
Transposing Termination Properties in Higher
Order Rewriting

Cynthia Kop kop@few.vu.nl

Department of Computer Science
VU University Amsterdam, the Netherlands.

Abstract. In higher-order term rewriting, distinguished from first-order
term rewriting by the presence of bound variables and often also a
type discipline, a plethora of different frameworks is used. Consequently,
proofs of termination properties derived in one framework often have to
be redone for others. In this paper we study the most common frame-
works to see how systems in one formalism can be transformed into
another, without losing termination properties.

1 Introduction

The last years have seen a rise in the interest in higher-order rewriting, especially
the field of termination. Although this area is still far behind its first-order coun-
terpart, various techniques for proving termination have been developed, such
as monotone algebras [14], path orderings [4,3] and dependency pairs [16,10,9].
Since 2010 the termination competition [18] has a higher-order category.

However, a persistent problem is the lack of a fixed standard. There are sev-
eral formalisms, each dealing with the higher-order aspect in a different way,
along with variations and restrictions. Because of the differences in what is al-
lowed, results in one formalism do not trivially, or at all, carry over to another.
As such it is difficult to reuse results in a slightly different context, which ne-
cessitates a lot of double work. Consider for example the original HORPO, first
defined for Algebraic Functional Systems in [4] and adapted for Pattern HRSs
in [15]. Later extensions of HORPO can not yet be used for HRSs.

This became painfully clear in our endeavour to develop a termination tool.
The question what formalism to support is essential from the start. Should we
implement a tool for Nipkow’s Pattern HRSs, then we cannot handle a system
with a rule λx.Z · x⇒ Z, and the tool would give a possibly false positive on a
system with two rules f · 0 ⇒ g · (λx.0) and g · Z ⇒ Z · (f · 0) – both of which
are valid programs in Jouannaud’s Algebraic Functional System formalism. On
the other hand, a tool for AFSs could not handle a system with rules like f ·
(λx.g · (Z ·x))⇒ Z ·0. Even if we accept that we cannot support everything, the
price for any choice is substantial: for example, the latest version of a recursive
path ordering [3] is only developed for AFSs, while the main developments in
dependency pairs [10] have been defined for HRSs.

As we will see in this paper, however, the situation is not as grim as it
seems at first. Each of the formalisms can be embedded, at least in part, in the

others. We will discuss transformations between the formalisms which preserve
termination properties. Importantly, we aim to preserve the structure of rules
as much as possible: the translation of a simple rule in formalism A should not
be some hideously complicated monster in formalism B. This paper focusses
on termination and thus ignores other interesting topics such as confluence. In
addition, in discussing Nipkow’s HRSs we restrict attention to pattern HRSs.

2 Core concepts

We first discuss some concepts which appear in many forms of higher-order term
rewriting. In Section 3 we will use these concepts to discuss several formalisms.

2.1 First-order Term Rewriting

In first-order term rewriting, terms are built from an infinite set of variables
V and a signature F of function symbols f , each with an arity n (denoted
ar(f) = n), by the following grammar:

T = x | f(Tn) (x ∈ V, f ∈ Σ, ar(f) = n)

A substitution is a mapping γ = [x1 := s1, . . . , xn := sn] and the application tγ
of a substitution γ on a term t is obtained by placewise replacing each xi in t
by si. A context is a term with a special symbol � in it, denoted C[]. The term
C[s] is C[] with the � symbol replaced by s.

A first-order rewrite rule is a pair l ⇒ r such that all variables occurring in
r also occur in l. A set of rewrite rules R generates the rewrite relation ⇒R by:

C[lγ]⇒R C[rγ] (l⇒ r ∈ R, γ a substitution, C[] a context)

Example 1. Consider the system with F = {O, s, add} such that ar(O) = 0, ar(s) =
1 and ar(add) = 2, and R = {add(x, 0) ⇒ x, add(x, s(y)) ⇒ s(add(x, y))}.
Then add(s(O), s(O))⇒R s(add(s(O), O))⇒R s(s(O)); thus we see, 1 + 1 = 2.

2.2 Simple Types

Higher-order term rewriting commonly adds types and binders to first-order
term rewriting. Most commonly simple types are used. Given a set of base types
B, the set of simple types is defined by the grammar:

T = ι | T → T (ι ∈ B)

A type of the form σ→τ is called functional. Types are written as σ, τ, ρ and base
types as ι, κ. The→ associates to the right. A type declaration is an expression
of the form (σ1 × . . . × σn) −→ τ with σ1, . . . , σn, τ ∈ T ; such a declaration is
said to have arity n. Type declarations are not types, but are used for typing
purposes. A type declaration () −→ τ is usually just denoted by τ .

2.3 The Lambda-calculus

In the lambda-calculus, terms are built from a set V of variables, using λ-
abstraction and application, defined recursively by the following grammar:

T = x | T · T | λx.T (x ∈ V)

The λx.s construct binds the variable x in s. Term equality is modulo renaming
of variables bound by a λ (α-conversion), that is, λx.s = λy.t if s[x := y] = t.
Consequently, we can always assume variables in a binder to be fresh. The set
FVar(s) consists of all variables occurring in s which are not bound by a λ. We
say s is closed if FVar(s) = ∅. Brackets are omitted where possible, considering
application left-associative; a term s · t · u should be read as (s · t) · u.

Substitution is defined as before, but cannot affect bound variables: a con-
struct sγ assumes that bound variables in s are renamed so they do not occur
in domain or range of γ. However, a context C[s] might bind variables in s.

Terms in the lambda-calculus are rewritten using the β-reduction rule:

C[(λx.s) · t]⇒β C[s[x := t]]

The lambda-calculus is not terminating, as is demonstrated by the term ω · ω,
where ω = λx.x · x; this term reduces in one step to itself. However, when you
add types to λ-terms, termination is guaranteed. That is, assigning a simple type
to all variables in V (notation: x : σ ∈ V), a λ-term s is terminating if we can
derive s : σ for some type σ using the following clauses:

x : σ if x : σ ∈ V
s · t : τ if s : σ→τ and t : σ
λx.s : σ→τ if x : σ ∈ V and s : τ

We say a term is in β-normal form if it cannot be further rewritten using ⇒β .
The ⇒β relation is terminating on all typed terms and gives unique normal
forms, even if typed function symbols are added to the term formation.

η-expansion The relation of η-expansion, ↪→η, is defined as follows: C[s] ↪→η

C[λxσ.s · xσ] if s : σ→τ and the following conditions are satisfied:

1. xσ is a fresh variable;
2. s is not an abstraction;
3. s in C[s] is not the left-hand side of an application.

Every term s has a unique η-long form s↑η which can be found by applying ↪→η

until it is no longer possible.

3 Various Formalisms

With these preparations, we discuss the most common formalisms of higher-order
term rewriting.

3.1 Combinatory Reduction Systems

The first formalism for general higher order rewriting was Aczel’s Contraction
Schemes [1]. This definition was generalised in 1980 by Klop to Combinatory
Reduction Systems [5], although Contraction Schemes were implicitly typable
whereas CRSs are not. We discuss the definition of CRSs as given in [6].

Basic Definition CRSs extend first-order term rewriting with meta-variables
and a form of developments. Formally, given a set V of variables, a set M of
meta-variables (denoted Z,X, Y) and a signature F of function symbols, the set
of meta-terms is given by the following grammar:

T = x | λx.T | f(Tn) | Z(Tm) x ∈ V, f ∈ Σ, Z ∈M, ar(f) = n, ar(Z) = m

A meta-term is closed if it has no free variables, even if it does contain meta-
variables. Note that the λ only binds variables; α-conversion works as before.

Terms are meta-terms without meta-variables. Substitution is defined as be-
fore (with the assumption that bound variables are renamed to not cause any
problems), and additionally meta-substitution is defined. A meta-substitution
is a map γ = [Z1 := s1, . . . , Zn := sn] where si has the form λx1 . . . xm.ti
if ar(Zi) = m, and the application of a meta-substitution on a meta-term is
defined recursively as follows:

f(s1, . . . , sn)γ = f(s1γ, . . . , snγ) iff ∈ Σ
Z(s1, . . . , sm)γ = t[x1 := s1γ, . . . , xm := smγ] if γ(Z) = λx1 . . . xm.t

xγ = x ifx ∈ V

Applying a meta-substitution γ on a meta-term s is only defined if all meta-
variables occurring in s are in dom(γ). In the second clause a normal substitution
is used as well as recursive meta-substitution. A context is a term (not meta-
term!) with a special � symbol.

A rewrite rule is a pair l ⇒ r of closed meta-terms, such that all meta-
variables occurring in r also occur in l, and moreover l is a pattern of the form
f(l1, . . . , ln); a pattern is a meta-term where in all meta-variable occurrences
Z(s1, . . . , sn), all si are different bound variables. A set of rules R generates a
rewrite relation on terms (not meta-terms!) as before:

C[lγ]⇒R C[rγ] (l⇒ r ∈ R, γ a meta−substitution, C[] a context)

Example 2. The untyped lambda-calculus can be seen as a CRS with a single
symbol app of arity 2 and a rule app(λx.Z(x), X)⇒ Z(X).

Example 3. As a running example we will use the system map which has nullary
symbols nil, O, unary symbol s and binary symbols cons, map, and rules:

map(λx.Z(x), nil) ⇒ nil

map(λx.Z(x), cons(X,Y))⇒ cons(Z(X), map(λx.Z(x), Y))

nil represents an empty list and cons the list constructor. A short reduction:

map(λx.x, cons(s(0), nil)
⇒R cons(s(0), map(λx.x, nil))
⇒R cons(s(0), nil)

3.2 Inductive Data Type Systems

Combinatory Reduction Systems are extended with simple types in [2]. In these
Inductive Data Type Systems, we assume given a set of typed variables V, a set of
meta-variables M each equipped with a type declaration and a set of function
symbols f also each equipped with a type declaration; we assume V and M
contain infinitely many (meta-)variables of each type. Meta-terms are formed as
in CRSs, but with a type restriction. Formally, meta-terms are all expressions s
for which we can derive s : σ for some type σ using the following clauses:

x : σ if x : σ ∈ V
λx.s : σ→τ if x : σ ∈ V and s : τ
f(s1, . . . , sn) : τ if f : (σ1 × . . .× σn) −→ τ ∈ F , s1 : σ1, . . . , sn : σn
Z(s1, . . . , sn) : τ if Z : (σ1 × . . .× σn) −→ τ ∈M, s1 : σ1, . . . , sn : σn

As before, a term in an IDTS is a meta-term without meta-variables, a pattern
is a meta-term where all meta-variable occurrences have the form Z(x1, . . . , xn)
with all xi distinct bound variables. Substitution and meta-substitution are as
before, with the restriction that they respect types. That is, γ(x) : σ if x : σ ∈ V
and γ(Z) : σ1→ . . .→σn→τ if Z : (σ1 × . . .× σn) −→ τ ∈ M. A context C[] is
a term containing some symbol �σ of type σ, and C[s] is defined if s : σ.

Rewrite rules are pairs l ⇒ r of closed meta-terms of the same type, such
that l is a pattern of the form f(l1, . . . , ln), and given a set of rules R, the rewrite
relation ⇒R is defined as C[lγ]⇒R C[rγ].

Example 4. The typed lambda-calculus can be encoded as an IDTS with for
all types σ, τ a symbol app(σ→τ×σ)−→τ and a rule app(λx.Z(x), X) ⇒ Z(X) of
matching type. Note that we need infinitely many (similar) symbols and rules.

Example 5. The system map from Example 3 can be typed, using for instance a
type declaration (nat→nat× natlist) −→ natlist for map.

Although types are not explicitly mentioned in their definition, Aczel’s Con-
traction Schemes [1] correspond with second-order IDTs, with a single base type.
That is, choosing B = {o} and defining σ0 := o, σn+1 := o→ σn, a contrac-
tion scheme is an IDTS where all function symbols have a type declaration
(σk1 × . . .× σkm) −→ o and some restrictions on the rules are satisfied.

3.3 Higher-order Rewriting Systems

Next, let us discuss Nipkow’s Higher-order Rewriting Systems, a simply typed
formalism where terms are defined modulo β and η. HRSs were first introduced
in [13]. Following Wolfram [19] the restrictions on the rules were dropped in [11].

An HRS directly extends lambda-terms with typed function symbols and
rules. Formally, assume given a set F of typed function symbols and a set V of
typed variables which contains countably many variables of each type. Pre-terms
over F ,V are those expressions s for which we can derive s : σ using the clauses:

a : σ if a : σ ∈ V ∪ F
s · t : τ if s : σ→τ and t : σ
λx.s : σ→τ if x : σ ∈ V and s : τ

Note that this only differs from the definition of typed lambda-terms by typed
function symbols as well as variables. As in the lambda-calculus, we consider
application left-associative and omit unnecessary brackets. A term is a pre-term
in η-long β-normal form. Every pre-term s corresponds with a unique term slηβ .

Using the normal definition of substitution, a type-respecting mapping [x1 :=
s1, . . . , xn := sn], the result of applying a substitution γ on a term t is the pre-
term t with all occurrences of some xi replaced by si. A context is a term with
a typed �σ symbol occurring in it; if σ is a base type then the pre-term C[s]
obtained by replacing �σ by some term of the same type is also a term.

A rewrite rule is a pair l⇒ r of terms which share the same base type, such
that FVar(r) ⊆ FVar(l) and l has the form f · l1 · · · ln. The rewrite relation on
terms is given by:

C[lγ lηβ]⇒R C[rγ lηβ] (l⇒ r ∈ R, γ a substitution, C[] a context)

Unfortunately, this rewrite relation is in general not decidable. Hence attention
is commonly restricted to the class of pattern HRSs, where the left-hand sides
of rules are “patterns”. A term l is a pattern if for every subterm x · t1 · · · tn
with x occurring free in l and n > 0, the ti are the η-long forms of different
bound variables. Patterns are defined by Miller [12], who proves that unification
(and hence matching) modulo β is decidable for patterns. This restriction is very
similar to patterns in CRSs and IDTSs. We will refer to Pattern HRSs as PRSs.

Example 6. The typed lambda-calculus can be encoded as a PRS with symbols
app(σ→τ)→σ→τ) for all types σ, τ , and corresponding rules app ·(λx.y ·x) ·z ⇒ y ·z.
Note that λx.y ·x in the left-hand side also matches on, for instance, λx.g(x, x),
since this can be written as λx.((λz.g(z, z)) · x)lηβ .

Example 7. The typed map system from Example 5 can be represented as a
PRS with symbols 0 : nat, s : nat→ nat, map : (nat→ nat)→ natlist→
natlist, nil : natlist and cons : nat→natlist→natlist, and rules:

map · (λx.F · x) · nil ⇒ nil

map · (λx.F · x) · (cons · y · z)⇒ cons · (F · y) · (map · (λx.F · x) · z)
An example reduction:

map · (λx.x) · (cons · (s · 0) · nil)
⇒R (cons · ((λx.x) · (s · 0)) · (map · (λx.x) · nil))lηβ
= cons · (s · 0) · (map · (λx.x) · nil)
⇒R cons · (s · 0) · (nillηβ)

= cons · (s · 0) · nil

3.4 Algebraic Functional Systems

Finally, we turn to Algebraic Functional Systems, as defined in [4] but with
simple types, as this is how they are commonly used (using type instantiation,
every polymorphic system corresponds to a monomorphic system anyway).

An AFS adds functions and rules to typed lambda-calculus. Given an infinite
set of typed variables and a set of function symbols, each equipped with a type
declaration, terms are expressions s such that s : σ can be derived using:

x : σ : σ if x ∈ V and σ a type
f(s1, . . . , sn) : τ if f : (σ1 × . . .× σn) −→ τ and s1 : σ1, . . . , sn : σn
λx.s : σ→τ if x : σ ∈ V and s : τ
s · t : τ if s : σ→τ and t : σ

As usual, term equality is modulo α-conversion. As before, substitutions are
type-respecting finite mappings [x1 := s1, . . . , xn := sn] which assign variables
to terms, and applying a substitution on a term replaces xi by si everywhere. A
context C[] is a term with a typed symbol �σ in it.

A rewrite rule is a pair l ⇒ r of terms with the same type, such that
FVar(r) ⊆ FVar(l), and a set of rules R induces a rewrite relation:

C[lγ]⇒R C[rγ] for l⇒ r ∈ R, γ a substitution
C[(λx.s) · t]⇒R C[s[x := t]]

So β-reduction is always added as a separate step.

Example 8. Since ⇒β is added as an explicit rewrite step in every AFS, the
typed lambda-calculus does not need to be encoded; it is the AFS with R = ∅.

Example 9. The running example map can be represented as an AFS with func-
tion symbols 0 : nat, s : (nat) −→ nat, map : ((nat→ nat) × natlist) −→
natlist, cons : (nat× natlist) −→ natlist and the following rules:

map(F, nil) ⇒ nil

map(F, cons(x, y))⇒ cons(F · x, map(F, y))

An example reduction:

map(λx.x, cons(s(0), nil))
⇒R cons((λx.x) · s(0), map(λx.x, nil))
⇒β cons(s(0), map(λx.x, nil))
⇒R cons(s(0), nil)

In the second step, we indicated that a β-step was used for clarity; it could also
just have been written as ⇒R.

Although there are no direct restrictions on rule formation, [8] gives us some
assumptions we may safely make:

Lemma 1 (Result from [8]). A set of AFS-rules can always be transformed
(without affecting termination) so as to satisfy one or more of the following
requirements:

1. the left-hand sides of rules are not abstractions
2. the left-hand sides of rules have no subterms of the form x · s with x a free

variable
3. the left-hand sides of rules are not variables
4. both sides of the rules are β-normal

In addition, if these requirements are satisfied, presenting the rules in applicative
notation has no effect on termination.

4 Transformations

Let us consider, now, how all these formalisms compare to each other. In this
section we will consider transformations according to the following graph:

CRS IDTS

PRS

AFS

A solid arrow indicates that systems in the first formalism can be represented
in the second without affecting termination. A dashed arrow indicates that sys-
tems in the first can be represented in the second without losing non-termination
(but termination may be lost). A dotted arrow indicates that some systems in
the first can be represented in the second without losing non-termination.

4.1 CRSs and IDTSs

CRS IDTS

Due to the untyped nature of CRSs, they are
not overly interesting for general termination
research; many intuitively innocent systems
are non-terminating. For instance, the simple
map example admits an infinite reduction: defining ω := λx.map(x, cons(x, nil))
and Ω := map(ω, cons(ω, nil)) we have Ω ⇒R cons(Ω, map(ω, nil)). In fact,
any rule where the right-hand side contains a subterm Z(X) is problematic.
Nevertheless, we can say a few words on how termination relates to other sys-
tems, in particular IDTSs.

To start, note that the definitions of CRSs and IDTSs correspond; every
IDTS is also a CRS, but with restrictions on the term formation. Thus, an IDTS
is terminating if the CRS it corresponds to is. This provides the dashed arrow. A
weak inclusion indeed, since termination will commonly be lost by dropping type

restrictions. For the other direction, we cannot just add types; both f(0) and
f(λx.0) are valid terms – not both can be typable. We can, however, encode CRS
terms. To this end we will use a special symbol flat to “flatten” abstractions.

Transformation 1 (Transforming a CRS into an IDTS) Given a CRS (F ,R),
let B = {o} and define type declarations σn = (o × . . . × o) −→ o with n
occurrences of o before the −→. Let Fflat = {flat : (o→ o) −→ o} ∪ {f ′ :
σn|f ∈ Σ, ar(f) = n} and assume every CRS-variable x corresponds with
an IDTS-variable x′ of type o, and every meta-variable Z of arity n with an
IDTS-meta-variable with type declaration σn. Let ϕ be the function mapping
CRS-style (meta-)terms to IDTS-style (meta-)terms as follows:

ϕ(x) = x′ (x a variable)
ϕ(f(s1, . . . , sn)) = f ′(ϕ(s1), . . . , ϕ(sn)) (f ∈ F , ar(f) = n)
ϕ(Z(s1, . . . , sn)) = Z ′(ϕ(s1), . . . , ϕ(sn)) (Z ∈M, ar(Z) = n)
ϕ(λx.s) = flat(λx′.ϕ(s))

Let RCI := {ϕ(l)⇒ ϕ(r)|l⇒ r ∈ R}.

Theorem 1. The CRS (F ,R) is terminating if and only if the IDTS (FCI,RCI)
is terminating.

Proof. It is not hard to see that if s ⇒R t then also ϕ(s) ⇒RCI ϕ(t); thus, if
the IDTS is terminating, so is the CRS. For the other direction, if s ⇒RCI t it
is not hard to derive that also ψ(s)⇒R ψ(t), where ψ(u) is obtained from u by
dropping types and replacing occurrences of flat(v) by v.

4.2 IDTSs and AFSs

IDTS AFS

Next, let us consider how IDTSs and AFSs
relate. Both systems have a form of typing
and the same way of constructing functional
terms. However, there are a number of funda-
mental differences. In IDTSs, terms are purely functional; there is no application
operator. Therefore it is not, in general, possible to form terms of arbitrary types.
This may have a crucial impact on termination. Consider, for example, the fol-
lowing IDTS:

F =

a : nat
g : (nat× nat) −→ nat

f : (nat× nat) −→ bool

h : (nat) −→ bool

 R =

{
f(a, g(λxy.Z(x, y)))
⇒ h(Z(a, g(λxy.Z(x, y))))

}

With some inductive reasoning, we can see that a purely functional term
of type nat cannot contain the symbol f anywhere and therefore cannot be
reduced; consequently there is no reduction of more than one step. However, if

we add application to the system, we obtain an infinite reduction by instantiating
Z(x, y) with zbool→nat · f(x, y):

f(a, g(λxy.z · f(x, y)))
⇒R h(z · f(a, g(λxy.z · f(x, y))))

⇒R h(z · h(z · f(a, g(λxy.z · f(x, y)))))

⇒R . . .

Even when there is only one base type, the lack of application might make a
fundamental difference, if the function symbols have an arity at most one:

Σ =

 0 : nat
f : (nat× nat) −→ nat

g : (nat× nat) −→ nat

 R =

{
f(λxy.Z(x, y))⇒ Z(g(λxy.Z(x, y)), 0)
g(λxy.Z(x, y))⇒ Z(0, f(λxy.Z(x, y)))

}

The reason why this example is troublesome is that, due to the limited arity
of function symbols, any term can only have one “leaf” symbol, something which
is not the case when application is permitted. It takes a bit of reasoning to see
that this system is indeed terminating. Intuitively, if the leaf symbol of a term
s is not a bound variable, then any rewrite step decreases the size of the term.
If it is a bound variable x, then there are two possible non-decreasing steps:

– s = C[f(λxy.s′)]⇒R C[s′[x := g(λxy.s′)]]
– s = C[g(λyx.s′)]⇒R C[s′[x := f(λyx.s′)]]

Here, y is ignored because it can’t occur in s′ when s′ already contains x. After
this step, the occurrence of x in s′ is still the only leaf in the term, but now is no
longer bound in one of the above contexts. Thus, any further step decreases the
size of the term, so reductions must terminate. However, if we add application
there is a trivial counterexample for termination: instantiate Z(x, y) by z · x · y.
Then:

f(λxy.z · x · y)

⇒R z · g(λxy.z · x · y) · 0
⇒R z · (z · 0 · f(λxy.z · x · y)) · 0
⇒R . . .

Another issue is that AFS-rules do not use meta-variables. An AFS has no
way to express a rule like this example (copied from [2]):

d(λx.sin(Z(x)))⇒ λx.(d(λy.Z(y)))× cos(Z(x))

However, all this relates to problems embedding IDTSs into AFSs. For the
other direction, it is easy enough, if we are willing to accept an infinite system.

Transformation 2 (Transforming an AFS into an IDTS) Given an AFS
(F ,R), let FAI = F ∪ {appσ,τ : (σ → τ × σ) −→ τ |σ, τ ∈ T } and RAI =
{ϕ(l⇒ r)|l⇒ r ∈ R}∪{appσ,τ (λx.Z(x), X)⇒ Z(X)|σ, τ ∈ T }. Here, φ(l⇒ r)
replaces every free variable x : σ in l and r by a corresponding meta-variable

Z : () −→ σ, and replaces applications s · t with s : σ→τ by appσ,τ (s, t).

AFS-terms over F corespond one-on-one to IDTS-terms over RAI and a step
in one system corresponds with a step in the other. Consequently:

Theorem 2. (F ,R) is a terminating AFS if and only if (FAI,RAI) is a termi-
nating IDTS.

The other direction is more difficult, for all the reasons given above. However,
we can obtain a partial embedding. If we are willing to surrender completeness,
we can transform IDTSs of a certain form into an AFS which is non-terminating
if the original system is.

We say a meta-term s has simple meta-applications if all meta-variables in s
occur in a form λx1 . . . xn.Z(x1, . . . , xn). Thus, a meta-term map(λx.Z(x), cons(X,Y))
has simple meta-applications, whereas d(λx.sin(Z(x))) does not.

Transformation 3 (Transforming an IDTS with simple meta-applications into
an AFS) Given an IDTS (F ,R) such that for all l⇒ r ∈ R, the left-hand side l
has simple meta-applications. Choose for all meta-variables Z : (σ1×. . .×σn) −→
τ a corresponding variable yZ : σ1→ . . .→σn→τ , and define for any IDTS-meta-
term s the AFS-term ϕ(s) as follows: every occurrence λx1 . . . xn.Z(x1, . . . , xn)
(n ≥ 0) is replaced by yZ , and every remaining sub-meta-term Z(s1, . . . , sn) is
replaced by yZ · s1 · · · sn. Define RIA = {ϕ(l)⇒ ϕ(r)|l⇒ r ∈ R}.

As an example, Transformation 3 transforms the IDTS-rule:

map(λx.Z(x), cons(X,Y))⇒ cons(Z(X), map(λx.Z(x), Y))

into the AFS-rule:

map(yZ , cons(yX , yY))⇒ cons(yZ · yX , map(yZ , yY))

Theorem 3. If the AFS (F ,RIA) is terminating, then the IDTS (F ,R) is ter-
minating.

Proof. Every term in the IDTS over F is also a term in the corresponding AFS,
and if there is an infinite reduction in the latter, there is an infinite reduction in
the former because s ⇒R t implies s ⇒RIA · ⇒∗β t. This is because, if s = C[lγ]
and t = C[rγ] for some rule l ⇒ r ∈ R, and l′ ⇒ r′ = ϕ(l ⇒ r), then
s = C[l′δ] ⇒RIA C[r′δ] ⇒∗β C[rγ]. Here, if γ = [Z1 := u1, . . . , Zn := un], then
δ = [yZ1

:= u1, . . . , yZn
:= un].

4.3 IDTSs and PRSs

IDTS PRSNow, consider pattern HRSs. In this formal-
ism rewriting is modulo β and η, which (as we
shall see) in practice means that terms are η-long, and after every reduction a
term is β-normalised. Here, too, the presence of application allows formation of
complex terms of arbitrary types, something which cannot be done in IDTSs.

HRSs can be embedded into IDTSs in a somewhat way as AFSs: we have
to add special application symbols and rules to reduce them. However, we also
have to deal with more advanced matching, and the fact that IDTS-terms are
entirely applicative.

Transformation 4 (Transforming a PRS into an IDTS) Given a PRS (F ,R),
let Ffunc = {f ′ : (σ1 × . . . × σn) −→ ι|f : σ1→ . . .→ σn→ ι ∈ F|ι ∈ B} and
FPI = Ffunc ∪ {appτ |(σ1 × . . . × σn) −→ ι|τ = σ1→ . . .→ σn→ ι ∈ T }. For
all variables x : σ1 → . . . σn → ι choose a uniquely corresponding IDTS-meta-
variable Zx : (σ1 × . . . × σn) −→ ι (note that ι always indicates a base type).
Now define a function ϕ mapping HRS-terms to IDTS-terms as follows: given a
set S of variables,

ϕS(λx.s) = λx.ϕS(s)
ϕS(f · s1 · · · sn) = f ′(ϕS(s1), . . . , ϕS(sn)) f ∈ F
ϕS(x · s1 · · · sn) = appσ(x, ϕS(s1), . . . , ϕS(sn)) x : σ ∈ V \ S
ϕS(x · y1 ↑η · · · yn ↑η) = Zx(y1, . . . , yn) x ∈ S, y1, . . . , yn ∈ V \ S
ϕS(x · s1 · · · sn) = Zx(ψS(s1), . . . , ψS(sn)) otherwise

Let RPI := {ϕFVar(l)(l)⇒ ϕFVar(l)(r)|l⇒ r ∈ R} ∪
{appσ(λx1 . . . xn.Z(x1, . . . , xn), X1, . . . , Xn)⇒
Z(X1, . . . , Xn) | σ = σ1→ . . .→σn→ ι ∈ T , n > 0}

The ϕS function in this transformation does three things:

– an application headed by a function symbol, f · s1 · · · sn, is mapped to a
functional term f(s1, . . . , sn);

– an application headed by a variable symbol, x·s1 · · · sn, is mapped to a special
functional term app(x, s1, . . . , sn); if x is intantiated by an abstraction, such
a term can be “β-reduced” by corresponding rules;

– in rules, the free variables used for matching are replaced by meta-variables,
in such a way that PRS-patterns are mapped to IDTS-patterns.

Theorem 4. If the IDTS (FPI,RPI) is terminating, then so is the PRS (F ,R).

Proof. Write ⇒beta for a reduction C[app(λx.s, t)]⇒ C[s[x := t]]. Using induc-
tion on the pre-term s[x := t] ordered by the union of⇒β and subterm reduction,
it follows easily that always ϕ∅(s[x := t])⇒∗beta ϕ∅(s)[x := ϕ∅(t)]. Having this,
induction on the form of s shows that ϕS(s)[Zx := t] ⇒∗beta ϕ∅(s[x := t]) if
S ⊇ FVar(s) and this is even an equality if s is a pattern. Consequently, s⇒R t
implies ϕ∅(s)⇒+

RPI ϕ∅(t).

It should be noted that IDTS-terms over FPI correspond with pre-terms over
F , not just terms. This is the reason why Theorem 4 is only one-way: non-
termination may appear by reducing terms which are not “β-normal”. An ex-
ample of a terminating PRS, with a corresponding non-terminating IDTS, is:

h · 0⇒ g · (λxy.x · (h · y)) (x : nat→nat)
g · (λxy.Z · (λz.Z · z) · y)⇒ Z · (λz.0) · 0

h′(0′)⇒ g′(λxy.appnat→nat(x, h′(y)))
g′(λxy.Z(x, y))⇒ Z(λz.0′, 0′)

appσ(λxZ(x).,X)⇒ Z(X) (all σ)

The IDTS-version is non-terminating because h′(0′) reduces in two steps to
appnat→nat(λz.0′, h′(0′)), which contains the original term. In the original PRS,
the pre-term corresponding to this term is immediately β-reduced, which causes
the problematic subterm h′(0′) to disappear.

In this case the problem is somewhat obvious: the rules introduce the β-
redex. But what if the system is second-order? Could this still happen? Might
we have an equivalence in some cases?

Unfortunately, it is rather hard to give any kind of condition for β-reduction
not to be needed. Consider for example the following IDTS:

f1(Z)⇒ f2(Z,Z)
f2(a, Z)⇒ f3(Z)

g1(λx.f3(Z(x)))⇒ Z(hide(λx.f3(Z(x))))
unhide(hide(λx.Z(x)))⇒ g2(λx.Z(x))

g2(λx.f3(Z(x)))⇒ g1(λx.f1(Z(x)))
appσ(λxZ(x).,X)⇒ Z(X) (all σ)

This (admittedly highly artificial) system can be obtained as a translation of
a PRS, and has the property that any term that is beta-normal can only be
reduced to other beta-normal terms. Yet non-termination is caused by the pos-
sibility of non-β-normal terms. Let χ[y] := appnat→nat(λx.a, unhide(x)). Then:

g1(λy.f1(χ[y])) ⇒R g1(λy.f2(χ[y], χ[y]))
⇒R g1(λy.f2(a, χ[y])) ⇒R g1(λy.f3(χ[y]))
⇒R χ[hide(λy.f3(χ[y]))] = appnat→nat(λx.a, unhide(hide(λy.f3(χ[y]))))
⇒R appnat→nat(λx.a, g2(λy.f3(χ[y])))⇒R appnat→nat(λx.a, g1(λy.f1(χ[y])))

The crux of the example is that due to the beta-rule there is a term that reduces
to a but also has a subterm unhide(y); no counterpart on terms without such a
redex exists.

These examples show that while termination results on IDTSs can be used
for PRSs, the translation may occasionally lose termination – in fact, a PRS
is terminating if and only if the corresponding IDTS is terminating with the
reduction strategy “reduce subterms headed by some appσ first, if possible”.

Let us consider the other direction. As indicated in the diagram, we can embed
IDTSs into PRSs, although again we may lose termination.

Transformation 5 (Transforming an IDTS into a PRS) Given an IDTS (F ,R).
For any given type declaration σ = (σ1 × . . . × σn) −→ τ , let σ′ be the type
σ1→ . . .→ σn→ τ , and let FIP := {f ′ : σ′|f : σ ∈ F}. For all meta-variables
Z : σ, let xZ : σ′ be a variable of corresponding type. Now, for a given meta-term
s, let ϕ(s) be the PRS-pre-term defined as follows:

ϕ(x) = x
ϕ(f(s1, . . . , sn)) = f ′ · ϕ(s1) · · ·ϕ(sn)

ϕ(λx.s) = λx.ϕ(s)
ϕ(Z(s1, . . . , sn)) = xZ · ϕ(s1) · · ·ϕ(sn)

We define RIP := {ϕ(l) · x1 · · ·xn ↑η ⇒ ϕ(r) · x1 · · ·xn ↑η | l ⇒ r ∈ R, l : σ1→
. . .→σn→ ι, ι ∈ B, x1, . . . , xn fresh}.

Theorem 5. If the PRS (FIP,RIP) is terminating, then so is the IDTS (F ,R).

Proof. Write ϕ↑(s) for ϕ(s)↑η. With induction on the form of s it is easy to see
that ϕ↑(s)[x := ϕ↑(t)] = ϕ↑(s[x := t]), and ϕ↑(s)[xZ := ϕ↑(t)] = ϕ↑(s[x := t]).
As a consequence, it follows that ϕ↑(s) ⇒RIP ϕ↑(t) whenever s ⇒R t, so any
infinite reduction in the latter system leads to an infinite reduction in the former.

The examples in Section 4.2 demonstrate that the implication in the other
direction does not hold.

4.4 PRSs and AFSs

PRS

AFS

Finally, let us consider transformations between HRSs and
AFSs. This is not entirely necessary: we could transform one
into the other by going through IDTSs. The reason to consider
a separate embedding is to make the result slightly simpler:
both AFSs and HRSs use application natively, while in IDTSs
it must be simulated with a function symbol. Consequently, if
an AFS with a rule l⇒ x·y1 ·y2 ·y3 is embedded into an IDTS,
the right-hand side becomes app(app(app(x, y1), y2), y3); a di-
rect transformation into an HRS would have a right-hand side
more like app(x, y1, y2, y3).

To business. In [8] it has been demonstrated that an AFS may be η-expanded
without losing non-termination (although termination may sometimes be lost).
Defining s↑ηV as the normal form of s under η-expansion, where variables in V
are not expanded, [8, Theorem 7] gives:

Lemma 2 (η-expanding AFS-rules). Let (F ,R) be an AFS that satisfies
requirements 1–4 from Lemma 1, and which is presented in applicative form (so
function symbols take no arguments).

Let R↑ be the set consisting of rules {(l · x1 · · ·xn)↑ηV ⇒ (r · x1 · · ·xn)↑ηV for
l ⇒ r ∈ R, l : σ1→ . . .→ σn→ ι with ι a data type, all xi : σi fresh variables
and V := FVar(l) ∪ {x1, . . . , xn}.

Then (F ,R) is terminating if there is no infinite ⇒R↑ reduction on η-long
terms over F .

As an example of what this theorem gives, consider an AFS with rules:

repeat(Z, O)⇒ λx.x
repeat(Z, s(x))⇒ op(Z, repeat(Z, x))

Taking the applicative form and η-expanding this we obtain a system with rules:

repeat · Z · O · y ⇒ (λx.x) · y
repeat · Z · (s · x) · y ⇒ op · Z · (λz.repeat · Z · x · z) · y

Transformation 6 (Transforming an applicative η-long AFS into a PRS) Given
an applicative η-long AFS (F ,R) as formed in Lemma 2, let FAP = F ∪ {appσ :
σ→σ | σ ∈ T , σ composed}. For any term s, let ϕ(s) be inductively defined as
follows:

ϕ(x) = x↑η (x ∈ V)
ϕ(x · s0 · · · sn) = appσ · ϕ(x), ϕ(s0), . . . , ϕ(sn) (x : σ ∈ V)
ϕ(λx.s) = λx.ϕ(s)
ϕ((λx.s) · t0 · · · tn) = appσ · (λx.ϕ(s)) · ϕ(t0) · · ·ϕ(tn) λx.s : σ
ϕ(f · s0 · · · sn) = f · ϕ(s0) · · ·ϕ(sn) f ∈ F

Define RAP = {ϕ(l)⇒ ϕ(r) | l⇒ r ∈ R} ∪
{appσ→ι · x · y↑η ⇒ x · y↑η | σ ∈ T , ι ∈ B} ∪
{appσ→τ · x · y · z ↑η ⇒ appτ · (x · y) · z ↑η | σ, τ ∈ T , τ /∈ B}

It is easy to see that any AFS-term which is in η-long form except (possibly)
for some variables, is mapped to a PRS-term. Moreover, any reduction step is
preserved, and every PRS-term uniquely corresponds with an η-long AFS-term.
We obtain:

Theorem 6. The (applicative, η-long) AFS (F ,R) is terminating if and only
if the corresponding PRS (F ,RAP) is.

The other direction, embedding a PRS into the AFS formalism, brings noth-
ing new. Going via IDTSs, a PRS can be transformed into an AFS, without
losing non-termination, as long as the free variables x in the left-hand sides of
the rules only occur in the form λy1 . . . yn.x · y1 ↑η · · · yn ↑η (with n ≥ 0). How-
ever, this transformation introduces an infinite number of symbols appσ and

rules corresponding with them; in AFSs this is unnecessary, because application
is already part of the formalism.

Transformation 7 (Transforming a PRS with simple free variables into an
AFS) Given a PRS (F ,R) such that for all l ⇒ r ∈ R any free variables x
in l occur only in the form λy1 . . . yn.x · y1 ↑η · · · yn ↑η (with n ≥ 0). Let FPA =
{f ′ : (σ1 × . . . × σn) −→ ι | f : σ1 → . . . → σn → ι ∈ F , ι ∈ B}, and for
any PRS-term s and set of variables V , let ϕV (s) be the AFS-term s with all
occurrences of some λx1 . . . xn.y · x1 ↑η · · ·xn ↑η with y ∈ V replaced by just y.
Define RPA = {ϕFVar(l)(l)⇒ ϕFVar(r) | l⇒ r ∈ R}.

Theorem 7. The PRS (F ,R) is terminating if and only if the AFS (FPA,RPA)
is terminating using a β-first reduction strategy.

A β-first reduction strategy means that a term is reduced with a β-step if
this is possible.

5 Case Study: Static Dependency Pairs

To see how these transformations work in practice, let us consider a recent result:
the static dependency pairs approach. Static Dependency Pairs were defined on
Nipkow’s HRSs in [10], and extended to use argument filterings and usable rules
in [17]. We will discuss only a simplified version of the first definition.

Given an HRS (F ,R), the set D of defined symbols consists of those f ∈ F for
which a rule l⇒ r exists with l = f ·l1 · · · ln. Let F# := F∪{f# : σ | f : σ ∈ D}.

A PRS-rule l⇒ r is called plain function passing (PFP) if any higher-order
variables occur at an argument position of l. That is, writing l = f · l1 · · · ln, if
x ∈ FVar(l) has composed type, then x↑η = li for some i. (This definition is a
bit simplified from the original in [10], because we restrict to patterns.)

A pair of terms l = f · l1 · · · ln and r generate a set of dependency pairs as
follows:

DP(f · l1 · · · ln, λx.r) = DP(f · l1 · · · ln, r)
DP(f · l1 · · · ln, g · r1 · · · rm = {f# · l1 · · · ln g# · r1 · · · rm}∪⋃

1≤k≤n DP(f · l1 · · · ln, ri) (g ∈ D)

DP(f · l1 · · · ln, a · r1 · · · rm =
⋃

1≤k≤n DP(f · l1 · · · ln, ri) (a ∈ (F \ D) ∪ V)

A set of plain function passing rules R generates the set of dependency pairs
DP(R) =

⋃
l⇒r∈R DP(l, r).

The dependency graph is a graph with the pairs in DP(R) as nodes, and an
edge from node l r to node l′ r′ if there are substitutions γ, δ such that
rγ ⇒∗R l′δ. This graph is in general not computable, so it is common to work
with approximations.

A reduction pair is a pair (>,≥) of a strict order and a quasi-order on terms
over F#, such that > is well-founded, ≥ is monotonic, either > · ≥ is included

in > or ≥ · > is, and > and ≥ are both stable: if l is a pattern and l > r or
l ≥ r, then for any substitution γ also lγ > rγ or lγ ≥ rγ respectively1.

Given a set of PFP rules R, whose dependency graph has no infinite path.
Suppose that, for every cycle on the graph with nodes D, there is a reduction
pair (>,≥) such that l ≥ r for all l ⇒ r ∈ R, l > r for at least one pair
l r ∈ D, and l ≥ r for all other pairs l r ∈ D. Then ⇒R is terminating.

Now let us consider how we can transpose this termination method to Alge-
braic Functional Systems. Given any set of AFS-rules R which satisfies the
requirements from Lemma 1, η-expand the rules and present the result in func-
tional form (functional and applicative notation are equivalent when the re-
quirements from lemma 1 are satisified, and functional form is often easier to
work with). We say the system is PFP if, in all rules f(l1, . . . , ln) ⇒ r, each li
either is a variable, or does not contain any free variables of functional type.
Defined symbols are those f such that a rule f(l1, . . . , ln) ⇒ r exists, and
F# = F ∪ {f# : σ| f : σ ∈ D}. The set of dependency pairs of a set of
rules is given by DP(R) =

⋃
l⇒r∈R DP(l, r), where DP(l, r) is inductively defined

as follows:

DP(f(l1, . . . , ln), λx.r) = DP(f(l1, . . . , ln), r)
DP(f(l1, . . . , ln), g(r1, . . . , rm)) = {f#(l1, . . . , ln) g#(r1, . . . , rm)}∪⋃

1≤i≤m DP(f(l), ri) (g ∈ D)

DP(f(l1, . . . , ln), g(r1, . . . , rm)) =
⋃

1≤i≤m DP(f(l), ri) (g ∈ F \ D)

DP(f(l1, . . . , ln), x · r1 · · · rm) =
⋃

1≤i≤m DP(f(l), ri) (x ∈ V)

The dependency graph of R and reduction pairs are defined exactly as with
HRSs. Now we have:

Theorem 8. Given a set of PFP AFS-rules R, whose dependency graph has no
infinite path. Suppose that, for every cycle on the graph with nodes D, there is
a reduction pair (>,≥) such that (1) l ≥ r for all l ⇒ r ∈ R, (2) l > r for at
least one l r ∈ DP(R) and (3) l ≥ r for all other pairs l r ∈ DP(R). Then
⇒R is terminating.

Proof. Consider Transformation 6 and the static dependency pair approach for
PRSs. Evidently the transformation of a PFP AFS is a PFP PRS, and its de-
pendency pairs are exactly the counterparts of the newly defined dependency
pairs, and the pairs appσ→τ#(x) appτ#(x). It should be noted, however, that
there is no cycle or infinite path involving any of the app# dependency pairs:
from the pair whose left-hand side is headed by appσ# there is only an edge to
a pair whose left-hand side is headed by appτ# of a smaller type.

Thus, termination follows if requirement (1–3) are satisfied for all cycles in
the graph, and since all nodes on a cycle correspond with an AFS-dependency

1 In fact, the original definition requires > and ≥ to be fully closed under substitution.
This is a significant restriction: for instance x · s > x · t would imply u > u by
instantiating x with λy.u. Since we restrict to pattern HRSs, the restriction as given
here suffices.

pair (and functional and applicative notation can reasonably be swapped), this
holds if the requirements in the Theorem hold.

In a similar way, results like the Computability Path Ordering for AFSs [3] and
monotone algebras for HRSs [14] can be transposed to to other formalisms.

6 A Joint Formalism?

With the transformations from Section 4, we can use methods from all common
formalisms and use them in the others, often to great effect (as we hope was
demonstrated in Section 5). Thus, it is not all that harmful to just choose the
most convenient formalism to derive a new result in.

However, we started out from the viewpoint of building a termination tool,
which should be able to deal with a variety of systems and use techniques re-
gardless of the formalism they were defined for. Have we reached this point?

Almost. We could choose any of the typed formalisms and transform given
systems of other formalisms into it, if they satisfy the requirements. Although
this would sometimes lead to an infinite number of rules, they are all very similar
rules, which a tool should be able to deal with without too much problems.

In WANDA[7], our termination tool, we chose applicative IDTSs, IDTSs
with application and β-reduction added (equivalently, AFSs with meta-variables
added). Since application and β-reduction could be implemented as function
symbols and rules, this brings nothing new (but avoids the need for an infinite
system). Noting Lemma 1 and the pattern restriction on PRSs, we can freely
assume:

– both sides of AIDTS-rules are β-normal;

– left-hand sides of AIDTS-rules are patterns with a form f(l1, . . . , ln)·ln+1 · · · lm;

– left-hand sides of AIDTS-rules do not have a subterm Z(x) · s.

And thus, results like Lemma 2 extend (for the right definition of η-expansion
– a complete discussion of this is beyond the scope of this paper). Results for
AFSs can be used on AIDTS with simple meta-variables, results for PRSs can
be transposed using Transformation 5, or by making a transformation more like
Transformation 6. Meanwhile, systems in all of the formalisms can be represented
as an AIDTS:

– an AFS is terminating if and only if the corresponding applicative IDTS is
terminating (Theorem 2);

– a PRS is terminating if and only if the corresponding applicative IDTS is
terminating with a β-first reduction strategy (this proof is almost exactly
the same as that of Theorem 7);

– an IDTS is terminating if and only if the corresponding applicative IDTS
(which has the same rules) is terminating on purely functional terms.

However, it is not our intention to promote yet another formalism; applicative
IDTSs are a convenient choice to represent all existing formalisms in a tool, but
it is unclear whether they have further merit; for example, we did not study
critical pairs in AIDTSs. Tool designers could also, for instance, choose a form
of PRSs with additional “weak” application symbols appσ.

7 Conclusions

In this paper, we have seen how systems defined in any of the common formalisms
can be transformed into any of the others. We have seen an example of how this
can be used, by transposing the static dependency pair approach to AFSs. In
addition, we have laid some foundations for general termination tools which may
deal with systems in all the common formalisms, rather than just one.

References

1. P. Aczel. A general Church-Rosser theorem. University of Manchester, jul 1978.

2. F. Blanqui. Termination and confluence of higher-order rewrite systems. In RTA
2000, volume 1833 of LNCS, Norwich, United Kingdom, 2000.

3. F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: The
end of a quest. In CSL 2008, volume 5213 of LNCS, pages 1–14, Bertinoro, Italy,
July 2008. Springer.

4. J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In LICS
1999, pages 402–411, Trento, Italy, July 1999.

5. J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre
Tracts. CWI, Amsterdam, The Netherlands, 1980. PhD Thesis.

6. J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems: introduction and survey. Theoretical Computer Science, 121(1-2):279 –
308, dec 1993.

7. C. Kop. Wanda. http://www.few.vu.nl/ kop/code.html.

8. C. Kop. Simplifying algebraic functional systems. In CAI 2011, June 2011. To
Appear.

9. C. Kop and F. van Raamsdonk. Higher order dependency pairs for algebraic
functional systems. In RTA 2011, June 2011. To Appear.

10. K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method
based on strong computability for higher-order rewrite systems. IEICE Transac-
tions on Information and Systems, 92(10):2007–2015, 2009.

11. R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. The-
oretical Computer Science, 192:3–29, 1998.

12. D. Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 1(4):497–536,
1991.

13. T. Nipkow. Higher-order critical pairs. In LICS 1991, pages 342–349, Amsterdam,
The Netherlands, July 1991.

14. J.C. van de Pol. Termination of Higher-order Rerwite Systems. PhD thesis, Uni-
versity of Utrecht, 1996.

15. F. van Raamsdonk. On termination of higher-order rewriting. In A. Middeldorp,
editor, Proceedings of the 12th International Conference on Rewriting Techniques
and Applications (RTA 2001), volume 2051 of LNCS, pages 261–275, Utrecht, The
Netherlands, May 2001.

16. M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair
method for proving termination of higher-order rewrite systems. IEICE Transac-
tions on Information and Systems, E84-D(8):1025–1032, 2001.

17. S. Suzuki, K. Kusakari, and F. Blanqui. Argument filterings and usable rules in
higher-order rewrite systems. IPSJ Transactions on Programming, 4(2):1–12, 2011.
To appear.

18. Wiki. Termination portal. http://www.termination-portal.org/.
19. D. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, Cambridge, United
Kingdom, 1993.

A Extended Proofs

A.1 Theorem 1

Lemma 3. ϕ(sγ) = ϕ(s)γϕ for all CRS-terms s and substitutions γ.

Here, γϕ = [x′ := ϕ(γ(x))|x ∈ dom(γ)].

Proof. By induction on the form of s.

If s is a variable not in the domain of γ, then s′ /∈ dom(γϕ); thus, ϕ(sγ)ϕ(s) =
s′ = s′γϕ = ϕ(s)γϕ.

If s is a variable in the domain of γ, then ϕ(sγ) = ϕ(γ(t)) = γϕ(s′) = ϕ(s)γϕ.

If s = λx.t (with x /∈ dom(γ)), then ϕ(sγ) = flat(λx′.ϕ(sγ)) = (by the
induction hypothesis) flat(λx′.ϕ(s)γϕ) = flat(λx′.ϕ(s))γϕ = ϕ(s)γϕ.

If s = f(s1, . . . , sn) with f ∈ F , then ϕ(sγ) = f ′(ϕ(s1γ), . . . , ϕ(snγ)) = (by
the induction hypothesis) f ′(ϕ(s1)γϕ, . . . , ϕ(sn)γϕ) = f ′(ϕ(s1), . . . , ϕ(sn))γϕ =
ϕ(s)γϕ.

Lemma 4. ϕ(sγ) = ϕ(s)γϕ for all CRS-meta-terms s and meta-substitutions γ
whose domain contains all meta-variables occurring in s.

Proof. By induction on the form of s.

If s is a variable (so not in the domain of γ), an abstraction or a function
application, we proceed exactly as in Lemma 3.

Otherwise, s = Z(s1, . . . , sn) for some n, and we can write γ(Z) = λx1 . . . xn.t
(since by assumption Z ∈ dom(γ)). Thus, ϕ(sγ) = ϕ(t[x1 := s1γ, . . . , xn :=
snγ]), which by Lemma 3 is equal to ϕ(t)[x′1 := ϕ(s1γ), . . . , x′n := ϕ(snγ)]. Using
the induction hypothesis, ϕ(siγ) = ϕ(si)γ

ϕ, so this term is exactly ϕ(Z ′(ϕ(s1), . . . , ϕ(sn)))γϕ,
that is, ϕ(s′)γϕ.

Lemma 5. If s⇒R t then ϕ(s)⇒R[ϕ(t).

Proof. By induction on the form of s.

If s = lγ and t = rγ for some rule l ⇒ r ∈ R and meta-substitution γ, then
ϕ(s) = ϕ(l)γϕ ⇒R[ϕ(r)γϕ = ϕ(rγ) by Lemma 4.

If s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , s
′
i, . . . , sn) and si ⇒R s′i, then

ϕ(s) = f ′(ϕ(s1), . . . , ϕ(si), . . . , ϕ(sn)) ⇒R[f ′(ϕ(s1), . . . , ϕ(s′i), . . . , ϕ(sn)) =
ϕ(t) by the induction hypothesis.

If s = λx.u and t = λx.v and u⇒R v, then ϕ(s) = λx′.ϕ(u)⇒RCI λx′.ϕ(v) =
ϕ(t) by the induction hypothesis.

Definition 1. There are countably many variables both for CRSs and for IDTSs;
thus we can choose, for every IDTS-variable x, a CRS-variable yx. Similarly, we
can assign to every IDTS-meta-variable a CRS-meta-variable of the same arity.
Having done this, we can formally define an inverse to ϕ in the form of ψ, de-
fined as follows:

ψ(x) = yx (x a variable)
ψ(f ′(s1, . . . , sn)) = f(ψ(s1), . . . , ψ(sn)))
ψ(flat(s)) = ψ(s)
ψ(Z(s1, . . . , sn)) = XZ(ψ(s1), . . . , ψ(sn))
ψ(λx.s) = λyx.ψ(s)

Lemma 6. ψ(sγ) = ψ(s)γψ for any term s and substitution γ, where γψ =
[yx := ψ(γ(x))|x ∈ dom(γ)].

Proof. By induction on s.
If s is a variable not in the domain of γ, then ys is not in the domain of γψ.

Thus, ψ(sγ) = ψ(s) = ys = ysγ
ψ = ψ(s)γψ.

If s is a variable in the domain of γ, then ψ(sγ) = ψ(γ(s)) = γψ(ys) =
ψ(s)γψ.

If s = λx.t (with x /∈ dom(γ)), then ψ(sγ) = λyx.ψ(sγ)) = (by the induction
hypothesis) λyx.ψ(s)γψ = (λyx.ψ(s))γψ = ψ(s)γψ.

If s = f ′(s1, . . . , sn) with f ∈ Fflat, then ψ(sγ) = f(ψ(s1γ), . . . , ψ(snγ)) =
(by the induction hypothesis) f(ψ(s1)γψ, . . . , ψ(sn)γψ) = f(ψ(s1), . . . , ψ(sn))γψ =
ψ(s)γψ.

If s = flat(u), then ψ(sγ) = ψ(flat(uγ)) = ψ(uγ) = (by the induction
hypothesis) ψ(u)γψ = ψ(flat(u))γψ = ψ(s)γψ.

Lemma 7. Let s be a CRS-meta-term, γ a meta-substitution whose domain
contains all meta-variables Z ′ for Z occurring in s, and χ a substitution whose
domain contains all variables which occur freely in s. We assume dom(χ) con-
tains no variables occurring somewhere in ran(γ).
Let δγ be the CRS-meta-substitution [Z := ψ(γ(Z ′))|Z ′ ∈ dom(γ)] and let δχ be
the substitution [x := ψ(χ(x′))|x′ ∈ dom(χ)].
Then ψ(ϕ(s)γχ) = sδγδχ.

Proof. By induction on the form of s.
If s is a variable x, so ϕ(s) = x′, then note that χ contains x′ by assumption

(and γ has no effect). Thus, ψ(ϕ(s)γχ) = ψ(χ(x′)) = δχ(x) = sδγδχ.
If s = λx.t, then ψ(ϕ(s)γχ) = ψ(flat(λx′.ϕ(t))γχ) = ψ(flat(λx′.ϕ(t)γχ)) =

ψ(λx′.ϕ(t)γχ) = λyx′ .ψ(ϕ(t)γχ). Defining χ′ := χ ∪ [x′ := x′], we can ap-
ply the induction hypothesis to see that λyx′ .ψ(ϕ(t)γχ) = λyx′ .ψ(ϕ(t)γχ′) =
λyx′ .tδγδχ′ = λyx′ .tδγδχ[x := ψ(χ′(x′))] = λyx′ .tδγδχ[x := yx′]. Using α-conversion
this is equal to λx.tδγδχ as required.

If s = f(s1, . . . , sn), then ψ(ϕ(s)γχ) = ψ(f ′(ϕ(s1), . . . , ϕ(sn))γχ), which
equals f(ψ(ϕ(s1)γχ), . . . , ψ(ϕ(sn)γχ)). Applying the induction hypothesis on
the si, this equals f(s1δγδχ, . . . , snδγδχ) = sδγδχ as required.

Finally, if s = Z(s1, . . . , sn), then let γ(Z) = λx′1 . . . x
′
n.t (using α-conversion

we can choose fresh x1, . . . , xn such that γ(Z) has this form). In this case,
ψ(ϕ(s)γχ) = ψ(Z ′(ϕ(s1), . . . , ϕ(sn))γχ) = ψ(t[x′1 := ϕ(s1)γ, . . . , x′n := ϕ(sn)γ]χ).
By the assumption that dom(χ) contains no variables occurring in ran(γ), this
can be rewritten to ψ(t[x′1 := ϕ(s1)γχ, . . . , x′n := ϕ(sn)γχ]), which by Lemma

7 is equal to ψ(t)[yx′
1

:= ψ(ϕ(s1)γχ), . . . , yx′
n

:= ψ(ϕ(sn)γχ)], and by the in-
duction hypothesis on the si to ψ(t)[yx′

1
:= s1δγδχ, . . . , yx′

n
:= snδγδχ]. On the

other hand, consider sδγδχ (**). We have δγ(Z) = λyx′
1
. . . yx′

n
.ψ(t) and therefore

sδγδχ = ψ(t)[yx′
1

:= s1δγ , . . . , yx′
1

:= snδγ]δχ = ψ(t)[yx′
1

:= s1δγδχ, . . . , yx′
1

:=
snδγδχ], the same as (**).

Lemma 8. If s⇒R[t, then ψ(s)⇒R ψ(t).

Proof. By induction on the size of s.
If s = ϕ(l)γ and t = ϕ(r)γ for some rule l ⇒ r ∈ R and IDTS-meta-

substitution γ, then by Lemma 7 (applied with empty χ, since rules are closed
by definition), ψ(s) = lδγ ⇒R rδγ = ψ(t).

If s = f ′′(s1, . . . , si, . . . , sn) and t = f ′(s1, . . . , s
′
i, . . . , sn) and si ⇒RCI s′i,

then ψ(s) = f(ψ(s1), . . . , ψ(si), . . . , ψ(sn))⇒R f(ψ(s1), . . . , ψ(s′i), . . . , ψ(sn)) =
ψ(t) by the induction hypothesis.

If s = flat(u) and t = flat(v) and u⇒RCI v, then ψ(s) = ψ(u)⇒R ψ(v) =
ψ(t) by the induction hypothesis.

If s = λx.u and t = λx.v and u ⇒RCI v, then ψ(s) = λyx.ψ(u) ⇒R
λyx.ψ(v) = ψ(t) by the induction hypothesis.

The proof of Theorem 1 is a comination of Lemmas 5 and 8.

A.2 Theorem 2

Definition 2.
Let ϕ map an AFS-term over F to an IDTS-term over FAI, as follows:

ϕ(x) = x (x a variable)
ϕ(λx.s) = λx.ϕ(s)
ϕ(f(s1, . . . , sn)) = f(ϕ(s1), . . . , ϕ(sn))
ϕ(s · t) = @σ,τ (ϕ(s), ϕ(t)) (s : σ→τ)

Let ψ map an AIDTS-term over FAI to an AFS-term over F , as follows:

ψ(x) = x (x a variable)
ψ(λx.s) = λx.ψ(s)
ψ(f(s1, . . . , sn)) = f(ψ(s1), . . . , ψ(sn)) (f ∈ F)
ψ(@σ,τ (s, t)) = ψ(s) · ψ(t)

Moreover, let ϕ(l⇒ r) be the rule ϕ(l)′ ⇒ ϕ(r)′, where s′ is s with all variables
x replaced by a corresponding meta-variable Zx.

Lemma 9. For all AFS-terms s, ψ(ϕ(s)) = s.

Proof. A trivial induction on the size of s.

Lemma 10. ϕ(sγ) = ϕ(s)γϕ, where γϕ = [x := ϕ(γ(x))|x ∈ dom(γ)].

Proof. A trivial induction on the size of s.

Lemma 11. ψ(sγ) = ψ(s)γψ, where γψ = [x := ψ(γ(x))|x ∈ dom(γ)].

Proof. A trivial induction on the size of s.

Lemma 12. For all AFS-terms s, t, if s⇒R t, then ϕ(s)⇒RAI ϕ(t).

Proof. By induction on the size of s; the only interesting cases are the base cases,
s reduces by a topmost step.

If s = (λx.u) · v and t = u[x := v], let λx.u : σ → τ . Then ϕ(s) =
appσ,τ (λx.ϕ(u), ϕ(v)). By the rule appσ,τ (λx.Z(x), X) ⇒ Z(X) this reduces
to ϕ(u)[x := ϕ(v)], which by Lemma 10 equals ϕ(u[x := v]) = ϕ(t).

If s = lγ and t = rγ for some rule l⇒ r ∈ R, then by Lemma 10 also ϕ(s) =
ϕ(l)γϕ and ϕ(t) = ϕ(r)γϕ. Defining γ′

ϕ
:= [Zx := γϕ(x)|x ∈ dom(γ)] it is thus

evident that ϕ(s) = ϕ(l)′γ′
ϕ

and ϕ(t) = ϕ(r)′γ′
ϕ

. Since ϕ(l)′ ⇒ ϕ(r)′ ∈ RAI we
are done.

Lemma 13. For all IDTS-terms s, t, if s⇒RAI t, then ψ(s)⇒R ψ(t).

Proof. By induction on the size of s; the only interesting cases are when the
reduction is topmost.

If s = ϕ(l)′γ and t = ϕ(r)′γ for l ⇒ r ∈ R and a meta-substitution γ, then
we also have s = ϕ(l)δ and t = ϕ(r)δ, for δ = [x := γ(Zx)|Zx ∈ dom(γ)] (it
is safe to assume that dom(γ) contains exactly those meta-variables occurring
in ϕ(l)′, which all have this form). But then, ψ(s) = ψ(ϕ(l))δψ by Lemma 11,
= lδψ by Lemma 9, which reduces to rδψ and, by Lemmas 9 and 11, is equal to
ψ(ϕ(l)δ) = ψ(t) again.

If s = lγ and t = rγ for l ⇒ r one of the rules appσ,τ (λx.Z(x), X), then
s = appσ,τ (λx.u, v) and t = u[x := v]. Thus, ψ(s) = (λx.ψ(u)) · ψ(v) ⇒β

ψ(u)[x := ψ(v)], which by Lemma 11 equals ψ(u[x := v]) = ψ(t).

Theorem 2 is a combination of Lemmas 12 and 13.

A.3 Theorem 3

Definition 3. Choose for every meta-variable Z : (σ1×. . .×σn) −→ τ a variable
yZ : σ1→ . . .→ σn→ τ . The translation from an IDTS-meta-term to an AFS-
term is inductively defined as follows:

ϕ(x) = x x a variable
ϕ(λx.s) = λx.ϕ(s) s 6= λz2 . . . zn.Z(x, z2, . . . , zn)
ϕ(f(s1, . . . , sn)) = f(ϕ(s1), . . . , ϕ(sn))
ϕ(λx1 . . . xn.Z(x1, . . . , xn)) = yZ
ϕ(Z(s1, . . . , sn) = yZ · ϕ(s1) · · ·ϕ(sn)

Given a set of IDTS-rules R, let RIA = {ϕ(l)⇒ ϕ(r)|l⇒ r ∈ R}

Lemma 14. If l is a closed IDTS-meta-term with simple meta-applications, γ
is a meta-substitution whose domain contains all meta-variables in l, and δ is
the substitution [yZ := γ(Z)|Z ∈ dom(γ)], then lγ = ϕ(l)δ.

Proof. Dropping the “closed” requirement, we prove that this holds if the free
variables in l are not in dom(δ). This certainly holds for closed terms, and using
α-conversion we can maintain this property during an induction on the form of
l.

If l is a variable, then lγ = l and (since ϕ(l) = l and dom(δ) does not contain
l) also ϕ(l)δ = l.

If l = λx.l′ with l′ not of the form λz2 . . . zn.Z(x, z2, . . . , zn), then lγ = λx.l′γ,
which by the induction hypothesis equals λx.ϕ(l′)δ = ϕ(l)δ.

If l = f(l1, . . . , ln) then lγ = f(l1γ, . . . , lnγ) = (IH) f(ϕ(l1)δ, . . . , ϕ(ln)δ) =
ϕ(l)δ.

If l = λx1 . . . xn.Z(x1, . . . , xn), then consider γ(Z). This must have the form
λz1 . . . zn.s for some term s, so lγ = λx1 . . . xn.s[x1 := z1, . . . , xn := zn] =
λz1 . . . zn.s (using α-conversion). So lγ = γ(Z) = δ(yZ) = ϕ(l)δ.

Since meta-variables in a simple meta-application occur only in this form,
there are no other cases.

Lemma 15. If s is a closed IDTS-meta-term, γ is a meta-substitution whose
domain contains all meta-variables in s and δ is the substitution [yZ := γ(Z)|Z ∈
dom(γ)], then ϕ(s)δ ⇒∗β sγ.

Proof. We again perform induction on the form of s, changing the “closed”
requirement into “all variables occurring freely in s do not occur in dom(δ).

The cases where s is a variable, a function symbol, and both cases where s
is an abstraction are exactly as in Lemma 14, using ⇒∗β in the induction step
instead of equality (and noting that ⇒∗β is both reflexive and transitive).

Consider the only remaining case, s = Z(s1, . . . , sn). Let γ(Z) = λx1 . . . xn.t.
Then sγ = t[x1 := s1, . . . , xn := sn]. On the other hand, ϕ(s)δ = (yZ ·
ϕ(s1) · · ·ϕ(sn))δ = (λx1 . . . xn.t) · ϕ(s1)δ · · ·ϕ(sn)δ, which by the induction hy-
pothesis on the si equals (λx1 . . . xn.t) · s1γ · · · snγ. This term ⇒β-reduces in n
steps to the required t[x1 := s1γ, . . . , xn := snγ].

Theorem 3 follows from Lemmas 14 and 15: if s is an IDTS-term over F , it
is also an AFS-term over F , and if s ⇒R t, then there is a rule l ⇒ r, context
C and meta-substitution γ such that s = C[lγ] and t = C[rγ]. But by these two
Lemmas, s = C[ϕ(l)δ]⇒RIA C[ϕ(r)δ]⇒∗β C[rγ].

A.4 Theorem 4

In this section, let ϕ := ϕ∅, and given a PRS-substitution γ, let γϕ := [x :=
ϕ(γ(x))|x ∈ dom(γ)] and

Lemma 16. If l is a PRS-pattern, then ϕFVar(l)(l) is a pattern and if γ is
a substitution whose domain contains all variables occurring freely in l, then
lγ = ϕFVar(l)(l)δγ , where δγ is the IDTS-meta-substitution [Zx := ϕ(γ(x))|x ∈
dom(γ)].

Proof. Let S be a set of variables, and suppose that l is a PRS-term such that
for any subterm x · l1 · · · ln of l with x ∈ S, all li are (η-long forms of) different
variables not in S (this holds if l is a PRS-pattern and S = FVar(l)). We can
also assume dom(γ) = S, and that none of the variables which occur in l but
are not in S occur in the range of γ.

Now we prove: ϕS(l) is a meta-term where in all subterms of the form
Z(s1, . . . , sn), all si are difference variables not in S (and possibly bound in
l); moreover, ϕ(lγ) = ϕS(l)δγ . Note that if S = FVar(l), the first of these state-
ments implies that ϕS(l) is a pattern (since ϕ does not create additional variables
and does not cause bound variables to become free).

We prove this with induction on the form of l.
First suppose l = x · s1 · · · sn with x ∈ S, so the si are the η-long forms

of different variables not in S (so also not in dom(γ)), say si = yi ↑η. Then
ϕS(l) = Zx(y1, . . . , yn), which satisfies the requirements. Let γ(x) = λy1 . . . yn.t
(we can always assume this form, using α-conversion); lγ = γ(x) ·s1γ · · · snγ lηβ=

γ(x) · y1 · · · yn lηβ (because the yi are η-equal to si and do not occur in γ),

= (λy.t) · y lηβ= t lηβ= t because γ(x) and hence t is a term, and thus already
in long β/η-normal form. On the other hand, Zx(y1, . . . , yn)δγ = ϕ(t)[y1 :=
y1, . . . , yn := yn] = ϕ(t) as required.

Next, suppose l = x·l1 · · · ln with x /∈ S; let x : σ. Then ϕS(l) = appσ(x, ϕS(l1), . . . , ϕS(ln)),
which satisfies the first requirement by the induction hypothesis on the li. As for
the second requirement, since dom(γ) = S 63 x, we have lγ = x · l1γ · · · lnγ, and
therefore ϕ(lγ) = appσ(x, ϕ(l1γ), . . . , ϕ(lnγ)), which by the induction hypothesis
equals appσ(x, ϕS(l1)δγ , . . . , ϕS(ln)δγ) = ϕS(l)δγ .

Similarly, when l = f · l1 · · · ln, then ϕS(l) = f ′(ϕS(l1), . . . , ϕS(ln)) which
satisfies the first requirement by the induction hypothesis. As for the second,
ϕ(lγ) = ϕ(f · l1γ · · · lnγ) = f ′(ϕ(l1γ), . . . , ϕ(lnγ)) = (induction hypothesis)
f ′(ϕS(l1)δγ , . . . , ϕS(ln)δγ) = ϕS(l)δγ .

Finally, let l = λx.l′, so ϕS(l) = λx.ϕS(l′), which satisifies the first require-
ment because (by induction ϕS(l′) does. Also, ϕ(lγ) = λx.ϕ(l′γ) = λx.ϕS(l′)δγ =
ϕS(l)δγ by the induction hypothesis.

Lemma 16 both justifies Transformation 4 (the resulting meta-term pairs
ϕFVar(l)(l) ⇒ ϕFVar(l)(r) are actually rules), and gives a start to the proof of
Theorem 4.

Lemma 17. For a PRS-substitution γ, let γϕ := [x := ϕ(γ(x))|x ∈ dom(γ)].
For any PRS-term s and PRS-substitution γ: ϕ(s)γϕ ⇒∗beta.

Here, ⇒beta indicates a reduction with one of the rules whose root symbol is
some appσ.

Proof. By induction on the pre-term sγ, ordered by the union of⇒β and subterm
steps.

If s = x · s1 · · · sn with x ∈ dom(γ), let γ(x) = λy1 . . . yn.t. Then ϕ(s)γϕ =
appσ(x, ϕ(s1), . . . , ϕ(sn))γϕ = appσ(ϕ(γ(x)), ϕ(s1)γϕ, . . . , ϕ(sn)γϕ), which by
the induction hypothesis ⇒∗beta appσ(ϕ(γ(x)), ϕ(s1γ), . . . , ϕ(snγ)) = appσ(λy1

. . . yn.ϕ(t), ϕ(s1γ), . . . , ϕ(snγ)) ⇒beta ϕ(t)[y1 := ϕ(s1γ), . . . , yn := ϕ(snγ)]. We
can apply the ⇒β-part of the induction hypothesis to see that this term ⇒∗beta
ϕ(t[y1 := s1γ, . . . , yn := snγ]) = ϕ(sγ).

Next, if s = x·s1 · · · sn with x a variable not in dom(γ), then we only need the
subterm part of the induction hypothesis: ϕ(s)γϕ = appσ(x, ϕ(s1)γϕ, . . . , ϕ(sn)γϕ)⇒∗beta
appσ(x, ϕ(s1γ), . . . , ϕ(snγ)) = ϕ(sγ) (note, after all, that γϕ has the same do-
main as γ).

If s = f · s1 · · · sn with f ∈ F , then we also just need the subterm part of the
induction hypothesis: ϕ(s)γϕ = f ′(ϕ(s1)γϕ, . . . , ϕ(sn)γϕ)⇒∗beta f ′(ϕ(s1γ), . . . , ϕ(snγ)) =
ϕ(sγ).

Finally, if s = λx.t we again complete with the induction hypothesis: ϕ(s)γϕ =
λx.ϕ(t)γϕ ⇒∗beta λx.ϕ(tγ) = ϕ(sγ).

Lemma 18. For any PRS-term s and substitution γ on domain S ⊇ FVar(s):
ϕS(s)δγ ⇒∗beta ϕ(sγ).

Proof. As before, to be able to do induction we need a slightly different state-
ment: fixing a substitution γ on domain S, let s be a PRS-term such that none
of the variables which occurr freely in s but are not in S occur in the range of
γ; we prove that ϕS(s)δγ ⇒∗beta ϕ(sγ) under these conditions.

We prove this by induction on the form of s. The cases where s is headed
by a variable not in S or a function symbol, and where s is an abstraction, are
exactly as in Lemma 17.

The only remaining case is when s = x · s1 · · · sn with x ∈ S; we may
write γ(x) = λx1 . . . xn.t. In this case ϕS(s)δγ = Zx(ϕS(s1), . . . , ϕS(sn))δγ =
ϕ(t)[x1 := ϕS(s1)δγ , . . . , xn := ϕS(sn)δγ]. By the induction hypothesis on the si
this reduces to ϕ(t)[x1 := ϕ(s1γ), . . . , snγ], and by Lemma 17 it reduces further
to ϕ(t[x1 := s1γ, . . . , xn := snγ]) = ϕ(sγ).

Lemma 19. For any PRS-terms s, t, if s⇒R t then ϕ(s)⇒+
RPI ϕ(t).

Proof. By induction on the size of s.
If s = lγ, then we can safely assume dom(γ) exactly contains the variables

occurring freely in l, and thus ϕ(s) = ϕ(l)δγ by Lemma 16, ⇒RPI ϕ(r)δγ by
definition, ⇒∗beta ϕ(rγ) = ϕ(t) by Lemma 18.

In all other cases we immediately complete with the induction hypothesis.

Theorem 4 is an immediate consequence of Lemma 19.

A.5 Theorem 5

Write ϕ↑(s) as shortened notation for ϕ(s)↑η.
First we should note thatRIP is a well-defined PRS, that is, that the left-hand

sides of the rules are patterns.

Lemma 20. If l is an IDTS-pattern, then ϕ(l) · x1 · · ·xn ↑η is a PRS-pattern
for fresh variables x1, . . . , xn.

Proof. Note that ϕ↑(l) = λx1 . . . xn.(ϕ(l) · x1 · · ·xn)↑η is a pattern if and only
if ϕ(l) · x1 · · ·xn ↑η is; thus it suffices to prove that ϕ↑(l) is a PRS-pattern if l is
an IDTS-pattern.

Since the only variables occurring freely in ϕ(l) are the xZ with Z occurring
in l, ϕ(l) is a pattern if all subterms of the form xZ in ϕ(l) occur only in the form
xZ · y1 · · · yn with the yi not any of the xZ (using α-conversion we can assume
the bound variables have no such form).

Thus, by induction on the size of l: if l is an IDTS-pattern, and no variables
in l have the form xZ , then for any occurrence of some xZ · s1 · · · sn in ϕ↑(l), all
si are the η-long forms of different bound variables.

If l is a variable (so not some xZ), then ϕ↑(l) = l↑η, which contains no xZ .
If l = λy.l′, then ϕ↑(l) = (λy.ϕ(l′))↑η = λy.(ϕ↑(l′)), which by the induction

hypothesis satisfies the requirement.
If l = f(l1, . . . , ln), then ϕ↑(l) = f ′ · ϕ(l1) · · ·ϕ(ln)↑η = λyn+1 . . . ym.f

′ ·
ϕ↑(l1) · · ·ϕ↑(ln) · yn+1 ↑η · · · ym ↑η, which satisfies the requirement if each of the
ϕ↑(li) do; this holds by the induction hypothesis.

Finally, if l = Z(y1, . . . , yn), then all yi are different variables which are
not some xZ by assumption. Thus, ϕ↑(l) = xZ · y1 · · · yn ↑η = λzn+1 . . . zm.xZ ·
y1 ↑η · · · yn ↑η · zn+1 ↑η · · · zm ↑η, which indeed satisfies the requirement!

Then, the usual prerequisites: ϕ is preserved under substitution and meta-
substitution. Given a substitution γ, let γϕ be the substitution [x := ϕ↑(γ(x))|x ∈
dom(γ)] and for a meta-substitution γ let γϕ be the substitution [xZ := ϕ↑(γ(Z))|Z ∈
dom(γ)].

Lemma 21. ϕ↑(s)γϕ = ϕ↑(sγ) for all IDTS-terms s and substitutions γ.

Proof. Induction on the size of s.
If s is a variable x ∈ dom(γ), then ϕ↑(s)γϕ = x↑ηγϕ, which modulo β/η is

equal to xγϕ = γϕ(x) = ϕ↑(γ(x)) = ϕ↑(sγ).
If s is a variable x /∈ dom(γ), then ϕ↑(s)γϕ = x↑ηγϕ = x↑η = ϕ↑(sγ).
If s is an abstraction λx.t, then ϕ↑(s)γϕ = λx.ϕ↑(t)γϕ, which by the induc-

tion hypothesis equals λx.ϕ↑(tγ) = ϕ↑(sγ).
Finally, if s = f(s1, . . . , sn) then ϕ↑(s)γϕ = (λxn+1 . . . xm.f

′·ϕ↑(s1) · · ·ϕ↑(sn)·
xn+1 ↑η · · ·xm ↑η)γϕ = λxn+1 . . . xm.f

′ ·ϕ↑(s1)γϕ · · ·ϕ↑(sn)γϕ ·xn+1 ↑η · · ·xm ↑η.
Using the induction hypothesis on the si, this is equal to λxn+1 . . . xm.f

′ ·
ϕ↑(s1γ) · · ·ϕ↑(snγ) · xn+1 ↑η · · ·xm ↑η = (f ′ · ϕ(s1γ) · · ·ϕ(snγ))↑η = ϕ↑(s).

Lemma 22. ϕ↑(s)γϕ = ϕ↑(sγ) for all IDTS-meta-terms s and meta-substitutions
γ whose domain contains all meta-variables in s (we assume that s does not freely
contain any variables xZ).

Proof. By induction on the size of s; all steps can be copied from Lemma 21
except when s = Z(s1, . . . , sn).

In this case, ϕ↑(s)γϕ = (λyn+1 . . . ym.xZ ·ϕ↑(s1) · · ·ϕ↑(sn)·yn+1 ↑η · · · ym ↑η)γϕ.
Let γ(Z) = λz1 . . . zm.t, so γϕ(xZ) = ϕ↑(γ(Z)) = λz1 . . . zm.ϕ

↑(t). Thus, our
term is β/η-equal to λyn+1 . . . ym.ϕ

↑(t)[z1 := ϕ↑(s1)γϕ, . . . , zm := ϕ↑(sn)γϕ] ·

yn+1 ↑η · · · ym ↑η, which by the induction hypothesis equals λyn+1 . . . ym.ϕ
↑(t)[z1 :=

ϕ↑(s1γ), . . . , zm := ϕ↑(snγ)]·yn+1 ↑η · · · ym ↑η. This, again, is β/η-equal to ϕ↑(t)[z1 :=
ϕ↑(s1γ), . . . , zn := ϕ↑(snγ)], which by Lemma 22 is equal to ϕ↑(t[z1 := s1γ, . . . , zm :=
snγ]) = ϕ↑(sγ) as required.

Lemma 23. If s⇒R t for PRS-terms s, t, then ϕ↑(s)⇒RIP ϕ↑(t).

Proof. Induction on the size of s.
If s = lγ and t = rγ, then ϕ↑(s) = ϕ↑(l)γϕ = (λx1 . . . xn.(ϕ(l) · x1 · · ·xn)↑η)γϕ =

λx.(ϕ(l) · x)↑ηδ, where δ = γϕ ∪ [x1 := x1 ↑η, . . . , xn := xn ↑η]. This term ⇒RIP-
reduces to λx.(ϕ(r) · x)↑ηδ = (λx.ϕ(r) · x↑η)γϕ = ϕ↑(r)γϕ = ϕ↑(t) by Lemma
22.

The other cases are trivial uses of the induction hypothesis, included for
completeness:

If s = λx.u and t = λx.v with u ⇒R v, then ϕ↑(s) = λx.ϕ↑(u) ⇒RIP

λx.ϕ↑(v) = ϕ↑(t) by the induction hypothesis.
If s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , s

′
i, . . . , sn) and si ⇒R s′i, then

ϕ↑(s) = λx.f ′·ϕ↑(s1) · · ·ϕ↑(si) · · ·ϕ↑(sn)·x↑η ⇒RIP λx.f ′·ϕ↑(s1) · · ·ϕ↑(s′i) · · ·ϕ↑(sn)·
x↑η = ϕ↑(t) by the induction hypothesis.

Theorem 5 is an immediate consequence of Lemma 23.

A.6 Theorem 6

In this section we assume AFS-terms in an applicative form.
For V a set of variables, say a term s is in η, V -long form if:

s = a · s1 · · · sn : ι and s1, . . . , sn in η, V−long form and a ∈ F ∪ V
s = (λx.t0) · t1 · · · tn : σ and t0, . . . , tn in η, V−long form and σ ∈ B or n = 0
s = x ∈ V

It should be clear that for all terms, s↑ηV is in η, V -long form.

Lemma 24. Let γ be a substitution with domain V ; if l is an AFS-term which
has no subterms x · s with x ∈ V, and l is in η, V -long form and lγ is in η-long
form, then all γ(x) with x occurring in l are in η-long form.

Proof. By induction on the form of l.
If l = x ∈ V , then lγ = γ(x), is η-long by assumption.
If l = a · l1 · · · ln with a ∈ F ∪ V, note that by assumption either a /∈ V , or

a ∈ V and n = 0. The latter case we just treated, in the former lγ = a·l1γ · · · lnγ;
since all variables in V which occur in l must occur in one of the li, the lemma
follows.

If l = λx.l′, we can use α-conversion to guarantee that x /∈ V ; thus, lγ =
λx.(l′γ) and the induction hypothesis guarantees that γ(x) has the required
form.

It is also evident that ϕ(l) is a pattern if l has no subterms x · s with x a
variable free in l. Given an η-long substitution γ, write γϕ = [x := ϕ(γ(x))|x ∈
dom(γ)]; clearly, this is a PRS-substitution mapping variables to PRS-terms.

Lemma 25. If γ(x) is η-long for all x in its domain V , then for all η, V -long
terms s: ϕ(sγ) = ϕ(s)γϕ.

Proof. By induction on the form of s.
If s = x ∈ V , then ϕ(sγ) = ϕ(γ(x)) = γϕ(x) =β/η x↑ηγϕ = ϕ(s)γϕ.
If s = a · s1 · · · sn with a ∈ F ∪ V \ V , then ϕ(sγ) = ϕ(a · s1γ · · · snγ) =

a · ϕ(s1γ) · · ·ϕ(snγ) = (by the induction hypothesis) a · ϕ(s1)γϕ · · ·ϕ(sn)γϕ =
(a · ϕ(s1) · · ·ϕ(sn))γϕ = ϕ(s)γϕ.

If s = λx.t then ϕ(sγ) = λx.ϕ(tγ), which by induction equals λx.ϕ(t)γϕ =
ϕ(s)γϕ.

Finally, if s = (λx.t) · s0 · · · sn then ϕ(sγ) = ϕ((λx.tγ) · s0γ · · · snγ) =
(λx.ϕ(tγ))·ϕ(s1γ) · · ·ϕ(snγ), which by the induction hypothesis equals (λx.ϕ(t)γϕ)·
ϕ(s1)γϕ · · ·ϕ(sn)γϕ = ϕ(s)γϕ.

Lemma 26. Given an applicative, η-long AFS (F ,R) which satisfies the re-
quirements from Lemma 1 and η-long terms s, t, then s⇒R t implies ϕ(s)⇒RAP

ϕ(t).

Proof. By induction on the form of s.
We consider first the base cases: β-reduction by a topmost step, β-reduction

by a headmost step, and reduction by a rule (note that all rules are assumed to
have base type).

If s = (λx.u) · v and t = u[x := v], then let λx.u : σ→τ . Since s : τ is η-long
by assumption, τ is a base type ι. Thus, ϕ(s) = appσ→ι · (λx.ϕ(u)) · ϕ(v) ⇒RAP

(λx.ϕ(u))·ϕ(v) =β ϕ(u)[x := v], which by Lemma 25 equals ϕ(u[x := v]) = ϕ(t).
If s = (λx.u) · v ·w0 · · ·wn and t = u[x := v] ·w0 · · ·wn, let λx.u : σ→τ ; then

τ /∈ B. Therefore ϕ(s) = appσ→τ · (λx.ϕ(u)) · ϕ(v) · ϕ(w0) · · ·ϕ(wn)⇒RAP appτ ·
((λx.ϕ(u)) · ϕ(v)) · ϕ(w0) · · ·ϕ(wn) =β appτ · ϕ(u)[x := ϕ(v)] · ϕ(w0) · · ·ϕ(wn).
By Lemma 25 this is equal to appτ · ϕ(u[x := v]) · ϕ(w0) · · ·ϕ(wn). Noting that
u must be an abstraction (since s is η-long, and therefore so is u), this is just
ϕ(s).

If s = lγ and t = rγ for some rule l ⇒ r ∈ R and substitution γ, then we
can safely assume dom(γ) = FVar(l). By Lemma 24 all γ(x) are η-long. Thus,
Lemma 25 gives that ϕ(s) = ϕ(l)γϕ ⇒RAP ϕ(r)γϕ = ϕ(t).

The other cases follow trivially with the induction hypothesis. The various
cases are worked out below for completeness.

If s = λx.u and t = λx.v and u ⇒R v, then by the induction hypothesis
ϕ(s) = λx.ϕ(u)⇒RAP λx.ϕ(v) = ϕ(t).

If s = (λx.u) · w0 · · ·wn and t = (λx.v) · w0 · · ·wn and u⇒R v and λx.u : σ,
then by the induction hypothesis ϕ(s) = appσ · (λx.ϕ(u)) ·ϕ(w0) · · ·ϕ(wn)⇒RAP

appσ · (λx.ϕ(v)) · ϕ(w0) · · ·ϕ(wn) = ϕ(t).
If s = a · s1 · · · si · · · sn and t = a · s1 · · · ti · · · sn and si ⇒R ti, with a : σ an

abstraction, variable or function symbol, let a′ be either appσ · ϕ(a) if a is an

abstraction, or a′ = a otherwise. Then ϕ(s) = a′ · ϕ(s1) · · ·ϕ(si) · · ·ϕ(sn) ⇒RAP

a′ · ϕ(s1) · · ·ϕ(ti) · · ·ϕ(sn) = ϕ(t).

Note that Theorem 6 uses if and only if. One direction is given by Lemma
26, for the other we need to be able to reverse the transformation. Define a
transformation ψ from PRS-terms over (FAP,RAP) to AFS-terms as follows:

ψ(a · s1 · · · sn) = a · ψ(s1) · · ·ψ(sn) (a ∈ F ∪ V)
ψ(appσ · s0 · · · sn) = ψ(s0) · ψ(s1) · · ·ψ(sn)
ψ(λx.s) = λx.ψ(s)

Lemma 27. ψ(sγ) = ψ(s)γψ for all PRS-terms s.

Proof. By induction on the pre-term sγ, ordered by the union of ⇒β and the
subterm relation.

If s = λx.t, then ψ(sγ) = λx.ψ(tγ) = (IH) λx.(ψ(t)γψ) = ψ(s)γψ.
If s = appσ ·s0 · · · sn, then ψ(sγ) = ψ(s0γ)·ψ(s1γ) · · ·ψ(snγ) = (IH) ψ(s0)γψ ·

ψ(s1)γψ · · ·ψ(sn)γψ = (ψ(s0) · ψ(s1) · · ·ψ(sn))γψ = ψ(s)γψ.
If s = a·s1 · · · sn with a ∈ F∪V\dom(γ), then ψ(sγ) = a·ψ(s1γ) · · ·ψ(snγ) =

(IH) a · ψ(s1)γψ · · ·ψ(sn)γψ = ψ(s)γψ.
Finally, if s = x · s1 · · · sn with x ∈ dom(γ), let γ(x) = λy1 . . . yn.t. Then

ψ(sγ) = ψ(t[y1 := s1γ, . . . , yn := snγ]); by the induction hypothesis (⇒β part)
this is equal to ψ(t)[y1 := ψ(s1γ), . . . , yn := ψ(snγ)], which by the subterm part
of the induction hypothesis equals ψ(t)[y1 := ψ(s1)γψ, . . . , yn := ψ(sn)γψ]. Since
ψ(γ(x)) = λy1 . . . yn.ψ(t), this is exactly ψ(s)γψ.

Lemma 28. For an η, V -long AFS-term s and PRS-substitution γ with domain
V : ψ(ϕ(s)γ) = sγψ ↑η.

Proof. By induction on the form of s.
If s = x ∈ V , then ψ(ϕ(s)γ) =β/η ψ(xγ) = γψ(x) = sγψ, which is η-long.

If s = x ∈ V \ V , then ψ(ϕ(s)γ) = ψ(x↑η) = x↑η = sγψ ↑η.
If s = f · s1 · · · s1 with f ∈ F , then ψ(ϕ(s)γ) = ψ(f ·ϕ(s1)γ · · ·ϕ(sn)γ) = f ·

ψ(ϕ(s1)γ) · · ·ψ(ϕ(sn)γ), which by the induction hypothesis equals f ·s1γ
ψ · · · snγψ =

sγψ = sγψ ↑η.
If s = x · s0 · · · s1 with x : σ ∈ V, then either ϕ(x)γ = x↑η or ϕ(x)γ =

γ(x) = γ(x)↑η is an abstraction. Thus, whether x ∈ V or not, ψ(ϕ(s)γ) =
ψ(appσ ·ϕ(x)γ ·ϕ(s1)γ · · ·ϕ(sn)γ) = ψ(ϕ(x)γ) ·ψ(ϕ(s1)γ) · · ·ψ(ϕ(sn)γ). By the
induction hypothesis, that is equal to xγψ · s1γ

ψ · · · snγψ = sγψ.
Finally, if s = (λx.t) · u0 · · ·un with λx.t : σ, then ψ(ϕ(s)γ) = appσ ·

(λx.ϕ(t)γ) · ϕ(u0)γ · · ·ϕ(un)γ = (λx.ψ(ϕ(t)γ)) · ψ(ϕ(u0)γ) · · ·ψ(ϕ(un)γ), which
by the induction hypothesis equals (λx.tγψ) · u0γ

ψ · · ·unγψ = sγψ.

Lemma 29. For PRS-terms s, t, if s⇒RAP t then ψ(s)⇒R ψ(t).

Proof. By induction on the form of s.
If s = ϕ(l)γ and t = ϕ(r)γ for some l ⇒ r ∈ R, then by Lemma 28 ψ(s) =

lγψ ⇒R rγψ = ψ(t).

If s = appσ→ι · (λx.u) · v and t = u[x := v] then ψ(s) = (λx.ψ(u)) · ψ(v)⇒β

ψ(u)[x := ψ(v)], which by Lemma 27 equals ψ(u[x := v]) = ψ(t).
If s = appσ→τ · (λx.u) · v · w0 · · ·wn and t = appτ · u[x := v] · w0 · · ·wn, then

ψ(s) = (λx.ψ(u)) ·ψ(v) ·ψ(w0) · · ·ψ(wn)⇒β ψ(u)[x := ψ(v)] ·ψ(w0) · · ·ψ(wn) =
ψ(t) again by Lemma 27.

What remains are the various cases for the induction hypothesis, each of
which is entirely straightforward.

The proof of Theorem 6 is given by the combination of Lemmas 26 and 29.

A.7 Theorem 7

Lemma 30. If l is a PRS-term and γ a β/η-normal substitution with domain
V , and if variables y in V occur in l only in the form λx1 . . . xn.y ·x1 ↑η · · ·xn ↑η,
then ϕV (l)γ = lγ lηβ.

Proof. By induction on the form of l.
If l = λx1 . . . xn.y · x1 ↑η · · ·xn ↑η with y ∈ V , then ϕV (l) = y, so ϕV (l)γ =

γ(y) = lγ lηβ because γ is in β/η-normal form.
Otherwise, let l = λx1 . . . xn.a · l1 · · · ln with a either a function symbol or

variable not in V . Then the li satisfy the requirements for the induction hy-
pothesis, so ϕV (l)γ = λx.a · ϕV (l1)γ · · ·ϕV (ln)γ = (IH) λx.a · l1γ lηβ · · · lnγ l

η
β=

(λx.a · l1 · · · ln)γ lηβ= lγ lηβ .

Lemma 31. If s is a PRS-term and γ a β/η-normal substitution, and V is a
set of variables, then ϕV (s)γ lηβ= sγ lηβ.

Proof. This holds because ϕV (s) =η s and β/η-equality is preserved under sub-
stitution).

Lemma 32. If dom(γ) = V and s is in η, V -long form, but γ is an η-long
substitution, then the AFS-term sγ is η-long.

Proof. With a trivial induction on the form of s. Write s = λx1 . . . xn.t.
If t = y ∈ V , then sγ = xγ(y) is η-long because γ(y) is.
If t = y ·t1 · · · tm with y ∈ V , then sγ = λx.γ(y) ·t1γ · · · tmγ is η-long because

both γ(y) is and all tiγ are by induction.
If t = a · t1 · · · tm with a a variable not in V or a function symbol, then

sγ = λx.a · t1γ · · · tmγ is η-long because all tiγ are by induction.
Finally, if t = (λz.u) · t0 · · · tm, then sγ = λx.(λz.uγ) · t0γ · · · tmγ is η-long

because uγ and all tiγ are.

Lemma 33. If s⇒R t then s⇒RPA u⇒∗β t (and thus s⇒+
RPA,β−first t).

Proof. If s ⇒R t there is a rule l ⇒ r, a context C and a substitution γ such
that s = C[lγ lηβ] and t = C[rγ lηβ]. By Lemma 30 also s = C[ϕFVar(l)(l)γ],
which ⇒RPA C[ϕFVar(l)(r)γ] =: u.

By Lemma 31 this has the same β/η-normal form as rγ lηβ , and since by

lemma 32 ϕFVar(l)(r)γ is already η-long, ϕFVar(l)(r)γ lηβ= ϕFVar(l)(r)γ ↓β . Thus,

ϕFVar(l)(r)γ ⇒∗β rγ l
η
β , and therefore indeed u⇒∗β t.

For the other direction, the proof strategy, we note the following. It has
already been proved that an η-long set of rules (such as RPA) is terminating if
and only if it is terminating on η-long terms. The same holds if we employ a
β-first reduction strategy:

Lemma 34. ⇒RPA is terminating with a β-first reduction strategy if and only if
⇒RPA is terminating with a β-first reduction strategy on η-long terms.

Proof. Naturally, if ⇒RPA is terminating using some strategy, it is terminating
with that on specific classes of terms.

For the other direction, it is not hard to see (and in fact, this is how Lemma
2 was proven) that s⇒RPA t implies s↑η ⇒RPA · ⇒∗β t↑η (both for rule steps and
β-steps). Thus, let a β-first infinite reduction be given, say s0 ⇒∗β t0 ⇒R s1 ⇒∗β
t1 . . . with all ti completely β-normal. Then s0 ↑η ⇒∗β t0 ↑η ⇒R · ⇒∗β s1 ↑η ⇒∗β
t1 ↑η . . . which is also an infinite β-first reduction.

Lemma 35. If ⇒RPA is terminating on AFS-terms over FPA using a β-first
reduction strategy, then ⇒R is terminating on PRS-terms over F .

Proof. Note that the rules in RPA have η-long form. Thus, ⇒RPA is terminating
(using a β-first strategy) if and only if it is terminating (using a β-first strategy)
on η-long terms by Lemma 34. Such a reduction has the form s0 ⇒∗β t0 ⇒R
s1 ⇒∗β t1 ⇒R . . . with all si, ti in η-long form and all ti being β-normal.

We will show that t0 ⇒R t1 ⇒R . . . is an infinite PRS-reduction; since the
ti are indeed both η-long and β-normal this holds if, for all i, ti = C[lγ lηβ] and

C[rγ lηβ] = ti+1 for some l⇒ r ∈ R, substitution γ and context C.
Now, each ti has the form C[ϕFVar(l)(l)γ] for l ⇒ r a rule in R, γ a substi-

tution and C a context, and si+1 = C[ϕFVar(l)(r)γ]. Since l, r have base type,
ϕFVar(l)(l)γ is a β/η-normal term. We can safely assume that dom(γ) = FVar(l).
Induction on the form of l (in the same way as Lemma 30, so using a set V to de-
scribe the pattern property of l) provides trivially that all γ(x) are β/η-normal.
Thus, in the original PRS, ti = C[lγ lηβ] by Lemma 31.

We are done if ti+1 = si+1 ↓β= C[rγ lηβ]. Since si+1 = C[ϕFVar(l)(r)γ] this

holds if ϕFVar(l)(r)γ ↓β= rγ lηβ . As ϕFVar(l)(r)γ is already in η-long form by

Lemma 32, ϕFVar(l)(r)γ ↓β= ϕFVar(l)(r)γ lηβ , which by Lemma 31 equals rγ lηβ
as required.

Theorem 7 is a combination of Lemmas 33 and 35.

