
Submitted to:
WPTE 2022

© Brozius, Hagens, Kop
This work is licensed under the
Creative Commons Attribution License.

Extending a Lemma Generation Approach for Rewriting
Induction on Logically Constrained Term Rewriting Systems

Wouter Florian Brozius
VU Amsterdam, Netherlands

w.f.brozius@vu.nl

Kasper Hagens
RU Nijmegen, Netherlands

kasper.hagens2@ru.nl

Cynthia Kop
RU Nijmegen, Netherlands

c.kop@cs.ru.nl

When transforming a program into a more efficient version (for example by translating recursive
functions into iterative ones), it is important that the input-output-behavior remains the same. One
approach to assure this uses Logically Constrained Term Rewriting Systems (LCTRSs). Two versions
of a program are translated into LCTRSs and compared in a proof system (Rewriting Induction).
Proving their equivalence in this system often requires the introduction of a lemma. In this paper we
review a lemma generation approach by Fuhs, Kop and Nishida and propose two possible extensions.

1 Introduction

During program development, it is common to do meaning-preserving transformations, for example for
optimization purposes or to refactor in preparation for later updates. When doing so, it is important that
the input-output-behavior remains the same. In this paper, we explore a method to prove that this holds.

The core of this method is to abstract both versions of the program into Logically Constrained Term
Rewriting Systems (LCTRSs) and then proving equivalence of those LCTRSs using a proof system
called Rewriting Induction (RI). Although equivalence is undecidable in general, it is often possible to
automatically find a proof in this way, using various strategies and lemma generation techniques. In this
paper, we build on one such approach, called Initialization Generalization [2].

This is work in progress: we have developed several ideas that would strengthen this method, but they
are not fully formalized or automated, and we have thus far only tested them on a small benchmark set.

Paper overview. In section 2 and 3 we present an overview of the required literature. Section 4 contains
our new ideas. We evaluate our ideas and present possible future work in section 5. Throughout this paper
we will use the programs in figure 1 as leading examples, all of them implementations of x 7→ ∑

x
i=1 i.

int sum1(int x) {
z = 0;

for (int i = 1;

i <= x; i++)

z += i;

return z;

}
(a)

int sum2(int x) {
if (x > 0)

return x + sum2(x-1);

else

return 0;

}

(b)

int sum3(int x) {
z = 0;

while (x > 0)

z += x;

x = x-1;

return z;

}
(c)

Figure 1: Three (equivalent) implementations of the function x 7→ ∑
x
i=1 i on Z.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Lemma Generation Methods for RI on LCTRSs

2 Preliminaries

We briefly introduce LCTRSs and a simplified version of Rewriting Induction as defined in [1, 2].

2.1 Logically Constrained Term Rewriting

We assume familiarity with basic notions of many-sorted term rewriting, such as function symbols,
variables, terms, substitutions and contexts. The type of a function symbol f is denoted f : [ι1×·· ·× ιn]⇒
κ , indicating that f takes n arguments of sorts ι1, . . . , ιn respectively, and f(s1, . . . ,sn) has type κ . We
denote T erms(Σ,Var) for the set of (well-sorted) terms built from symbols in Σ and variables in Var. In
this paper, we usually let the set of sorts be { bool, int,unit }, and use symbols x,y,z,xi,yi,zi for variables.

We assume given two many-sorted signatures Σterms and Σtheory. Elements of T erms(Σtheory,Var) are
called logical terms: intuitively, these are terms like x+ y or (14 ∗ x− 12 > y)∧ (z 6= 0) which have a
meaning in some underlying theory. For each sort ι occurring in Σtheory, called theory sort, we assume
given a corresponding set Iι ; and we assume given a map J which assigns to every function symbol
f : [ι1×·· ·× ιn]⇒ κ in Σtheory a function from Iι1×·· ·×Iιn to Iκ . For example, we could map a symbol
+ : [int× int]⇒ int to the plus operator in the theory of the integers, or ∧ to logical conjunction. For
every theory sort ι , we let the set Valι of values of type ι contain exactly the theory symbols of type ι;
i.e., Valι := {f ∈ Σtheory | f : ι}. We require that J is a bijection between Valι and Iι . Let Val be the set
of all values in any Valι . The symbols in Σtheory that are not values are called calculation symbols.

For ground logical terms, define J f (s1, . . . ,sn)K = J (f)(Js1K, . . . ,JsnK) and JsK = J (s) if s ∈ Val. A
constraint is a logical term c : bool, where Ibool = B= { >,⊥ }. A constraint c is valid if JcγK => for
all substitutions γ that map all the variables in c to values. A substitution γ respects a constraint ϕ if all
variables in ϕ are substituted by values and JϕγK=>. We typically assume Σtheory ⊇ Σcore

theory, where Σcore
theory

contains true, false : bool,∨,∧ : [bool×bool]⇒ bool,¬ : [bool]⇒ bool. with Ibool = B. and where J
maps these symbols to their usual interpretation. We use infix notation for the binary operators in Σtheory.

Example 1 Consider Σterms = { sum1 : [int]⇒ unit, max : [int× int]⇒ int } and Σtheory = Σcore
theory∪{ n :

int | n ∈ Z }. Note that unit does not occur in Σtheory. Let I(bool) = B and I(int) = Z with J mapping
all symbols to their usual interpretation. Then false, true and all n : int are values. Examples of logical
terms are t1 = true, t2 = ¬(x∧ y), t3 = x∨¬x, t4 = true∨ false. The interpretation of t4 is: Jt4K = (>
“or” ⊥) =>. All ti are constraints; t1, t3 and t4 are valid. An example of a non logical term is max(x,0).

A rewriting rule is a triple ` → r [ϕ], where ` and r are terms and ϕ a constraint. We write `→ r
if ϕ = true. The root of ` must be in Σterms\Σtheory and ` and r must have the same sort. Note that it is
allowed to have variables in r which do not occur in ` (which we will use extensively in our method). The
set of logic variables of a rule ` → r [ϕ], notation LVar(` → r [ϕ]), contains all variables in Var(ϕ) and
all variables in Var(r)\Var(`). DefineRcalc to be { f (~x) → y [f (~x) = y] | f ∈ Σtheory\Val }.

Given a set of rulesR, the rewrite relation→R is defined by: C[`γ] →R C[rγ] if ` → r [ϕ] ∈ (R∪
Rcalc), JϕγK => and γ(x) ∈ Val for all x ∈ LVar(` → r [ϕ]). That is, to apply a rule, the logic variables
must be instantiated with values, and the constraint satisfied. For a rule f (l1, . . . , ln)→ r [ϕ]∈Rwe call f
a defined symbol. LetD be the set of defined symbols; symbols in Σ\D are called constructors. A logically
constrained term rewriting system (LCTRS) is the abstract rewriting system (T erms(Σ,Var),→R).

Example 2 Simple programs may be represented using an LCTRS (see, e.g., [2] for a translation method
from simple C code). For example, the function from figure 1b may be represented by the LCTRS where
Σtheory = Σcore

theory∪{+,≥,<}∪{n | n ∈ Z} (with types and J as expected; Iint = Z), and Σterms contains

Brozius, Hagens, Kop 3

sum1, return : [int]⇒ unit and u : [int× int× int]⇒ unit, andR consists of the rules:

(R1) sum1(x) → u(x,1,0) (R2) u(x, i,z) → u(x, i+1,z+ i) [i≤ x]
(R3) u(x, i,z) → return(z) [i > x]

Here, LVar((R1)) = /0 and LVar((R2)) = LVar((R3)) = { x, i } (the variables occurring in the constraints);
this means that to apply these rules, x and i must be instantiated by values. Hence, sum1(1+ 1)→R
u(1+1,1,0) by rule (R1), but this term cannot be reduced by (R2). We can, however, reduce it using
the calculation rule x+ y → z [x+ y = z]. Hence, u(1+1,1,0)→R u(2,1,0)→R u(2,1+1,0+1)→R
u(2,2,0+1)→R u(2,2,1)→R u(2,2+1,2+1)→R u(2,3,2+1)→R u(2,3,3)→R return(3).

To reason about sets of terms, we can also rewrite constrained terms s [ϕ]. Essentially, this represents
the set of terms sγ such that ϕγ is valid. We say that two constrained terms are equivalent if they represent
the same set; e.g., f(x) [x≥ 0] is equivalent to f(z) [2−3 < z]. We will write s [ϕ]→R t [ψ] if each
instance of s that satisfies ϕ reduces in one step to an instance of t that satisfies ψ , and all such instances
of t can be obtained in this way. Formally, for a constrained term s [ϕ] and rule ρ = ` → r [ψ], define
s [ϕ] →ρ t [ϕ] if for some context C and substitution γ we have s =C[`γ], t =C[rγ], ϕ ⇒ ψγ is valid
and for all x ∈ LVar(ρ) we have that γ(x) is either a value or a variable in Var(ϕ).

We rewrite constrained terms modulo term equivalence, which allows us to for instance rewrite f(a.a+
1) [a > 0] to f(a,b) [b > 0∧b = a+1]: f(a,a+1) [a > 0] is equivalent to f(a,a+1) [a > 0∧b = a+1],
and we can then use the calculation rule x+ y → z [x+ y = z] with substitution [x := a,y := 1,z := b].
Example 3 Let us rewrite a constrained term u(a,b,0) [a≥ 2∧2≥ b] in the LCTRS of Example 2. We
have u(a,b,0) [a≥ 2∧2≥ b]→R u(a,b+1,0+b) [a≥ 2∧2≥ b] by (R2) (using γ = [x := a, i := b]),
because if a≥ 2∧2≥ b, holds, then a = γ(x)≥ γ(i) = b. By the calculation rule x+ y → z [x+ y = z]
(and using equivalence), this→R u(a,b′,0+b [a≥ 2∧2≥ b∧b′ = b+1]. By the same calculation rule,
this→R u(a,b′,b) [a≥ 2∧2≥ b∧b′ = b+1]. This constrained term cannot be reduced any further.

2.2 Rewriting Induction

Restrictions. We limit interest to LCTRSsR where: (1) Σtheory ⊇ Σcore
theory; (2)R is terminating, i.e. there

are no infinite reductions s1→R s2→R s3→R . . . ; (3) R is quasi-reductive, i.e. every ground term is
either a constructor term or reduces; and (4) every sort in Σ has at least one ground term.

Inductive theorems. An equation is a triple s≈ t [ϕ] with s, t terms of the same type and ϕ a constraint.
A substitution γ respects s≈ t [ϕ] if γ respects ϕ and Var(s)∪Var(t)⊆ Dom(γ). An equation s≈ t [ϕ]
is an inductive theorem if sγ ↔∗R tγ for all substitutions γ that respect this equation and which map
all variables in s, t to ground constructor terms. Intuitively, f (~x)≈ g(~x) [ϕ] is an inductive theorem if f
and g agree on all~x for which ϕ(~x) holds. To prove that an equation is an inductive theorem we can use
rewriting induction; a deduction system for manipulating proofstates.

A proofstate is a pair (E ,H) where E is a set of equations and H is a set of induction hypotheses:
rewriting rules which have been derived during the rewriting induction. A proofstate (E1,H1) might
be transformed into another proofstate (E2,H2), notation (E1,H1) `ri (E2,H2), by using one of the
deduction rules which we explain below. The transitive, reflexive closure of `ri is denoted by `∗ri .

The use of rewriting induction is shown by the following theorem:
Theorem 1 [2] If (E , /0) `∗ri (/0,H) for some setH, then every equation in E is an inductive theorem.

For readability, we will often write E1 `ri E2, omitting the H component, and only state when it
is changed. A proofstate can be manipulated using deduction rules. Below we shall present simplified
versions of the most fundamental deduction rules from [2].We do this by example, using the LCTRSR

4 Lemma Generation Methods for RI on LCTRSs

that contains rules (R1) · · ·(R3) from example 2 and the following rules corresponding to Figure 1b.

(R4) sum2(x) → add(x,sum2(x−1)) [x > 0] (R6) add(x, return(y)) → return(x+ y)
(R5) sum2(x) → return(0) [x≤ 0]

If we aim to derive that sum1(x)≈ sum2(x) is an inductive theorem, then according to Theorem 1, we
need to show that there is a deduction sequence (E , /0) `∗ri (/0,H), where {sum1(x)≈ sum2(x)} ⊆ E .

SIMPLIFICATION. We may apply a rewrite rule from R or H to one side of an equation, where for
rewriting purposes the equation is viewed as a single constrained term with ≈ a new function symbol.

Using SIMPLIFICATION on sum1(x) with (R1) gives{
sum1(x)≈ sum2(x)

}
`ri { u(x,1,0)≈ sum2(x) }

EXPANSION. We may do a case analysis on one side of an equation relative to the rules inR. For every
case, a new equation is added with corresponding constraint. Furthermore, if s in s≈ t [ϕ] is the subject
of an expansion andR∪H∪{s → t [ϕ]} is terminating, then the rewrite rule s → t [ϕ] is added toH.
If t is the subject of expansion, then t → s [ϕ] is added instead (ifR∪H∪{t → s [ϕ]} is terminating).

Using EXPANSION on sum2(x) causes (H1) sum2(x) → u(x,1,0) to be added toH, and gives:{
u(x,1,0)≈ sum2(x)

}
`ri

{
u(x,1,0)≈ add(x,sum2(x−1)) [x > 0],
u(x,1,0)≈ return(0) [x≤ 0]

}
Now (R2), (R3) andRcalc can be used to apply SIMPLIFICATION on the equations to get{
u(x,1,0)≈ add(x,sum2(x−1)) [x > 0],
u(x,1,0)≈ return(0) [x≤ 0]

}
`∗ri

{
u(x,2,1)≈ add(x,sum2(x−1)) [x > 0],
return(0)≈ return(0) [x≤ 0]

}
In addition, we now have access to the induction rule (H1). We can use this to rewrite sum2(x−1):{
u(x,2,1)≈ add(x,sum2(x−1)) [x > 0],
return(0)≈ return(0) [x≤ 0]

}
`∗ri

{
u(x,2,1)≈ add(x,u(x−1,1,0)) [x > 0],
return(0)≈ return(0) [x≤ 0]

}

DELETION. An equation s≈ t [ϕ] may be deleted if s = t or JϕK =⊥.
Following this rule, we may remove the second equation in our running example from the proofstate.

The remaining equation contains the (sub)term u(x−1,1,0). To support the application of rewrite
rules, it is usually convenient to replace a calculation (e.g. x− 1) by a fresh variable (e.g. x1), where
we update the constraint with a corresponding equality (e.g. x1 = x− 1). This can be done using the
SIMPLIFICATION rule. In this case, replacing x−1 by x1 yields:

{ u(x,2,1)≈ add(x,u(x−1,1,0)) [x > 0] } `ri { u(x,2,1)≈ add(x,u(x1,1,0)) [x > 0∧ x1 = x−1] }

At this point we do another EXPANSION step, now on the left side of the equation. This causes
(H2) u(x,2,1) → add(x,u(x1,1,0)) [x > 0∧ x1 = x−1] to be added to H, and yields the following
proofstate, where we simplify the constraints as much as possible (we usually do this implicitly).

`ri
{

u(x,2+1,1+2)≈ add(x,u(x1,1,0)) [x > 1∧ x1 = x−1],
return(1)≈ add(x,u(x1,1,0)) [x = 1∧ x1 = x−1]

}

Brozius, Hagens, Kop 5

We apply SIMPLIFICATION in the second equation on the right side with rules (R3), (R6) andRcalc.

{ return(1)≈ add(x,u(x1,1,0)) [x = 1∧ x1 = x−1] }
`ri { return(1)≈ add(x, return(0)) [x = 1∧ x1 = x−1] }
`ri { return(1)≈ return(x+0) [x = 1] } `ri { return(1)≈ return(x) [x = 1] }

In the resulting equation, we cannot apply DELETION, since the equation terms are not syntactically
equal. To be able to remove this equation still, the following ancillary deduction rule is introduced.

EQ-DELETION Applying EQ-DELETION to an equation C[s1, . . . ,sn]≈C[t1, . . . , tn] [ϕ], where all si, ti are
logical terms adds the negation ¬(

∧n
i=1 si = ti) to the constraint ϕ . Intuitively, this rule allows us to delete

equations whose left and right side are not syntactically equal, but their equivalence is implied by the
constraint. Applying this rule creates an unsatisfiable constraint that is then subject to the DELETION rule.

Applying EQ-DELETION to the equation above yields return(1) ≈ return(x) [x = 1∧¬(x = 1)], to
which DELETION can be applied. After some simplifications to the remaining equation, we are left with:

u(x,3,3)≈ add(x,u(x1,2,1)) [x > 1∧ x1 = x−1]

Automation. The rewriting induction process can be automated using a strategy: a priority selection
on the deduction rules. The strategy used in [2] tries to apply deduction rules in the following order:
EQ-DELETION, DELETION, SIMPLIFICATION, EXPANSION.

Divergence As often happens in practical cases, and also in our running example, we eventually keep
expanding but cannot apply the induction rules. Consider the proofstate after a few more deductions:

E = { u(x,5,10)≈ add(x,u(x1,4,6)) [x > 3∧ x1 = x−1] }

H=

sum2(x) → u(x,1,0),
u(x,2,1) → add(x,u(x1,1,0)) [x > 0∧ x1 = x−1],
u(x,3,3) → add(x,u(x1,2,1)) [x > 1∧ x1 = x−1],
u(x,4,6) → add(x,u(x1,3,3)) [x > 2∧ x1 = x−1]

It is clear that no induction hypothesis will ever be applicable in an ongoing equation. What we encounter
here is an instance of divergence. This is where our final rule comes in.

3 Generalization

As is often the case in mathematics, it may happen that proving a more general statement is easier than
proving a particular instance of that statement. This can also be the case in rewriting induction, in the
sense that an equation with a diverging proof may be a special case of a more general equation with a
non-diverging proof. In our running example, the recurring equation in E is always an instance of

(H) u(x, i,z)≈ add(x,u(x−1, i−1,z− i+1)) [x > i−2].

It turns out that equation H is an inductive theorem that can be solved using rewriting induction. This
proof adds a useful rewriting rule toH that can be used to complete our original proof. In this setting, we
call (H) a lemma. The question remains how such a lemma can be found automatically, without human
reasoning. Much work has been done in this area (see e.g. [3, 4, 5, 6, 7, 8, 2]). Below we present one of
these methods called initialization generalization. [2]

6 Lemma Generation Methods for RI on LCTRSs

3.1 Initialization generalization [2]

In essence, initialization generalization (InGen) adapts an LCTRS by moving value instantiations to the
constraints and drops these instantiations somewhere in the rewriting induction process.

Example 4 Rule f(x) → g(x+2,1) is replaced by f(x) → g(x+2,a0) [a0 = 1]

Formally, for all rules ` → r [ϕ]: any value v in r that is the immediate subterm of a symbol in
Σterms∩D gets replaced by a ‘fresh’ variable ai (i.e. a variable that does not already occur in the LCTRS)
from some set Varinit. Then the equality ai = v is added to ϕ . (Since value 2 in example 4 above is an
immediate subterm of +, which is not a symbol in Σterms, the value is not replaced by a variable.)

Secondly, we allow usage of a GENERALIZATION rule in the rewriting induction process that drops any
value instantiations: equalities of the form a = v, where a is a variable from Varinit and v is a value. For
our strategy, we set the priority of GENERALIZATION between SIMPLIFICATION and EXPANSION. Lastly,
the rules SIMPLIFICATION and EXPANSION are adapted to avoid simplifying these equalities away.

Example 5 Using InGen on our running example changes the rule (R1) into:

(R1′) sum1(x)→ u(x,a1,a0) [a1 = 1∧a0 = 0]

(The other rules remain the same.) Aiming once again to prove that sum1(x)≈ sum2(x) is an inductive
theorem, we repeat the strategy from before until we arrive in the divergence pattern. As we aim to
preserve the equalities a1 = 1 and a0 = 0, this yields the following (fully simplified) state:

u(x, i2,z2)≈ add(x,u(x1, i1,z1))

[i2 = i1 +1∧ z2 = z1 + i1∧ x1 = x−1∧ x≥ i1∧ i1 = a1 +1∧ z1 = a0 +a1∧ x > 0∧a1 = 1∧a1 = 0]

We drop both value initializations and do EXPANSION on the left. This adds the following rule toH:

u(x, i2,z2)→ add(x,u(x1, i1,z1))

[i2 = i1 +1∧ z2 = z1 + i1∧ x1 = x−1∧ x≥ i1∧ i1 = a1 +1∧ z1 = a1 + i0∧ x > 0]

We now have an induction hypothesis that we can apply to an ongoing proofstate. After doing so, the
inductive theorem can be proved. (Due to space requirements, we will not display the full proof here.)

4 Alternative generalization ideas

Of course, no generalization method is perfect; in general, equivalence is undecidable. Strategies using
InGen allow us to prove more inductive theorems, but not all. We will see for example, that using
InGen will not allow us to prove equivalence between sum2 and sum3, the LCTRS representations of the
programs in figure 1b and 1c repectively. Proving the equivalence between sum1 and sum3 even harder.

In this section we present some new generalization techniques. We will show that the removal of
a constraint is sometimes enough to obtain a valid, applicable lemma. In addition we propose a more
general notion of an initialization, and an idea that involves extending the rewrite system.

This is work in progress. We will present ideas, not detailed methods. In particular, substantial steps
will be needed to be able to formalize and automate these ideas.

4.1 Dropping constraints

Example 6 Consider the LCTRSs representations of the programs given in figure 1b and figure 1c:

Brozius, Hagens, Kop 7

(R4) sum2(x)→ return(0) [x≤ 0] (R7) sum3(x)→ v(x,0)

(R5) sum2(x)→ add(x,sum2(x−1)) [x > 0] (R8) v(x,z)→ v(x−1,z+ x) [x > 0]

(R6) add(x, return(y))→ return(x+ y) (R9) v(x,z)→ return(z) [x≤ 0]

Aiming to show that sum2(x) ≈ sum3(x) is an inductive theorem using the strategy in Section 2.2
(without InGen) we observe the following divergence pattern (we removed superfluous constraints):
E = {v(x5,z4)≈ add(x,v(x5,y4)) [x5 = x4−1∧ z4 = 5x−10∧ y4 = 4x−10∧ x > 4]}

H=

sum2(x)→ v(x,0),
v(x1,z0)→ add(x,v(x1,0)) [x1 = x−1∧ z0 = x∧ x > 0],
v(x2,z1)→ add(x,v(x2,x1)) [x2 = x−2∧ z1 = 2x−1∧ x > 1],
v(x3,z2)→ add(x,v(x3,y2)) [x3 = x−3∧ z2 = 3x−3∧ y2 = 2x−3∧ x > 2],
v(x4,z3)→ add(x,v(x4,y3)) [x4 = x−4∧ z3 = 4x−6∧ y3 = 3x−6∧ x > 3]

Using InGen, we obtain a rule (R7′) sum3(x)→ v(x,y0) [y0 = 0]. Dropping the initialization y0 = 0 before
the second expansion yields an equation v(x1,z0)≈ add(x,v(x1,y0)) [z0 = y0 + x∧ x1 = x−1∧ x > 0].
This equation is not solvable using the strategy from before (Section 2.2), but if we drop the requirement
x1 = x−1 then we obtain a lemma which can be used for proving sum2(x)≈ sum3(x). 1

Lemma 1 v(x1,z0)≈ add(x,v(x1,y0)) [z0 = y0 + x∧ x > 0]

This suggests that dropping constraints may be a sensible method for adjusting a non-useful equation
produced by InGen. The question remains however, which constraints we should drop. Randomly
dropping constraints and checking if the resulting lemma is solvable (and useful) is very inefficient since
there are 2n ways to choose a subset of a constraint consisting of n conjuncts.

4.2 Recognizing more initializations

To identify suitable constraints to drop, we extend InGen. Specifically, we recognize a broader range of
(logical) terms as a kind of initializations, keep track of constraints derived from them, and consider these
constraints as candidates for discarding. Applying this idea to sum2(x)≈ sum3(x) also leads to lemma 1.

Definition 1 Let ≥ be the quasi-order on Σterms generated by f ≥ g if there is a rule f (`1, . . . , `n) →
r [ϕ] ∈R with g occurring in r. Define a corresponding strict order >= (≥ \ ≤) and the set:

T ermsinit =
{

ri ∈ T erms(Σtheory,Var) | f (`1, . . . , `n) → C[g(r1, . . . ,rm)] [ϕ] ∈R, f > g, g ∈ D
}

Example 7 In example 6: ≥ is the transitive reflexive closure of sum2 ≥ add ≥ return, sum3 ≥ v ≥
return. Hence, sum2 > add > return, sum3 > v > return. There is one initialization x in sum2(x)→
add(x,sum2(x−1)) [x > 0], and initializations x and 0 in sum3(x)→ v (x,0).

Definition 2 Given R, fix sets Vardrop,Varkeep of variables not occurring in R such that Vardrop ∩
Varkeep = /0. The initialization-free counterpart R′ of R is obtained by stepwise replacing every rule
` → C[s] [ϕ] inR, with s ∈ T ermsinit by the following, until no such rules remain:

• ` → C[a] [ϕ ∧a = s] with a ∈ Vardrop fresh, if s ∈ Val.

• ` → C[I] [ϕ ∧ I = s] with I ∈ Varkeep fresh, if s 6∈ Val.
1If we follow the rules exactly, the lemma needs a bit more modification since a rule v(x1,z0)→ add(x,v(x1,y0))[z0 =

y0 + x∧ x > 0] does not meet the termination requirement. However, this is easily repaired by adding z0 ≥ 0 to the constraint,
which is certainly satisfied in the divergence.

8 Lemma Generation Methods for RI on LCTRSs

Example 8 The initialization-free counterpart of the LCTRS in example 6 will only affect (R5) and (R7):

(R5′) sum2(x)→ add(I0,sum2(x−1)) [x > 0∧ I0 = x] (R7′) sum3(x)→ v(I1,a0) [I1 = x∧a0 = 0]

Performing the rewriting induction sum2(x)≈ sum3(x) with this altered LCTRS quickly yields a state
with E = {add(I0,v(I1−1,a0))≈ v(I1−1,a0 + I1) [I0 = x∧ x > 0∧ I1 = x∧a0 = 0]}

A first generalization-attempt would be to proceed similarly to InGen: dropping all initializations.
However, in this example dropping non-value initializations I = r makes the equation unsolvable: we lose
crucial information on the relations between variables. Instead, we will keep track of constraints derived
from non-value initializations using a calculation step. These constraints are candidates to be dropped.

Definition 3 Let s ≈ t [ϕ] ∈ E , where s has the form C[r] with r ∈ T erms(Σtheory,Varkeep) and r not a
variable. Then s≈ t [ϕ] may be rewritten to C[a]≈ t [ϕ ∧a = r] for a ∈ Vardrop fresh and suitably typed.

Note that this is just the result of applying one or more SIMPLIFICATION steps to r using calculation
rules. Definition 3 simply allows us to give the fresh variable used in the constraint a special, recognizable
name. This allows us to keep track of specific constraints derived from initializations.

Example 9 Consider the equation in example 8: add(I0,v(I1−1,a0))≈ v(I1−1,a0 + I1) [I0 = x∧ x >
0∧ I1 = x∧a0 = 0]. We can use SIMPLIFICATION to move the first occurrence of I1−1 into the constraint.
Since I1 ∈ Varkeep, Definition 3 applies, so we can use a fresh variable in Vardrop. This yields:

add(I0,v(a1,a0))≈ v(I1−1,a0 + I1) [I0 = x∧ x > 0∧ I1 = x∧a0 = 0∧a1 = I1−1]

As a1 = I1−1 already occurs in the constraint, we do not introduce a fresh variable for the occurrence
of I1−1 on the right-hand, but rather follow the strategy of [2] and simplify this directly to a1. We also
simplify a0 + I1, but since a0 /∈ Varkeep, we here do not introduce an initialization variable. We obtain:

add(I0,v(a1,a0))≈ v(a1,z1) [I0 = x∧ x > 0∧ I1 = x∧a0 = 0∧a1 = I1−1∧ z1 = a0 + I1]

If we drop all initializations ai = ri with ai ∈ Vardrop and ri ∈ T erms(Σtheory,Varkeep) from the constraint,
we obtain the following equation, which is equivalent to lemma 1, so can be used to complete Example 8.

add(I0,v(a1,a0))≈ v(a1,z1) [I0 = x∧ x > 0∧ I1 = x∧ z1 = a0 + I1]

4.3 Extending the rewrite system

We now know that sum1(x)≈ sum2(x) and sum2(x)≈ sum3(x) are inductive theorems and therefore by
transitivity sum1(x) ≈ sum3(x) must be an inductive theorem as well. However, proving this directly
using rewriting induction is not so straightforward. We obtain the following divergence:
E = {u(x,6,15)≈ v(x5,z4) [x5 = x4−1∧ z4 = z3 + x4∧ x > 4]}

H=

v(x,0)→ u(x,1,0),
v(x1,x)→ u(x,2,1) [x1 = x−1∧ x > 0],
v(x2,z1)→ u(x,3,3) [x2 = x−2∧ z1 = 2x−1∧ x > 1],
v(x3,z2)→ u(x,4,6) [x3 = x−3∧ z2 = 3x−3∧ x > 2],
v(x4,z3)→ u(x,5,10) [x4 = x−4∧ z3 = 4x−6∧ x > 3]

Observe that the divergence pattern contains both u and v, symbols unique to the LCTRS representation of
sum1 and sum3 respectively, as we were not able to apply any of the induction hypotheses. When using
InGen, we obtain an equation that cannot be automatically solved:

u(x, i1,z1)≈ v(x−1,z′1) [i1 = i0 +1∧ z1 = z0 + i0∧ z′1 = x+ z′0]

Brozius, Hagens, Kop 9

Dropping initializations earlier/later, or usage of the methods defined in this paper does not seem to help
either. This problem arises in many examples when we compare two tail-recursive functions (obtained
from iteration in the original C-code). The generalization method of [2], and our extensions in the previous
sections, are primarily useful to compare an iterative function to a recursive one.

This does not mean that rewriting induction cannot be used. We solve the problem using the lemma:
Lemma 2 u(x, i,z)≈ v(x′,z′) [i+ x′ = x+1∧ z− z′ = (i−1)(x′− i−1)∧ x, i > 0∧ x′ ≥ 0]

However, this lemma is very specific to the current problem of summation, and hard to find automati-
cally. We aim to develop general methods. Hence, instead of trying to reproduce this lemma we will show
that we can generate a lemma of a different shape:
Lemma 3 v(x,z)≈ add(a,v(x,z′)) [z = z′+a∧ z′ ≥ 0∧a > 0]
This lemma is formulated in an extended LCTRS, where a symbol add is added to Σterms. With this
lemma, we can indeed prove that sum1(x)≈ sum3(x): the proof of this lemma initially diverges, but the
divergence pattern contains symbols from only sum1, which allows us to solve it using InGen.

But how to find this lemma? And how would we know to include add and the corresponding rule, if
we did not know about sum2? To answer these questions, we consider the rules of the LCTRS.

The second component z of v acts as an accumulator: the recursive v-rule has a form v(x,z)→ v(s,z+x)
where z does not occur in s, and the base rule returns z. Hence, we externalize the addition, and consider
a lemma of the form add(x,v(i,z)) ≈ v(i,z+ x) with add(x, return(z))→ return(z+ x). Lemma 3 is
obtained from this by adding constraints to support termination. Slightly more generally:
Definition 4 Suppose f ∈ Σterms is defined by two rules: (1) f(~x,y,~z)→ f(~s,q,~t) [ϕ] and (2) f(~x,y,~z)→
g(~s′,u,~t ′) [ψ], with y /∈ Var(~s,~t,~s′,~t ′) and f > g following Def. 1. Then for h a fresh symbol, introduce
the rule h(~x,g(~x′,y,~z′),~z)→ g(~x′,q,~z′) and consider a lemma of the form h(~x, f(~x′′,y,~z′′),~z)≈ f(~x′′,q,~z′′).

(In our example, f := v, g := return, h := add, |~x|= |~x′′ = 1 and |~z|= |~x′|= |~z′|= |~z′′|= 0.)
This approach is most likely to work when AC operators like + and ∗ are involved, but also works for

some others (e.g., −). As this is still work in progress, we have not yet explored the power of this method,
and how best to formulate Def. 4 in a general way (e.g., to support symbols f with more than two cases).

Finding an intermediate function Another idea is that, if it is hard to prove f (~x)≈ g(~x) [ϕ], then we
look for an intermediate function h for which it is easier to prove equivalence, i.e. f (~x)≈ h(~x) [ϕ] and
h(~x)≈ g(~x) [ϕ]. (In our example, sum2 is such an intermediate function between sum1 and sum3). Then
we either complete by transitivity, or use these two equivalences as lemma equations.

To find such an intermediate function, we could for instance use a similar approach as we did in
Definition 4: if we detect that a parameter to a function symbol is used as an accumulator, we could
try to remove that parameter and, essentially, replace iteration by recursion. For example, in place
of the v-rules we would generate v′(x,z)→ add(v′(x− 1,z),x) [x > 0] and v′(x,z)→ return(z) [x ≤ 0].
Another approach may be to use a tool that modifies a function in the source language while preserving its
input-output-behaviour. We can then try to prove equivalence for the modified version(s).

5 Conclusion

In this paper, we have shared some of our early findings on automatic lemma generation extending the
method of [2] using three implementations of Σn

i=1i. In particular, we have seen that dropping a constraint
from an equation may sometimes give a suitable lemma. We have given a definition that allows us to
recognise certain constraints that may be useful to drop: derived initializations. Finally, we have presented
sketches of possible lemma generation techniques that extend the signature and rewrite system.

10 Lemma Generation Methods for RI on LCTRSs

Discussion An issue already present in [2] is that the strategy is not fail-save, and may require (costly)
backtracking or fail altogether even when a proof exists. For example, dropping value initializations with
InGen can sometimes be done before the first EXPANSION, but in other cases (like sum1(x)≈ sum2(x))
must be done later. In general, it is safe to drop them once we get into a repeating pattern – but it is not
obvious how to detect such a pattern automatically. In addition, choices such as which side of a rule to
apply an EXPANSION on, or which induction rule to use, can make a large difference.

As this is work in progress, our proposed lemmas were found manually. Lemma 2 in section 4.3 was
found by solving a recurrence relation. In general, we will refrain from using this technique, since solving
all recurrence relations is impossible and we prefer not to limit our method to linear arithmetic. For our
other methods, it seems likely that they can be generalized and automated. However, our verification so
far has focused on very simple examples, like the sum-examples in this paper. While we believe that these
examples provide a good foundation, and that the ideas are more generally applicable, it is possible that
the techniques are too tailored, and do not work in more complex cases.

Future Work To start, we intend to fully formalize the methods presented in this paper, and test them
on a wide range of (both simple and more complex) benchmarks. Most of the calculations in this paper
were done by hand, which is error-prone and time-intensive. Hence, we also intend to develop a new
rewriting induction tool for LCTRSs, both to support the manual rewriting induction process and test new
ideas, and to automate our new lemma generation techniques and strategies for rewriting induction.

Another question is how to choose which lemma generation technique to apply, and on which rules,
or which side of an equation? For this, one could look at properties of the LCTRS: is there recursion or
tail-recursion? Is there single or double recursion? How many ‘base cases’ are there? How many variables
are in the recursion and how do they decrease?

Finally, we would like to explore different contexts for this methodology, for example for non-
terminating programs / term rewriting systems (such as ongoing processes).

Acknowledgements We thank Femke van Raamsdonk and Jörg Endrullis for help and supervision.

References
[1] C. Kop and N. Nishida, “Term rewriting with logical constraints,” in Proc. FroCoS, pp. 343–358, 2013.
[2] C. Fuhs, C. Kop, and N. Nishida, “Verifying procedural programs via constrained rewriting induction,” TOCL,

vol. 18, no. 2, pp. 1–50, 2017.
[3] A. Bundy, D. Basin, D. Hutter, and A. Ireland, Rippling: meta-level guidance for mathematical reasoning,

vol. 56. Cambridge University Press, 2005.
[4] D. Kapur and M. Subramaniam, “Lemma discovery in automating induction,” in Proc. CADE, pp. 538–552,

1996.
[5] D. Kapur and N. A. Sakhanenko, “Automatic generation of generalization lemmas for proving properties of

tail-recursive definitions,” in Proc. TPHOLs, pp. 136–154, 2003.
[6] N. Nakabayashi, N. Nishida, K. Kusakari, T. Sakabe, and M. Sakai, “Lemma generation method in rewriting

induction for constrained term rewriting systems,” Computer Software, vol. 28, no. 1, pp. 173–189, 2010.
[7] P. Urso and E. Kounalis, “Sound generalizations in mathematical induction,” TCS, vol. 323, no. 1-3, pp. 443–471,

2004.
[8] T. Walsh, “A divergence critic for inductive proof,” JAIR, vol. 4, pp. 209–235, 1996.

	Introduction
	Preliminaries
	Logically Constrained Term Rewriting
	Rewriting Induction

	Generalization
	Initialization generalization fuhs2017verifying

	Alternative generalization ideas
	Dropping constraints
	Recognizing more initializations
	Extending the rewrite system

	Conclusion

