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Rewriting Induction (RI) is a method for inductive theorem proving in equational reasoning, in-
troduced in 1990 by Reddy. Using Logically Constrained Simply-typed Term Rewriting Systems
(LCSTRSs) makes it into an interesting tool for program verification (in particular program equiv-
alence), as LCSTRSs closely describe real-life programming. Correctness of RI depends on well-
founded induction, and one of the core obstacles for obtaining a practically useful proof system is
to find suitable well-founded orderings automatically. Using naive approaches, induction hypotheses
must be oriented within the well-founded ordering, leading to very strong ordering requirements,
which in turn, severely limits the proof capacity of RI. Here, we introduce bounded RI: an adaption
of RI for LCSTRSs where such requirements are being minimized.

1 Introduction

Rewriting Induction (RI) is a proof system for showing equations s≈ t to be inductive theorems, meaning
that every variable-free instance of s≈ t is related by ↔∗R : the reflexive, transitive closure of↔R =→R
∪←R (and with R the set of rewrite rules that completely describe the reduction behavior of s and t).
RI was introduced by Reddy [10], as a method to validate inductive proof procedures based on Knuth-
Bendix completion. Classically, it is used in equational reasoning to prove properties of inductively
defined mathematical structures such as natural numbers or lists. For example, one could use RI to
prove an equation add(x,y)≈ add(y,x), expressing commutativity of addition on the natural numbers. It
was adapted to constrained rewriting [6], and recently to higher-order constrained rewriting [9]. These
formalisms closely relate to real-life programming and therefore have a natural place in the larger toolbox
for program verification. Programs are represented by term rewriting systems, and inductive theorems
provide an interpretation of program equivalence.

Why constrained rewriting? Using RI for program equivalence somewhat differs from the standard
setting in equational reasoning where, for example, the Peano axioms are used to prove statements about
the natural numbers. In our case, we are not so much interested in proving properties about the natural
numbers themselves, but about programs that operate on them. Of course, we can express the Peano
axioms as rewrite rules and use this to define programs on natural numbers. However, the disadvantage
of this approach is that we also have to define add and mul to represent + and ∗. In this way, studying
program equivalence becomes a cumbersome experience, getting involved in complicated interactions
between add, mul and the program definition itself. Like in real-life programming, we want to treat the
natural numbers as being given for free. With standard term rewriting this is not possible.

Constrained rewriting provides a solution here, as they natively support primitive data structures,
such as natural numbers and integers. This makes it possible to distinguish between the actual program
definition (represented by rewrite rules), and underlying data structures with their operators (represented
by distinguished terms with pre-determined semantical interpretations). This allows us to shift some of
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the proof-burden from the rewriting side to the semantical side (which e.g. could be handled by an SMT
solver).

In constrained rewriting, rewrite rules are of the shape s→ t [ϕ] where the boolean constraint ϕ acts
as a guard, managing control flow over primitive data structures (such as the natural numbers). Here, we
will consider Logically Constrained Simply-typed Term Rewriting Systems (LCSTRSs), which concerns
applicative higher-order rewriting (without λ abstractions) and first-order constraints [8]. In particular,
we will build on our earlier work [9] where we defined RI for LCSTRSs.

Rewriting Induction and Termination The name Rewriting Induction refers to the principle that for
a terminating rewrite system R, the rewrite relation →+

R defines a well-founded order on the set of all
terms, and therefore can be used for proofs by well-founded induction. In many cases, however, we will
need a well-founded order ≻ which is strictly larger than →+

R. This is because the role of induction
hypothesis in RI is also taken by equations, which must be applied like a rewrite rule, in a decreasing
direction w.r.t.≻. That is, we are only allowed to use an induction hypothesis s≈ t if s≻ t or t ≻ s holds.
Consequently, termination ofR itself is not enough, since equations are not usually orientable by→+

R.
One solution to this problem is to for instance let≻=→+

R∪{s→t}; or, in the case of multiple induction
hypothesis, to collect all the corresponding rewrite rules in a setH and use≻=→+

R∪H. However, doing
this leaves us with a proof obligation to show termination of R∪H. Even if we already know that R
is terminating, it may not be easy or even possible to prove that the same holds for R∪H (think for
instance of an induction hypothesis add(x,y)≈ add(y,x), which is not orientable in either direction). In
such a situation a RI proof might get stuck.

Our goal is to redefine RI for LCSTRSs in such a way that we minimize the termination require-
ments. As already observed by Reddy [10], we do not necessarily need every induction hypothesis being
oriented, as long if we can guarantee that an induction rule s→ t is only applied to terms ≻-smaller than
s. For this, it is not required to choose the well-founded ordering ≻ =→+

R∪H. Reddy proposed to use
modulo rewriting to build a well-founded ≻ which may not need to contain all induction rules. This ap-
proach was investigated by Aoto, who introduced several extensions of RI for first-order unconstrained
rewriting [1, 2, 3]. Here we will follow a strategy along the same idea: by redefining RI we can construct
a well-founded relation ≻ during the RI process, aiming to keep it as small as possible.

2 Preliminaries

2.1 Logically Constrained Simply Typed Rewriting Systems

Types and Terms Assume a set of sorts (base types) S; the set T of types is defined by the grammar
T ::=S | T →T . Here,→ is right-associative, so all types may be written as type1→ . . .→ typem→ sort
with m≥ 0. We also assume a subset Stheory ⊆S of theory sorts (e.g., int and bool), and define the theory
types by Ttheory ::= Stheory | Stheory→Ttheory. Each theory sort ι ∈ Stheory is associated with a non-empty
set Iι (e.g., Iint = Z, the set of all integers), and we let Iι→σ be the set of functions from Iι to Iσ .

We assume a signature Σ of function symbols and a disjoint set V of variables, and a function typeof
from Σ∪V to T ; we require that there are infinitely many variables of all types. The set of terms T (Σ,V)
over Σ and V are the expressions in T – defined by the grammar T ::= Σ | V | T T – that are well-typed:
if s :: σ → τ and t :: σ then s t :: τ , and a :: typeof (a) for a ∈ Σ∪V .

Application is left-associative, which allows all terms to be written in a form a t1 · · · tn with a ∈ Σ∪V
and n≥ 0. Writing t = a t1 · · · tn, we define head(t) = a. For a term t, let Var(t) be the set of variables in
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t. A term t is ground if Var(t) = /0. We say that a type is inhabited if there are ground terms of that type.
We assume that Σ is the disjoint union Σtheory⊎Σterms, where typeof (f) ∈ Ttheory for all f ∈ Σtheory. Each
f ∈ Σtheory has an interpretation [[f]] ∈ Itypeof (f). For example, a theory symbol ∗ :: int→ int→ int may
be interpreted as multiplication on Z. We use infix notation for the binary symbols, or use [f] for prefix
or partially applied notation (e.g., [+] x y and x+ y are the same).

Symbols in Σterms do not have an interpretation since their behavior will be defined through the
rewriting system. Values are theory symbols of base type, i.e. Val = {v ∈ Σtheory | typeof (v) ∈ Stheory}.
We assume there is exactly one value for each element of Iι (ι ∈ Stheory). Elements of T (Σtheory,V) are
called theory terms. For ground theory terms, we define [[s t]] = [[s]]([[t]]). We fix a theory sort bool with
Ibool = {⊤,⊥}. A constraint is a theory term s :: bool, such that typeof (x) ∈ Stheory for all x ∈Var(s).

Example 1 In this text we always use Stheory = {int,bool} and Σtheory = {+,−,∗,<,≤,>,≥,=,∧,∨,¬,
true,false}∪ {n | n ∈ Z}, with +,−,∗ :: int→ int→ int, <,≤,>,≥,=:: int→ int→ bool, ∧,∨ ::
bool→ bool→ bool, ¬ :: bool→ bool, true,false :: bool and n :: int. We let Iint = Z, Ibool = {⊤,⊥}
and interpret all symbols as expected. The values are true,false and all n. Theory terms are for
instance x+ 3, true and 7 ∗ 0. The latter two are ground. We have [[7 ∗ 0]] = 0. Let x ∈ V of type int.
Then theory term x > 0 is a constraint, but the theory term ( f x)> 0 with f ∈ V of type int→ int is not
(since typeof ( f ) /∈ Stheory), nor is [>] 0 :: int→ bool (since constraints must have type bool).

Substitutions, contexts and subterms A substitution is a type-preserving mapping γ : V → T (Σ,V).
The domain of a substitution is defined as dom(γ) = {x ∈ V | γ(x) ̸= x}, and the image of a substitution
as im(γ) = {γ(x) | x ∈ dom(γ)}. A substitution on finite domain {x1, . . . ,xn} is often denoted [x1 :=
s1, . . . ,xn := sn]. A substitution γ is extended to a function s 7→ sγ on terms by placewise substituting
variables in the term by their image: (i) tγ = t if t ∈ Σ, (ii) tγ = γ(t) if t ∈V , and (iii) (t0 t1)γ = (t0γ) (t1γ).
If M ⊆ T (Σ,V) then γ(M) denotes the set {tγ | t ∈M}. A ground substitution is a substitution γ such that
for all x ∈ dom(γ) of an inhabited type, γ(x) is a ground term. A substitution γ respects a constraint ϕ

if γ(Var(ϕ))⊆ Val and [[ϕγ]] =⊤. We say that a constraint ϕ is satisfiable if there exists a substitution
γ that respects ϕ , and is valid if [[ϕγ]] = ⊤ for all ground substitutions γ that map each x ∈ Var(ϕ) to
values. Let □1, . . . ,□n be fresh, typed constants (n ≥ 1). A context C[□1, . . . ,□n] (or just: C) is a term
in T (Σ∪{□1, . . . ,□n},V) in which each □i occurs exactly once. The term obtained from C by replacing
each □i by a term ti of the same type is denoted by C[t1, . . . , tn]. We say that t is a subterm of s, notation
s� t, if either s = t or s = a s1 · · ·sn and si � t for some i. We say that t is a strict subterm of s, notation
s� t, if s� t and s ̸= t. (Here we deviate from the typical norm in higher-order rewriting, since we do
not for instance include s as a subterm of a term s t. This is deliberate, because we are only interested in
“maximally applied” subterms.)

Rewrite rules and reduction relation A rewrite rule is an expression ℓ→ r [ϕ]. Here ℓ and r are
terms of the same type, ℓ has a form f ℓ1 · · ·ℓk with f ∈ Σ and k ≥ 0, ϕ is a constraint and Var(r) ⊆
Var(ℓ)∪Var(ϕ). If ϕ = true, we just write ℓ→ r. In what follows we fix a signature Σ. We define the
set of calculation rules as: Rcalc = {f x1 · · ·xm → y [y = f x1 · · ·xm] | f ∈ Σtheory \Val with typeof (f) =
ι1→ . . .→ ιm→ κ}. We furthermore assume a set of rewrite rulesR satisfying the following properties

• for all ℓ→ r [ϕ] ∈R: ℓ is not a theory term (such rules are contained inRcalc)

• for all f ℓ1 · · ·ℓk→ r [ϕ], g ℓ′1 · · ·ℓ′n→ r′ [ψ] ∈R∪Rcalc: if f = g then k = n

The latter restriction blocks us for instance from having both a rule append nil→ id and a rule
append (cons x y) z→ cons x (append y z). While such rules would normally be allowed in higher-order
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rewriting, we need to impose this limitation for the notion of quasi-reductivity to make sense, as discussed
in [9]. This does not really limit expressivity, since we can use a strategy similar to η-expansion, padding
both sides of a rule with variables, e.g., replacing the first rule above by append nil x→ id x.

Elements of D = {f ∈ Σ | ∃f ℓ1 · · ·ℓk → r [ϕ] ∈ R} are called defined symbols. Elements of C =
Val∪(Σterms\D) are called constructors. Elements of Σcalc =Σtheory\Val are called calculation symbols.

For every defined or calculation symbol f :: σ1→ . . .→ σm→ ι with ι ∈ S, we let ar(f)≤ m be the
number such that for every rule of the form f ℓ1 · · ·ℓk → r [ϕ] in R∪Rcalc we have ar(f) = k. (By the
restrictions above, this number exists.) For all constructors f ∈ C, we define ar(f) = ∞.

The reduction relation→R is defined by:

C[lγ]→R C[rγ] if ℓ→ r [ϕ] ∈R∪Rcalc and γ respects ϕ

Note that by definition of context, reductions may occur at the head of an application. For example, if
append nil→ id ∈R, then we could reduce append nil s →R id s.

LCSTRS An LCSTRS is a pair (T (Σ,V),→R) generated by (S,Stheory,Σterms,Σtheory,V, typeof ,I, [[·]],
R). We often refer to an LCSTRS by L= (Σ,R), or justR, leaving the rest implicit.

We say L= (Σ,R) is terminating if there is no infinite reduction sequence s0→R s1→R s2→R . . .
for any s0 ∈ T (Σ,V). A term s has normal form t if s→∗R t and t cannot be reduced. We say L is
weakly normalising if every term has at least one normal form. Note that termination implies weak
normalisation, but not the other way around.

Example 2 LetR consist of the following rules

(R1) recdown f n i a→ a [i < n] (R2) recdown f n i a→ f i (recdown f n (i−1) a) [i≥ n]

(R3) tailup f i m a→ a [i > m] (R4) tailup f i m a→ tailup f (i+1) m ( f i a) [i≤ m]

The intuition is that recdown and tailup define recursors that can be used to describe a class of simple real-
life programs which compute a return-value using a recursive or tail-recursive procedure. More specifi-
cally, we consider programs that use a loop index i, being decreased/increased by 1 during each recursive
call, until i reaches a value below lower bound n or above upper bound m. For example, we can represent
the following two programs (both computing the factorial function x 7→ ∏

x
i=1 when restricting to non-

negative integers)
int factRec(int x){

if (x >= 1)
return(x*factRec(x-1));

else
return 1; }

int factTail(int x){
int a = 1; int i = 1;
while (i<=x){

a = i*a; i = i+1;}
return a; }

with recdown and tailup by introducing rewrite rules factRec x→ recdown [∗] 1 x 1 (loop index x and
lower bound 1) and factTail x→ tailup [∗] 1 x 1 (loop index 1 and upper bound x).

In general, we can think about recdown [∗] n i a to compute (∏i
k=n k) · a and we can think about

tailup [∗] j m b to compute (∏m
k= j k) ·b. Hence, all ground instances of recdown [∗] n i a and tailup [∗] n i a

produce the same result. We will prove this with bounded rewriting induction in subsection 3.2; not just
for f = ∗, but for arbitrary function f :: int→ int→ int.

Considering R = {(R1), (R2), (R3), (R4)} we have S = Stheory = {int,bool}, Σterms = {recdown,
tailup :: (int→ int→ int)→ int→ int→ int→ int} and Σtheory as in Example 1. Furthermore, Σcalc =
{+,−,∗,<,≤,>,≥,=,∧,∨}, D = Σterms and C = Val = {true,false} ∪ {n | n ∈ Z}. Substitution
γ = [i := 1, n := 0] induces a reduction recdown f 0 1 a→R f 1 (recdown f 0 (1− 1) a)→Rcalc
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f 1 (recdown f 0 0 a)→R f 1 ( f 0 (recdown f 0 (0−1) a))→Rcalc f 1 ( f 0 (recdown f 0 (−1) a))
→R f 1 ( f 0 a). It is easy to check that (tailup f n i a)γ = tailup f 0 1 a also reduces to f 1 ( f 0 a).

We will limit our interest to quasi-reductive LCSTRSs (defined below), which is needed to guarantee
correctness of RI. Intuitively, this property expresses that pattern matching on ground terms is exhaustive
(i.e. there are no missing reduction cases). For example, the rewrite system R = {(R1), (R2)} is quasi-
reductive because i < n and i ≥ n together cover all ground instances of recdown f n i a. But if we, for
example, replace (R2) by recdown f n i a→ f i (recdown f n (i−1) a) [i > n] then it is not, as we are
missing all ground reduction cases for i = n (for example recdown [∗] 0 0 0 does not reduce anymore).

For first-order the LCTRSs, quasi-reductivity is achieved by demanding that there are no other ground
normal forms than the ground constructor terms T (C, /0). For higher-order LCSTRSs, however, this
approach does not work as we can have ground normal forms with partially applied defined symbols (for
example, recdown [+]). Hence, the notion of constructor terms is generalized to the higher-order setting.

Quasi-reductivity Let L = (Σ,R) be some LCSTRS. The semi-constructor terms over L, notation
SCT L, are defined by (i). V ⊆ SCT L, (ii). if f ∈ Σ with f :: σ1 → . . .→ σm → ι , ι ∈ S and s1 ::
σ1, . . . ,sn :: σn ∈ SCT L with n≤ m, then f s1 · · ·sn ∈ SCT L if n < ar(f).

Semi-constructor terms are always normal forms. Furthermore, as ar(f)=∞ for f ∈C, the constructor
terms T (C,V) are contained in SCT L. Ground semi-constructor terms SCT /0

L are the terms built without
(i). A ground semi-constructor substitution (gsc substitution) is a substitution such that im(γ)⊆ SCT /0

L.
L is quasi-reductive if for every t ∈ T (Σ, /0) we have t ∈ SCT /0

L or t reduces with→R. Put differently,
the only ground normal forms are semi-constructor terms. Weak normalization and quasi-reductivity
together ensure that every ground term reduces to a semi-constructor term. Note that, if s1, . . . ,sn are
ground normal forms and f ∈ Σ, then f s1 · · ·sn is a ground normal form if and only if n < ar(f).

Equations and inductive theorems An equation is a triple s≈ t [ϕ] with typeof (s) = typeof (t) and ϕ

a constraint, such that all variables in Var(s)∪Var(t)∪Var(ϕ) have an inhabited type. If ϕ equals true,
we will simply write the equation as s≈ t. A substitution γ respects s≈ t [ϕ] if γ respects ϕ . An equation
s ≈ t [ϕ] is an inductive theorem (aka ground convertible) if sγ ↔∗R tγ for every ground substitution γ

that respects ϕ . Here↔R =→R ∪←R, and↔∗R is its transitive, reflexive closure.

Example 3 The LCSTRS from Example 2 admits an equation recdown f n i a≈ tailup f n i a. Since it
has constraint true, any substitution respects it. In subsection 3.2 we will prove that this equation is an
inductive theorem, meaning that (recdown f n i a)γ ↔∗R (tailup f n i a)γ for any ground substitution γ .

3 Rewriting Induction

RI was introduced [10] as a deduction system for proving inductive theorems, using unconstrained first-
order term rewriting systems. Since then, many variations on the system have appeared (e.g., [1, 2, 3,
5, 6, 9]), including a version for LCSTRSs. All are based on well-founded induction, using some well-
founded relation ≻. Some [10, 5, 6, 9] use a fixed strategy to construct a terminating rewrite system
A ⊇ R and then choose ≻ = →+

A . However, as explained in the introduction, this approach leads to
heavy termination requirements, because these strategies include all induction hypothesis into A.

To improve on this, some work has been done [1, 2, 3] employing a well-founded relation ≻ that
satisfies certain requirements (like monotonicity and stability, but also ground totality). This relation
may either be fixed beforehand (e.g., the lexicographic path ordering), or constructed during or after the
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proof, as the proof process essentially accumulates termination requirements. The RI system is designed
to keep termination requirements as mild as possible, for example by allowing reduction steps with an
induction hypothesis to be oriented using a second relation ⪰ rather than the default ≻. However, this
approach also imposes more bureaucracy, since derivation rules rely on several steps being done at once
– for example, by reasoning modulo the set of induction hypotheses. This makes it quite hard to use
especially when the relation ≻ is not fixed beforehand but rather constructed on the fly.

Here, we aim to combine the best of both worlds. We try to reduce termination requirements using
a pair (≻,⪰), which may either be fixed in advance, or constructed as part of the proof process. Im-
portantly, we do not impose the ground totality requirement (which would be extremely restrictive in
higher-order rewriting!), and thus allow for ≻ to for instance be a relation (→A ∪�)+, or a construction
based on dependency pairs. We avoid the bureaucracy of combining steps by introducing the notion of
an equation context, which keeps track of an extra pair of terms to be used for ordering requirements.

3.1 Equation contexts and proof states

RI is a deduction system on proof states, which are pairs of the shape (E ,H). Intuitively (and following
the existing literature), E is a set of equations, describing all proof goals, and H is the set of induction
hypotheses that have been assumed. At the start E consists of all equations that we want to prove to be
inductive theorems, andH= /0. With a deduction rule we may transform a proof state (E ,H) into another
proof state (E ′,H′). This is denoted as (E ,H) ⊢ (E ′,H′). We write ⊢∗ for the reflexive, transitive closure
of ⊢. Correctness of RI is guaranteed by the following principle: “If (E ,H) ⊢∗ ( /0,H) for some set H,
then every equation in E is an inductive theorem” [6, 9]. Intuitively, this reads as: if we can remove every
proof obligation (making E empty) then every equation in E is an inductive theorem.

In Bounded RI, we will deviate from this setting in one respect: instead of letting E be a set of
equations, we will use a set of equation contexts.

3.2 Bounded Rewriting Induction

We will now introduce bounded rewriting induction, considering proof states containing only bounded
equation contexts. For this, we assume a bounding pair:

Definition 1 (Bounding Pair) A bounding pair for an LCSTRS L = (Σ,R) is a pair (≻,⪰) with ≻ a
well-founded partial ordering on T (Σ, /0) (that is, ≻ is a transitive, anti-symmetric, irreflexive and well-
founded relation) and ⪰ a quasi-order on T (Σ, /0) (that is, ⪰ is a transitive and reflexive relation) such
that ≻ ⊆ ⪰, ≻ · ⪰ ⊆ ≻, ⪰ · ≻ ⊆ ≻ and such that s⪰ t whenever s→R t or s� t.

A bounding pair is extended to non-ground terms with constraint: we define s≻ t [ψ] iff sγ ≻ tγ for
all ground substitutions γ that respect ψ . (s⪰ t [ψ] is defined similarly)

If L is terminating we can choose ≻= (→R ∪ �)+ and ⪰ the reflexive closure of ≻. But there are other
ways to choose a bounding pair, for example monotonic algebras or recursive path orderings.

Definition 2 (Equation context) Let • be a fresh symbol. We define • ≻ s and • ⪰ s for all s ∈ T (Σ,V),
and also • ⪰ •. An equation context (ς ; s ≈ t ; τ) [ψ] is a tuple of two elements ς ,τ ∈ T (Σ,V)∪{•},
two terms s, t and a constraint ψ . We write (ς ; s ≃ t ; τ) [ψ] (so with ≃ instead of ≈) to denote either
an equation context (ς ; s≈ t ; τ) [ψ] or an equation context (τ ; t ≈ s ; ς) [ψ].

A bounded equation context is an equation context such that both ς ⪰ s [ψ] and τ ⪰ t [ψ]. A
substitution γ respects an equation context (ς ; s≈ t ; τ) [ψ] if γ respects ψ .
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An equation context couples an equation with a bound on the induction: we implicitly work with the
induction hypothesis “all ground instances of an equation in H that are strictly smaller than the current
instance of ς ≈ τ [ψ] are convertible”. For example, in an equivalence proof of two implementations of
the factorial function, we may encounter induction hypothesis fact1 n ≈ fact2 n [n ≥ 0], and equation
context (fact1 n ; fact1 k ≈ fact2 k ; fact2 n) [n > 0∧ n = k+ 1]. We can apply the instance fact1 k ≈
fact2 k [k ≥ 0] of the induction hypothesis to fact1 k ≈ fact2 k [n > 0∧n = k+1] because

(1). n > 0∧ n = k + 1 implies k ≥ 0, and (2). both fact1 n ≻ fact1 k [n > 0∧ n = k + 1] and
fact2 n≻ fact2 k [n > 0∧n = k+1] hold for an appropriately chosen ≻.
Definition 3 (Proof state) (E ,H) is a proof state if E a set of equation contexts andH a set of equations.

From Definition 2 we can see that • behaves as an infinity term with respect to ≻ and ⪰. As expressed
by Theorem 1: when using bounded RI to prove a set of equations, we pour them into a set E of equation
contexts using infinite bounds ς = τ= •. This is not a problem, because we always start with the proof
state (E , /0), so there are no induction hypothesis available yet. As soon we add an induction hypothesis
to the proof state, the bounds are correctly getting lowered, as dictated by Figure 1.(Induct).
Theorem 1 (Correctness of Bounded RI) Let L be a weakly normalizing, quasi-reductive LCSTRS; let
A be a set of equations; and let E be the set of equation contexts {(• ; s ≈ t ; •) [ψ] | s ≈ t [ψ] ∈ A}.
Let (≻,⪰) be some bounding pair, such that (E , /0) ⊢∗ ( /0,H), for some H using the derivation rules in
Figure 1. Then every equation in A is an inductive theorem.

The deduction rules for bounded rewriting induction are provided in Figure 1, and explained in detail
below via a running example. This figure uses one particular new notation ψ |=δ ϕ , defined as follows:
Definition 4 (|=δ ) Let δ be a substitution and ϕ , ψ be constraints. We write ψ |=δ ϕ if δ (Var(ϕ)) ⊆
Val∪Var(ψ), and ψ =⇒ ϕδ is a valid constraint.

We will now elaborate on the rules of Figure 1, and illustrate their use through examples. To start,
we will use the LCSTRS from Example 2 applied on the equation recdown f n i a ≈ tailup f n i a.
Following Theorem 1, we will show that there is a setH such that

(E1, /0) ⊢∗ ( /0,H) with E1 := {(• ; recdown f n i a≈ tailup f n i a ; •) [true]}

We use the proof process to accumulate requirements on ≻ to be used, but precommit to a bounding
pair such that ⪰ is the reflexive closure of ≻. We also assume that s ≻ t whenever s→R t or s� t. To
guarantee a well-defined proof system on bounded equation contexts we should demonstrate (which we
will not do here) that all deduction rules preserve the following property

(⋆⋆) : For every equation context (ς ; s≈ t ; τ) [ψ]

either ς = s or ς ≻ s [ψ], and also either τ= t or τ≻ t [ψ].

(Induct) This deduction rule starts an induction proof. From a proof-technical point of view two things
happen. First, and most importantly for the proof progress, the current equation is added to H, making
it available for later application of (Hypothesis) or (H-Delete). Second, the bounding terms ς ,τ are
replaced by s, t. This ensures that, when an induction hypothesis s ≈ t [ψ] is applied, it is only on
equations that are strictly smaller than s≈ t [ψ].

In our running example, we use (Induct) to obtain (E1, /0) ⊢ (E2,H2) where

E2 = {(ς2 ; recdown f n i a≈ tailup f n i a ; τ2) [true]} H2 = {recdown f n i a≈ tailup f n i a}

We recall ς2 = recdown f n i a and τ2 = tailup f n i a for later usage in the RI process.
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Figure 1: Derivation rules for bounded rewriting induction, given a bounding pair (≻,⪰).

(Simplify)

(E ⊎{(ς ; C[ℓδ ]≃ t ; τ) [ψ]},H)
ℓ→ r [ϕ] ∈R∪Rcalc and ψ |=δ

ϕ

(E ∪{(ς ; C[rδ ]≈ t ; τ) [ψ]},H)

(Case)
(E ⊎{(ς ; s≈ t ; τ) [ψ]},H) C a cover set of s≈ t [ψ]

(see Definition 5)(E ∪{(ςδ ; sδ ≈ tδ ; τδ ) [ψδ ∧ϕ] | (δ ,ϕ) ∈ C},H)

(Delete)
(E ⊎{(ς ; s≈ t ; τ) [ψ]},H)

ψ unsatisfiable, or s = t
(E ,H)

(Semi-constructor)
(E ⊎{(ς ; f s1 · · ·sn ≈ f t1 · · · tn ; τ) [ψ]},H)

n > 0 and ( f ∈ V or n < ar( f ))
(E ∪{(ς ; si ≈ ti ; τ) [ψ] | 1≤ i≤ n} ,H)

(Induct)
(E ⊎{(ς ; s≈ t ; τ) [ψ]},H)

(E ∪{(s ; s≈ t ; t) [ψ]},H∪{s≈ t [ψ]})

(Hypothesis)
(E ⊎{(ς ; C[ℓδ ]≃ t ; τ) [ψ]},H) ℓ≃ r [ϕ] ∈H and ψ |=δ

ϕ and

ς ≻ ℓδ [ψ] and ς ≻ rδ [ψ] and ς ⪰C[rδ ] [ψ](E ∪{(ς ; C[rδ ]≈ t ; τ) [ψ]},H)

(H-Delete)
(E ⊎{(ς ; C[ℓδ ]≃C[rδ ] ; τ) [ψ]},H) ℓ≃ r [ϕ] ∈H and ψ |=δ

ϕ and

ς ≻ ℓδ [ψ] or τ≻ rδ [ψ](E ,H)

(Generalize)/(Alter)
(E ⊎{(ς ; s≈ t ; τ) [ψ]},H) (ς ′ ; s′ ≈ t ′ ; τ′) [ϕ] generalizes/alters (ς ; s≈ t ; τ) [ψ]

(see Definition 6), and ς
′ ⪰ s′ [ϕ] and τ′ ⪰ t ′ [ϕ](E ∪{(ς ′ ; s′ ≈ t ′ ; τ′) [ϕ]},H)

(Postulate)
(E ,H)

(E ∪{(• ; s≈ t ; •) [ψ]},H)
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(Case) Comparing E2 to R, which of the rules should we apply? As we will see in (Simplify), this
requires information about how the variables i,n in the equation are instantiated, since we have to dis-
tinguish between the cases i < n and i ≥ n. This is where (Case) can help us, splitting an equation into
multiple cases. Of course, we have to make sure that the cases together cover the original equation.

Definition 5 (Cover set) A cover set of s ≈ t [ψ] is a set C of pairs (δ ,ϕ), with δ a substitution and ϕ

a constraint, such that for every gsc substitution γ respecting s≈ t [ψ], there exists (δ ,ϕ) ∈ C such that
sγ ≈ tγ [ψγ] is an instance of sδ ≈ tδ [ψδ ∧ϕ]. (That is, there is a substitution σ that respects ψδ ∧ϕ

such that sδσ = sγ and tδσ = tγ .)

Continuing our example: the only gsc terms of type int are values. Hence, C = {([], i< n), ([], i≥ n)}
is a cover set of recdown f n i a≈ tailup f n i a. Using (Case), we obtain (E2,H2) ⊢ (E3,H2) with E3 ={
(ς2 ; recdown f n i a≈ tailup f n i a ; τ2) [i < n], (ς2 ; recdown f n i a≈ tailup f n i a ; τ2) [i≥ n]

}
The bounding terms ς2,τ2 are unchanged because the substitutions in the cover set are both empty.

(Simplify) With (Simplify) we use a rule ℓ→ r [ϕ] ∈ R∪Rcalc to rewrite an equation C[ℓδ ] ≃ t [ψ].
The requirement ψ |=δ ϕ makes sure that the δ -instance of ℓ→ r [ϕ] is actually applicable. The bounding
terms are not affected by the reduction.

Continuing our example, the first equation in E3 has constraint i < n, so we apply (Simplify) on both
sides of this equation, using (R1) and (R3). For the second equation, we also apply (Simplify) to both
sides, using (R2) and (R4). We obtain (E3,H2) ⊢∗ (E4,H2) with

E4 =

{
(ς2 ; a≈ a ; τ2) [i < n]

(ς2 ; f i (recdown f n (i−1) a)≈ tailup f (n+1) i ( f n a) ; τ2) [i≥ n]

}

(Delete) This deduction rule allows us to remove an equation that has an unsatisfiable constraint, or
whose two sides are syntactically equal. In our example, we use (Delete) and obtain (E4,H2) ⊢ (E5,H2)

E5 = {(ς2 ; f i (recdown f n (i−1) a)≈ tailup f (n+1) i ( f n a) ; τ2) [i≥ n]}

(Alter) If is often useful to rewrite an equation (context) to another that might be syntactically different,
but has the same ground instances (or at least: the same ground semi-constructor instances). Indeed, this
may even be necessary, for instance to support the application of a rewrite rule through (Simplify).

Definition 6 We say that an equation context (ς ′ ; s′ ≈ t ′ ; τ′) [ϕ] generalizes (ς ; s ≈ t ; τ) [ψ] if for
every gsc substitution γ that respects (ς ; s ≈ t ; τ) [ψ] there is a substitution δ that respects (ς ′ ; s′ ≈
t ′ ; τ′) [ϕ] such that sγ = s′δ and tγ = t ′δ , and ςγ ⪰ ς ′δ and τγ ⪰ τ′δ . It alters (ς ; s≈ t ; τ) [ψ] if both
(ς ′ ; s′ ≈ t ′ ; τ′) [ϕ] generalizes (ς ; s≈ t ; τ) [ψ], and (ς ; s≈ t ; τ) [ψ] generalizes (ς ′ ; s′ ≈ t ′ ; τ′) [ϕ].

There are many ways to use the (Alter) rule, but following the discussion in [9], we will particularly
apply it in two ways: (i). Replacing a constraint by an equi-satisfiable one (ii). Replacing variables by
equivalent variables or values.

Continuing our example, we apply (Alter) with case (i) to obtain (E5,H2) ⊢ (E6,H2), with

E6 =
{
(ς2 ; f i (recdown f n (i−1) a)≈ tailup f (n+1) i ( f n a) ; τ2) [i′ = i−1∧n′ = n+1∧ i≥ n]

}
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To allow this rule to be applied, we must have ς2 ⪰ f i (recdown f n (i−1) a) [ϕ] and τ2 ⪰ tailup f (n+
1) i ( f n a) [ϕ] where ϕ is the constraint i′ = i− 1∧ n′ = n+ 1∧ i ≥ n. But this follows immediately
from (⋆⋆): if ς ≻ s [i≥ n] then also ς ≻ s [i′ = i−1∧n′ = n+1∧ i≥ n], and similar for τ≻ t [i≥ n].

Our previous (Alter) step allows us to continue on the example by two successive (Simplify) steps,
using calculation rules i−1→ i′ [i′ = i−1] and n+1→ n′ [n′ = n+1], to obtain (E7,H2), with

E7 =
{
(ς2 ; f i (recdown f n i′ a)≈ tailup f n′ i ( f n a) ; τ2) [i′ = i−1∧n′ = n+1∧ i≥ n]

}
(Hypothesis) Similar to (Simplify), we can use an induction hypothesis to reduce either side of an
equation. Here, finally, the bounding terms ς ,τ come into play, as we need to make sure that we have a
decrease of some kind, to apply induction.

We apply (Hypothesis) on the lhs of E7 with the induction hypothesis from H2 in the direction
recdown f n i a → tailup f n i a, with substitution [i := i′]. We obtain (E7,H2) ⊢ (E8,H2) with

E8 =
{
(ς2 ; f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) ; τ2) [i′ = i−1∧n′ = n+1∧ i≥ n]

}
To be allowed to apply this deduction rule, we must show that the following≻ requirements are satisfied:

recdown f n i a ≻ recdown f n i′ a [i′ = i−1∧n′ = n+1∧ i≥ n]
recdown f n i a ≻ tailup f n i′ a [i′ = i−1∧n′ = n+1∧ i≥ n]

(REQ1) recdown f n i a ⪰ f i (tailup f n i′ a) [i′ = i−1∧n′ = n+1∧ i≥ n]

The first of these is satisfied by property (⋆⋆). The second is an immediate consequence of the third,
since f i (tailup f n i′ a)� tailup f n i′ a and we have committed to let � be included in ≻. For the third,
we remember that (REQ1) still needs to be satisfied. Since we have set ⪰ as the reflexive closure of ≻,
this property is only satisfied if recdown f n i a≻ f i (tailup f n i′ a) [i′ = i−1∧n′ = n+1∧ i≥ n].

Let ς9 = f i (tailup f n i′ a) and τ9 = tailup f n′ i ( f n a). We apply (Induct) to (E8,H2) and obtain

E9 =
{
(ς9 ; f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) ; τ9) [i′ = i−1∧n′ = n+1∧ i≥ n]

}
H9 =H2∪{ f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) [i′ = i−1∧n′ = n+1∧ i≥ n]}

Next, we use (Case) once more, splitting up the constraint E9 into i = n and i > n, giving (E10,H9):

E10 =

{
(ς9 ; f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) ; τ9) [i′ = i−1∧n′ = n+1∧ i = n]

(ς9 ; f i (tailup f n i′ a)≈ tailup f n′ i ( f n a) ; τ9) [i′ = i−1∧n′ = n+1∧ i > n]

}
Observing that i′ = i− 1∧ n′ = n+ 1∧ i = n implies both n > i′ and n′ > i, and that i′ = i− 1∧ n′ =
n+ 1∧ i > n implies both n ≤ i′ and n′ ≤ i, we use (Simplify) on both sides of the first equation with
(R3) and on both sides of the second equation with (R4) respectively, to deduce (E10,H9) ⊢∗ (E11,H9):

E11 =


(ς9 ; f i a≈ f n a ; τ9) [i′ = i−1∧n′ = n+1∧ i = n]
(ς9 ; f i (tailup f (n+1) i′ ( f n a))≈ tailup f (n′+1) i ( f n′ ( f n a)) ; τ9)

[i′ = i−1∧n′ = n+1∧ i > n]


The first equation above does not satisfy the requirements for (Delete), even though the i = n part of the
constraint makes it look very delete-worthy. With (Alter) (case (ii)), we replace the first equation context
by (ς9 ; f n a≈ f n a ; τ9) [i′ = i−1∧n′ = n+1∧ i = n], which may immediately be deleted. We also
use (Alter) (now case (i)) on the second equation, succeeded by (Simplify). This yields (E12,H9) with

E12 =

{
(ς9 ; f i (tailup f n′ i′ ( f n a))≈ tailup f n′′ i ( f n′ ( f n a)) ; τ9)

[i′ = i−1∧n′ = n+1∧n′′ = n′+1∧ i > n]

}
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(H-Delete). With this deduction rule we may rewrite an equation with an instance of equation inH.
In our example, consider the second equation inH9. Let δ = [n := n′,n′ := n′′,a := f n a]. Using (H-

Delete), we can deduce (E12,H9) ⊢ ( /0,H9) if one of the following ordering requirements are satisfied:

ς9 = f i (tailup f n i′ a)≻ f i (tailup f n′ i′ ( f n a)) [i′ = i−1∧n′ = n+1∧ i≥ n]
τ9 = tailup f n′ i ( f n a)≻ tailup f n′′ i ( f n′ ( f n a)) [i′ = i−1∧n′ = n+1∧ i≥ n]

We obtained (E1, /0) ⊢∗ ( /0,H9). By Theorem 1 recdown f n i a≈ tailup f n i a is an inductive theorem –
provided we have a suitable bounding pair that satisfies (REQ1). But this is easily achieved: let ≻ equal
(→R∪Q ∪�)+ where Q= {recdown f n i a→ f i (tailup f n i′ a) [i′ = i−1∧n′ = n+1∧ i≥ n]}.

It is easy to see that this is indeed a bounding pair if →R∪Q is terminating. Termination can for
instance be proved using static dependency pairs [7].

Remark 1 The choice to let ≻ be a relation (→R∪Q ∪�)+ is quite natural: in traditional definitions of
rewriting induction [10, 6, 9] this is the only choice for (≻,⪰), with Q always being a directed version
of the last H (so in the case of this example, H9). However, while such a choice is natural in strategies
for rewriting induction, we leave it open in the definition to allow for alternative orderings.

4 Closing remarks

Two deduction rules we did not demonstrate are (Generalize) and (Postulate). Although (Generalize)
appears to be very similar to (Alter) (in fact, every step that can be done by (Alter) can also be done
by (Generalize)), they are used quite differently: (Alter) is designed to set up an equation for the use of
simplification or deletion, while (Generalize) and (Postulate) are a way to perform of lemma generation.

Lemma generation is often needed in practice to obtain a successful RI proof. This was not visible
in the running example in subsection 3.2, where we could for example continue on the equation in E7 by
applying the hypothesis in H2, which was automatically generated by (Induct), in an (Hypothesis)-step.
However, in many practical situations the hypothesis generated by (Induct) is not applicable, and we
first have to use (Generalize) to introduce a more general equation, suitable to save as hypothesis for
later usage in (Hypothesis) or (H-Delete). How to find such generalizations automatically is a separate
topic, and beyond the scope of this paper. The idea of (Postulate) is similar to (Generalize), but rather
than replacing the original equation by a generalized equation, we add the generalized equation as a new
equation and apply (Induct) on this new equation to obtain the required induction hypothesis.

We have not demonstrated (Semi-constructor) either. With this deduction rule we can split up an
equation that contains a constructor or partially applied function symbols. For example, we can split up
foldl g (h 0 x)≈ foldl h (g 0 x) into two equations: g ≈ h and h 0 x≈ g 0 x.

Implementation and work in progress A basic version of Bounded RI for LCSTRSs has been imple-
mented in Cora (available on https://github.com/hezzel/cora).

Considering work in progress, we are currently working on RI as a method for proving ground
confluence in LCSTRSs. This builds on the work of [4], where the authors showed that this is possible
for first-order unconstrained rewriting. Ground confluence is of relevance for completeness because for
ground confluent LCSTRSs we can extend RI with a new deduction rule, in order to disprove equations
to be inductive theorems. For first-order constrained rewriting this has been shown in [6], and we want
to generalize this result to RI for LCSTRSs.

https://github.com/hezzel/cora
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