1(x, y) = y

Jb = 1 J 1
f (x) = 1 J 1

g (x) = x

With these interpretations, the proof obligations are simplified to

x+ 1 > x x > x

x+ 1 > 0

and obviously satisfied.

In order to bound the derivational complexity in Example 6.6, we make the following
general observation.

Lemma 6.7. If for every symbol h of arity n in some strong CCTRS we have

J 0
h (x1, . . . , xn) + · · ·+ Jmh

h (x1, . . . , xn) 6 K · (x1 + · · ·+ xn) +M

then [ξ>(s)]I 6M · (K0 + · · ·+K |s|−1) for all ground terms s.

Recall that mh = 0 for constructor symbols, so the above requirement is well-defined.

Proof. We use induction on |s|. If |s| = 1 then s is a constant and

[ξ>(s)]I = J 0
s + · · ·+ Jms

s 6 K · 0 +M = M = M ·K0

If |s| = m+ 1 then s = h(t1, . . . , tn) with |t1|+ · · ·+ |tn| = m and

[ξ>(s)]I =

mf∑
i=0

J ih([ξ>(t1)]I , . . . , [ξ>(tn)]I)

6 K · ([ξ>(t1)]I + · · ·+ [ξ>(tn)]I) +M

6 K ·M · (K0 + · · ·+Km) +M

= M · (K1 + · · ·+Km+1) +M

= M · (K0 + · · ·+Km+1)

28 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Since, for K > 2, we have K0 + · · · + Km 6 Km+1, a linear interpretation satisfying
the premise of Lemma 6.7 gives cdcR(n) = O(Kn) by Lemma 6.5. With this understanding,
we can complete the example.

Example 6.6 (continued). We thus obtain an exponential O(2n) bound. This may not
seem like an impressive result, but in fact, this bound is tight! Consider a term gn(b). To
evaluate this term to normal form, we obtain a cost of 2n−1 if we simply evaluate outside-in:

• g{(3.8)}(b) −⇀ a with cost 1 = 21−1,

• g{(3.8)}(gn{(3.8)}(b)) −⇀ g∅(gn{(3.8)}(b)) with cost 2n−1 (the cost to reduce the left-hand

side of the condition, gn{(3.8)}(b), to normal form), and g∅(gn{(3.8)}(b)) reduces to

normal form with cost 2n−1 (the cost to evaluate the subterm), amounting to a total
cost of 2n−1 + 2n−1 = 2n.

However, we do have

dh(ξ>(fn(g(fm(a))))) 6 [ξ>(fn(g(fm(a))))]I

= [ξ>(g(fm(a)))]I + n

= 2 · [ξ>(fm(a))]I + n

= 2 ·m+ n

which gives the expected linear bound for the collection of terms considered in Example 3.2.

7. Using Context-Sensitivity to Improve Runtime Complexity Bounds

As observed before, the actual runtime complexity for the system in Example 6.2 is O(2n).
In order to obtain this more realistic bound, we will need more sophisticated methods than
simply polynomial interpretations. This is not a problem specific to our transformed systems
Ξ(R); rather, giving tight complexity bounds is a hard problem, which has been studied
extensively in the literature. Consequently, many different complexity methods have been
developed (e.g. matrix interpretations [27, 38, 25], arctic interpretations [18], polynomial
path orders [2, 3], match bounds [11], dependency tuples [29]) and it seems likely that most
of these methods can easily be adapted to context-sensitive and relative rewriting.

In order to demonstrate that the systems we obtain using our transformation are not
inherently problematic, we will show two improvements which allow us to obtain better
bounds. The first one, which is treated in this section, employs a technique from [15].

Definition 7.1. A replacement map υ is usable for a strong CCTRS (F ,R) if for every
rewrite rule b0 → ak+1 ⇐ a1 ≈ b1, . . . , ak ≈ bk in R and all 1 6 i 6 k + 1 and p ∈ Pos(ai)
we have p ∈ Posυ(ai) if either p ∈ PosFD(ai), or p is a variable position in ai and there exist
0 6 j < i and q ∈ Posυ(bj) such that (ai)|p = (bj)|q.

Note that the requirement on p ∈ Posυ(ai) is a sufficient condition only; it is allowed
for Posυ(ai) to contain also p which satisfy neither premise. Therefore, the full replacement
map, with ν(f) = {1, . . . , n} for f of arity n, is always usable.

Example 7.2. We derive a usable replacement map υ for the CCTRS Rfib of Example 2.1:

0 + y → y fib(0)→ 〈0, s(0)〉
s(x) + y → s(x+ y) fib(s(x))→ 〈z, w〉 ⇐ fib(x) ≈ 〈y, z〉, y + z ≈ w

COMPLEXITY OF CONDITIONAL TERM REWRITING 29

From the rule s(x) + y → s(x+ y) we obtain 1 ∈ υ(s). The other constraints are obtained
from the conditional rule for fib. The variable w appears at an active (root) position in the
right-hand side of a condition and also at position 2 in 〈z, w〉. Hence we obtain 2 ∈ υ(〈·, ·〉),
which causes the variable z to appear at an active position in 〈y, z〉 and thus 2 ∈ υ(+) and
1 ∈ υ(〈·, ·〉). The latter activates the variable y in 〈y, z〉 and thus we also need 1 ∈ υ(+).
There are no other demands and hence the replacement map υ defined by υ(s) = {1},
υ(+) = υ(〈·, ·〉) = {1, 2}, and υ(fib) = ∅ is usable.

Definition 7.3. Let υ be a usable replacement map for a strong CCTRS (F ,R). Let µ
be the replacement map defined in Definition 5.1 for the signature H. We define a new
replacement map µυ for H as follows: µυ(f) = υ(f) for every f ∈ H ∩ F and µυ(f) = µ(f)
for every f ∈ H \ F .

Theorem 7.4. If υ is a usable replacement map for a strong CCTRS (F ,R) then crcR(n) 6
rcΞ(R),µυ(n) for all n > 0.

Proof. We define an intermediate replacement map υ′ as follows: υ′(f) = υ(f) for every

f ∈ H∩F and υ′(f ji) = υ(f)∪ {n+ i, . . . , n+ i+ j − 1} for every f ji ∈ H \F such that the
arity of f in F is n. It is not difficult to prove that µυ(f) = υ′(f) ∩ µ(f) for every f ∈ H.

We prove that PosHD(t) ⊆ Posυ′(t) whenever s→∗Ξ(R),µ t and s is basic, by induction

on the length. Since Posυ′(t)∩Posµ(t) = Posµυ(t), this implies that any (Ξ(R), µ) reduction
sequence starting from a basic term is a reduction sequence in (Ξ(R), µυ), and hence
the statement of the theorem follows from Theorem 5.11. The base case is obvious since
PosHD(t) = {ε} ⊆ Posυ′(s) if t is basic. For the induction step we consider

s→∗Ξ(R),µ s
′ →Ξ(R),µ t

We obtain PosHD(s′) ⊆ Posυ′(s
′) from the induction hypothesis. Suppose the step from s′

to t employs the rule u → v from Ξ(R) at position p ∈ Posµ(s′) with substitution σ. We
have p ∈ PosHD(s′) and thus also p ∈ Posυ′(s

′). Since s′|p = uσ we also have

PosHD(uσ) ⊆ Posυ′(uσ) (7.1)

Furthermore, because t = s′[vσ]p, PosHD(t) ⊆ Posυ′(t) follows from PosHD(vσ) ⊆ Posυ′(vσ).
The latter inclusion we prove by a case analysis on u→ v. Let q ∈ PosHD(vσ).

(1ρ) We have u = f(~̀, 〈x1, . . . , xmf
〉[>]i) and v = ξ>(r) with ` = f(~̀) → r a rule of R.

If q ∈ PosHD(ξ>(r)) then q ∈ PosFD(r) and thus q ∈ Posυ(r) = Posυ′(ξ>(r)) ⊆
Posυ′(ξ>(r)σ) since υ is a usable replacement map. Otherwise q = q1q2 with
q1 ∈ PosV(ξ>(r)) = PosV(r) and q2 ∈ PosHD(zσ) where z = ξ>(r)|q1 . Since
z ∈ Var(r) ⊆ Var(`), there exists a position q3 ∈ PosV(`) ⊆ PosV(u) such that
`|q3 = u|q3 = z. We have q3q2 ∈ PosHD(uσ) and thus q3q2 ∈ Posυ′(uσ) by (7.1).
Hence both q3 ∈ Posυ′(u) and q2 ∈ Posυ′(zσ). Since q3 ∈ Posυ′(u) = Posυ(`),
we obtain q1 ∈ Posυ(r) = Posυ′(r) = Posυ′(v) from the usability of υ. Hence
q ∈ Posυ′(vσ) as desired.

(2ρ) We have u = f(~̀, 〈x1, . . . , xmf
〉[>]i) and v = f1

i (~̀, 〈x1, . . . , xmf
〉[ξ>(a1)]i). Compar-

ing uσ and vσ and observing that υ′(f) and υ′(f1
i) agree on {1, . . . , n+mf}\{n+ i},

the only interesting case is q = (n + i) q′ with q′ ∈ PosHD
(ξ>(a1)σ). We distin-

guish two subcases. If q′ ∈ PosHD(ξ>(a1)) = PosHD(a1) then q′ ∈ Posυ(a1) =
Posυ′(ξ>(a1)) and, since n + i ∈ υ′(f1

i), q ∈ Posυ′(vσ). Otherwise q′ = q1q2 with

30 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

q1 ∈ PosV(ξ>(a1)) = PosV(a1) and q2 ∈ PosHD(zσ) where z = (a1)|q1 . Sinze z must

occur in Var(~̀) = Var(b0), we conclude as in case (1ρ).

(3ρ) We have u = fki (~̀, 〈x1, . . . , xmf
〉[b1, . . . , bk]i) and v = ξ>(r). Like in case (1ρ) we

distinguish two cases. The case q ∈ PosHD(ξ>(r)) is dealt with as before. Suppose
q = q1q2 with q1 ∈ PosV(ξ>(r)) = PosV(r) and let z = r|q1 . The variable z occurs
in `1, . . . , `n or b1, . . . , bk. The former is treated as before. Suppose z = (bl)|q3 with
1 6 l 6 k. We have (n + i + l − 1) q3q2 ∈ Posυ′(uσ) according to (7.1). Hence
q3 ∈ Posυ′(bl) = Posυ(bl) and thus q1 ∈ Posυ(r) by the usability of υ. We obtain
q ∈ Posυ′(vσ) as before.

(4ρ) We have u = f ji (~̀, 〈x1, . . . , xmf
〉[b1, . . . , bj]i) and v = f j+1

i (~̀, 〈x1, . . . , xmf
〉[b1, . . . , bj ,

ξ>(aj+1]i). Comparing uσ and vσ as well as υ′(f ji) and υ′(f j+1
i) allows us to focus

on the interesting case: q = (n+ i+ j) q′ with q′ ∈ PosHD
(ξ>(aj+1)σ). We obtain

q′ ∈ Posυ′(ξ>(aj+1)σ) and thus q ∈ Posυ′(vσ) by repeating the reasoning performed
in the preceding cases.

(5ρ) We have u = f ji (~̀, 〈x1, . . . , xmf
〉[b1, . . . , bj−1, v

′]i) and v = f(~̀, 〈x1, . . . , xmf
〉[⊥]i).

We distinguish three cases. If q = ε then obviously q ∈ Posυ′(vσ). Let q = i′q′.
If i′ ∈ {1, . . . , n} then q ∈ PosHD(uσ) and thus q ∈ Posυ′(uσ) by (7.1). Hence

also q ∈ Posυ′(vσ) since υ′(f) = υ(f) = υ′(f ji) ∩ {1, . . . , n}. In the remaining case
we have i′ ∈ {n + 1, . . . , n + mf} \ {n + i} and thus vσ|q = σ(xi′−n)|q′ . However,
this subterm appears in uσ at a position not in Posυ′(uσ) and thus cannot contain
defined symbols according to (7.1), contradicting the assumption q ∈ PosHD(vσ).

(6ρ) We have u = f(〈y1, . . . , yn〉[v′]j , 〈x1, . . . , xmf
〉[>]i) for some v′ ∈ AP(`j) and v =

f(〈y1, . . . , yn〉[v′]j , 〈x1, . . . , xmf
〉[⊥]i). In this case we obviously have PosHD(uσ) =

PosHD(vσ) and Posυ′(uσ) = Posυ′(vσ). Hence q ∈ Posυ′(vσ) is a consequence of
(7.1).

Using Theorem 5.12, the inequality in Theorem 7.4 becomes an equality if we restrict
the terms to consider for rcΞ(R),µυ(n) to those that correspond to labeled basic terms.

Theorem 7.4 is highly relevant when using interpretations since the (strong or weak)
monotonicity requirements are only imposed on the active arguments of the interpretation
functions.

Example 7.5. For the CCTRS Reven we can take the (empty) usable replacement map
υ(f) = ∅ for all function symbols because even and odd do not appear below the root in
the right-hand side or left-hand side of a condition of any rule. This implies that Ieven

and Iodd do not need to be monotone in their first arguments. Hence we can simplify the
interpretation of Example 6.2 to

I> = 1 I⊥ = Itrue = Ifalse = I0 = 0 Is(x) = x+ 1

Ieven(x, u, v, w) = Iodd(x, u, v, w) = 1 + v · (2x − 1) + w · (2x − 1)

Ieven1
2
(x, u, v, w) = Iodd1

2
(x, u, v, w) = 1 + v + w · (2x − 1)

Ieven1
3
(x, u, v, w) = Iodd1

3
(x, u, v, w) = 1 + v · (2x − 1) + w

The rules are still oriented; for example, rule (22) gives rise to the inequality

1 + 2x+1 − 1 + z · (2x+1 − 1) > 1 + (1 + 2 · (2x − 1)) + z · (2x+1 − 1)

which holds because 2x+1 − 1 = 1 + 2 · (2x − 1). The above interpretation induces a runtime
complexity of O(2n). This is a tight bound, as we observed earlier.

COMPLEXITY OF CONDITIONAL TERM REWRITING 31

Definition 7.6 (Recipe B: Extension for Runtime Complexity). Recipe A is altered as
follows, assuming we are given a usable replacement map υ for (F ,R). Rather than
demanding (strict or weak) monotonicity of the functions J if in all arguments, we merely
demand that

• J 0
f is strictly monotone in the arguments in υ(f), for all f ∈ F ,

• J if is weakly monotone in the arguments in υ(f), for all f ∈ FD and 1 6 i 6 mf ,

• as before, J jf,i is strictly monotone in argument n+ i+ j − 1, where n is the arity of

f ∈ FD.

Given J , the definition of I remains the same.

Recipe B can be used like Recipe A, but only for runtime complexity.

Lemma 7.7. The interpretation I from Recipe B is a context-sensitive interpretation for
(H, µυ). If its interpretation functions satisfy the compatibility constraints from Definition 6.4,
then I is compatible with H and crcR(n) = max{[ξ>(t)]I | t ∈ T (F), |t| 6 n, and t is basic}.
Moreover,

[ξ>(f(t1, . . . , tn))]αI =

mf∑
i=0

J if ([ξ>(t1)]αI , . . . , [ξ>(tn)]αI)

Proof. It is not hard to see that if the restrictions in the recipe are satisfied, then indeed all
interpretation functions If are strictly monotone in all arguments i ∈ µυ(f). The result for
crcR follows by Theorem 7.4. Compatibility and equivalence are obtained from Lemma 6.5,
as changing the monotonicity requirements does not affect either property.

Example 7.8. We use Recipe B to derive an upper bound for the runtime complexity of
Rfib. From Example 7.2 we know that the replacement map υrc defined by υrc(s) = {1},
υrc(+) = υrc(〈·, ·〉) = {1, 2}, and υrc(fib) = ∅ is usable. For the interpretations, we assign:

J 0
0 = 0 J 0

s (x) = x+ 1 J 0
〈·,·〉(x, y) = x+ y + 1 J 0

+(x, y) = 2x+ y + 1

J 1
+(x, y) = J 2

+(x, y) = 0 J 0
fib(x) = 3 J 1

fib(x) = 0 J 2
fib(x) = 5 · (3x − 1)

J 1
fib,2(x, a) = 3a J 2

fib,2(x, a, b) = a+ b

One easily verifies that these interpretations are strictly monotone in the required argument
positions, and weakly monotone in all argument positions. Omitting the (automatically
satisfied) proof obligations for rules (5ρ) and (6ρ), this leaves

[+(0, y,>, z)]I = y + 1 > y = [y]I
[+(s(x), y, z,>)]I = 2x+ y + 3 > 2x+ y + 2 = [s(+(x, y,>,>))]I

[fib(0,>, u)]I = 3 + u · 5 · 0 > 2 = [〈0, s(0)〉]I
[fib(s(x), u,>)]I = 5 · 3x+1 − 2 > 5 · 3x+1 − 3 = [fib1

2(s(x), u, fib(x,>,>))]I
[fib1

2(s(x), u, 〈y, z〉)]I = 3y + 3z + 6 > 3y + 2z + 5 = [fib2
2(s(x), u, 〈y, z〉,+(y, z,>,>))]I

[fib2
2(s(x), u, 〈y, z〉, w)]I = y + z + w + 4 > z + w + 1 = [〈z, w〉]I

which holds for all values of x, y, z, u, and w. From this we conclude O(3n) runtime
complexity by Lemma 7.7.

Note that Recipe B may not be used for derivational complexity.

32 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

Example 7.9. The system Rodd is a variation of Reven defined by the following rules:

odd(0)→ false not(true)→ false

odd(s(x))→ not(y) ⇐ odd(x) ≈ y not(false)→ true

We will use Recipe B to derive an upper bound for the runtime complexity of this CCTRS,
giving a bit more detail as to how the interpretations are chosen. The replacement map υ
with υ(odd) = υ(s) = ∅ and υ(not) = {1} is usable. Since the unconditional rules will be
taken care of by the choice of J 0

odd and J 0
not, we let J 1

odd(x) = J 1
not(x) = J 2

not(x) = 0. For
clarity, we assign different names to the remaining interpretation functions:

J 0
true = T J 0

0 = Z J 0
odd = O J 1

odd,2 = C

J 0
false = F J 0

s = S J 2
odd = D J 0

not = N

Here T , F , and Z are (unknown) constants and C, D, N , O, and S are (unknown) unary
functions, and N must be strictly monotone. The recipe gives rise to the following constraints:

O(Z) > F N(T) > F N(F) > T

for the unconditional rules and

D(S(x)) > C(S(x), O(x) +D(x))

O(S(x)) + C(S(x), y) > N(y)

for the conditional rule. The constraints N(T) > F and N(F) > T are satisfied by simply
taking F = T = 0 and N(x) = x+ 1 (recall that N must be strictly monotone). As O is not
required to be (strictly) monotone, and the constraints give little reason for O to regard its
argument, we let O(x) = A for some constant A. Hence the remaining constraints reduce to

A > 0

D(S(x)) > C(S(x), A+D(x))

A+ C(S(x), y) > y + 1

By taking A = 2 and C(x, y) = y we are left with

D(S(x)) > 2 +D(x)

which is easily satisfied by choosing D(x) = x and S(x) = x + 2. With these choices, we
have [s]I 6 2 · |s| for all terms s, so we obtain linear runtime complexity by Lemma 7.7.

Note that the use of the replacement map υ was essential to obtain linear runtime
complexity; if J 0

odd = O was required to be monotone in its first argument, we would have
had to choose O(x) = x + 1 or worse. While this would allow us to choose the tighter
interpretation S(x) = x+ 1, it would have produced the constraint D(x+ 1) > D(x) + x+ 1,
which can be satisfied with a quadratic interpretation D(y) = y2, but not with a linear one.

8. Splitting Time and Space Complexity

Another method to improve interpretations is to separate time and space complexity. To
understand the motivation, consider Example 7.8. Since the rules for addition had to
be oriented strictly, the interpretation J 0

+(x, y) = 2x + y + 1 was chosen rather than the
simpler J 0

+(x, y) = x + y. However, this does not accurately reflect the number of steps
it takes to evaluate an addition. Rather, it reflects the sum of the number of steps plus
the size of the result. This high value for the interpretation also affects the interpretations

COMPLEXITY OF CONDITIONAL TERM REWRITING 33

for other symbols. And while the difference is only a constant factor, which is not an
issue in polynomial interpretations, it is a cause for concern when considering exponential
complexities; compare O(2n) and O(2(an)) = O((2a)n).

Thus, as an alternative, let us consider interpretations not in N, but rather in N2:
pairs (n,m), where n records the number of steps to evaluate a term to constructor normal
form, and m the size of the result. These pairs are equipped with the following orders:
(n1,m1) > (n2,m2) if n1 > n2 and m1 > m2, and (n1,m1) > (n2,m2) if n1 > n2 and
m1 > m2. We suggestively write cost((n,m)) = n and size((n,m)) = m, and note that
cost(x) > cost(y) if x > y. Consequently, dh(s,→Ξ(R),µ) 6 cost([s]αI) for any valuation α

over N2.

Example 8.1. We revisit Example 5.7 and define

I> = (0, 1) I⊥ = Itrue = Ifalse = I0 = (0, 0) Is((c, s)) = (c, s+ 1)

Ieven(x, u, v, w) = Iodd(x, u, v, w) = (1 + cost(x) + (size(v) + size(w)) ·A(x), 0)

Ieven1
2
(x, u, v, w) = Iodd1

2
(x, u, v, w) = (1 + cost(x) + cost(v) + size(w) ·A(x), 0)

Ieven1
3
(x, u, v, w) = Iodd1

3
(x, u, v, w) = (1 + cost(x) + size(v) ·A(x) + cost(w), 0)

where
A(x) = (cost(x) + 1) · (2size(x) − 1)

All interpretations are weakly monotone in all arguments because x > y implies both
cost(x) > cost(y) and size(x) > size(y), and in all interpretation functions cost(·) and
size(·) are only used positively. If x > x′ then Ieven(x, u, v, w) > Ieven(x′, u, v, w) since
cost(Ieven(x, u, v, w)) has a cost(x) summand. The same holds for Iodd(x, u, v, w) and Is(x).
Both Ieven1

2
(x, u, v, w) and Iodd1

2
(x, u, v, w) have a cost(v) summand and hence are strictly

monotone in their third arguments, and Ieven1
3
(x, u, v, w) and Iodd1

3
(x, u, v, w) have a cost(w)

summand. Hence I satisfies the monotonicity requirements.
Furthermore, all rules of Ξ(Reven) are oriented as required. For the size component this

is clear as size([`]αI) = 0 = size([r]αI) for all rules ` → r. For the cost component, we see
that rules of the form (5ρ) are oriented because cost(v) > 0 = size([⊥]αI) ·A(x), and rules
of the form (6ρ) are oriented by monotonicity since [>]αI = (0, 1) > (0, 0) = [⊥]αI . Rules
(11), (14), (32), (33), (35), and (36) are strictly oriented since their left-hand sides evaluate
to 1 whereas the right-hand sides evaluate to 0. The only rules where the orientation is
non-trivial are (22), (23), (25), and (26). We consider (22):

1 + cost(x) + (1 + size(w)) ·A((cost(x), size(x) + 1))

> 1 + cost(x) + (1 + cost(x) + 2 ·A(x)) + size(w) ·A((cost(x), size(x) + 1))

Removing equal parts from both sides of the equation and inserting the definition of A yields

(cost(x) + 1) · (2size(x)+1 − 1) > 1 + cost(x) + 2 · (cost(x) + 1) · (2size(x) − 1)

and one easily checks that both sides are equal.
Now, towards runtime complexity, an easy induction proof shows that cost([s]I) = 0 and

size([s]I) 6 n for all ground constructor terms s with |s| 6 n. Therefore, the conditional

34 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

runtime complexity crcReven(n) is bounded by

max{cost([f(s1, . . . , sm,>, . . . ,>)]I) | f ∈ FD and s1, . . . , sm are ground constructor

terms with |s1|+ · · ·+ |sm| < n}
= max{cost(If ((0, x1), . . . , (0, xm), (0, 1), . . . , (0, 1))) | f ∈ FD and x1 + x2 + x3 + x4 < n}
= max{1 + 0 + 2 · 1 · (2x − 1) | x < n} = 2n − 1 6 2n

This is the same bound that we obtained in Example 7.5, but without employing context-
sensitivity.

Interestingly, we can obtain the same tight bound for derivational complexity.

Example 8.2. We prove by induction that for all ground >-terms s there exist K,N > 0
with K +N 6 |s| such that cost([s]I) 6 2N − 1 and size([s]I) 6 K.

• If s is 0, true, or false then cost([s]I) = 0 = size([s]I), so we can take K = N = 0.

• If s = s(t) and t is bounded by (K,N), then cost([s]I) = cost([t]I) 6 2N − 1 and
size([s]I)) = 1 + size([t]I) 6 K + 1, so we can take (K + 1, N).

• If s = even(t,>,>,>) or s = odd(t,>,>,>) with t bounded by (K,N) then
size([s]I) = 0 and

cost([s]I) = 1 + cost([t]I) + 2 · (cost([t]I) + 1) · (2size([t]I) − 1)

6 1 + (2N − 1) + 2 · 2N · (2K − 1)

= 2N + 2N+K+1 − 2N+1

= 2N+K+1 − 2N

6 2N+K+1 − 1

and so we can take (0, N +K + 1).

It follows that cdcReven(n) = O(2n).

Separating the “cost” and “size” component made it possible to obtain an exponential
bound for the derivational complexity of Reven. However, a downside is that the derivation
of this bound is ad-hoc, and it would require a more systematic analysis of various systems
with the separated cost/size approach to obtain a strategy to find such bounds. For runtime
complexity, the approach is more straightforward. If for all f ∈ FC the result If (x1, . . . , xn)
has the form

(c(cost(x1), . . . , cost(xn)), s(size(x1), . . . , size(xn)))

where c is a linear polynomial with coefficients in {0, 1} and constant part 0, and s is a
linear polynomial with coefficients in {0, 1} and a constant part at most K, then all ground
constructor terms s have cost 0 and size at most K ·|s|, so crcR(n) is bounded by the maximum
value of If ((0, s1), . . . , (0, sm), (0, 1), . . . , (0, 1)) where f ∈ FD and s1 + · · · + sm < K · n.
This mirrors the corresponding notion of “strongly linear polynomials” in the setting with
interpretations over N, and is what we used in Example 8.1 (with K = 1).

As before, we will use a standard recipe to find such interpretations. To this end, we
adapt the ideas from Recipes A and B.

Definition 8.3 (Recipe C: Cost/Size Version). Given a usable replacement map υ, we
consider the replacement map µυ where, for f of arity n in the original signature F ,
µυ(f) = υ(f) when considering runtime complexity and µυ(f) = {1, . . . , n} otherwise.
Given interpretation functions

COMPLEXITY OF CONDITIONAL TERM REWRITING 35

• Sf : Nn → N and C0
f , . . . , C

mf

f : N2n → N for every symbol f of arity n in F such that

R�f consists of mf rules,

• S1
f,i, . . . ,Skf,i with Sjf,i : N

n+j → N and C1
f,i, . . . , Ckf,i with Cjf,i : N

2(n+j) → N for every

rule ρi ∈ R�f with k > 0 conditions

such that the following monotonicity constraints are satisfied:

• Sf is weakly monotone in all arguments in µυ(f),

• C0
f is strictly monotone in all arguments in µυ(f) and weakly monotone in all

arguments in {n+ j | j ∈ µυ(f)},
• Cif is weakly monotone in all arguments in {j, n+ j | j ∈ µυ(f)},

• Sjf,i is weakly monotone in its last argument n+ j,

• Cjf,i is strictly monotone in argument n+j and weakly monotone in argument 2(n+j),

we construct an interpretation I for H as follows: I> = (0, 1) and I⊥ = (0, 0),

If (x1, . . . , xn, c1, . . . , cmf
) =

(
C0
f (cost(~x), size(~x)) +

mf∑
k=1

size(ck) · Ckf (cost(~x), size(~x)),

Sf (size(~x))
)

for every f ∈ FC ∪ FD of arity n, and finally

I
fji

(x1, . . . , xn, c1, . . . , ci−1, y1, . . . , yj , ci+1, . . . , cmf
) =(

C0
f (cost(~x), size(~x)) + Cjf,i(cost(~x), cost(~y), size(~x), size(~y))

+

mf∑
k=1, k 6=i

size(ck) · Ckf (cost(~x), size(~x)), max(Sf (size(~x)),Sjf,i(size(~x), size(~y)))
)

Here cost(~x) and size(~x) stand for cost(x1), . . . , cost(xn) and size(x1), . . . , size(xn), and
similar for cost(~y) and size(~y).

The following remarks are helpful to understand the intuition behind the interpretations
defined in the above recipe.

• The “size” of a term s is intended to reflect—or at least bound—how large a normal
form of s may be, where different constructor symbols count differently towards
the size. In a term f(s1, . . . , sn, t1, . . . , tmf

), the size is only affected by the sizes
of s1, . . . , sn; the additional arguments merely indicate our progress in trying to

reduce the term. In a term of the shape f ji (s1, . . . , sn, 〈t1, . . . , tmf
〉[y1, . . . , yj]i) the

size should similarly not be affected by the progress on testing the applicability of
the rule ρi ∈ R�f . However, here a rule-specific size function is included in a max

expression for technical reasons; in practice, we will always have Sf (· · ·) > Sjf,i(· · ·),
but the latter will have more variables that can be used to orient rules of the form
(3ρ).
• The “cost” of f(s1, . . . , sn, t1, . . . , tmf

) reflects how many steps we may take to reach
a normal form. This is affected by the cost of evaluating each of the rule conditions
where ti = (0, 1) is the value of >, as well as the cost of evaluating whatever we may
reduce to; the sizes of the arguments may affect both those costs (since it will take
longer to evaluate even(s100(0)) than even(0), for instance).

36 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

As before, using this interpretation for the rules in Definition 5.6, the obtained inequalities
can be greatly simplified.

Definition 8.4. The compatibility constraints for C and S comprise the following inequalities,
for every rule ρi : f(`1, . . . , `n)→ r ⇐ a1 ≈ b1, . . . , ak ≈ bk in R:

(1ρ) Sf (
−→
[`]S) > [ξ>(r)]S ,

(2ρ) Sf (
−→
[`]S) > S1

f,i(
−→
[`]S , [ξ>(a1)]S),

(3ρ) Skf,i(
−→
[`]S , [b1]S , . . . , [bk]S) > [ξ>(r)]S ,

(4ρ) Sjf,i(
−→
[`]S , [b1]S , . . . , [bj]S) > Sj+1

f,i (
−→
[`]S , [b1]S , . . . , [bj]S , [ξ>(aj+1)]S)

and

(1ρ) C0
f (
−→
[`]C ,
−→
[`]S) + Cif (

−→
[`]C ,
−→
[`]S) > [ξ>(r)]C ,

(2ρ) Cif (
−→
[`]C ,
−→
[`]S) > C1

f,i(
−→
[`]C , [ξ>(a1)]C ,

−→
[`]S , [ξ>(a1)]S),

(3ρ) Ckf,i(
−→
[`]C , [b1]C , . . . , [bk]C ,

−→
[`]S , [b1]S , . . . , [bk]S) + C0

f (
−→
[`]C ,
−→
[`]S) > [ξ>(r)]C ,

(4ρ) Cjf,i(
−→
[`]C , [b1]C , . . . , [bj]C ,

−→
[`]S , [b1]S , . . . , [bj]S) >

Cj+1
f,i (
−→
[`]C , [b1]C , . . . , [bj]C , [ξ>(aj+1)]C ,

−→
[`]S , [b1]S , . . . , [bj]S , [ξ>(aj+1)]S)

for the same cases of k and j as in Definition 5.6. Here [s]S = size([s]αI), [s]C = cost([s]αI),

and
−→
[`]S and

−→
[`]C denotes the sequences [`1]S , . . . , [`n]S and [`1]C , . . . , [`n]C .

Lemma 8.5. The interpretation I from Recipe C is a context-sensitive interpretation for
(H, µυ). If the corresponding functions C and S satisfy the compatibility constraints from
Definition 8.4, then

[ξ>(f(t1, . . . , tn))]S = Sf ([ξ>(t1)]S , . . . , [ξ>(tn)]S)

[ξ>(f(t1, . . . , tn))]C =

mf∑
i=0

Cif ([ξ>(t1)]C , . . . , [ξ>(tn)]C , [ξ>(t1)]S , . . . , [ξ>(tn)]S)

Moreover, I is compatible with H. Therefore

cdcR(n) = max{cost([ξ>(t)]I) | t ∈ T (F) and |t| 6 n}
crcR(n) = max{cost([ξ>(t)]I) | t ∈ T (F), |t| 6 n, and t is basic}

Proof. For the first part of the claim, it is not hard to see that I satisfies the monotonicity
requirements: Every interpretation function If is strictly monotone in each argument
position belonging to µυ(f) = υ(f) (or {1, . . . , n} for derivational complexity), and every
I
fji

is strictly monotone in argument position n+ i+ j − 1. The second part of the claim is

obtained by writing out definitions. As for compatibility, minimality of [⊥]αI ensures that all
constraints obtained from clause (6ρ) are satisfied, while those obtained from clause (5ρ) are
oriented because

Cjf,i(· · ·) > 0 = [⊥]S · Cif (· · ·)
and

max{Sf (size(~x)),Sjf,i(· · ·)} > Sf (size(~x))

COMPLEXITY OF CONDITIONAL TERM REWRITING 37

always hold. The requirements for the other rules follow from the compatibility constraints,
by expanding the inequalities [`]S > [r]S and [`]C > [r]C or [`]C > [r]C depending on the cost
of the rule. For instance, the actual size constraint for (3ρ) is

max(Sf (
−→
[`]S),Skf,i(

−→
[`]S , [b1]S , . . . , [bk]S)) > [ξ>(r)]S

while for (4ρ) we obtain

max(Sf (
−→
[`]S),Sjf,i(

−→
[`]S , [b1]S , . . . , [bj]S)) >

max(Sf (
−→
[`]S),Sj+1

f,i (
−→
[`]S , [b1]S , . . . , [bj]S , [ξ>(aj+1)]S))

Both constraints are clearly implied by the compatibility constraints of Definition 8.4. The
claims on cdcR and crcR hold because dh(s,→Ξ(R),µυ) 6 cost([s]I).

As with Lemma 6.5, we can find bounds on derivation heights without calculating ξ>(t).

Example 8.6. We derive an upper bound for the runtime complexity of Rfib, detailing how
we arrive at the chosen interpretation. Recall the rules:

0 + y → y fib(0)→ 〈0, s(0)〉
s(x) + y → s(x+ y) fib(s(x))→ 〈z, w〉 ⇐ fib(x) ≈ 〈y, z〉, y + z ≈ w

We take the same usable replacement map υ as in Example 7.8: υ(s) = {1}, υ(+) =
υ(〈·, ·〉) = {1, 2}, and υ(fib) = ∅. To facilitate understanding of the following constraints,
we present the rules in Ξ(Rfib) that derive from the conditional rule (but note that they are
not necessary to apply the recipe):

fib(s(x), c1,>)→ fib1
2(s(x), c1, fib(x,>,>))

fib1
2(s(x), c1, 〈y, z〉)→ fib2

2(s(x), c1, 〈y, z〉,+(y, z,>,>))

fib2
2(s(x), c1, 〈y, z〉, w)→ 〈z, w〉

Following the recipe, let N = S0, S = Ss, P = S〈·,·〉, A = S+, F = Sfib, B = S1
fib,2 and

C = S2
fib,2. The interpretation functions S, P and A must be weakly monotone in all

arguments, B and C only in the last argument, and F does not need to be weakly monotone
due to υ. The requirements on the size component give rise to the constraints

A(N, y) > y (8.1)

A(S(x), y) > S(A(x, y)) (8.2)

F (N) > P (N,S(N)) (8.3)

for the unconditional rules and

F (S(x)) > B(S(x), F (x)) (8.4)

B(S(x), P (y, z)) > C(S(x), P (y, z), A(y, z)) (8.5)

C(S(x), P (y, z), w) > P (z, w) (8.6)

for the conditional rule of Rfib. For the cost component we will follow the guiding principle
that C0

f (x1, . . . , xn, y1, . . . , yn) 6 x1 + · · · + xn for all constructor symbols f ∈ FC, which

gives cost 0 for ground constructor terms. As C0
f must be strictly monotone in the first n

arguments for f ∈ FC , we fix C0 = 0, Cs(x, y) = x and C〈·,·〉(cx, cy, sx, sy) = cx+ cy. We also

fix C1
+(cx, cy, sx, sy) = C2

+(cx, cy, sx, sy) = C1
fib(cx, sx) = 0 since these are the “conditional

38 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

evaluation” components for the unconditional rules. For the remaining interpretation
functions, write Q = C0

+, G = C0
fib, H = C2

fib, D = C1
fib,2, and E = C2

fib,2, which yields

Q(0, cy,N, sy) > cy (8.7)

Q(cx, cy, S(sx), sy) > Q(cx, cy, sx, sy) (8.8)

G(0, N) > 0 (8.9)

for the unconditional rules and

H(cx, S(sx)) > D(cx,G(cx, sx) +

H(cx, sx), S(sx), F (sx)) (8.10)

D(cx, cy + cz, S(sx), P (sy, sz)) >

E(cx, cy + cz,Q(cy, cz, sy, sz), S(sx),P (sy, sz), A(sy, sz)) (8.11)

G(cx, S(sx)) + E(cx, cy + cz, cw, S(sx), P (sy, sz), sw) > cz + cw (8.12)

for the conditional rule. Here, Q is strictly monotone in its first two arguments and weakly
in the last two, D is strictly monotone in argument 2 and weakly in 4, while E is strictly
monotone in argument 3 and weakly in 6. There is no monotonicity constraint for G or H.

Choosing minimal polynomials to satisfy the constraints deriving from the rules for +,
we set N = 0, S(x) = x+ 1, A(x, y) = x+ y, and Q(cx, cy, sx, sy) = cx+ cy + sx+ 1. Since
G need not be monotone, we simply take G(x, y) = 1 to satisfy (8.9). Further choosing
P (x, y) = x+ y, the constraints simplify to

F (0) > 1 (8.3)

F (x+ 1) > B(x+ 1, F (x)) (8.4)

B(x+ 1, y + z) > C(x+ 1, y + z, y + z) (8.5)

C(x+ 1, y + z, w) > z + w (8.6)

H(cx, sx+ 1) > D(cx,H(cx, sx) + 1, sx+ 1, F (sx)) (8.10)

D(cx, cy + cz, sx+ 1, sy + sz) >

E(cx, cy + cz, cy + cz + sy + 1, sx+ 1, sy + sz, sy + sz) (8.11)

1 + E(cx, cy + cz, cw, sx+ 1, sy + sz, sw) > cz + cw (8.12)

The size constraints are satisfied if we choose C(x, y, z) = y+z, B(x, y) = 2y, and F (x) = 2x.
Choosing E(cx, cy, cz, sx, sy, sz) = cy + cz and D(cx, cy, sx, sy) = 2cy + sy + 1 takes care
of (8.11) and (8.12), leaving only

H(c, s+ 1) > 2 · (H(c, s) + 1) + 2s + 1 (8.10)

This final constraint is satisfied for H(c, s) = (s+ 1) · (2s+1 − 2) since

H(c, s+ 1) = (s+ 2) · (2s+2 − 2) = s · 2s+2 + 8 · 2s − 2s− 4

= s · 2s+2 + 5 · 2s − 2s− 4 + 3 · 2s > s · 2s+2 + 5 · 2s − 4s− 4 + 3

= 2 · (s+ 1) · 2s+1 − 4 · (s+ 1) + 2s + 3 = 2 · (s+ 1) · (2s+1 − 2) + 2s + 3

= 2 ·H(c, s) + 2s + 3 = 2 · (H(c, s) + 1) + 2s + 1

Since all ground constructor terms s have cost 0 and size at most |s|, for ground basic terms
s with |s| 6 n, cost([s]I) is bounded by G(0, n − 1) + H(0, n − 1) = 1 + n · 2n − 2n. We
conclude a runtime complexity of O(n · 2n) by Lemma 8.5.

COMPLEXITY OF CONDITIONAL TERM REWRITING 39

9. Conclusions

In this paper we have improved and extended the notion of complexity for conditional
term rewriting first introduced in [17]. This notion takes failed calculations into account as
any automatic rewriting engine would. We have defined a transformation to unconditional
left-linear context-sensitive TRSs whose complexity is the same as the conditional complexity
of the original system, and shown how this transformation can be used to find bounds for
conditional complexity using traditional interpretation-based methods.

9.1. Implementation and Experiments. At present, we have not implemented the
results of Sections 6, 7, and 8. However, we did implement the transformation from Section 5.
The resulting (context-sensitive) TRSs can be used as input to a conventional TRS complexity
tool, which by Theorem 5.11 gives an upper bound for conditional complexity. Although
existing tools do not take advantage of either information regarding the replacement map,
nor of the specific shape of the rules or the fact that only terms of the form ξ>(s) need to
be considered, the results are often tight bounds.

O(1) 16
O(n) 10
O(n2) 3
MAYBE 33

We have used this approach with TCT [4] as the underlying complexity
tool, to analyze the runtime complexity of the 57 strong CCTRSs in the
current version of the termination problem database (TPDB 10.3),3 along
with 5 examples in this paper. The results are summarized to the right.
A full evaluation page is available at

http://cl-informatik.uibk.ac.at/experiments/2016/cc

About half of the systems in our example set could not be handled. This is largely due
to the presence of non-terminating CCTRSs as well as systems with exponential runtime
complexity, which existing complexity tools do not support. Many benchmarks of conditional
rewriting have rules similar to our Example 3.1, which lead to exponential complexity due to
failed evaluations, and consequently cannot be handled. We do, however, obtain a constant
upper bound for Example 3.2, a quadratic upper bound for Example 3.6, as well as the tight
bound O(n) for Example 7.9.

9.2. Related Work. We are not aware of any other attempt to study the complexity
of conditional rewriting, but numerous transformations from CTRSs to TRSs have been
proposed in the literature. They can roughly be divided into so-called unravelings and
structure-preserving transformations. The former were coined by Marchiori [23] and have
been extensively investigated (e.g. [24, 28, 30, 31, 33]), mainly to establish (operational)
termination and confluence of the input CTRS. The latter originate from Viry [37] and
improved versions were proposed in [1, 8, 13].

The transformations that are known to transform CTRSs into TRSs such that (simple)
termination of the latter implies quasi-decreasingness of the former, are natural candidates
for study from a complexity perspective. We observe that unravelings are not suitable in this
regard, since they do not take the cost for failed computations into account. For instance,

3See http://termination-portal.org/wiki/TPDB for more details.

http://cl-informatik.uibk.ac.at/experiments/2016/cc
http://termination-portal.org/wiki/TPDB

40 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

the unraveling from [24] transforms the CCTRS Reven into

even(0)→ true even(s(x))→ U1(odd(x), x) U1(true, x)→ true

even(s(x))→ U2(even(x), x) U2(true, x)→ false

odd(0)→ false odd(s(x))→ U3(odd(x), x) U3(true, x)→ false

odd(s(x))→ U4(even(x), x) U4(true, x)→ true

This TRS has a linear runtime complexity, which is readily confirmed by TCT. As the condi-
tional runtime complexity is exponential, the transformation is not suitable for measuring
conditional complexity. The same holds for the transformation in [30].

Structure-preserving transformations are better suited for studying conditional complex-
ity since they keep track of the conditions in all applicable rules.

However, existing transformations of this kind are also unsuitable for measuring condi-
tional runtime complexity. For instance, the CCTRS Reven is transformed into the TRS

even(0, x, y)→ m(true) odd(0, x, y)→ m(false)

even(s(x),⊥, z)→ even(s(x), c(m(odd(x,⊥,⊥))), z) even(s(x), c(m(true)), z)→ m(true)

even(s(x), y,⊥)→ even(s(x), y, c(m(even(x,⊥,⊥)))) even(s(x), y, c(m(true)))→ m(false)

odd(s(x),⊥, z)→ odd(s(x), c(m(even(x,⊥,⊥))), z) odd(s(x), c(m(true)), z)→ m(true)

odd(s(x), y,⊥)→ odd(s(x), y, c(m(odd(x,⊥,⊥)))) odd(s(x), y, c(m(true)))→ m(false)

even(m(x), y, z)→ m(even(x,⊥,⊥)) s(m(x))→ m(s(x))

odd(m(x), y, z)→ m(odd(x,⊥,⊥)) m(m(x))→ m(x)

by the transformation of Şerbănuţă and Roşu [8]. TCTreports a constant runtime complexity,
which is explained by the fact that the symbol s is turned into a defined symbol. Hence a
term like even(s(0),>,>) is not basic and thus disregarded for runtime complexity. The
derivational complexity of the transformed TRS is harder to confirm automatically, as it
is exponential, but likely not to differ much from the conditional derivational complexity
of Reven. However, in general, we may well obtain much greater bounds due to the forced
reevaluation of conditions when a subterm is reduced. Consider for instance a term even(s(t))
with t = s21(0) + s21(0) in an extension of Reven with rules for +. This term is encoded as
even(s(t),⊥,⊥), the ⊥s indicating that no condition has been evaluated yet, and might be
reduced as follows:

even(s(t),⊥,⊥)→ even(s(t), c(m(odd(t,⊥,⊥))),⊥)

→∗ even(s(t), c(m(false)),⊥)

→ even(s(t), c(m(false)), c(m(even(t,⊥,⊥))))

→∗ even(s(t), c(m(false)), c(m(true)))

→ even(s(m(s42(0))), c(m(false)), c(m(true)))

→ even(m(s43(0)), c(m(false)), c(m(true)))

→ m(even(s43(0),⊥,⊥))

We observe that an evaluation in the instance s(t) of the pattern s(x) forces a reevaluation
of t when checking the second condition. The fundamental difference with our approach is
that we have used Lemma 3.4 to avoid such reevaluations.

COMPLEXITY OF CONDITIONAL TERM REWRITING 41

Less recent, the transformation of Antoy et al. [1] operates in a more restrictive setting:
weakly orthogonal constructor-based CTRSs without extra variables in the conditions.
Like the transformation in [8], it blocks conditions when their evaluation fails; however,
conditions are not reevaluated when arguments are modified. A crucial difference with our
transformation Ξ is that different conditions in the same conditional rule are not evaluated
from left to right but combined into a single condition, which has a negative impact on
complexity. As an extreme example, consider the CCTRS R consisting of the four rules

f(x)→ a ⇐ c ≈ d, g(x) ≈ a, g(x) ≈ b g(s(x))→ f(x)

f(x)→ b ⇐ c ≈ e c→ e

The conditional runtime complexity of R is linear, which is confirmed by running TCT on
Ξ(R). The transformation of [1] produces the TRS

f(x,⊥,⊥)→ f(x, 〈c, g(x), g(x)〉, c) f(x, 〈d, a, b〉, z)→ a g(s(x))→ f(x,⊥,⊥)

f(x, y, e)→ b c→ e

whose runtime complexity is at least exponential because of the rules f(x,⊥,⊥)→ f(x, 〈c, g(x),
g(x)〉, c) and g(s(x))→ f(x,⊥,⊥). If the (undecidable) weak orthogonality restriction in [1]
is not imposed, the same phenomenon may occur if rules have at most one condition.

However, it is worth noting also the similarities to our method, especially when there is
at most one condition. Consider for example the result of transforming our CCTRS Reven:

even(0, y, z)→ true even(s(x), true, y)→ true even(s(x), y, true)→ false

odd(0, y, z)→ false odd(s(x), true, y)→ true odd(s(x), y, true)→ false

even(s(x),⊥,⊥)→ even(s(x), odd(x,⊥,⊥), even(x,⊥,⊥))

odd(s(x),⊥,⊥)→ odd(s(x), even(x,⊥,⊥), odd(x,⊥,⊥))

This does not look too different from the result of our transformation Ξ if the set AP is not
used. In addition, the method used could be generalised with some of the ideas from [8], for
instance by evaluating multiple conditions sequentially rather than in parallel.

Even ignoring the issue of multiple conditions—or, for [8], the issue of reevaluation—there
are some fundamental differences between our transformation Ξ and the structure-preserving
transformations of [1, 8]. In both of these, the conditions for different rules may be evaluated
in parallel, which we do not permit. Moreover, neither transformation separates defined
symbols (e.g. even) from “active” symbols used to evaluate conditions (e.g. even1

2). This
separation is necessary to impose a context-sensitive replacement map as we have done here,
and makes it much easier to use traditional techniques such as polynomial interpretations.
Most importantly, neither transformation defines—or is based on a formal definition of—
conditional complexity; rather, they define upper bounds for a reasonable evaluation strategy.

9.3. Avenues for Future Work. There are several possibilities to continue our research.

Weakening restrictions. An obvious direction for future research is to broaden the class
of CTRSs we consider. While it would make little sense to consider CTRSs that are
not deterministic or of type 3—as the rewrite relation in these systems is undecidable in
general—it may be possible to drop the variable and constructor requirements.

The linearity requirements in strong CCTRSs are an obvious target for improvement.
These requirements were not needed in the definition or justification of our primary complexity

42 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

notion, but essential for the correctness of the way we use the anti-pattern set AP. However,
if we are willing to lose completeness, we may drop the anti-pattern set, replacing the use
of v in AP(`i) or AP(bj) in Definition 5.6 by a fresh variable; doing so, the transformation
would not preserve derivation heights, but we would retain the possibility to obtain upper
bounds. Alternatively, we might consider an infinite set of transformed rules Ξ′(R) instead.

As for the restrictions in general CCTRSs, the proof of the important locality Lemma 3.4
requires only that the left-hand side ` of every rule ` → r ⇐ c is a basic term such
that Var(`) ∩ Var(c) = ∅. This can always be satisfied by altering the system without
changing the rewrite relation in an essential way, replacing for instance f(g(x), y)→ r by
f(z, y) → r ⇐ z ≈ g(x). However, in such cases, the definition of conditional complexity
needs to be revisited, as the restrictions on the conditions are needed for Lemma 3.5, which is
important to justify our complexity notion. For example, if the right-hand sides of conditions
were allowed to be arbitrary terms, it would be possible to define a system with rules

g(x)→ x h(x)→ g(x) h(x)→ x f(z, y)→ a ⇐ z ≈ g(x)

In this CTRS, a term f(h(0), 0) can be reduced by the last rule, but we would only find
this out if we reduced h(0) with the second rule, rather than with the third. Thus, to
accurately analyze such a system, we would likely need a backtracking mechanism. To drop
the restriction that the right-hand sides of conditions may not repeat variables, we would
need the same, or alternatively a strategy which enforces that left-hand sides of conditions
must always be reduced to normal form. Similar revisions could be used to extend the
definition to take non-confluence into account, as discussed at the end of Section 3.

Alternatively, we could weaken the restrictions only partially, allowing for instance
irreducible patterns—terms b such that for no instance bγ, a reduction step is possible at a
position in Pos(b)— as right-hand sides of conditions rather than only constructor terms.

Rules with branching conditions. Consider the following variant of Reven:

even(0)→ true (9.1)

even(s(x))→ true ⇐ odd(x) ≈ true (9.2)

even(s(x))→ false ⇐ odd(x) ≈ false (9.3)

odd(0)→ false (9.4)

odd(s(x))→ true ⇐ even(x) ≈ true (9.5)

odd(s(x))→ false ⇐ even(x) ≈ false (9.6)

Unlike Example 3.1, rules (9.2) and (9.3), and rules (9.5) and (9.6) have very similar
conditions. Currently, we do not exploit this. Evaluating even(s9(0)) with rule (9.2) causes
the calculation of the normal form false of odd(s8(0)), before concluding that the rule does
not apply. In our definitions (of ⇀ and Ξ), and in line with the behavior of Maude, we would
dismiss the result and continue trying the next rule. In this case, that means recalculating
the normal form of odd(s8(0)), but now to verify whether rule (9.3) applies.

This is wasteful, as there is clearly no benefit in recalculating this normal form. The
rules are defined in a branching manner: If the condition evaluation gives one result, we
should apply rule (9.2); if it gives another, we should use rule (9.3). A clever rewriting
engine could use this branching, and avoid recalculating obviously unnecessary results. Thus,
future extensions of the complexity notion might take such groupings of rules into account.

Improving the transformation. With regard to the transformation Ξ, it is would be easy
to obtain smaller resulting systems using various optimizations, such as reducing the set AP
of anti-patterns using typing considerations, or leaving defined symbols untouched when
they are only defined by unconditional rules.

COMPLEXITY OF CONDITIONAL TERM REWRITING 43

Implementation and further complexity methods. The strength of our implementa-
tion—which relies simply on a transformation to unconditional complexity—is necessarily
limited by the possibilities of existing complexity tools. Thus, we hope that, in the future,
developers of complexity tools will branch out towards context-sensitive rewriting. Moreover,
we encourage developers to add support for exponential upper bounds.

To take full advantage of the initial conditional setting, it would be ideal for complexity
tools to directly support conditional rewriting. This would enable tools to use methods
like Recipe C, which uses a max-interpretation to immediately eliminate a large number of
rules—an interpretation which an automatic tool is unlikely to find by itself. It is likely that
other, non-interpretation-based methods, can be optimized for the conditional setting as
well.

Acknowledgement

We thank the reviewers for their detailed comments, which led to many improvements.

References

[1] S. Antoy, B. Brassel, and M. Hanus. Conditional narrowing without conditions. In Proc. 5th PPDP,
pages 20–31, 2003. doi:10.1145/888251.888255.

[2] M. Avanzini and G. Moser. Complexity analysis by rewriting. In Proc. 9th FLOPS, volume 4989 of
LNCS, pages 130–146, 2008. doi:10.1007/978-3-540-78969-7_11.

[3] M. Avanzini and G. Moser. Polynomial path orders. Logical Methods in Computer Science, 9(4), 2013.
doi:10.2168/LMCS-9(4:9)2013.

[4] M. Avanzini and G. Moser. Tyrolean complexity tool: Features and usage. In Proc. 24th RTA, volume 21
of LIPIcs, pages 71–80, 2013. doi:10.4230/LIPIcs.RTA.2013.71.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[6] G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial interpretation

termination proof. Journal of Functional Programming, 11(1):33–53, 2001.
[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About Maude –

A High-Performance Logical Framework, volume 4350 of LNCS. 2007. doi:10.1007/978-3-540-71999-1.
[8] T.F. Şerbănuţă and G. Roşu. Computationally equivalent elimination of conditions. In Proc. 17th RTA,

volume 4098 of LNCS, pages 19–34, 2006. doi:10.1007/11805618_3.
[9] N. Dershowitz and M. Okada. A rationale for conditional equational programming. Theoretical Computer

Science, 75(1–2):111–138, 1990. doi:10.1016/0304-3975(90)90064-O.
[10] M. Erwig and S. Peyton Jones. Pattern guards and transformational patterns. In Proc. 2000 ACM

SIGPLAN Haskell Workshop, volume 41(1) of ENTCS, 2001. doi:10.1016/S1571-0661(05)80540-7.
[11] A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify termination of

left-linear term rewriting systems. Information and Computation, 205(4):512–534, 2007. doi:10.1016/j.
ic.2006.08.007.

[12] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker, P. Schneider-Kamp,
S. Swiderski, and R. Thiemann. Proving termination of programs automatically with AProVE. In Proc.
7th IJCAR, volume 8562 of LNCS, pages 184–191, 2014. doi:10.1007/978-3-319-08587-6_13.

[13] K. Gmeiner and N. Nishida. Notes on structure-preserving transformations of conditional term rewrite
systems. In Proc. 1st WPTE, volume 40 of OASICS, pages 3–14, 2014. doi:10.4230/OASIcs.WPTE.2014.3.

[14] N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair method. In
Proc. 4th IJCAR, volume 5195 of LNAI, pages 364–380, 2008. doi:10.1007/978-3-540-71070-7_32.

[15] N. Hirokawa and G. Moser. Automated complexity analysis based on context-sensitive rewriting. In
Proc. Joint 25th RTA and 12th TLCA, volume 8560 of LNCS, pages 257–271, 2014. doi:10.1007/
978-3-319-08918-8_18.

[16] D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations (preliminary version).
In Proc. 3rd RTA, volume 355 of LNCS, pages 167–177, 1989. doi:10.1007/3-540-51081-8_107.

http://dx.doi.org/10.1145/888251.888255
http://dx.doi.org/10.1007/978-3-540-78969-7_11
http://dx.doi.org/10.2168/LMCS-9(4:9)2013
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.71
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/11805618_3
http://dx.doi.org/10.1016/0304-3975(90)90064-O
http://dx.doi.org/10.1016/S1571-0661(05)80540-7
http://dx.doi.org/10.1016/j.ic.2006.08.007
http://dx.doi.org/10.1016/j.ic.2006.08.007
http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://dx.doi.org/10.4230/OASIcs.WPTE.2014.3
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/978-3-319-08918-8_18
http://dx.doi.org/10.1007/978-3-319-08918-8_18
http://dx.doi.org/10.1007/3-540-51081-8_107

44 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

[17] C. Kop, A. Middeldorp, and T. Sternagel. Conditional complexity. In Proc. 26th RTA, volume 36 of
LIPIcs, pages 223–240, 2015. doi:10.4230/LIPIcs.RTA.2015.223.

[18] A. Koprowski and J. Waldmann. Max/plus tree automata for termination of term rewriting. Acta
Cybernetica, 19(2):357–392, 2009.

[19] S. Lucas. Context-sensitive computations in functional and functional logic programs. Journal of
Functional and Logic Programming, 1998(1), 1998.

[20] S. Lucas. Context-sensitive rewriting strategies. Information and Computation, 178(1):294–343, 2002.
doi:10.1006/inco.2002.3176.

[21] S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional term rewriting systems.
Information Processing Letters, 95(4):446–453, 2005. doi:10.1016/j.ipl.2005.05.002.

[22] S. Lucas and J. Meseguer. 2D dependency pairs for proving operational termination of CTRSs. In Proc.
10th WRLA, volume 8663 of LNCS, pages 195–212, 2014. doi:10.1007/978-3-319-12904-4_11.

[23] M. Marchiori. Unravelings and ultra-properties. In Proc. 5th ICALP, volume 1139 of LNCS, pages
107–121, 1996. doi:10.1007/3-540-61735-3_7.

[24] M. Marchiori. On deterministic conditional rewriting. Computation Structures Group Memo 405, MIT
Laboratory for Computer Science, 1997.

[25] A. Middeldorp, G. Moser, F. Neurauter, J. Waldmann, and H. Zankl. Joint spectral radius theory for
automated complexity analysis of rewrite systems. In Proc. 4th CAI, volume 6742 of LNCS, pages 1–20,
2011. doi:10.1007/978-3-642-21493-6_1.

[26] G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair method. Logical
Methods in Computer Science, 7(3), 2011. doi:10.2168/LMCS-7(3:1)2011.

[27] G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on matrix and
context dependent interpretations. In Proc. 28th FSTTCS, volume 2 of LIPIcs, pages 304–315, 2008.
doi:10.4230/LIPIcs.FSTTCS.2008.1762.

[28] N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for conditional term rewriting systems
via ultra-properties related to linearity. Logical Methods in Computer Science, 8:1–49, 2012. doi:10.2168/
LMCS-8(3:4)2012.

[29] L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of term rewriting by
dependency pairs. Journal of Automated Reasoning, 51(1):27–56, 2013. doi:10.1007/s10817-013-9277-6.

[30] E. Ohlebusch. Transforming conditional rewrite systems with extra variables into unconditional systems.
In Proc. 6th LPAR, volume 1705 of LNCS, pages 111–130, 1999. doi:10.1007/3-540-48242-3_8.

[31] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. doi:10.1007/978-1-4757-3661-8.
[32] F. Schernhammer and B. Gramlich. VMTL – a modular termination laboratory. In Proc. 20th RTA,

volume 5595 of LNCS, pages 285–294, 2009. doi:10.1007/978-3-642-02348-4_20.
[33] F. Schernhammer and B. Gramlich. Characterizing and proving operational termination of deterministic

conditional term rewriting systems. Journal of Logic and Algebraic Programming, 79(7):659–688, 2010.
doi:10.1016/j.jlap.2009.08.001.

[34] T. Sternagel and A. Middeldorp. Conditional confluence (system description). In Proc. Joint 25th RTA
and 12th TLCA, volume 8560 of LNCS, pages 456–465, 2014. doi:10.1007/978-3-319-08918-8_31.

[35] T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite systems with extra
variables in right-hand sides. In Proc. 6th RTA, volume 914 of LNCS, pages 179–193, 1995. doi:10.1007/
3-540-59200-8_56.

[36] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[37] P. Viry. Elimination of conditions. Journal of Symbolic Computation, 28(3):381–401, 1999. doi:10.1006/
jsco.1999.0288.

[38] J. Waldmann. Polynomially bounded matrix interpretations. In Proc. 21st RTA, volume 6 of LIPIcs,
pages 357–372, 2010. doi:10.4230/LIPIcs.RTA.2010.357.

[39] H. Zankl and M. Korp. Modular complexity analysis for term rewriting. Logical Methods in Computer
Science, 10(1:19):1–33, 2014. doi:10.2168/LMCS-10(1:19)2014.

http://dx.doi.org/10.4230/LIPIcs.RTA.2015.223
http://dx.doi.org/10.1006/inco.2002.3176
http://dx.doi.org/10.1016/j.ipl.2005.05.002
http://dx.doi.org/10.1007/978-3-319-12904-4_11
http://dx.doi.org/10.1007/3-540-61735-3_7
http://dx.doi.org/10.1007/978-3-642-21493-6_1
http://dx.doi.org/10.2168/LMCS-7(3:1)2011
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1762
http://dx.doi.org/10.2168/LMCS-8(3:4)2012
http://dx.doi.org/10.2168/LMCS-8(3:4)2012
http://dx.doi.org/10.1007/s10817-013-9277-6
http://dx.doi.org/10.1007/3-540-48242-3_8
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.1007/978-3-642-02348-4_20
http://dx.doi.org/10.1016/j.jlap.2009.08.001
http://dx.doi.org/10.1007/978-3-319-08918-8_31
http://dx.doi.org/10.1007/3-540-59200-8_56
http://dx.doi.org/10.1007/3-540-59200-8_56
http://dx.doi.org/10.1006/jsco.1999.0288
http://dx.doi.org/10.1006/jsco.1999.0288
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.357
http://dx.doi.org/10.2168/LMCS-10(1:19)2014

COMPLEXITY OF CONDITIONAL TERM REWRITING 45

Appendix A. Proof of Theorem 5.12

Recall the statement of Theorem 5.12:

Let R be a strong CCTRS and s ∈ T (G). If ζ(s) is terminating and there
exists a context-sensitive reduction ζ(s) →∗Ξ(R),µ t for some t with cost N ,

then there exists a complexity-conscious reduction s −⇀∗ t′ with cost at least
N . If there exists an infinite (Ξ(R), µ) reduction starting from ζ(s) then

s
∞−⇀.

In this appendix we present the proof. We fix a strong CCTRS R, and corresponding
signatures F , G and H. In order to relate certain reduction sequences in (Ξ(R), µ) to
complexity-conscious reductions with −⇀, we start by defining an inverse of ζ.

Definition A.1. A term s ∈ T (H,V) is proper if

• s is a variable, or
• s = f(s1, . . . , sn) with f a constructor symbol and proper subterms s1, . . . , sn, or
• s = f(s1, . . . , sn, c1, . . . , cmf

) with f a defined symbol, proper subterms s1, . . . , sn,
and c1, . . . , cmf

∈ {⊥,>}.
We denote the set of all proper (ground) terms by Tp(H,V) (Tp(H)). For proper terms s we
define ζ−(s) ∈ T (G,V) as follows. If s is a variable then ζ−(s) = s, if s = f(s1, . . . , sn) with
f a constructor then ζ−(s) = f(ζ−(s1), . . . , ζ−(sn)), and if s = f(s1, . . . , sn, c1, . . . , cmf

)

with f a defined symbol then ζ−(s) = fR(ζ−(s1), . . . , ζ−(sn)) for R = {ρfi | ci = >}.

Note that ⊥-patterns (Definition 5.2) are proper. The following lemma collects some
easy properties of ζ−.

Lemma A.2. (1) If s ∈ T (G,V) then ζ(s) ∈ Tp(H,V) and ζ−(ζ(s)) = s.
(2) If t ∈ Tp(H,V) then ζ(ζ−(t)) = t.
(3) If t ∈ Tp(H,V) and τ : V → Tp(H,V) then tτ ∈ Tp(H,V) and ζ−(tτ) = ζ−(t)τζ−

(where τζ− = ζ− ◦ τ).

(4) If u ∈ T (F ,V) and τ : V → Tp(H,V) then ξ>(u)τ ∈ Tp(H,V) and ζ−(ξ>(u)τ) =
label(u)τζ−.

(5) If v ∈ AP(u) for some linear constructor term u then v ∈ Tp(H,V) and ζ−(v) is a
linear labeled normal form which does not unify with u.

Proof. The first three statements are proved by an obvious induction argument.

(4) We have ξ>(u) = ζ(label(u)) by Lemma 5.10. From statements (3) and (1) we infer
ζ(label(u))τ ∈ Tp(H,V) and ζ−(ζ(label(u))τ) = ζ−(ζ(label(u)))τζ− = label(u)τζ− .

(5) From the definition of AP it follows that v is a ⊥-pattern and thus proper. By
structural induction on v we easily obtain that ζ−(v) is a linear labeled normal form
which does not unify with u.

An important preliminary result is that terminating proper ground terms have a ⊥-

pattern as normal form. This allows us to eliminate f ji symbols in selected (sub)terms, which
is crucial for transforming a (Ξ(R), µ) reduction into a complexity-conscious reduction.

Lemma A.3. If s ∈ Tp(H) then any (Ξ(R), µ) normal form of s is a ⊥-pattern.

Proof. For the purpose of this proof, a ground term u in T (H) is said to be an intermediate
term if

46 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

• u = f(u1, . . . , un) with f a constructor symbol and intermediate arguments u1, . . . , un,
or
• u = f(u1, . . . , un, c1, . . . , cmf

) with f a defined symbol, c1, . . . , cmf
∈ {⊥,>}, and

intermediate arguments u1, . . . , un, or

• u = f ji (`1, . . . , `n, 〈c1, . . . , cmf
〉[b1, . . . , bj−1, v]i)σ with c1, . . . , cmf

∈ {⊥,>} and
intermediate terms v and σ(y) for all y ∈ Var(`1, . . . , `n, b1, . . . , bj−1), whenever
ρfi : f(`1, . . . , `n) → r ⇐ c and 1 6 j 6 k. (Note that vσ = v since intermediate
terms are ground.)

We use Ti(H) to denote the set of intermediate terms. The following properties are easily
established:

(a) proper ground terms are intermediate terms,
(b) if u is proper and the domain of σ : V → Ti(H) includes Var(u) then uσ is an

intermediate term,
(c) if u is proper and uσ an intermediate term then σ(x) is an intermediate term for

every x ∈ Var(u).

Next we prove that intermediate terms are closed under (Ξ(R), µ) reduction. So let u ∈ Ti(H)
and u→Ξ(R),µ u

′. We use induction on the size of u.

• Suppose u = f(u1, . . . , un) with f a constructor symbol and intermediate arguments
u1, . . . , un. The reduction step from u to u′ must take place in one of the arguments,
so u′ = f(u1, . . . , ui−1, u

′
i, ui+1, . . . , un) for some 1 6 i 6 n with ui →Ξ(R),µ u′i.

The term u′i is intermediate according to the induction hypothesis. Hence u′ is
intermediate by definition.
• Suppose u = f(u1, . . . , un, c1, . . . , cmf

) with f a defined symbol, c1, . . . , cmf
∈ {⊥,>},

and intermediate arguments u1, . . . , un. If the reduction step takes place in one of
the arguments u1, . . . , un, we reason as in the preceding case. Suppose the step takes
place at the root. We distinguish three subcases, depending on which kind of rule of
Ξ(R) is used.

(1) If a rule of type (1ρ) is used then u′ = ξ>(r)σ for some right-hand side of an
unconditional rule `→ r in R�f such that `σ = f(u1, . . . , un). From property
(c) we infer that σ(y) is intermediate for all y ∈ Var(`). Since Var(r) ⊆ Var(`)
and ξ>(r) is proper by Lemma A.2(4), u′ is intermediate by property (b).

(2) If a rule of type (2ρ) is used then u = f(`1σ, . . . , `nσ, c1, . . . , cmf
) such that

ci = > for some 1 6 i 6 n with ρi : f(`1, . . . , `n) → r ⇐ c in R�f . We

have u′ = f ji (`1, . . . , `n, 〈c1, . . . , cmf
〉[ξ>(a1)]i)σ and from property (c) we infer

that σ(y) is intermediate for all y ∈ Var(`). Since Var(ai) ⊆ Var(`), the
term ξ>(a1)σ is intermediate by property (b) and thus also ground. Hence

u′ = f ji (`1, . . . , `n, 〈c1, . . . , cmf
〉[ξ>(a1)σ]i)σ, which is of the required shape to

be intermediate.

(3) The final possibility is that a rule of type (6ρ) is used. In this case we have
u′ = f(u1, . . . , un, 〈c1, . . . , cmf

〉[⊥]i) for some 1 6 i 6 mf . Since the arguments
u1, . . . , un are intermediate, u′ is intermediate by definition.

• Suppose u = f ji (`1, . . . , `n, 〈c1, . . . , cmf
〉[b1, . . . , bj−1, v]i)σ. If the reduction step from

u to u′ takes place below the root, it must take place in vσ = v, due to restrictions
on the replacement map µ. Hence the result follows from the induction hypothesis.

Suppose the step takes place at the root. Note that the rule ρfi : f(`1, . . . , `n)→ r ⇐ c

COMPLEXITY OF CONDITIONAL TERM REWRITING 47

must exist in R�f . We again distinguish three subcases, depending on which kind of
rule of Ξ(R) is used.

(1) If a rule of type (3ρ) is used then u = f ji (`1, . . . , `n, 〈c1, . . . , cmf
〉[b1, . . . , bk]i)τ ,

and u′ = ξ>(r)τ for some substitution τ with dom(τ) ⊆ Var(`1, . . . , `n, b1, . . . , bk).
Hence `lτ = `lσ for all 1 6 l 6 n, blτ = blσ for all 1 6 l < j = k, and
v = bkτ . From property (c) we infer that σ(y) = τ(y) is intermediate for all
y ∈ Var(`1, . . . , `n, b1, . . . , bk) ⊇ Var(r). Hence u′ is intermediate by property
(b) since ξ>(r) is proper by Lemma A.2(4).

(2) If a rule of type (4ρ) is used then u = f ji (`1, . . . , `n, 〈c1, . . . , cmf
〉[b1, . . . , bj]i)τ ,

j < k, and u′ = f j+1
i (`1, . . . , `n, 〈c1, . . . , cmf

〉[b1, . . . , bj , ξ>(aj+1)]i)τ for some
substitution τ with dom(τ) ⊆ Var(`1, . . . , `n, b1, . . . , bj). Hence `lτ = `lσ for
all 1 6 l 6 n, blτ = blσ for all 1 6 l < j, and v = bjτ . Therefore, u′ =

f j+1
i (`1, . . . , `n, 〈c1, . . . , cmf

〉[b1, . . . , bj , ξ>(aj+1))τ]iσ and it suffices if ξ>(aj+1)τ
is an intermediate term. This follows from Var(aj+1) ⊆ Var(`1, . . . , `n, b1, . . . , bj)
in combination with Lemma A.2(4) and properties (b) and (c).

(3) The final possibility is that a rule of type (5ρ) is used. In this case we have

u′ = f ji (`1, . . . , `n, 〈c1, . . . , cmf
〉[⊥]i)σ for some 1 6 i 6 mf . Since the arguments

`1σ, . . . , `nσ are intermediate, u′ is intermediate by definition.

Now suppose that s has a normal form t in (Ξ(R), µ). We already know that t is an
intermediate term. So it suffices to show that intermediate terms in normal form are
⊥-patterns. We show instead that any intermediate term t which is not a ⊥-pattern is
reducible, by induction on its size.

• Suppose t = f(t1, . . . , tn) with f a constructor symbol. One of the arguments, say
ti, is not a ⊥-pattern. The induction hypothesis yields the reducibility of ti. Since
i ∈ µ(f), t is reducible as well.
• Suppose t = f(t1, . . . , tn, c1, . . . , cmf

) with f a defined symbol and c1, . . . , cmf
∈

{⊥,>}. If one of the terms t1, . . . , tn is not a ⊥-pattern, we reason as in the previous

case. Otherwise, ci = > for some 1 6 i 6 mf . Consider ρfi : f(`1, . . . , `n)→ r ⇐ c.
If f(t1, . . . , tn) is an instance of f(`1, . . . , `n) then t is reducible by rule (1ρ) or
(2ρ). If f(t1, . . . , tn) is not an instance of f(`1, . . . , `n) then, using the linearity of
f(l1, . . . , ln), there exists an argument position 1 6 j 6 n such that tj is not an
instance of `j . According to Lemma 5.5 tj is an instance of an anti-pattern in AP(`j).
Consequently, t is reducible by rule (6ρ).

• The final case is t = f ji (~̀, 〈c1, . . . , cmf
〉[b1, . . . , bj−1, v]i)σ with c1, . . . , cmf

∈ {⊥,>}.
Consider the intermediate subterm v. If v is not a ⊥-pattern we reason as in the
first case. If v is an instance of bj then rule (4ρ) is applicable. Otherwise, again
using Lemma 5.5, v must be an instance of an anti-pattern in AP(`j) and thus t is
reducible by rule (5ρ).

The restriction to proper terms in Lemma A.3 is essential. For instance, even(0,⊥,⊥, 0)
and even1

2(0,⊥, true,⊥) are ground normal forms (w.r.t. Example 5.7) but not ⊥-patterns.
We have reached the point where we can prove the main result, for terminating proper

terms. Since a term whose subterms contain symbols f ji has no parallel in the labeled setting,
the proof will require a fair bit of reshuffling; some steps must be postponed, while other
subterms must be eagerly evaluated. This is all done in Lemma A.4.

48 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

In the following, s→∗ t [N] or s −⇀∗ t [N] indicates a reduction of cost N .

Lemma A.4. Let s ∈ Tp(H) be a terminating term, t a ⊥-pattern, and σ : Var(t)→ T (H).
If s→∗Ξ(R),µ tσ [N] then there exist a substitution τ : Var(t)→ Tp(H) and numbers K and

M with K +M > N such that ζ−(s) −⇀∗ ζ−(tτ) [K] and tτ →∗Ξ(R),µ tσ [M].

Proof. We use induction on s with respect to > := (→Ξ(R),µ ∪�µ)+, which is a well-founded
order on terminating terms. (Here s �µ t if t is a subterm of s occuring at an active
position.) We distinguish a number of cases. First of all, if t is a variable then we can
simply take τ = {t 7→ s}, K = 0, and M = N . Next suppose s = f(s1, . . . , sn) with f
a constructor symbol. We have ζ−(s) = f(ζ−(s1), . . . , ζ−(sn)) and t = f(t1, . . . , tn) with
si →∗Ξ(R),µ tiσ [Ni] for all 1 6 i 6 n, such that N = N1 + · · ·Nn. Fix i. Since s�µ si, we can

apply the induction hypothesis, resulting in a substitution τi : Var(ti)→ Tp(H) and numbers
Ki and Mi with Ki +Mi > Ni such that ζ−(si) −⇀∗ ζ−(tiτi) [Ki] and tiτi →∗Ξ(R),µ tiσ [Mi].

Since ⊥-patterns are linear by definition, the substitution τ := τ1 ∪ · · · ∪ τn is well-defined.
Let K = K1 + · · ·+Kn and M = M1 + · · ·+Mn. We clearly have K+M > N . Furthermore,
ζ−(s) −⇀∗ f(ζ−(t1τ), . . . , ζ−(tnτ)) = ζ−(tτ) with cost K and tτ →∗Ξ(R),µ tσ [M].

The remaining case for s is s = f(s1, . . . , sn, c1, . . . , cmf
) with f a defined symbol. Let

R = {ρfi | ci = >}. We have ζ−(s) = fR(ζ−(s1), . . . , ζ−(sn)). If there is no root step in
the reduction s→∗Ξ(R),µ tσ then the result is obtained exactly as in the preceding case. So

suppose the reduction contains a root step. We prove the following claim (∗):
There exists a term u ∈ Tp(H) different from s and numbers A and B with
A+B > N such that ζ−(s) −⇀+ ζ−(u) [A] and u→∗Ξ(R),µ tσ [B].

The statement of the lemma follows from (∗), as can be seen as follows. We have s =
ζ(ζ−(s)) →∗Ξ(R),µ ζ(ζ−(u)) = u by Lemma A.2(2) and Theorem 5.11. Since s 6= u we

must have s > u and thus we can apply the induction hypothesis to u →∗Ξ(R),µ tσ. This

yields a substitution τ : Var(t) → Tp(H) and numbers K and M with K + M > B such
that ζ−(u) −⇀∗ ζ−(tτ) [K] and tτ →∗Ξ(R),µ tσ [M]. Hence ζ−(s) −⇀∗ ζ−(tτ) [A + K] and

(A+K) +M = A+ (K +M) > A+B > N .
To prove the claim, we distinguish a few subcases depending on which rule of Ξ(R) is

applied in the first root step.

(a) Suppose the first root step uses a rule of type (1ρ) and let ρi : ` = f(`1, . . . , `n)→ r
be the originating rule in R�f . (So ci = > and i ∈ R.) The reduction from s to tσ
has the shape

s
>ε−→∗ f(`1γ, . . . , `nγ, c1, . . . , cmf

)
ε−→ ξ>(r)γ →∗ tσ

for some substitution γ with dom(γ) ⊆ Var(`). Fix 1 6 j 6 n and let Cj be the cost
of sj →∗ `jγ. Let C = C1 + · · ·+ Cn. From the induction hypothesis we obtain a
substitution δj : Var(`j)→ Tp(H) and numbers Kj and Mj with Kj +Mj > Cj such
that ζ−(sj) −⇀∗ ζ−(`jδj) [Kj] and `jδj →∗ `jγ [Mj]. Because f(`1, . . . , `n) is linear,
the substitution δ := δ1 ∪ · · · ∪ δn is well-defined. With help of Lemma A.2(3) we
obtain ζ−(s) −⇀∗ fR(`1δζ− , . . . , `nδζ−) [K]. As `1, . . . , `n are constructor terms, the
reductions `jδj →∗ `jγ [Mj] take place in the substitution part. Hence for every
x ∈ Var(`) we have xδ →∗ xγ [Mx] such that M := M1 + · · ·+Mn =

∑
{Mx | x ∈

Var(`)} and K +M > C, where K = K1 + · · ·+Kn.

COMPLEXITY OF CONDITIONAL TERM REWRITING 49

After these preliminaries, we proceed as follows. Let V = Var(`) \ Var(r). For
every x ∈ V we fix a ⊥-pattern ux such that γ(x) →∗ ux. The existence of ux
is guaranteed by Lemma A.3 and the termination of γ(x), which follows because
s→∗ ·�µ γ(x). Define the substitution η : Var(`)→ Tp(H) as follows:

η(x) =

{
ux if x ∈ V
δ(x) if x /∈ V

We divide M into MV =
∑
{Mx | x ∈ V } and MV̄ =

∑
{Mx | x /∈ V } = M −MV .

We have `δ →∗ `η. Applying the induction hypothesis to this reduction (with t = `δ
and empty substitution σ) yields ζ−(`δ) −⇀∗ ζ−(`η) [L] for some L > MV . Let
u = ξ>(r)η. Lemma A.2 yields ζ−(u) = label(r)ηζ− . Hence ζ−(s) −⇀∗ ζ−(u) [A] with
A = K + L+ 1. We clearly have s 6= u. In order to conclude (∗), it remains to show
that u→∗ tσ [B] for some B > N −A. We have u = ξ>(r)δ due to the definitions
of V and η. Hence u →∗ ξ>(r)γ [D] for some D > MV̄ and thus u →∗ tσ [B]
with B := D + N − (C + 1) > MV̄ + N − (C + 1) > MV̄ + N − (K + M + 1) =
N − (K +MV + 1) > N − (K + L+ 1) > N −A.

(b) Suppose the first root step uses a rule of type (6ρ) and let f(`1, . . . , `n) be the
left-hand side of the rule in R that gave rise to this rule. The reduction from s to tσ
has the following shape:

s
>ε−→∗ f(u1, . . . , un, c1, . . . , cmf

)
ε−→ f(u1, . . . , un, 〈c1, . . . , cmf

〉[⊥]i)→∗ tσ
with uj an instance of an anti-pattern v ∈ AP(`j), so uj = vγ for some substitution
γ and fixed j. We have si →∗ ui for all 1 6 i 6 n. By postponing the steps in
arguments different from j, we obtain

s
>j−→∗ f(s1, . . . , uj , . . . , sn, c1, . . . , cmf

) [A]

−→ f(s1, . . . , uj , . . . , sn, 〈c1, . . . , cmf
〉[⊥]i) [0]

>ε−→ f(u1, . . . , uj , . . . , un, 〈c1, . . . , cmf
〉[⊥]i)→∗ tσ [N −A]

Since s�µ sj →∗ vγ, we can apply the induction hypothesis to obtain a substitution
δ : Var(v)→ Tp(H) and numbers K and M with K +M > A such that ζ−(sj) −⇀∗
ζ−(vδ) [K] and vδ →∗ vγ [M]. Lemma A.2(5) yields ζ−(vδ) = ζ−(v)δζ− and from

Lemma 5.5 we know that ζ−(v) is a linear labeled normal form which does not unify
with `j . Therefore

ζ−(s) −⇀∗ fR(ζ−(s1), . . . , ζ−(v)δζ− , . . . , ζ
−(sn)) [K]

⊥−⇀ fR\{ρi}(ζ
−(s1), . . . , ζ−(v)δζ− , . . . , ζ

−(sn)) [0]

The latter term equals ζ−(u) where u = f(s1, . . . , vδ, . . . , sn, 〈c1, . . . , cmf
〉[⊥]i). Fur-

thermore,

u→∗ f(s1, . . . , vγ, . . . , sn, 〈c1, . . . , cmf
〉[⊥]i) [M]

→∗ tσ [N −A]

Hence ζ−(s) −⇀+ ζ−(u) [K] and u→∗ tσ [M +N −A] with M +N −A >M +N −
(K +M) = N −K. Since s 6= u, this proves (∗).

(c) In the remaining case, the first root step in reduction from s to tσ uses a rule of type
(2ρ). Let ρ = ρi : ` = f(`1, . . . , `n)→ r ⇐ c Since t is a non-variable ⊥-pattern, tσ
cannot have some f ij as root symbol. Hence the application of (2ρ) will be followed

50 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

by (possibly zero) root steps of type (4ρ), for j = 1, . . . ,m− 1, until either a step of
type (3ρ) with cost Q = 1 (when m = k) or a step of type (5ρ) with cost Q = 0 is
used at the root position. We have

[C] s
>ε−→∗ f(`1, . . . , `n, 〈c1, . . . , cmf

〉[>]i)γ

[0]
ε−→ f1

i (`1, . . . , `n, 〈c1, . . . , cmf
〉[ξ>(a1)]i)γ (2ρ)

[D1]
>ε−→∗ f1

i (`1, . . . , `n, 〈c1, . . . , cmf
〉[b1]i)γ

[0]
ε−→ f2

i (`1, . . . , `n, 〈c1, . . . , cmf
〉[b1, ξ>(a2)]i)γ (4ρ)

>ε−→∗ · · ·
[0]

ε−→ fmi (`1, . . . , `n, 〈c1, . . . , cmf
〉[b1, . . . , bm−1, ξ>(am)]i)γ (4ρ)

[Dm]
>ε−→∗ fmi (`1, . . . , `n, 〈c1, . . . , cmf

〉[b1, . . . , bm−1, v]i)γ

[Q]
ε−→ w (3ρ) or (5ρ)

[E] −→∗ tσ
for some substitution γ, ⊥-pattern v, ground term w, and numbers C,D1, . . . , Dm, E
such that N = C + D1 + · · · + Dm + E + Q. (Here we use the fact that bj does
not share variables with `1, . . . , `n, b1, . . . , bj−1, for 1 6 j < m. Moreover, bm as well
as members of AP(bm) are ⊥-patterns.) Like in case (a), we obtain a substitution
δ : Var(`) → Tp(H) and numbers Kj and Mj such that ζ−(sj) −⇀∗ ζ−(`jδ) [Kj]
and `jδ →∗ `jγ [Mj]. Moreover, K + M > C where K = K1 + · · · + Kn and
M = M1 + · · ·+Mn. We now distinguish two cases, depending on whether (3ρ) or
(5ρ) is used in the step to w.

• Suppose the step to w uses (3ρ). In this case we have Q = 1, v = bm and
w = ξ>(r)γ. Let V = Var(b0, . . . , bm) \ Var(a1, . . . , am+1). (Recall that b0 = `
and ak+1 = r). For every x ∈ V we fix a ⊥-pattern ux such that γ(x) →∗ ux.
The existence of ux is guaranteed by Lemma A.3 and the termination of γ(x),
which follows from s→∗ ·�µ ξ>(aj)γ for all 1 6 j 6 m. We inductively define
substitutions η0, . . . , ηm with ηj : Var(b0, . . . , bj) → Tp(H) as well as numbers
L0, . . . , Lm and Gx for all x ∈ Var(b0, . . . , bm) \ V such that

(a) ηj(x)→∗ γ(x) [Gx] for all 0 6 j 6 m and x ∈ Var(bj) \ V ,

(b) ζ−(`δ) −⇀∗ ζ−(`η0) [L0] with L0 >M −
∑
{Gx | x ∈ Var(b0) \ V }, and

(c) ζ−(ξ>(aj)ηj−1) −⇀∗ ζ−(bjηj) [Lj] with Lj > Dj +
∑
{Gx | x ∈ Var(aj)} −∑

{Gx | x ∈ Var(bj) \ V } for all 0 < j 6 m.

– Let j = 0. We define

η0(x) =

{
ux if x ∈ Var(b0) ∩ V
δ(x) if x ∈ Var(b0) \ V

We obtain η0(x) →∗ γ(x) for all x ∈ Var(b0) \ V from `δ →∗ `γ, and
define Gx as the cost of this reduction. This establishes property (a).
Applying the induction hypothesis to the reduction `δ →∗ `η0 (with
t = `η0 and σ the empty substitution) yields ζ−(`δ) −⇀∗ ζ−(`η0) [L0]
for some L0 >

∑
{cost(δ(x) →∗ η0(x)) | x ∈ Var(b0) ∩ V }. Note that

L0 +
∑
{Gx | x ∈ Var(b0) \ V } >M . Hence property (b) holds. Property

(c) holds vacuously.

COMPLEXITY OF CONDITIONAL TERM REWRITING 51

– Consider 0 < j 6 m. Because Var(aj) ⊂ Var(b0, . . . , bj−1) \ V we obtain
ξ>(aj)ηj−1 →∗ ξ>(aj)γ [Gj] for some Gj >

∑
{Gx | x ∈ Var(aj)}. (Equal-

ity need not hold if aj is a non-linear term.) We apply the induction
hypothesis to ξ>(aj)ηj−1 →∗ ξ>(aj)γ →∗ bjγ [Gj+Dj], yielding a substitu-
tion δj : Var(bj)→ Tp(H) and numbers L′ and N ′ with L′+N ′ > Gj +Dj

such that ζ−(ξ>(aj)ηj−1) −⇀∗ ζ−(bjδj) [L′] and bjδj →∗ bjγ [N ′]. We
divide N ′ into X + Y where

X =
∑
{cost(δj(x)→∗ γ(x)) | x ∈ Var(bj) ∩ V }

Y =
∑
{cost(δj(x)→∗ γ(x)) | x ∈ Var(bj) \ V }

and define the substitution ηj as follows:

ηj(x) =

ηj−1(x) if x ∈ Var(b0, . . . , bj−1)

ux if x ∈ Var(bj) ∩ V
δj(x) if x ∈ Var(bj) \ V

Since bj is a constructor term, from bjδj →∗ bjγ we infer ηj(x)→∗ γ(x)
for all x ∈ Var(bj)\V , at a cost we can safely define as Gx. Hence property
(a) holds. Property (b) holds vacuously. Note that Y =

∑
{Gx | x ∈

Var(bj) \ V }. Applying the induction hypothesis to bjδj →∗ bjηj (with
t = bjηj and σ the empty substitution) yields ζ−(bjδj) −⇀∗ ζ−(bjηj) [Z]
for some number

Z >
∑
{cost(δj(x)→∗ γ(x)→∗ ux) | x ∈ Var(bj) ∩ V } > X

Let Lj = L′ + Z. So ζ−(ξ>(aj)ηj−1) −⇀∗ ζ−(bjηj) [Lj]. We have

Lj > L
′ +X = L′ +N ′ − Y > Gj +Dj − Y

> Dj +
∑
{Gx | x ∈ Var(aj)} −

∑
{Gx | x ∈ Var(bj) \ V }

establishing property (c).

Let η = ηm. Since η coincides with ηj on Var(b0, . . . , bj) for all 0 6 j 6 m, we
obtain

label(aj)ηζ− = ζ−(ξ>(aj)η) −⇀∗ ζ−(bjη) = bjηζ− [Lj]

for 1 6 j 6 m. Hence

ζ−(s) −⇀∗ fR(`1ηζ− , . . . , `nηζ−) −⇀ label(r)ηζ− [A]

with A = (K + L0) + L1 + · · ·+ Lm + 1. Let u = ξ>(r)η. Lemma A.2 yields
ζ−(u) = label(r)ηζ− . To establish the claim (∗), it remains to show u→∗ tσ [B]
for some B such that A + B > N . Because Var(r) ⊆ Var(b0, . . . , bm) \ V , we
obtain

u = ξ>(r)η →∗ ξ>(r)γ = w →∗ tσ [B]

52 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

with B >
∑
{Gx | x ∈ Var(r)}+ E. We have

A+B > K + L0 + L1 + · · ·+ Lm +
∑
{Gx | x ∈ Var(r)}+ E + 1

> (C −M) + (M −
∑
{Gx | x ∈ Var(b0) \ V }) +D1 + · · ·+Dm

+
∑
{Gx | x ∈ Var(a1, . . . , am+1)}

−
∑
{Gx | x ∈ Var(b1, . . . , bm) \ V }+ E + 1

> C +D1 + · · ·+Dm +
∑
{Gx | x ∈ Var(a1, . . . , am+1)}

−
∑
{Gx | x ∈ Var(b0, . . . , bm) \ V }+ E + 1

> C +D1 + · · ·+Dm + E + 1 = N

where the last inequality follows from the inclusion (Var(b0, . . . , bm) \ V) ⊆
Var(a1, . . . , am+1).
• Suppose the step to w uses (5ρ). In this case we have Q = 0, v ∈ AP(bm) and w =
f(`1, . . . , `n, 〈c1, . . . , cmf

〉[⊥]i)γ. Let V = Var(b1, . . . , bm−1, v) \ Var(a1, . . . , am).
For every x ∈ V we fix a ⊥-pattern ux such that γ(x) →∗ ux. The existence
of ux is guaranteed by Lemma A.3 and the termination of γ(x), which follows
from s→∗ ·�µ ξ>(aj)γ for all 1 6 j 6 m. We inductively define substitutions
η0, . . . , ηm with ηj : Var(b0, . . . , bj) → Tp(H) for 1 6 j < m and ηm : Var(v) →
Tp(H) as well as numbers L1, . . . , Lm and Gx for all x ∈ Var(b0, . . . , bm−1) \ V
such that

(a) ηj(x)→∗ γ(x) [Gx] for all 0 6 j 6 m and x ∈ Var(bj) \ V ,

(b) ζ−(ξ>(aj)ηj−1) −⇀∗ ζ−(bjηj) [Lj] with Lj > Dj +
∑
{Gx | x ∈ Var(aj)} −∑

{Gx | x ∈ Var(bj) \ V } for all 0 < j < m.

(c) ζ−(ξ>(am)ηm−1) −⇀∗ ζ−(vηm) [Lm] with Lm >
∑
{Gx | x ∈ Var(am)} +

Dm.

– We define η0 = δ. We obtain η0(x)→∗ γ(x) for all x ∈ Var(`) = Var(b0)\V
from `δ →∗ `γ, and define Gx as the cost of this reduction. This establishes
property (a). Note that

∑
{Gx | x ∈ Var(b0)} = M .

– The case 0 < j < m is exactly the same as for (3ρ), establishing properties
(a) and (b).

– For j = m we have ξ>(am)ηm−1 →∗ ξ>(am)γ →∗ vγ. Let Gm be the
cost of ξ>(am)ηm−1 →∗ ξ>(am)γ, so Gm >

∑
{Gx | x ∈ Var(am)}. The

induction hypothesis yields a substitution δm : Var(v)→ Tp(H) and num-
bers L′ and N ′ with L′ +N ′ > Gm +Dm such that ζ−(ξ>(am)ηm−1) −⇀∗
ζ−(vδm)[L′] and vδm →∗ vγ [N ′]. We define the substitution ηm as follows:

ηm(x) =

{
ηm−1(x) if x ∈ Var(b0, . . . , bm−1)

ux if x ∈ Var(v)

Applying the induction hypothesis to vδm →∗ vηm (with t = vηm and σ
the empty substitution) yields ζ−(vδm) −⇀∗ ζ−(vηm) [Z] for some number
Z > N ′. Let Lm = L′ + Z. Thus, ζ−(ξ>(am)ηm) −⇀∗ ζ−(vηm) [Lm]. We
have Lm > L′ + N ′ > Gm + Dm >

∑
{Gx | x ∈ Var(am)}+ Dm. Hence

property (c) holds.

COMPLEXITY OF CONDITIONAL TERM REWRITING 53

Let η = ηm. Since η coincides with ηj on Var(b0, . . . , bj) for all 0 6 j < m, we
obtain

– ζ−(s) = fR(ζ−(s1), . . . , ζ−(sn)) −⇀∗ fR(`1, . . . , `n)ηζ− [K]

– label(aj)ηζ− = ζ−(ξ>(aj)η) −⇀∗ ζ−(bjη) = ζ−(bj)ηζ− [Lj] for 1 6 j < m

– label(am)ηζ− = ζ−(ξ>(am)η) −⇀∗ ζ−(vη) = ζ−(v)ηζ− [Lm], with ζ−(v) a
⊥-pattern that does not unify with v according to Lemma 5.5.

Let u = f(`1, . . . , `n, 〈c1, . . . , cmf
〉[⊥]i)η. We have

ζ−(s) −⇀ ζ−(fR\{ρi}(ζ
−(s1), . . . , ζ−(sn))) = ζ−(u) [K + L]

for L = L1 + · · · + Lm. Furthermore, u →∗ w →∗ tσ [M + E]. It remains to
show that K + L+M + E > N . Since K +M > C, this amounts to showing
L > D1 + · · ·+Dm. We have

L >
m−1∑
j=1

(
Dj +

∑
{Gx | x ∈ Var(aj)} −

∑
{Gx | x ∈ Var(bj) \ V }

)
+ Lm

>
m∑
j=1

Dm +
∑
{Gx | x ∈ Var(a1, . . . , am)}

−
∑
{Gx | x ∈ Var(b1, . . . , bm−1) \ V }

>
m∑
j=1

Dm

where the last inequality follows from the inclusion Var(b1, . . . , bm−1) \ V ⊆
Var(a1, . . . , am). Since s 6= u, we established (∗).

Thus, we proved the main part of Theorem 5.12 for terminating terms. For non-
terminating terms, we can use this result, as we will see in the proof of Lemma A.5. The
following lemma handles the main step.

Lemma A.5. For every minimal non-terminating term s ∈ Tp(H) there exists a non-
terminating term t ∈ Tp(H) such that ζ−(s) ⇀+ ζ−(t) or ζ−(s) ⇀∗ · �−⇀ ζ−(t).

Here a minimal non-terminating term is a non-terminating term with the property that
every proper subterm at an active position is terminating.

Proof. We must have s = f(s1, . . . , sn, c1, . . . , cmf
) for some defined function symbol f . Let

R = {ρfi | ci = >}. We have ζ−(s) = fR(ζ−(s1), . . . , ζ−(sn)). Since the terms s1, . . . , sn are
terminating by minimality, any infinite reduction starting at s must contain a root step. So

s
>ε−→∗ uγ ε−→ vγ

for some rule u→ v of Ξ(R) and substitution γ such that vγ is non-terminating. Inspecting
the applicable rules in Ξ(R), it follows that u is a linear basic term of the form u =
f(u1, . . . , un, 〈y1, . . . , ymf

〉[>]i). Let δ be the restriction of γ to {y1, . . . , ymf
} We have

δ(yj) = cj for all 1 6 j 6 mf . Let u′ = uδ and v′ = vδ. Clearly u′γ = uγ and
v′γ = vγ, while u′ is a proper linear term. Because the terms s1, . . . , sn are terminating by
minimality, Lemma A.4 provides substitutions τ1, . . . , τn with τj : Var(ui)→ Tp(H) such that

54 C. KOP, A. MIDDELDORP, AND T. STERNAGEL

ζ−(sj) −→∗ ζ−(ujτj) and ujτj →∗ ujγ. Since u is linear, the substitution τ = τ1 ∪ · · · ∪ τn is
well-defined. We obtain

ζ−(s) −⇀∗ ζ−(u′τ) = ζ−(u′)τζ− = fR(ζ−(u1), . . . , ζ−(un))τζ−

with τ(x) →∗ γ(x) for all x ∈ Var(u′). We now distinguish three cases, depending on the
nature of the rule u→ v. Let ρi : f(`1, . . . , `n)→ r be the rule in R that give rise to u→ v.

(1) Suppose u→ v is a rule of type (6ρ). There exists 1 6 j 6 n such that uj ∈ AP(`j).
We have v = f(u1, . . . , un, 〈x1, . . . , xmf

〉[⊥]i). According to Lemma A.2(5) ζ−(uj) is
a linear labeled normal form which does not unify with `j . Hence

ζ−(u′τ)
⊥−⇀ fR\{ρi}(ζ

−(u1τ), . . . , ζ−(unτ)) = ζ−(v′τ)

Since all variables in v′ are at active positions, we have v′τ →∗ v′γ = vγ. It follows
that v′τ is non-terminating and thus we can take v′τ for t to satisfy the first possibility
of the statement of the lemma.

(2) Suppose u → v is a rule of type (1ρ). So uj = `j for all 1 6 j 6 n and v′ = ξ>(r).
Using Lemma A.2 we obtain ζ−(ujτ) = ujτζ− for 1 6 j 6 n as well as ζ−(v′τ) =

label(r)τζ− . Hence ζ−(u′τ) = fR(u1τζ− , . . . , unτζ−) −⇀ ζ−(v′τ) and we conclude as
in the preceding case.

(3) Suppose u → v is a rule of type (2ρ). So uj = `j for all 1 6 j 6 n and v′ =
f1
i (`1, . . . , `n, 〈c1, . . . , cmf

〉[ξ>(a1)]i). We have ζ−(s) −⇀∗ fR(`1, . . . , `n)τζ− . We will
define a number 1 6 m 6 k, substitutions τ1, γ1, . . . , τm, γm, and terms r1, . . . , rm
such that
(a) τj : Var(b0, . . . , bj−1)→ Tp(H),

(b) rj = f ji (`1, . . . , `n, 〈c1, . . . , cmf
〉[b1, . . . , bj−1, ξ>(aj)]i),

(c) label(al)(τj)ζ− ⇀
∗ bl(τj)ζ− for all 1 6 l < j,

(d) τj(x)→∗ γj(x) for all x ∈ Var(b0, . . . , bj−1),
(e) rjγj is non-terminating, and
(f) ζ−(s) ⇀∗ fR(`1, . . . , `n)(τj)ζ−

for all 1 6 j 6 m. By defining τ1 = τ , γ1 = γ, and r1 = v′, the above properties
are clearly satisfied for j = 1. Consider ξ>(aj)τj , which is a ground proper term
by Lemma A.2(4). If ξ>(aj)τj is non-terminating then we let m = j and define
t = ξ>(aj)τj . In this case we have ζ−(t) = label(aj)(τj)ζ− by the same lemma

and thus fR(`1, . . . , `n)(τj)ζ−
�−⇀ ζ−(t) by property (c), establishing the second

possibility of the statement of the lemma.
So assume that ξ>(aj)τj is terminating. We have ξ>(aj)τj →∗ ξ>(aj)γj , so the

latter term is terminating as well. Since ξ>(aj)γj is the only active argument in rjγj ,
the infinite reduction starting from the latter term must contain a root step. So
rjγj

>ε−−→ `′γj+1
ε−→ r′γj+1 for some rule `′ → r′ ∈ Ξ(R) and substitution γj+1 with

dom(γj+1) = Var(`′) such that r′γj+1 is non-terminating. Since root(rjγj) = f ji ,

`′ = f ji (`1, . . . , `n, 〈x1, . . . , xmf
〉[b1, . . . , bj−1, w]i) for some ⊥-pattern w (w = bj

when `′ → r′ is a rule of type (3ρ) or (4ρ) and w ∈ AP(bj) when `′ → r′ is a rule
of type (5ρ)) which has no variables in common with `1, . . . , `n, b1, . . . , bj−1. We
have ξ>(aj)τj →∗ ξ>(aj)γj →∗ wγj+1. From Lemma A.4 we obtain a substitution
τ : Var(w) → Tp(H) such that ζ−(ξ>(aj)τj) ⇀

∗ ζ−(wτ) and wτ →∗ wγj+1. Let
τj+1 = τj ∪ τ . We have τj+1 : Var(b0, . . . , bj−1, w) → Tp(H) and ζ−(ξ>(aj)τj) =
ζ−(ξ>(aj)τj+1) = label(aj)(τj+1)ζ− by Lemma A.2(4). Furthermore, τj+1(x) →∗

COMPLEXITY OF CONDITIONAL TERM REWRITING 55

γj+1(x) for all x ∈ Var(b0, . . . , bj−1, w). We distinguish three subcases, depending of
the type of the rule `′ → r′. In the first and third case, we obtain the statement of
the lemma. In the second case, we establish the properties (a)–(f) for j + 1. Since
rules of type (4ρ) can be used only finitely many times, this concludes the proof.

(3ρ) In this case we have j = k, w = bj , and r′ = ξ>(r). So label(al)(τj+1)ζ− ⇀
∗

bl(τj+1)ζ− for all 1 6 l 6 k. Since all variables in ξ>(r) occur at active
positions, r′τj+1 →∗ r′γj+1 and thus r′τj+1 is non-terminating. According to
Lemma A.2(4) r′τj+1 is proper and ζ−(r′τj+1) = label(r)(τj+1)ζ− . So we choose

t = r′τj+1 to obtain a successful reduction step fR(`1, . . . , `n)(τj+1)ζ− ⇀ ζ−(t).

Hence ζ−(s) ⇀+ ζ−(t) and thus the first possibility of the statement of the
lemma holds.

(4ρ) In this case, w = bj and r′ = f j+1
i (`1, . . . , `n, 〈y1, . . . , ymf

〉[b1, . . . , bj , ξ>(aj+1)]i)
with j < k. We have label(al)(τj+1)ζ− ⇀

∗ bl(τj+1)ζ− for all 1 6 l < j + 1. Let
rj+1 = r′δ. One easily checks that the properties (a)–(f) are satisfied for j + 1.

(5ρ) In this case, w ∈ AP(bj) and r′ = f(`1, . . . , `n, 〈y1, . . . , ymf
〉[⊥]i). Accord-

ing to Lemma A.2, ζ−(w) is a ⊥-pattern which does not unify with bj and
ζ−(w)(τj+1)ζ− = ζ−(wτj+1). Since label(aj)(τj+1)ζ− ⇀∗ ζ−(w)(τj+1)ζ− and
label(al)(τj+1)ζ− ⇀∗ bl(τj+1)ζ− for all 1 6 l < j, the conditions for a failing
step are satisfied and thus fR(`1, . . . , `n)(τj+1)ζ− ⇀ fR\{ρi}(`1, . . . , `n)(τj+1)ζ− .
Let t = r′δτj+1. The term t is proper and since all variables in r′δ occur at
active positions, t →∗ r′δγj+1 and thus t is non-terminating. Since ζ−(t) =
ζ−(r′δ)(τj+1)ζ− = fR\{ρi}(`1, . . . , `n)(τj+1)ζ− , we obtain ζ−(s) ⇀+ ζ−(t) to
satisfy the first possibility of the statement of the lemma.

Lemma A.6. If s ∈ Tp(H) is non-terminating then ζ−(s)
∞−⇀.

Proof. We construct an infinite sequence of non-terminating proper ground terms s0, s1, s2,

. . . with s0 = s such that ζ−(si) (⇀ ∪ �−⇀)
+
ζ−(si+1) for all i > 0. Suppose sj has been

defined. Since sj is non-terminating, it contains a minimal non-terminating subterm u, say
at position p ∈ Posµ(sj). According to Lemma A.5 there exists a non-terminating term
v ∈ Tp(H) such that ζ−(u) ⇀+ ζ−(v) or ζ−(u) ⇀∗ · �−⇀ ζ−(v). We distinguish three cases.

• If ζ−(u) ⇀+ ζ−(v) then ζ−(si) = ζ−(si[u]p) = ζ−(si)[ζ
−(u)]p by Lemma A.2(3) and

thus ζ−(si) ⇀
+ ζ−(si)[ζ

−(v)]p = ζ−(si[v]p). Note that si[v]p is non-terminating.
Hence we can take si+1 = si[v]p.
• Suppose ζ−(u) �−⇀ ζ−(v). We have ζ−(si) = ζ−(si[u]p) = ζ−(si)[ζ

−(u)]p and thus
ζ−(si)

�−⇀ ζ−(v) by the definition of �−⇀. Hence we define si+1 = v.
• Suppose ζ−(u) ⇀+ w �−⇀ ζ−(v). We have ζ−(si) ⇀

+ ζ−(si)[w]p
�−⇀ ζ−(v) and

hence also in this case we take si+1 = v.

Proof of Theorem 5.12. Let R be a strong CCTRS and s ∈ T (G). We have ζ(s) ∈ Tp(H) by
Lemma A.2(1). First suppose that ζ(s) is terminating and there exists a context-sensitive
reduction ζ(s)→∗Ξ(R),µ t [N]. Let u be a normal form of t. Obviously, ζ(s)→∗Ξ(R),µ u [M]

for some M > N . According to Lemma A.3 the term u is a ⊥-pattern. Lemma A.4 yields
s = ζ−(ζ(s)) ⇀∗ ζ−(u) [K] with K >M . Next suppose the existence of an infinite (Ξ(R), µ)

reduction starting from ζ(s). In this case s = ζ−(ζ(s))
∞−⇀ by Lemma A.6.

	1. Introduction
	2. Preliminaries
	3. Analysis
	4. Conditional Complexity
	4.1. Labeled Terms and Reduction
	4.2. Labeled versus Unlabeled Reduction
	4.3. Derivation Height and Complexity

	5. Complexity Transformation
	5.1. The Unconditional TRS (R).
	5.2. Labeled reduction versus (R)

	6. Interpretations in N
	7. Using Context-Sensitivity to Improve Runtime Complexity Bounds
	8. Splitting Time and Space Complexity
	9. Conclusions
	9.1. Implementation and Experiments
	9.2. Related Work
	9.3. Avenues for Future Work

	Acknowledgement
	References
	Appendix A. Proof of Theorem 5.12

