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Abstract

We consider the cons-free programming language of Neil Jones, a simple pure functional
language, which decides exactly the polynomial-time relations and whose tail recursive frag-
ment decides exactly the logarithmic-space relations. We exhibit a close relationship between
the running time of cons-free programs and the running time of logspace-bounded auxiliary
pushdown automata. As a consequence, we characterize intermediate classes like NC in terms
of resource-bounded cons-free computation. In so doing, we provide the first “machine-free”
characterizations of certain complexity classes, like P-uniform NC.

Furthermore, we show strong polynomial lower bounds on cons-free running time. Namely,
for every polynomial p, we exhibit a relation R ∈ Ptime such that any cons-free program
deciding R must take time at least p almost everywhere. Our methods use a “subrecursive
version” of Blum complexity theory, and raise the possibility of further applications of this
technology to the study of the fine structure of Ptime.

1 Introduction

By the 1970’s, several famously hard questions about the relationship among fundamental com-
plexity classes such as Logspace, Ptime, NPtime, and Pspace had been recognized as worthy
of intense interest. Structural complexity theory up to that point had typically relied on recursion-
theoretic techniques such as diagonalization and priority arguments, but these seemed to have little
to say about the relationship among these classes.

In response, complexity theorists started studying what we might call “second-generation” mod-
els of computation such as boolean circuits and alternating Turing machines. On one hand, it
seemed like it might be possible to prove lower bounds on non-uniform models of computation such
as boolean circuits via hard combinatorics, plausibly to the point of separating the fundamental
complexity classes above. On another hand, new connections were found between these fundamen-
tal classes and (theretofore) nonstandard paradigms such as alternation, interaction, parallelism,
and probabilistic computation.

This program, without ever resolving the open questions about the original complexity classes,
led to an enormous increase in our understanding of them. It also led to the formulation of other
classes fundamental in their own right. An important example is the class NC (Nick’s class), and
its ramification in the form of the NC hierarchy {NCi}i<ω. These and related classes interpolate
Logspace and Ptime as follows, endowing Ptime with a fine structure in many ways more robust
than the deterministic time-O(nc) hierarchy.

Logspace ⊆ LogDCFL ⊆ LogCFL = SAC1 ⊆ AC1 ⊆ NC2 ⊆ · · · ⊆ NC ⊆ Ptime.

The precise definition of all of these classes is not as important as the big picture, but suffice it
to say that each of them can be realized by logarithmic space alternating Turing machines (ATM)
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running within a prescribed time [15, 16], polynomial-sized circuit families of a prescribed depth,
or auxiliary pushdown automata (AuxPDAs) running within a prescribed time.

In this paper, we study program-based complexity theory; that is, resource-bounded computa-
tion by pure functional programs that operate on string data. In particular, we study the cons-free
programs of Jones [9]. This class of programs computes exactly the Ptime relations and its tail
recursive fragment computes exactly the Logspace relations. Here, we show that we can recover
something like the hierarchy above—and in particular, the class NC—by considering time-bounded
cons-free computation.

While there are many other characterizations of complexity classes in terms of programming
languages, the primary focus of this research seems to be towards studying termination, correctness,
efficiency, and expressiveness of these languages. By contrast, we argue that cons-free programs
are a serious candidate for a “standard model of computation” for structural complexity theory.
For one, the cons-free framework is versatile: not only do their time classes interpolate Logspace
with Ptime, but their higher-order variants capture classes in the deterministic exponential time
hierarchy [11].

Furthermore, in this paper, we demonstrate absolute polynomial lower bounds for cons-free
programs—in other words, for any c < ω, we construct a problem which can be decided by some
cons-free program, but which necessarily takes time at least nc on inputs of length n. While this
does not resolve any open problems, it stands in stark contrast to circuit depth, where we do not
know any super-constant lower bounds for polynomial-size uniform circuit families.

Our method for showing this lower bound is recursion-theoretic in flavor. While we do not know
which general barriers (relativization, natural proofs, etc.) constrain this machinery, we believe
that our result demonstrates that cons-free programs are a model of computation worthy of further
consideration.

1.1 Our contributions

In this paper, we show that cons-free running time is closely related to the running time of (de-
terministic) logspace AuxPDAs (Theorem 7). Consequently, we obtain a characterization of NC
by cons-free programs running in quasipolynomial time and of LogDCFL by cons-free programs
running in polynomial time (Theorems 8 and 9). We believe this is the first characterization of
these classes by a “natural” functional programming language (i.e., a language with the ability to
make general recursive definitions, unlike [5, 13]).

We show furthermore that the correspondence between running times refines to a correspondence
between the number of moves of an AuxPDA’s input head and the number of calls to hd by a cons-
free program. Hence we obtain a characterization of PUNC (P-uniform NC) by cons-free programs
with a quasipolynomial number of calls to hd (Theorem 10). We believe this is the first known
characterization of PUNC, or any other P-uniform class, by a non-machine, non-circuit model of
computation.

We finally show, for every c < ω, the existence of a problem in Ptime (and hence cons-free
computable) that requires time at least nc to decide by any cons-free program (Theorems 11 and
12). These results are summarized in Table 1.
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Complexity class Cons-free characterization
(Logspace) (tail recursive)

LogDCFL nO(1) time

NC 2log
O(1)(n) time

PUNC 2log
O(1)(n) calls to hd

(Ptime) (unbounded / 2n
O(1)

time)

Table 1: Our main results are the middle three rows of this table: the complexity classes on the
left are captured by cons-free programs under the constraints on the right. Notice that any tail
recursive program runs in polynomial time. In addition we show cons-free time O(nc) ( Ptime for
each c < ω.

1.2 Preliminaries

We assume familiarity with the basics of Turing machines, circuits, and automata at the level of
standard textbooks, e.g. [17, 3]. In particular, it will be helpful to have some fluency with AuxPDAs
(but we will recall the definition in Section 5). An acquaintance with basic recursion theory, the
notion of an indexing, and in particular having seen Blum’s axioms [4], will be helpful but is not
necessary. Finally, we assume familiarity with proving correctness and estimating complexity of
programs in a simple, pure functional language.

Here is a glossary for various classes interpolating Ptime and Logspace discussed above. Pri-
mary sources for the first three items in the list include [18, 15, 16, 20]; these classes are also
discussed in graduate-level textbooks such as [3]. The P-uniform classes in the last bullet point
were introduced in [1].

• NC is the class of problems acceptable by logspace AuxPDAs (deterministic or nondetermin-

istic) in quasipolynomial (2log
O(1)(n)) time, by logspace ATMs in polylogarithmic (logO(1)(n))

time, and by logspace-uniform circuit families in polylogarithmic depth. It is an extremely
robust class, admitting a number of other characterizations especially by models of parallel
computation.

• NCk (resp. ACk) is the class of all problems acceptable by logspace-uniform bounded-fanin
(resp. unbounded-fanin) circuit families in depth O(logk(n)). This hierarchy is interleaved

with the hierarchy of problems solvable by AuxPDAs in time 2O((logn)k), and ATMs in time
O((log n)k). (In other words, each hierarchy is dense in the other as linear orders.) The time-

2O((logn)k) hierarchy on nondeterministic AuxPDAs corresponds to the circuit class SACk of
depth O(logk(n)) logspace-uniform circuit families of semi-unbounded fan-in.

• When k = 1, 2O((logn)k) = nO(1), i.e., the set of polynomials. The class of problems decidable
by deterministic and nondeterministic AuxPDAs in time nO(1) are the classes LogDCFL and
LogCFL respectively. These are so named because they are the closure of the deterministic
context-free and context-free languages respectively under logarithmic-space reductions.

• Any of the logspace-uniform circuit families also have P-uniform versions, which are more
expressive. For any circuit class that is also an AuxPDA-time class, the respective P-uniform
class can be characterized by AuxPDAs with an identical constraint on moves of the input
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head. For example PUNC (P-uniform NC) can be characterized by (nondeterministic or

deterministic) AuxPDAs which move their input heads at most 2log
O(1)(n) times.

1.3 Related work

There are three main bodies of research that underlie the present paper. One is the study of ATMs,
AuxPDAs, circuit families, and the resulting complexity classes discussed above. Secondly, there
is the study of abstract complexity classes or “Blum complexity theory,” and finally, the study of
cons-free computation.

The first body of research encompasses a wide area of complexity theory, both classical and
modern, and is highly connected to other areas of theory and indeed computer science in general
(such as parallel architectures). It is impossible to give an adequate summary of the history of this
field in such a small space, so we shall content ourselves with listing some papers which we view as
“inflection points” of particular relevance to our work.

Alternation was introduced by Chandra, Kozen, and Stockmeyer [6]. Pushdown automata are
classical models of computation from formal language theory, and the study of AuxPDA complexity
classes such as LogCFL was initiated by Sudborough [18]. Ruzzo [15, 16] established general
connections between ATMs, AuxPDAs, and circuits. Venkateswaran [20] formulated the notion of
a semi-unbounded circuit and connected it with LogCFL. Allender [1] introduced the P-uniform
versions of important circuit classes and bounded-access computation on ATMs and AuxPDAs.

Blum complexity theory was first introduced by Blum [4]. The standard model of computation
for classical recursion theory is an indexing of the partial recursive functions that satisfies a handful
of axioms. Blum extended this framework by associating a complexity measure Φe with every
program index e, and stipulating that the relation Φe(x) ≤ y should be a decidable relation in
(e, x, y). There are very few proposed adaptations of the Blum axioms to indexings of complexity
classes, but one of these is due to Alton [2], who used it to illustrate a few proof-of-concept examples.

Cons-free programs were introduced by Jones [9] to capture Logspace and Ptime. This was
extended to a correspondence between higher-type cons-free programs and the deterministic ex-
ponential hierarchy in [10]. In [11], Kop and Simonsen investigated nondeterministic higher-type
cons-free programs and showed that the corresponding hierarchy surprisingly collapsed.

Finally, there is also a superficial similarity between the present paper and the field of implicit
complexity theory (ICC): both aim to find machine-free characterizations of complexity classes,
including NC and other intermediate classes between Logspace and Ptime [5, 13]. ICC character-
izations are “function algebras” obtained by closing a set of primitive functions under a restricted
number of functionals (such as branching and a various weak versions of primitive recursion),
whereas our characterization uses a programming language with the ability to make arbitrary re-
cursive definitions. On the other hand, our characterizations are not “implicit” in the strictest
sense, since they refer to an external resource bound.

1.4 Organization of this paper

In Section 2 we present the cons-free programming language. We give cons-free programs an
alternate operational semantics in Section 3 and discuss extensions of the base language in Section
4; these will come in handy in Section 5 when we compile cons-free programs and AuxPDAs into
one another.
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We finish Section 5 by deriving the “capturing” results referenced in Table 1. Finally, in Section
6, we present our absolute polynomial-time lower bounds. Readers familiar with cons-free programs
can skip to Section 5, perhaps after skimming the short Section 3.

2 Cons-free programs

Consider a simple functional programming language defined over a “standard” set of string prim-
itives; viz, hd, tl, null, nil, and cons. (These correspond to, respectively: isolating the first
character of a string; removing that first character; a test of whether a string is empty; a constant
naming the empty string; pushing a given character on a given string.) It is well known that such
a language is not only Turing complete, but furthermore that Turing machines and programs can
be compiled into one another with very little loss of running time (cf. Chapter 18 of [8]).

If we forbid any occurrence of cons in our programs, we obtain the cons-free programs of Jones
[9]. This is a radically different model of computation. The resulting language is clearly not
Turing-complete, but surprisingly computes exactly the Logspace or Ptime relations depending
on whether we consider its tail recursive or general recursive variant. However, we lose any rela-
tionship between program running time and Turing machine time; indeed, the program simulating
a polynomial-time Turing machine may take exponential time in general.

In this section, we present the syntax and semantics of cons-free programs.

Definition 1. The atomic types are the type 2 = {0, 1} of booleans and the type 2? of binary strings
of 0’s and 1’s of any finite length, including the empty string ε. A product type is an expression
α0× · · · ×αn−1, for some n < ω, where each αi is an atomic type. A function type is an expression
σ → τ , where σ and τ are product types.

(Corner cases: when n = 0, we get the singleton type 1 as a product type. We recover the
atomic types as product types when n = 1. We recover product types τ as function types 1→ τ .)

The domain of a product type is the Cartesian product of the domains of its factors; the domain
of a function type σ → τ is the space of functions from the domain of σ to the domain of τ .

Definition 2. For each product type α and each function type ρ, let Varα be an infinite set of
variables of type α and RFsymbρ be an infinite set of recursive function symbols of type ρ. A term
is any expression which can be derived according to the inference rules in Figure 1.

Definition 3. A program consists of a list (f0, . . . , fk) of distinct recursive function symbols and,
for each 0 ≤ i ≤ k, a variable xi of type α, and a term Ti of type β, where α→ β is the type of fi.
A program is typically written

f0(x0) = T0

...

fk(xk) = Tk

The phrase fi(xi) = Ti is the recursive definition of fi. The term f0(x0) is the head of p.

We equip programs with a standard, call-by-value, environment-based big-step semantics. By
a value we mean an element of the domain of some type, and by an environment, we mean a finite
function mapping variables to values.
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x ∈ Varα
x : α tt : 2 ff : 2 nil : 2?

T : 2?

hd(T ) : 2
T : 2?

tl(T ) : 2?
T : 2?

null(T ) : 2

T0 : 2 T1 : α T2 : α

if T0 then T1 else T2 : α

T : α f ∈ RFsymbα→β

f(T ) : β

T0 : α0 . . . Tn−1 : αn−1

(T0, . . . , Tn−1) : α0 × . . . αn−1
T : α0 × · · · × αn−1 i < n

T [i] : αi

Figure 1: Program terms. The symbols α and β range over arbitrary product types, and symbols
like αi range over atomic types.

Definition 4. For a program p, term T , value v of the same type as T , and environment ρ, we
define the relation ρ `p T → v according to the inference rules in Figure 2. We typically suppress
the subscript p from ` for legibility. The term T f is the right-hand side of the recursive definition
of f(x) in p.

Definition 5. Given a program p, define [[p]] by [[p]](x) = w iff there is a derivation of [x0 = x] `p
f0(x0) → w, where f0(x0) is the head of p. (Since p is deterministic, [[p]] is easily seen to be a
partial function.)

Finally, we make an important definition of a kind of “triviality” for programs:

Definition 6. A program p is explicit if there is a partial ordering < on its set of recursive function
symbols, such that for any recursive function symbols f and g, if g occurs in the recursive definition
of f in p, then g < f.

Explicit programs have no nontrivial recursion; indeed, we could transform the program into
an equivalent one with no recursive calls whatsoever. An important fact about explicit programs
is that they run in constant time; namely, there is a constant, independent to the input of the
program, which bounds the size of all derivations of [x0 = x] `p f0(x0)→ w.

Cons-free dialects. Not every paper on cons-free computation works with exactly the same
programming language. Rather, they differ with regards to what the data is (strings or tuples of
strings), whether the language is nondeterministic, and whether it includes higher types. Here, we
allow the formation of (fixed-width) tuples of booleans and string data, but we restrict ourselves to
deterministic, first-order programs. First, a word on each of these choices:

The cons-free languages presented in [10, 11] allow fixed-width tupling, but the language pre-
sented in [9] does not. For the purpose of computability, this distinction is inessential, but for the
purpose of complexity, we need to form tuples to efficiently simulate AuxPDAs. (Indeed, it is not
clear whether the result relating cons-free and AuxPDA running time (Theorem 7) holds for the
“tuple-free dialect” of cons-free programs.)
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ρ ` tt→ 1 ρ ` ff→ 0 ρ ` nil→ ε

ρ(x) = v

ρ ` x −→ v

T → w((∃v)σv = w)
ρ ` hd(T ) −→ σ

ρ ` T → w
(w = ε)

ρ ` null(T )→ 1

ρ ` T −→ w [x 7→ w] ` T f → v

ρ ` f(x) −→ v

ρ ` T −→ w
((∃σ)σv = w)

ρ ` tl(T ) −→ v

ρ ` T −→ w
(w 6= ε)

ρ ` null(T ) −→ 0

ρ ` T0 −→ 1 ρ ` T1 −→ w

ρ ` if T0 then T1 else S −→ w

ρ ` T0 −→ 0 ρ ` T1 −→ w

ρ ` if T0 then S else T1 −→ w

ρ ` T0 → v0 . . . ρ ` Tn−1 → vn−1

ρ ` (T0, . . . , Tn−1)→ (v0, . . . , vn−1)

T → (v0, . . . , vn−1)
(i < n)

ρ ` T [i]→ vi

Figure 2: Program Semantics. The symbol σ ranges over characters; S, T , T0, T1, Tn, etc. range
over terms; and v and w range over values (strings or booleans, depending on the context).

The difference between deterministic and nondeterministic cons-free programs is an important
one. While nondeterminism does not increase the computational power of first-order programs, it
makes higher-order programs dramatically more expressive [11]. Even within the first-order case,
the presence of nondeterminism might make programs more efficient. We fully expect that Theorem
7 can be extended to a similar relationship between nondeterministic cons-free programs and nonde-
terministic AuxPDAs, by essentially the same proof. If so, the difference between polynomial-time
computation with deterministic and nondeterministic cons-free programs would correspond to the
difference between LogDCFL and LogCFL. However, we cannot prove absolute polynomial lower
bounds on nondeterministic cons-free running time.

Finally, higher-order cons-free programs can be used to capture complexity classes in the de-
terministic exponential hierarchy, which ramifies the class of elementary relations [10]. In light of
the present paper, it is natural to ask if we can similarly characterize running time on higher-order
cons-free programs in terms of a known resource. We leave this question open.

3 The one-stack implementation

It will also be useful to define an operational, one-stack implementation of cons-free programs. It
can be regarded as an alternate semantics for programs, as we shall justify below. (The one-stack
implementation is adapted from the two-stack implementation of recursive programs in an arbitrary
signature by Moschovakis [12].)

Definition 7. A term with parameters is defined by extending the rules in Figure 1 by the additional
rule that a value x of type α is a term of type α. A term with parameters is variable-free if it contains
no variables.
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Definition 8. Given a program p with head f0(x0), its one-stack implementation is defined as
follows:

• Its configurations are stacks of the form T0 T1 T2 . . . Tr where each Ti is a variable-
free term with parameters. (We think of Tr as the top and T0 as the bottom of the stack.)

• On input x, the initial configuration is the stack f0(x) .

• A terminal configuration is a stack of the form v for any value v.

• The transition function is defined by cases on the top one or two stack items as follows:

1. T0 . . . tt 7−→ T0 . . . 1

2. T0 . . . ff 7−→ T0 . . . 0

3. T0 . . . nil 7−→ T0 . . . ε

4. T0 . . . if T0 then T1 else T2 7−→ T0 . . . if T0 then T1 else T2 T0

5. T0 . . . if T0 then T1 else T2 1 7−→ T0 . . . T1

6. T0 . . . if T0 then T1 else T2 0 7−→ T0 . . . T2

7. T0 . . . (f/ϕ)(t0, . . . , ti−1, Ti, . . . , Tn−1) 7−→
T0 . . . (f/ϕ)(t0, . . . , ti−1, Ti, . . . , Tn−1) Ti

8. T0 . . . (f/ϕ)(t0, . . . , ti−1, Ti, . . . , Tn−1) ti 7−→
T0 . . . (f/ϕ)(t0, . . . , ti, Ti+1, . . . , Tn−1)

9. T0 . . . f(t) 7−→ T0 . . . T f(x← t)

10. T0 . . . ϕ(t0, . . . , tn−1) 7−→ T0 . . . v

where v is the result of applying ϕ to ~t.

The symbol ϕ is meant to range over {hd, tl, null, nil}, as well as the projection or indexing
function T 7→ T [i], even though this is usually written postpositionally. (To be clear: in this
case, the transition function is T0 . . . (t0, . . . , tn−1)[i] 7−→ T0 . . . ti .)

In case the top stack element Tr is a tuple of the form (T0, . . . , Tn−1), we are in case 7, with
(f/ϕ) simply being regarded as “empty.”

We write 7→? to denote the transitive closure of the transition function 7→.

Remark 1. There are various configurations which are stuck, meaning they are not terminal, but
there is no outgoing transition function.

Example. Consider the following program for computing the parity of the number of 1’s in a
string:

even(x) =if null(x) then tt else

if hd(x) then odd(tl(x)) else even(tl(x))

odd(x) =if null(x) then ff else

if hd(x) then even(tl(x)) else odd(tl(x))
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See Figure 3 for the derivation verifying [[even]](1) = 0, which we have split into two for formatting
purposes, followed by the computation on the 1-stack implementation. Observe that the one-stack
simulation essentially performs a “depth-first traversal” through the derivation.

This motivates the following fundamental result relating the big-step semantics to the one-stack
semantics in a rather tight sense: not only do they compute the same partial function, but the
natural measures of “time complexity” in each model are identical up to a constant factor. We
postpone its lengthy but straightforward proof to Appendix I.

Theorem 1. For any program p with head f0(x0) and values x and w, there is a derivation of
[[p]](x) = w if and only if there is a computation of the one-stack implementation of p starting in

f0(x) and ending in w . Moreover, the number of steps in the one-stack implementation and the

size of the derivation are bounded within a constant factor (depending on the program, independent
of the input) of each other.

4 Conservative extensions of cons-free programs

In writing actual cons-free programs, we want the flexibility to use additional data types in addition
to those explicitly given in the program syntax, but we do not want to increase the expressive power
(or even efficiency) of our language—this is what we mean by a “conservative extension.” This is
a brief overview of well-known conservative extensions of cons-free programs. We indicate the
justification that these extensions are, in fact, conservative, but do not give formal proofs.

For each extension, we must indicate how to implement it with previously-defined operations.
We will estimate both the running time of these implementations as well as the number of calls to
hd that they make. The reason for this is that in the next section, we capture complexity classes
like NC via time-bounded cons-free programs, and their P-uniform versions via cons-free programs
with a bounded number of calls to hd.

Some notational preliminaries: we identify any natural number with its set of predecessors; e.g.,
k = {0, 1, . . . , k − 1}, and by, e.g., Γ + 1 we mean the disjoint union of Γ and a singleton. By an
alphabet we simply mean a finite set of size at least two.

Fixed finite sets. For any fixed finite set S, we can form the type of elements in S, in which we
can name any element of S and compare any two elements of S. We implement this type simply
as a fixed-width tuple of booleans.

Nested tupling. In the base cons-free language, the data is not closed under the tupling operation—
we have atomic types, tuples of atomic types, and that’s it. However, we can treat tuples of tuples as
an extended cons-free data type, allowing us to form, e.g., tuples of finite sets, which are themselves
encoded by tuples of booleans. In practice, this is done by “flattening.” For example, suppose that
A and B are finite sets encoded by 4-tuples and 5-tuples of booleans respectively. Then A×B can
be encoded by 9-tuples of booleans. The projection (or “untupling”) operations on nested tuple
data may be implemented by composing tupling and projection operations on the base data.

Indices. Let us assume that we are working with programs with a single input string x of length
n. It is not hard to see that we can extend the cons-free language by a type of indices of x,
i.e., natural numbers less than or equal to n. We can simply encode these by suffixes of x of the
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[x← 1] ` x→ 1

[x← 1] ` tl(x)→ ε

[x← ε] ` x→ ε

[x← ε] ` x→ ε
(ε = ε)

[x← ε] ` null(x)→ 1 [x← ε] ` ff→ 0

[x← ε] ` if(null(x)) · · · → 0

[x← ε] ` odd(x)→ 0

[x← 1] ` odd(tl(x))→ 0

. . .

[x← 1] ` x→ 1

[x← 1] ` x→ 1
(1 6= ε)

[x← 1] ` null(x)→ 0

[x← 1] ` x→ 1

[x← 1] ` hd(x)→ 1

. . .

[x← 1] ` odd(tl(x))→ 0

[x← 1] ` if(hd(x)) · · · → 0

[x← 1] ` if(null(x)) · · · → 0

[x← 1] ` even(x)→ 0

even(1)

if null(1) then tt else if hd(1) then odd(tl(1)) else even(tl(1))

if null(1) then tt else if hd(1) then odd(tl(1)) else even(tl(1)) null(1)

if null(1) then tt else if hd(1) then odd(tl(1)) else even(tl(1)) 0

if hd(1) then odd(tl(1)) else even(tl(1))

if hd(1) then odd(tl(1)) else even(tl(1)) hd(1)

if hd(1) then odd(tl(1)) else even(tl(1)) 1

odd(tl(1))

odd(tl(1)) tl(1)

odd(tl(1)) ε

odd(ε)

if null(ε) then ff else if hd(ε) then even(tl(ε)) else odd(tl(ε))

if null(ε) then ff else if hd(ε) then even(tl(ε)) else odd(tl(ε)) null(ε)

if null(ε) then ff else if hd(ε) then even(tl(ε)) else odd(tl(ε)) 1

ff

0

Figure 3: The proof tree and 1-stack simulation verifying [[even]](1) = 0
.
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appropriate length. Under our identification of a natural number with its set of predecessors, the
domain of the type of indices is exactly n+ 1.

So, let i be an index variable. We implement i = 0 by null(i). We implement i− 1 by tl(i).
We can implement any comparison operator (i = j, i < j, or i ≤ j) by a recursive program f(i, j)
which makes some explicit test if one of the variables is zero, otherwise calls f(i − 1, j − 1). We
can implement the maximum index max (whose denotation is n) by x, where x is a variable always
bound to the input string. We can compute a “truncated successor” (i.e., i 7→ min{i + 1, n}) by
if eq(i, x) then x else S(i, x), where S(i, j) = if eq(i, j− 1) then j else S(i, j− 1).

Each of the “index primitives” eq, +1, −1, and max can be computed in polynomial time from
the cons-free primitives tl, nil, and null; none requires any calls to hd. However, given an index,
we also want to find the bit of the input string at the given index. Namely, if x = xnxn−1 . . . x1,
then bit(x, i) = xi. (Notice that we index from n to 1 and that bit(x, 0) is undefined.)

Since any index variable i is assumed to be bound to a suffix of the input string, bit(i) can
simply be implemented by hd(i). This is clearly a constant-time implementation that makes exactly
one call to hd.

Counting modules. For any fixed a, b, we may form the type of all numbers less than a(n+ 1)b,
where n is the length of the input string x. In other words, we get access to numbers bounded
by a fixed polynomial in the length of the input. This is effected by considering tuples of the form
(y, x0, . . . , xb−1) where y is a member of the finite set a, and x0, . . . , xb−1 are suffixes of the input
string x; this tuple encodes the number y(n+ 1)b+

∑
i<b |xi|(n+1)i. Such types are called counting

modules, after [9].
For example, if a = 1 and b = 2, then we encode elements of (n+1)2 by a pair of suffixes (x0, x1)

of x. If the variable x is bound to the input value, then (x, x) names the maximum element. Given
a variable c of type 2?×2?, we can test whether it encodes the zero element of the counting module
by

if null(c[0]) then null(c[1]) else ff.

We can decrement c by taking the predecessor P(c), defined by

if c[0] = 0 then (x, tl(c[1])) else (tl(c[0]), c[1]).

Notice that each of these operations is implemented by a constant-time program that does not make
any calls to hd. This is clearly extensible to arbitrary a and b.

Using a zero-test, max, and P as primitives, we can compare counting module numbers and
compute (truncated) successor S in polynomial time, as we did for indices. These allow us to
implement the counting module arithmetic operations (suitably truncated) as in Table 2.

Each of these operations runs in polynomial time from comparison, P, and S, and hence can be
implemented in polynomial time from the base cons-free primitives. Moreover, none of them makes
any call to hd.

Short strings. Given a fixed alphabet ∆ of size d and natural numbers a, b, we can form the
type of strings over ∆ of length at most b log(n+ 1) + a, where n is the length of the input string
x. This is because there is a bijection

∆b log(n+1)+a ' (da)(n+ 1)b log d
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Operation Implementation
subtraction ((c, d) 7→ max{c− d, 0}) subtr(c, d) = if d = 0 then c else P(subtr(c, P(d)))

addition ((c, d) 7→ min{c+ d, a(n+ 1)b}) add(c, d) = if d = 0 then c else S(add(c, P(d)))
multiplication ((c, d) 7→ min{cd, a(n+ 1)b}) mult(c, d) = if d = 0 then 0 else add(mult(c, P(d)), d)

integer quotient ((c, d) 7→ b cdc) quot(c, d) = if c = 0 then 0 else S(quot(subtr(c, d), d))
remainder ((c, d) 7→ c mod d) rem(c, d) = if c < d then c else rem(subtr(c, d), d)

Table 2: Arithmetic in counting modules

hd◦(s) rem(s, |∆|)
tl◦(s) quot(s, |∆|)
null◦(s) s = 0
nil◦ 0

cons◦(σ, s) add(mult(s, |∆|), σ)

Figure 4: The definition of short-string primitives by counting module operations.

given by

c0c1 . . . c`−1 7→
∑
i<`

cid
i,

where ` = b log(n + 1) + a. Therefore, we can identify the set of short strings with the domain of
some counting module, which we have already constructed as an extended data type.

Moreover, we can implement the short-string primitives using the operations on counting mod-
ules as in Figure 4. Notice that these short-string primitives hd◦, tl◦, null◦, nil◦, and cons◦ differ
from the base primitives hd, tl, null, nil, and cons. Notice moreover that cons◦ is “truncated,”
in the sense that it only returns a meaningful answer when the string s has length strictly less than
the maximum length.

Since these short-string primitives can all be implemented in constant time using counting
module arithmetic, they can all be implemented in polynomial time from the base primitives,
without cons, of course. Moreover, none of them requires any calls to the cons-free primitive hd.

This last point bears repeating: all five string primitives, hd◦, tl◦, null◦, nil◦, and cons◦,
when applied to a type of very short strings relative to the input x, can be implemented using only
three of the base string primitives, namely tl, null, and nil!

Conclusion. By “extended cons-free data types,” let us mean fixed finite sets, indices of the input
string, counting modules, short strings, and tuples formed of all of these, with the corresponding
primitive operations. The conclusion of all the preceding discussion is that usage of extended cons-
free data types does not change the expressive power of cons-free programs, and moreover that it
cannot increase the efficiency by more than a polynomial factor.

Theorem 2. For any cons-free program p that runs in time t(n) on inputs of length n and uses
extended cons-free data types, there is a program q in the base cons-free language such that [[p]] = [[q]],
and a polynomial π such that q runs in time t(n) · π(n).
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5 AuxPDAs and programs

An AuxPDA is a finite automaton with a read-only input tape augmented with both a read/write
work tape and a pushdown store. In this section we prove our main results (cf. Table 1) by compiling
cons-free programs and AuxPDAs into one another, moreover with little loss of complexity in either
direction.

In subsection 5.1 we compile AuxPDAs into programs by using recursion to simulate the stack,
making liberal use of the extended data types from the previous section. In subsection 5.2 we
compile programs into AuxPDAs using the one-stack implementation as an intermediary. But first
we define AuxPDAs themselves along with some important associated notions. As we only consider
logspace AuxPDAs, that is, AuxPDAs the length of whose work tape is bounded by a logarithm
in the length of the input, we view the work tape as finite with special characters marking the
endpoints.

Definition 9. A (deterministic, logspace) AuxPDA is a tuple consisting of a finite set Q of states,
an input alphabet Σ, a tape alphabet ∆, a stack alphabet Γ, a tape bound n 7→ a log(n) + b, and a
transition function

τ : Q× Σ./ ×∆./ × (Γ + 1)→ Q× 3×∆./ × 3× (Γ + 1),

where Σ./ and ∆./ are obtained from Σ and ∆ by adding the left and right endpoint characters
., /.

The idea is that on a given state, character read by the input head, character read by the tape
head, and character at the top of the stack (or if the stack is empty, hence Γ + 1), the AuxPDA
moves to a new state, moves the input head in one of 3 directions (left, right, stay put), writes
a character under the tape head, moves the tape head in one of 3 directions, and either pushes a
character in Γ on the stack, or pops the stack (hence Γ + 1).

The transition function is forbidden from changing any endpoint character, overwriting any
non-endpoint character with an endpoint character, moving a head right of a right endpoint, or
moving a head left of a left endpoint.

Furthermore, an element q0 ∈ Q is distinguished as initial. There are an additional two distinct
states qacc , qrej ∈ Q, the accept and reject state respectively. A distinct character in ∆ is designated
the blank character.

Definition 10. A configuration on input x of an AuxPDA consists of the state, the position of the
input head, the contents of the work tape (split into the halves to the left and to the right of the
work head), and the contents of the stack. This is an object of type Q× (|x|+ 2)×∆? ×∆? × Γ?.

More precisely, the string to the left of the head is in reverse order, the character under the
head is grouped with the string to the right, and we strip the endpoint characters from the con-
figuration. For example, in Figure 5, the work tape would be encoded by the pair of strings
(λ0λ1 . . . λ`, ρ0ρ1 . . . ρr), with ρ0 being the character under the head.

A surface configuration of an AuxPDA consists of the state, the position of the input head, the
character read by the input head, the contents of the work tape (split by the work head) and the
top of the stack (or a special character if the stack is empty); in other words, an object of type
Q× (|x|+ 2)×Σ./ ×∆? ×∆? × (Γ + 1). Given a configuration σ and a fixed input, its associated
surface configuration is simply called its surface.

Initially, the input head and the work head are at the left endpoints of their respective tapes.
On input x, the input tape is initialized to .x/, and the work tape is initialized to the string .w/,
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↓
. λ` . . . λ2 λ1 λ0 ρ0 ρ1 ρ2 . . . ρr /

Figure 5: The work tape of an AuxPDA, depicting strings to the left and right of the input head.

where w is a string of a log |x| + b blanks. A configuration is terminal if its stack is empty and it
activates a pop. Given a nonterminal configuration of an AuxPDA on some input, the transition
function uniquely defines a next configuration as described in Definition 9.

Definition 11. Given an AuxPDA A with input alphabet Σ and a string x ∈ Σ?, the computation
of A on input x is the orbit of A’s initial configuration on input x under the “next” operation
defined by the transition function of A. The length of this orbit (in fact, the length of any orbit)
is an ordinal in ω + 1.

We say that A accepts x in case the orbit is finite and the state of the final configuration is qacc ,
and A rejects x in case the orbit is finite and the state of the final configuration is qrej .

We will typically write a generic computation as {σi}i<α, where α is its length and σi is the
i-th configuration in the computation. We think on the length of a computation as its “running
time” (cf. Definition 12 below).

Remark 2. Notice that the transition function does not induce a corresponding “next” operation
on surface configurations. If the current surface configuration activates a “push” operation on the
stack, then the next surface configuration is a function of the current surface configuration plus
the input x, but if it activates a “pop,” then even given the input x, we do not know what the new
top of the stack will be. However, we can always determine the next surface configuration from the
current surface configuration, the input, and the second element on the stack.

In practice, this means that surface configurations encode quite a bit. Suppose that (σi)i<α
is the computation of an AuxPDA on some input x. Let gi and si be the stack and the surface
of the configuration σi respectively. Notice that gi+1 is obtained from gi by either a push or pop
operation. For every i < α, let f(i) > i be the least number such that gi is not a prefix of gf(i) (i.e.,
the first time the stack “dips below” its value at stage i). Of course, f may be undefined for some
values of i if the computation is non-terminating. If the computation is terminating then α < ω,
and for any i such that gi is the empty stack, f(i) = α. (In particular, f(0) = α in any terminating
configuration.)

We claim that for every i such that f(i) is defined, sj for i ≤ j < f(i) depends only on si plus
the fixed input x. This is by induction on j: if sj−1 activates a push, then it determines sj , and
if it activates a pop, then gi must be a proper prefix gj−1; hence, the second element of gj−1 must
have been pushed after stage i (and thus dependent only on si by induction). Therefore, we can
determine sj .

Notice also that if si activates a pop operation, f(i) = i + 1; if si activates a push operation
and f(i) is defined, then i < i + 1 < f(i + 1) < f(i), gf(i+1) = gi, and f(f(i + 1)) = f(i). The
computation converges iff f(0) is defined, in which case f(0)− 1 is the terminal configuration.

Definition 12. Given an AuxPDA A with input alphabet Σ and a language X ⊆ Σ?, we say that
A decides X in case for each string x ∈ Σ?,

• x ∈ X =⇒ A accepts x, and

• x /∈ X =⇒ A rejects x.
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Definition 13. Given an AuxPDA A and a function t : ω → ω, we say A runs in time t(n) in case
for any n ∈ ω and x ∈ Σn, the computation of A on input x has length at most t(n). If in addition
A decides a language X, we say that A decides X in time t(n).

5.1 Cons-free simulations of AuxPDAs

In this subsection, fix a logspace AuxPDA A and let a, b be positive integers such that a log n + b
is an upper bound for the work space of A on inputs of length n. Notice that the domain and
codomain of the transition function are tuples of finite types (and hence finite types themselves),
and can therefore be encoded by a fixed-length tuple of booleans.

Recall Definition 6 of explicit programs. Even though that definition was made for cons-free
programs, one could talk about explicit programs in the extended cons-free primitives, or some
subset thereof. The definition is the same, and the remark that explicit programs run in constant
time (where each program primitive is unit cost) is still valid.

Lemma 1. There is an explicit cons-free program trans such that [[trans]](r) = τ(r) for every
r ∈ Q × Σ./ ×∆./ × (Γ + 1). Moreover, trans requires no calls to any of the cons-free primitives
hd, tl, nil, or null.

Proof. In fact, the lemma holds for any function from a finite type to a finite type. Since any finite
type can be encoded by a fixed-width tuple of booleans, any function whose domain and codomain
are finite types may be computed by a single term built up using tuple indexing (to obtain the
bits of the input), if-then-else statements, and boolean constants. The resulting program is clearly
explicit, runs in constant time, and does not call the primitives.

The crucial observation is that, given an input x, the set of surface configurations, while not a
finite type, can be identified as an extended cons-free data type depending on the length of x. This
is because each surface configuration is a tuple consisting of:

• a state (which is an element of a fixed finite set),

• the position of the input head (which can be encoded by the appropriate suffix of x plus a
finite amount of information indicating if the head is on the left or right endpoint character),

• the character under the input head (which is an element of a fixed finite set),

• the contents of the work tape (which can be encoded by two short strings, namely the string
to the left of and to the right of the head on the work tape), and

• the top of the stack—or some special character marking that it’s empty (which is an element
of some fixed finite set).

Why did we choose to include both the position and the character under the input head as part
of the surface configuration, when the cons-free data encoding the former—a suffix of the input—
already contains the latter? The answer is that this way, we can extract an input to the transition
function from the surface configuration without calling hd, as we now show. (For the next several
lemmas, recall the definition of the short-string primitives in Figure 4.)

Lemma 2. There is a cons-free program trin such that, for any surface configuration s, [[trin]](s)
encodes the input to the transition function implicit in s. Moreover, trin is explicit in the extended
cons-free primitives and requires no calls to hd.
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Proof. Given a surface configuration s = (q, p, σ, wλ, wρ, γ), the corresponding input to the transi-
tion function is r = (q, σ, hd◦(wρ), γ), since the string wρ contains the character under the head of
the work tape.

Observe that r is clearly computable from s by splitting it up into its constituent coordinates,
applying hd◦ to one of them, and combining them again. This clearly describes a program which
is explicit in the extended cons-free primitives and requires no calls to hd.

Now we establish a series of “simulation primitives.”

Lemma 3. There is an explicit cons-free program out such that for any surface configuration s,
[[out]](s) is true, false, or diverges, depending on whether the state in s is qacc, qrej , or neither.
Moreover out is explicit and does not contain any calls to the primitives.

Proof. The program out simply extracts the initial segment of s encoding the state, compares it to
the constants encoding qacc and qrej , and returns tt, ff, or diverges accordingly.

Lemma 4. There is a cons-free program push such that for any surface configuration s, [[push]](s)
is true or false depending on whether s activates a push on the stack. Moreover push is explicit in
the extended cons-free primitives and does not contain any calls to hd.

Proof. The program push applies trin to s to extract the input r to the transition function encoded
by s, then applies trans to r to extract the instructions τ(r) of the transition function. Then it
extracts the segment of τ(r) corresponding to the instructions for the stack, which is an element of
Γ + 1; the 1 means “pop,” and each γ ∈ Γ means “push γ.” We simply compare this part of τ(r)
to the constant denoting a “pop” and negate the result.

Lemma 5. There is a cons-free program next such that for any surface configuration s on input x,
[[next]](x, s) returns the next surface configuration if s activates a push. Moreover, next is explicit
in the cons-free primitives. It makes zero calls to hd unless the head of the input tape of A moves,
in which case it makes exactly one call to hd.

Proof. As in the proof of the previous lemma, the program next extracts the output τ(r) of the
transition function from the input r encoded by the surface configuration s explicitly, making no
calls to hd. The state and top-of-the-stack of the next surface configuration are both contained in
τ(r), the latter because s activates a push.

As for the work tape, τ(r) contains the character δ written under the head of the work tape and
the dynamics of the head of the work tape (stay put, left, right). The new contents of the work
tape (w′λ, w

′
ρ) are obtained from the old contents (wλ, wρ) and the character δ by

• w′λ = wλ and w′ρ = cons◦(δ, tl◦(wρ)) if the head stays put,

• w′λ = tl◦(wλ) and w′ρ = cons◦(hd◦(wλ), cons◦(δ, tl(wρ))) if the head moves left, and

• w′λ = cons◦(δ, wλ) and w′ρ = tl◦(wρ) if the head moves right.

Notice that none of these require any calls to hd.
The new position of the input head can be calculated from the old position by doing nothing,

applying S, or applying P—i.e., a single index primitive—depending on whether the head of the
input tape stays put, moves right, or moves left. Notice that S and P do not require any calls to

16



hd. If the head of the input tape stays put, the new character under the input string is simply the
old character under the input string.

If the head of the input tape moves right or left, then we have to call the bit primitive once on
the input string x and the new position to calculate the new character under the head. This one
call to bit requires one call to hd.

For the next lemma, recall from Remark 2 that in case s activates a pop, the next surface
configuration is computable from the current surface configuration, the input string, and the surface
of the previous most recent configuration the top of whose stack is about to be uncovered by the
pop operation.

Lemma 6. There is a cons-free program follow which satisfies the following property. Suppose
there are configurations σ, τ , and ρ with surfaces s, t, and r, such that

• the stack of σ extends the stack of τ by one character, and

• σ 7→ ρ in the transition relation.

Then [[follow]](x, s, t) = r. Moreover, follow is explicit in the extended cons-free primitives. It
makes zero calls to hd unless the head of the input tape of A moves, in which case it makes exactly
one call to hd.

Proof. The proof is identical to the proof of Lemma 5 except that the new top of the stack is
extracted from the top-of-the-stack character in t, rather than from the output of the transition
function as in next. This extraction is explicit and requires no calls to the primitives.

Finally,

Lemma 7. There is a cons-free program init such that for any string x, [[init]](x) encodes the
surface of the initial configuration of A on input x. Moreover, init can be computed in logarithmic
time from the extended cons-free primitives using no calls to hd.

Proof. The initial position is 0, the initial character under the input head is ., the initial state is
q0, the initial state to the left of the work head is ε, the initial state to the right is .y/ (where y is a
string of blanks). The short string y can be constructed using a log(n) + b calls to cons◦. Nothing
here uses hd.

To simulate AuxPDAs by cons-free programs, we mimic Glück’s pure functional simulation of
pushdown automata (AuxPDAs without the work tape).

Definition 14. Given init, out, push, next, and follow as primitives, define simA by:

simA(x) = out(g(x, init(x)))

g(x, s) =

{
g(x, follow(x, s, g(x, next(x, s)))) if push(s)

s otherwise

Theorem 3. For any input x, A accepts, rejects, or diverges on input x in case [[simA]](x) = 1,
[[simA]](x) = 0, or [[simA]](x) diverges respectively.
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Proof. In this proof we will slightly abuse notation, writing, e.g., g(x, s) = t for

[x = x, s = s] `simA g(x, s)→ t.

Fix x, and let (σi)i<α be the computation of A on input x. Define si, gi, and the partial function
f as in Remark 2. Notice that if si activates a push operation, si+1 = next(x, si); additionally,
sf(i)−1 activates a pop operation, and follow(x, si, sf(i+1)−1) = sf(i+1).

We claim that for each i < α in the domain of f , g(x, si) = sf(i)−1. The proof proceeds
by induction on f(i) − i. If f(i) − i = 1, then σi activates a pop operation, and g(x, si) = si.
Otherwise, i < i+ 1 < f(i+ 1) < f(i) and f(i) = f(f(i+ 1)); by induction, g(x, si+1) = sf(i+1)−1,
g(x, sf(i+1)) = sf(f(i+1))−1 = sf(i)−1, and

g(x, si) = g(x, follow(x, si, g(x, next(x, si))))

= g(x, follow(x, si, g(x, si+1)))

= g(x, follow(x, si, sf(i+1)−1))

= g(x, sf(i+1))

= sf(i)−1.

Conversely, we claim that if g(x, si) = v, then f(i) converges and v = sf(i)−1. The proof proceeds
by induction on the size of the derivation of g(x, si) = v. If si activates a pop, then v = si,
f(i) = i + 1, and we’re done. Otherwise, next(x, si) = si+1, g(x, si+1) = sf(i+1)−1 by induction,
g(x, sf(i+1)) = sf(i)−1 by induction, and hence g(x, si) = sf(i)−1.

Finally, if A halts on x, then g(x, s0) = sf(0)−1. Then A respectively accepts or respectively iff
sf(0)−1 is respectively an accepting or rejecting state iff out(sf(0)−1 is respectively 1 or 0. If A does
not halt on x, then 0 is not in the domain of f , so g(x, s0), and hence f(x), does not converge.

Next, we estimate the running time of [[simA]](x) assuming that init, out, push, next, and
follow are all unit-cost operations. In this case, the running time of simA is simply bounded above
by an affine function of the running time of A.

Theorem 4. Suppose that A converges on input x. Then the running time of simA on x from the
simulation primitives is bounded above by 3 + 5t, where t is the running time of A on x.

Proof. Define (σi)i<α, si, gi, and f as above. Then the running time of A on x is f(0). We claim
that the number of steps needed to compute g(x, si) is at most 5(f(i)− i). Then the running time
of f(x), which consists of making the recursive call out(g(x, init(x))), is at most 3 + 5f(0), which
is what we wanted to prove. The proof is again by induction on f(i)− i.

In the base case, f(i) − i = 1, in which case the running time g(x, si) = si is at most 5. (One
step to rewrite the definition of g, one step to extract the hypothesis of the conditional, one to
evaluate it to “false,” and a final step to rewrite the conditional to the “else” branch.) Otherwise
f(i+1)−(i+1) < f(i)− i and f(i)−f(i+1) < f(i)− i; by induction, the running time of g(x, si+1)
is at most 5(f(i+ 1)− (i+ 1)) and the running time of g(x, sf(i+1)) is at most 5(f(i)− f(i+ 1)).

The running time of g(x, next(x, si)) is at most 1 + 5(f(i+ 1)− (i+ 1)), the running time of

follow(x, si, g(x, next(x, si)))

is at most 2 + 5(f(i+ 1)− (i+ 1)), and the running time of

g(x, follow(x, si, g(x, next(x, si))))
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is at most 5(f(i)−f(i+1))+2+5(f(i+1)− (i+1)), which is equal to 2+5(f(i)− (i+1)). Finally,
the computation of g(x, si) consists of evaluating an if-then-else statement whose “if”-branch has
size 1 and whose “then”-branch has size at most the above; its computation therefore has size at
most 4 + 5(f(i)− (i+ 1)), which is less than 5(f(i)− i).

Finally, we estimate the running time of simA from the basic cons-free primitives, keeping
particular attention to the number of calls to hd.

Theorem 5. For any AuxPDA A there is a polynomial p and a constant κ, such that if A runs
within time t(n) ∈ Ω(log(n)) on inputs of length n, then simA runs in time t(n)·p(n)+κ. Moreover,
if A moves the input head at most t(n) times, then simA makes at most t(n) calls to hd.

Proof. By Lemmata 3 through 7, each of the simulation primitives out, push, next, and follow

can be implemented by programs which are explicit in the extended cons-free primitives, and init,
which is called only once, only requires logarithmic time in the extended cons-free primitives.
Therefore, by Theorem 4, there are constants C and D such that simA can be implemented to run
in time C · t(n) +D from the extended cons-free primitives. By Theorem 2, there is a polynomial q
such that simA can be implemented to run in time (C · t(n) +D) · q(n); simply take p = C · q and
κ = D · q.

For the second part of the theorem (estimating the number of calls to hd), we mimic the proof
of Theorem 4. Fix x, and let σi, si, gi, and f be defined as in that proof. Let h(i) be the number
of times A moves its input head while moving from configuration σi to configuration σf(i)−1. Then
h(0) is the number of times A moves its input head during the entire computation; we want to
show that h(0) is an upper bound for the number of calls simA makes to hd.

We show, by induction on f(i) − i, that h(i) is an upper bound for the number of calls to
hd made during the computation of g(x, si). In the base case, where f(i) = i + 1, h(i) = 0 (as
σi = σf(i)−1) and g(x, si) makes zero calls to hd.

Otherwise, f(i+ 1)− (i+ 1) < f(i)− i and f(f(i+ 1))− f(i+ 1) = f(i)− f(i+ 1) < f(i)− i.
Split up the computation σi → · · · → σf(i)−1 into the four fragments

σi → σi+1 (1)

σi+1 → · · · → σf(i+1)−1 (2)

σf(i+1)−1 → σf(i+1) (3)

σf(i+1) → · · · → σf(i)−1 (4)

Fragments (2) and (4) contain h(i+1) and h(f(i+1)) movements of the input head respectively. The
number of movements of the input head in the entire fragment—i.e., h(i)—is h(i+1)+h(f(i+1))+dh,
where dh is the sum of the number of moves of the input head from σi → σi+1 and from σf(i+1)−1 →
σf(i+1). (So dh ∈ {0, 1, 2}.)

Consider the computation

g(x, si) = g(x, follow(x, si, g(x, next(x, si)))) (5)

= g(x, follow(x, si, g(x, si+1))) (6)

= g(x, follow(x, si, sf(i+1)−1)) (7)

= g(x, sf(i+1)) (8)

= sf(i)−1. (9)
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By Lemma 5, the number of calls to hd made while evaluating next(x, si) is exactly the number of
moves of the input head in σi → σi+1. By Lemma 6, the number of calls to hd made while evaluating
follow(x, si, sf(i+1)−1) is exactly the number of moves of the input head in σf(i+1)−1 → σf(i+1).
Hence, the total number of calls to head made between lines (5) and (6) and lines (7) and (8), is
dh.

By induction, the number of calls to hd made while evaluating g(x, si+1) is at most h(i+ 1) and
the number of calls to hd made while evaluating g(x, sf(i+1)) is at most h(f(i+ 1)). These bound
the number of calls to hd between lines (6) and (7) and (8) to (9) respectively.

Hence, the number of calls to hd made between lines (5) and (9) is at most h(i + 1) + h(f(i +
1)) + dh = h(i). Since it takes zero calls to hd to move from the left-hand to the right-hand side of
line (5), we are done.

5.2 AuxPDA simulation of cons-free programs

We build an AuxPDA Ap for any given cons-free program p by modifying the one-stack imple-
mentation of p. Notice that the one-stack implementation of a program is not in and of itself an
AuxPDA, as the size of the stack alphabet depends on the input. The key observation, however, is
that we can encode each stack item in the one-stack implementation of p by O(log n) characters in
some finite alphabet (where n is the length of the input) and use standard programming techniques
to efficiently implement its transition function.

Theorem 6. For every program p, there is an AuxPDA Ap, such that if p accepts, rejects, or
diverges on input x within time t(n), then Ap accepts, rejects, or diverges on input x within time
O(t(n) · n). Moreover, if p uses at most h(n) calls to hd, then Ap moves its input head at most
h(n) · n times.

Proof. Consider the set of terms that could potentially appear in the stack of the one-stack im-
plementation of program p on input x (call these stack items). Each stack item is obtained by
taking some term which occurs in p and substituting its variables with particular values. The set of
possible values are tuples consisting of booleans and suffixes of the input string x, since a cons-free
program can only form new string values by repeated applications of tl.

We claim that each stack item can be encoded in space O(log n). This is because each suffix of
x can be encoded by its length, a log n-bit string, the maximum length of any tuple of values is a
constant in p, and the maximum length of any term is also a constant in p. Fix a stack alphabet
for Ap of size at least two, and a work tape large enough to store at least two stack items, plus
some constant amount of overhead.

The idea is that Ap stores the stack of the one-stack implementation on its stack—but the depth
of the stack might increase by an O(log n) factor, because the AuxPDA’s stack alphabet is finite.
Operationally, Ap simulates the one-stack implementation step-by-step. To obtain the next stack
from the current one, Ap loads the top one or two stack items onto its work tape, determines which
action is appropriate according to Definition 8, and modifies its stack accordingly. By simulating
the stack of the one-stack implementation, Ap correctly computes the output value of p on input x.

The running time of Ap is bounded above by the running time of the one-stack implementation
times an upper bound of the time needed to simulate a single step. In so doing, Ap performs
subroutines such as: parsing a term into subterms, term substitution, and modifying binary values
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representing suffixes. We do not get into the weeds of the implementation of these algorithms,
which are certainly nontrivial, but “common knowledge.”

What is the running time of these operations? Examine all the cases of the transition function
of the one-stack machine in Definition 8. Notice that in cases 1-8, the right-hand side of the
transition function is completely determined from the left-hand side, and depends on neither p nor
x. Each of these operations can certainly be implemented in time polynomial in the length of a
single stack item, and space linear in the length of a single stack item—these are logO(1) n and
O(log n) respectively. They require no movement of the input head.

To simulate case 9 of the transition function, Ap needs to obtain T f from f, and then substitute
the variable in T f with a value. This procedure depends on p but not on x, and thus can be effected
without moving the input head, as p can be hard-wired in the finite control of Ap. Again, it takes
time polynomial in, and space linear in, the length of a single stack item.

Finally consider case 10. In this case, we are either combining a list of values into a single tuple,
extracting a coordinate from a tuple, decrementing a binary numeral (in case ϕ = tl; each string
value is encoded by its length, and tl of that value is the length minus 1), testing whether a binary
numeral is equal to zero (in case ϕ = null), or finding the bit of x at the index specified by a
particular binary numeral (in case ϕ = hd).

In all but the last of these sub-cases, the procedure depends only on the top stack item, and
can be effected in space and time O(log n). They are independent of p and x and require no moves
of the input head. In the last sub-case—finding the bit of x at a particular index—we need space
O(log n), and at most n moves of the input head, to locate that bit.

Therefore, the time required to simulate a single step of the one-stack implementation is O(n)—

in fact, logO(1) n except for the last sub-case of 10—and hence the total time taken by Ap is bounded
above by O(t(n) · n). Moreover, the number of moves of the input head is at most n times the
number of times the last sub-case comes up, which is exactly the number of calls to hd. This proves
the theorem.

5.3 Results and discussion

Since, for every k ≥ 1 the class 2O(logk(n)) is closed under multiplication by polynomials in n,
Theorems 5 and 6 have the following immediate consequence:

Theorem 7. For any natural number k ≥ 1, the set of problems decidable by a cons-free program

in time 2O(logk(n)) is identical to the set of problems decided by an AuxPDA in time 2O(logk(n)).

Moreover, the set of problems decidable by a cons-free program using 2O(logk(n)) calls to hd is

identical to the set of problems decided by an AuxPDA making at most 2O(logk(n)) moves of the
input head.

As an immediate consequence of Theorem 7, we obtain our novel characterizations of LogDCFL,
NC, and PUNC. Taking the case k = 1,

Theorem 8. The set LogDCFL is exactly the set of all problems decidable by cons-free programs
in polynomial time.

And, taking the union over all k ≥ 1,

Theorem 9. The set NC is exactly the set of all problems decidable by a cons-free program in

quasi-polynomial time (i.e., time 2log
O(1)(n)).
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Moreover, recall that the P-uniform versions of all of these classes are exactly captured by
counting the number of moves of the input head rather than the total time of the AuxPDA. In
particular,

Theorem 10. The set PUNC is exactly the set of all problems decidable by cons-free programs
making a quasi-polynomial number of calls to hd.

Calling hd can reasonably be identified with “accessing the bits of the input;” without this
primitive, we would not be able to distinguish between any two strings of the same length. Hence,
cons-free programs give us another natural way of interpreting the slogan of Allender [1] that
P-uniform circuit classes are obtained by restricting access to the input on machine models of
computation.

Remark 3. By a theorem of Tserunyan [19], for programs operating over arbitrary data, it suffices
to count the total number of calls to the primitives instead of counting running time, up to a
polynomial factor (cf. [12] chapter 3B). Hence we can identify the set of problems decidable by an

AuxPDA in time 2O(logk(n)) with the set of problems decidable by a cons-free programs that makes

2O(logk(n)) total calls to hd, tl, null, and nil combined. In that sense, the difference between each
complexity class and its P-uniform version comes down to the difference between counting all the
cons-free primitives, versus only hd.

Remark 4. We believe that we can recover an analogous correspondence between nondeterministic
cons-free programs and nondeterministic AuxPDAs, with no essential changes in the proof. Given
a nondeterministic AuxPDA, the definition of trans would be nondeterministic, and the rest of
the simulation would stay the same. Given a nondeterministic program, its one-stack simulation
would need to have nondeterminism in the “recursive call” case of the transition function. Then
the proofs should go through just as before.

If this were true, we would get a cons-free characterization of the complexity class SACk, which

corresponds to time 2O(logk(n)) on a nondeterministic AuxPDA, as well as its P-uniform version
obtained by bounding moves of the input head.

6 Absolute polynomial lower bounds

Proving lower bounds on logspace-AuxPDA time, or related resources like logspace-uniform circuit
depth or logspace-ATM time, is hard. There is certainly no general hierarchy theorem; indeed, even
separating exponential from polynomial time on a logspace AuxPDA suffices to separate Ptime
from Logspace. But weaker separations that would not resolve any hard open questions are still
beyond the state of the art, such as showing strictness for the time-O(nc) hierarchy for logspace
AuxPDAs, or the depth-O(logc(n)) hierarchy for uniform circuit classes.

In this section, we show that there are problems in Ptime that cannot be solved by a cons-
free program in time O(nc), for any c < ω. This result does not extend to corresponding lower
bounds on, say, AuxPDA time: even though cons-free time and AuxPDA time are related within
a polynomial factor, that polynomial may depend on the problem in question. We choose to view
this as a feature, not a bug: cons-free running time is a “Goldilocks resource,” strong enough to
recover the same characterizations of complexity classes as AuxPDA time, but weak enough to
admit polynomial lower bounds.

Our proof mimics Blum’s abstract version of Rabin’s theorem [14, 4]. Suppose we have an
acceptable indexing {ϕe} of the partial recursive functions and any complexity measure {Φe} sat-
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isfying the Blum axioms for this indexing. Then Rabin’s theorem says that for any recursive
function t, there is a recursive relation X such that any program e computing X must satisfy
(∀∞x) t(x) < Φe(x) (i.e., take time at least t(x) almost everywhere).

In the present context, we will consider indexings of cons-free programs, and understand “Φ” as
“cons-free running time.” We will show that we can mimic the proof of Rabin’s theorem when t(x) is
|x|c, which gives us polynomial lower bounds. The technical adaptations required are a subrecursive
formulation of Blum complexity due to Alton [2], a delayed diagonalization, and memoization.

In the next two definitions, let Progs be the set of cons-free programs.

Definition 15. Let the relation Φ ⊆ Progs × 2? ×ω be defined by Φ(p, x) ≤ t iff there exists some
w and a derivation of [[p]](x) = w of size at most t. We will typically write Φp(x) for Φ(p, x).

In the recursion-theoretic context, we have a computable universal partial function (e, x) 7→
[[e]](x). The universal function of an indexed complexity class is typically not in that class (or else
we would get a contradiction by constructing the diagonal relation). The indexing of Ptime by
cons-free programs is no exception: it does not have a universal function in Ptime.

However, in recursion-theoretic applications, it often suffices to use the following weakening of
the universal function, which we call the simulation partial function (or Sim following Alton). It
takes a resource bound as a parameter in addition to a program code and input, and is only required
to be correct if the given program on the given input uses less than the given resource.

Definition 16. Let the partial function Sim : Progs × 2? × ω ⇀ D, where D is the set of all
cons-free data, be defined by Sim(p, x, t) be [[p]](x) if Φp(x) ≤ t, and undefined otherwise.

Encodings of programs. We want to reinterpret Φ and Sim as a relation and function respec-
tively on binary strings. In particular, we need an encoding of programs in Progs as elements of
2?. We fix any “reasonable” encoding of programs by strings. A program can be thought of as a
list of terms, and each term can be thought of as a tree; there are standard ways to encode such
objects by strings so that the list indexing and subtree relations remain efficiently computable. In
particular, we demand of our encoding that

• it is polynomial-time decidable whether a given string encodes a program,

• occurrences of terms of the program can be indexed by binary strings of length polynomial
in the length of the encoding, and

• the indices of immediate sub-occurrences of an occurrence of a term can be computed from
the encoding of the whole program and the index of the term in polynomial time.

See Appendix II for an elaboration of this construction.
Let the width of a variable be the length of its corresponding product type. Define the width

of a program to be the sum, over all occurrences of variables in the program, of the width of that
particular occurrence. The one unusual property we demand is that

• the width of any program is bounded by a polynomial in the length of the encoding of the
program.

One could imagine reasonable encodings of programs such that the width of the program was
bounded by a log in the length of the encoding. For example, imagine the program f0(x) = x[0],
where x is a variable of a product type, and the length of its type is 100,000.
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In the encoding of the program, we record the types of f0 and x as well as the definition of
f0(x). But we can record the types of f0 and x efficiently using a binary encoding of 100,000, and
we can encode the definition of f0(x) using a very short term. Nothing forces us to use 100,000
characters to encode this program.

However, we can easily ensure this condition is met by taking any other encoding and padding
by the width of the program, in unary. (Notice that this does not affect the other desiderata of the
encoding.) We will use this property in the proof of Lemma 8 below.

Definition 17. For any c < ω, let the relation Φc ⊆ 2?× 2? be defined as Φc(e, x) ⇐⇒ e encodes
a program p and Φp(x) ≤ |x|c. Similarly, let Simc(e, x) = Sim(p, x, |x|c), where e encodes p.

(For a string e that does not encode a program, let Φc(e, x) and Simc(e, x) be undefined.)

Lemma 8. For each c < ω, the functions Φc(e, x) and Simc(e, x) are computable in time polynomial
in (|e|, |x|).

Proof. Suppose p is the program encoded by e. We compute both functions in the same way, namely
by simulating the one-stack implementation of p on the input x with a prescribed time bound of
|x|c. For Φ we return 1 or 0 depending on whether the computation halts in time, and for Sim, we
return the output of the computation if it halts in time, and diverge otherwise.

The total time taken is bounded by |x|c times the time needed to compute each stack step. Each
stack step takes time polynomial in the maximum length of the encoding of a single stack item.
Each stack item is obtained by taking a term T occurring in the program p and substituting some
of its subterms by suffixes of x.

Each suffix of x can be encoded by a string of length logarithmic (and hence polynomial) in |x|.
The number of subterms of T substituted is at most the width of p, hence bounded by a polynomial
in the length of e. Finally, we can encode the form of the substitution by the index of the term T
and the indices of all of the occurrences of its subterms that are being replaced. Each such index
has length bounded by a polynomial in the length of e, and the number of such indices is again at
most the width of e.

Definition 18. For fixed c < ω, define the relations R ⊆ 2? × 2? and the function f : 2? → 2 by
mutual induction as follows:

• R(e, x) = (∀y) |y| < log |x| −→
(
Φc(e, y) −→ f(y) = Simc(e, y)

)
,

• f(x) =

{
¬Simc(e0, x) if e0 = (µe) |e| < log |x| ∧ e ∈ Progs ∧R(e, x) ∧ Φc(e, x)

0 if there is no such e

Here µ means minimization with respect to any total order ≺⊆ 2? × 2? that extends the partial
order given by string length; for example, the lexicographically least shortest string.

Remark 5. Note that f is relational, i.e., Boolean-valued. We will write fc for f when we want
to make the dependence on c explicit. Also note that ≺ is a well-ordering with order type ω. In
particular, the number of ≺-predecessors of any given element are finite.

Now, we show that fc is a cons-free computable function, but one that requires time at least nc

almost everywhere. We prove first the lower and then the upper bound.

Theorem 11. For any c < ω and cons-free program p that computes f = fc, |x|c < Φp(x) for all
but finitely many x.
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Proof. Suppose by contradiction that there is a cons-free program p and a c < ω such that [[p]] ' f
and for infinitely many x, Φp(x) ≤ |x|c. Let e0 be an encoding of p; then (∃∞x) Φc(e0, x). Moreover,
for any y, if Φc(e0, y), then Simc(e0, y) returns the correct value [[p]](y), which is f(y). This implies
that (∀x)R(e0, x).

Let R(·, x) abbreviate {e ∈ 2? : R(e, x)}. Then R(·, x) only depends on |x|; therefore, let us write
R(·, n) to mean R(·, x), for any string x of length n. Notice that R(·, n) is monotone decreasing in
|x|, that is:

R(·, 0) ⊇ R(·, 1) ⊇ R(·, 2) ⊇ . . . .

Let E = {e ∈ Progs : e ≺ e0} be the set of ≺-predecessors of e0. Then E is finite and

R(·, 0) ∩ E ⊇ R(·, 1) ∩ E ⊇ R(·, 2) ∩ E ⊇ . . . ;

therefore, this sequence is eventually constant, being a decreasing sequence of finite sets.
Since (∃∞x) Φc(e0, x), we can choose some x0 such that Φc(e0, x0), |e0| < log |x0|, and R(·, n)∩

E = R(·,m)∩E for any m,n ≥ |x0|. Moreover, R(e0, x0) (since (∀x)R(e0, x)). We finish the proof
by splitting into cases.

• Suppose that e0 were the ≺-least e ∈ Progs such that |e| < log |x0|, R(e, x0), and Φc(e, x0).
Then f(x0) = ¬Simc(e0, x), but since Φc(e0, x) and e0 computes f , f(x0) = ¬f(x0), a
contradiction.

• Suppose that there were a strictly lesser e1 ≺ e0 such that e1 ∈ Progs, |e1| < log |x0|, R(e1, x0),
and Φc(e1, x0). Then f(x0) = ¬Simc(e1, x0), and hence the implication Φc(e1, x0)→ f(x0) =
Simc(e1, x0) is false. Therefore, for sufficiently large x, R(e1, x) is false. Since e1 ∈ E,
e1 ∈ R(·, |x0|), but e1 /∈ R(·, n) for sufficiently large n, this contradicts the fact that R(·, n)
stabilizes for n ≥ |x0|.

Finally, we show the upper bound.

Theorem 12. For any c < ω, f = fc can be computed in Ptime (and hence by some cons-free
program).

Proof. Fix c < ω. Let d be a constant such that testing Φc(e, x), Simc(e, x), and e ∈ Progs are all
bounded by O((|e| + |x|)d). We first show that we can compute the list 〈f(x) : |x| ≤ n〉 in time
2O(n).

We can construct 〈f(x) : |x| ≤ 1〉 in time constant in n. Suppose n ≥ 2 (so that log n ≤ n− 1)
and we are given the list 〈f(x) : |x| ≤ n− 1〉. How much additional time does it take to construct
〈f(x) : |x| ≤ n〉?

For each y of length at most log n, we can retrieve f(y) in unit time (since log n ≤ n−1) and, for
each string e of length at most n, we can compute Φc(e, y) and Simc(e, y) in time O(nd). Therefore,
we can compute Φc(e, y) → f(y) = Simc(e, y) in time O(nd). Computing R(e, x) for any single
|x| = n requires evaluating this expression for all y of length at most log n, which takes time at
most O(nd+1).

Hence, for x ∈ 2n and a string e of length at most n, evaluating e ∈ Progs ∧ R(e, x) ∧ Φc(e, x)
takes time at most O(nd+1). Searching for the least witness (if it exists) over all e of length at most
log n then takes time at most O(nd+2). Therefore, computing f(x) for x ∈ 2n takes time at most
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O(nd+2), and the amount of additional time needed to extend 〈f(x) : |x| ≤ n−1〉 by 〈f(x) : |x| = n〉
is O(nd+2)2n, which is 2O(n). Since

∑
i<n 2O(i) is still 2O(n), we can construct 〈f(x) : |x| ≤ n〉 all

in time 2O(n).
Next, we show that we can compute R(e, x) in time (|e|+ |x|)O(1). First construct 〈f(y) : |y| <

log |x|〉 in time 2O(log |x|) = |x|O(1). Then for each y of length at most log |x|, perform a calculation
(Φc(e, y)→ f(y) = Simc(e, y)) that takes time at most (|e|+ |x|)O(1); multiplied by |x| values of y,
this is still (|e|+ |x|)O(1).

Finally, to compute f(x), we need to compute at most four subroutines that take time (|e| +
|x|)O(1) for each e of length at most log |x|. This clearly takes time at most |x|O(1), which is what
we needed to show.

Therefore, for each c < ω, we have a relation fc which is decidable in Ptime (and hence
computable by a cons-free program), but which requires time at least nc for inputs of length n
almost everywhere.

7 Discussion

We have shown how to compile between deterministic cons-free programs and deterministic Aux-
PDAs with compiling functions that roughly preserve running time in either model; hence, we
recover characterizations of several complexity classes in terms of cons-free running time. We also
exhibit polynomial lower bounds on the cons-free time needed to solve certain problems in Ptime;
while modest, analogous lower bounds on corresponding models of computation are not known.
Straightforward next steps in this line of work include:

• generalizing the present results to the non-deterministic case,

• attempting to show that the cons-free time-O(nc) hierarchy is in fact strict, and

• seeing whether other natural resources (ATM space, circuit size, AuxPDA stack depth etc.)
are captured by cons-free resources. In particular,

• we wonder whether we can compile cons-free programs into multihead 2-way deterministic
pushdown automata (roughly, AuxPDAs without a logspace work tape). If we can control
the running time and number of heads of the target PDA by the running time of the source
program, the results of the previous section would follow from Ibarra [7].

More generally, one of the significant aspects about our work is that it connects two areas
(complexity theory and programming language theory) with different standards of proof. That
is to say that arguments involving machine and circuit models of computation are (necessarily!)
less formal than arguments involving programming languages with a carefully specified syntax
and semantics. (This is certainly not an indictment of either discipline, but rather a sociological
observation.)

By developing a program of structural complexity theory that uses programming languages as
its standard model of computation, we open the possibility of witnessing nontrivial relationships
between complexity classes via formally presented program transformations. At the very least, this
broadens the accessibility of these results. At the best, it might help strengthen or generalize them.
For example, a program transformation that transforms a non-deterministic cons-free program
accepting a set X into a non-deterministic cons-free program accepting ¬X might generalize the
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closure of both NL and LogCFL under complementation, if the transformation roughly preserved
running time and tail recursive structure.

Acknowledgements: We are greatly indebted to Amir ben-Amram, Neil Jones, Pekka Orponen,
W. Larry Ruzzo, and Eric Allender for answering many questions and freely sharing their wisdom
with us.
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8 Appendix I: Equivalence of two semantics

Following is the proof of Theorem 1, showing that the big-step semantics and one-stack operational
semantics are extensionally equivalent, and their natural associated measures of time complexity
are equivalent up to a constant factor depending only on the program.

Proof. For an environment ρ binding the free variables of T , let T ρ denote the variable-free term
obtained by substituting each variable by its ρ-image.

First we show that if there is a derivation of ρ ` T → v of size s, there is a computation

T ρ 7→? v of length at most (N + 2)s, where N is the maximum length of any tuple in p. We
proceed by induction on s.

If s = 1, then T is either one of the constants tt, ff, or nil, or a variable x. If T ≡ tt, then

tt 7→ 1 is our desired computation; similarly for the other constants. If T is a variable then T ρ

is identical to ρ(x) ; our desired computation is simply the trivial computation T ρ of length 1.

If s > 1 then we break up into cases depending on the form of T .

• If T ≡ if T0 then T1 else T2 and ρ ` T0 → 1, then there are some s0 and s1 such that there is
a derivation of ρ ` T0 → 1 of size s0, of ρ ` T1 → v of size s1, and s = s0+s1+1. By induction

there are computations T0 7→? 1 and T1 7→? v of lengths at most (N+2)s0 and (N+2)s1
respectively. The following computation has length at most (N+2)s0+(N+2)s1+1 < (N+2)s.

if T0 then T1 else T2

if T0 then T2 else T2 T0

...

if T0 then T2 else T2 1

T1

...

v

The case ρ ` T0 → 0 is similar, replacing T1 by T2.

• If T ≡ ϕ(T0, . . . , Tn−1), then by induction there are si, vi for i < n such that 1 +
∑
i<n si = s,

there is a derivation ρ ` Ti → vi of size si, and ϕ(v0, . . . , vn−1) = v. The following is a

computation T 7→? v . It can be broken up into n blocks, block i having length at most
(N + 2)si + 1, plus two more configurations. The total length is thus

2 +
∑
i<n

((N + 2)si + 1) ≤ (N + 2)
(
1 +

∑
i<n

si
)
≤ 2s.
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ϕ(T0, . . . , Tn−2, Tn−1)

ϕ(T0, . . . , Tn−2, Tn−1) T0

...

ϕ(T0, . . . , Tn−2, Tn−1) v0

ϕ(v0, . . . , Tn−2, Tn−1)

...

ϕ(v0, . . . , vn−2, Tn−1)

ϕ(v0, . . . , vn−2, Tn−1) Tn−1

...

ϕ(v0, . . . , vn−2, Tn−1) vn−1

ϕ(v0, . . . , vn−1)

v

• The case T ≡ (T0, . . . , Tn−1) is similar, except that there is no symbol ϕ, and the last box v
is absent from the computation, hence its length is even smaller.

• If T ≡ f(T0, . . . , Tn−1), then by induction, there are si for i ≤ n and vi for i < n such that
1+
∑
i≤n si = s, for each i < n there is a derivation ρ ` Ti → vi of size at most si, and there is

a derivation [x = (v0, . . . , vn−1)] ` T f → v of size at most sn. The following is a computation

T 7→? v of length at most∑
i≤n

((N + 2)si + 1) ≤ (N + 2)
(∑
i≤n

si
)

+N + 1 ≤ (N + 2)
(
1 +

∑
i≤n

si
)

= (N + 2)s
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f(T0, . . . , Tn−2, Tn−1)

f(T0, . . . , Tn−2, Tn−1) T0

...

f(T0, . . . , Tn−2, Tn−1) v0

f(v0, . . . , Tn−2, Tn−1)

...

f(v0, . . . , vn−2, Tn−1)

f(v0, . . . , vn−2, Tn−1) Tn−1

...

f(v0, . . . , vn−2, Tn−1) vn−1

f(v0, . . . , vn−1)

T f(x← (v0, . . . , vn−1))

...

v

In the other direction, we show that for any environment ρ binding the free variables of T , if there

is a computation T ρ 7→? v of length at most `, then there is a derivation of ρ ` T → v of size at
most `. The proof is again by induction by `.

If ` = 1 or ` = 2, then by inspecting the rules of Definition 8, we can see that the only possibities
for T are a variable x such that ρ(x) = v, or a constant: 1, 0, or nil. In any of these cases, there
is a derivation of ρ ` T → v of size 1.

Suppose that ` > 2. Then we break into cases depending on the form of T .

• If T ≡ if T0 then T1 else T2, there is some configuration if T0 then T1 else T2 b for

some b ∈ {1, 0} within T ρ 7→? v , otherwise there would be no way to “eliminate” T ρ .
Therefore, this computation must have the following form (if b = 1, the case b = 0 is similar):

if T0 then T1 else T2

if T0 then T1 else T2 T0

...

if T0 then T1 else T2 1

T1

...

v

Therefore, there are some `0 and `1 such that `0 + `1 + 1 = ` and there computations

T ρ0 7→? 1 and T ρ1 7→? 0 of lengths `0 and `1 respectively. By induction, there are

30



derivations of ρ ` T0 → 1 and ρ ` T1 → v of sizes at most `0 and `1 respectively; hence, there
is a derivation of ρ ` T → v of size at most `0 + `1 + 1 = `.

• If T ≡ ϕ(T0, . . . , Tn−1) then the computation T ρ 7→? v has the following form:

ϕ(T0, . . . , Tn−2, Tn−1)

ϕ(T0, . . . , Tn−2, Tn−1) T0

...

ϕ(T0, . . . , Tn−2, Tn−1) v0

ϕ(v0, . . . , Tn−2, Tn−1)

...

ϕ(v0, . . . , vn−2, Tn−1)

ϕ(v0, . . . , vn−2, Tn−1) Tn−1

...

ϕ(v0, . . . , vn−2, Tn−1) vn−1

ϕ(v0, . . . , vn−1)

v

Therefore, there are some vi and `i for i < n such that `i is the length of the computation

T ρi 7→? vi and 2 +
∑
i<n(1 + `i) = `. By induction, there are derivations of ρ ` Ti → vi

of size at most `i, for each i < n. Therefore, there is a derivation of ρ ` T → v of size∑
i<n `i + 1 < `.

• If T ≡ (T0, . . . , Tn−1), the argument is the similar to the above, except the symbol ϕ is absent,
the final two configurations are identical, and ` = 1 +

∑
i<n(1 + `i).
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• If T ≡ f(T0, . . . , Tn−1), then the computation T ρ 7→? v has the following form:

f(T0, . . . , Tn−2, Tn−1)

f(T0, . . . , Tn−2, Tn−1) T0

...

f(T0, . . . , Tn−2, Tn−1) v0

f(v0, . . . , Tn−2, Tn−1)

...

f(v0, . . . , vn−2, Tn−1)

f(v0, . . . , vn−2, Tn−1) Tn−1

...

f(v0, . . . , vn−2, Tn−1) vn−1

f(v0, . . . , vn−1)

T f(x← (v0, . . . , vn−1))

...

v

Therefore there are vi for i < n and `i for i ≤ n such that the computation T ρi 7→? vi

has length `i for i < n, the computation T f(x← (vi)i<n) 7→? v has length `n, and ` =∑
i≤n(1 + `i). By induction there are derivations of ρ ` Ti → vi of length `i for i < n and a

derivation of [x = (vi)i<n] ` T f → v of length `n. Hence there is a derivation of ρ ` T → v of
length 1 +

∑
i≤n `i ≤ `.

Appendix II: Encodings of programs

Here, we sketch an encoding of cons-free programs as used in Section 6 in a little more detail.
Given any set of atoms A, the set of nested lists over A is the closure ofA over the listing operator.

Concretely, every element of A is a nested list over A, and given any finite set {`0, . . . , `n−1} of
nested lists over A, the list 〈`0, . . . , `n−1〉 is a nested list over A.

Suppose A is countable, and fix an arbitrary encoding of A by binary strings. Then it is a
standard construction to encode nested lists over A by binary strings such that the list primitives
are polynomial time computable, see, e.g., [8]. Briefly, one starts by constructing a polynomial-time
pairing system on binary strings. This means a polynomial-time computable bijection 2?×2? → 2?

with polynomial-time inverse functions isolating the first and second coordinates from a given pair.
Then one extends this pairing system to a polynomial-time tupling system. These allow us

to check whether a string encodes a list, extract the length of the list, extract its first character,
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remove the first character, and add a character to the front of the list, all in polynomial time. By
constructing lists out of strings which encode lists, we encode nested lists over A.

Notice that the set of program terms can be identified with the set of nested lists over some
set A of atoms that consists of variables, recursive and primitive function symbols, and program
keywords. A program can then be encoded by a list of such terms (the right and left halves of each
line of the program).

By including the type of each variable and recursive function symbol as part of its encoding,
we can easily check whether a given string encodes a well-formed term by simple recursion over the
structure of the list, a polynomial-time operation. We can check whether a a given term contains
or does not contain a given variable. Using these two operations, we can check whether a string
encodes a well-formed program, all in polynomial time.

We can index occurrences term in a program according to (i) which line of the program they are
located in, (ii) on the right- or left-hand side of the definition, and (iii) the sequence of list primitives
needed to obtain this occurrence from the term it occurs in. (Nested lists can be identified with
trees, and what this basically means is that we index vertices in the tree according to the path
needed to get there from the root.)

We can obtain the encoding of the term named by a given index in time polynomial in the
length of the program encoding, simply by extracting the correct term from the string encoding the
program and applying the list primitives specified by the root-to-vertex path. Then, we can obtain
indexings for the sub-occurrences of the original occurrence by taking the encoding of the resulting
term, extracting its length, and extending the original root-to-vertex path by all of its one-point
extensions.

This establishes the properties needed by Lemma 8 of Section 6.

References

[1] Eric W. Allender. P-uniform circuit complexity. J. ACM, 36(4):912–928, October 1989.

[2] Donald A. Alton. “Natural” Programming Languages and Complexity Measures for Subrecur-
sive Programming Languages: An Abstract Approach, page 248–285. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1980.

[3] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[4] Manuel Blum. A machine-independent theory of the complexity of recursive functions. J.
ACM, 14(2):322–336, April 1967.

[5] G. Bonfante, R. Kahle, J. Y. Marion, and I. Oitavem. Towards an implicit characterization
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