
Higher Order Dependency Pairs
With Argument Filterings

Cynthia Kop and Femke van Raamsdonk

Vrije Universiteit, Department of Theoretical Computer Science

Abstract. We present a termination method for left-linear Higher-order
Rewrite Systems (HRSs) that are algebraic using a higher-order gener-
alization of dependency pairs with argument filterings.

1 Introduction

An important method to (automatically) prove termination of first-order term
rewriting is the dependency pair framework by Arts and Giesl [3]. This approach
transforms a term rewriting system into a set of ordering constraints, to be
satisfied by a well-founded ordering. This ordering, which is not required to be
monotonic, can be further simplified using for example argument filterings.

Extending the dependency pair method to higher-order rewriting turns out to
be difficult. A very natural extension is defined in [6], but the simplicity comes
at a price: the dependency ordering must satisfy the subterm property. This
property, which requires a term to be greater than its subterms, makes definition
and use of argument filterings problematic. Moreover, well-foundedness of the
relation is no longer equivalent to termination of the system.

Other extensions crucially rely on some restriction of the higher-order aspect,
either by disallowing abstractions altogether (as is done in Simply Typed Term
Rewriting Systems [1]) or by placing limitations on the rules; such restrictions
are right-linear or non-nested [5], or plain-function-passing [4]. The present work
continues on this line of research by restricting attention to algebraic and left-
linear HRSs. Left-hand sides of algebraic HRSs only contain abstractions in a
very simple form; right-hand sides are not restricted. This yields a natural class,
which contains for instance functional programs in most common languages.

2 Algebraic Rules

We assume the reader is familiar with Nipkow’s pattern HRSs. We will consider
left-linear and algebraic HRSs, where left-hand sides have a basic form.

Definition 1. A term is simple if it is either (the eta-long form of) a variable,
or has the form f(s1, . . . , sn) with f ∈ F and all si simple. A rewrite rule l→ r is
algebraic if l is simple. An HRS is algebraic if all its rewrite rules are algebraic.

Every simple term is a pattern, but not every pattern is a simple term. As
examples, consider the non-simple terms λx. o, λx. s(x), λx. Z and X(o). The
rules map(λx. F (x), cons(H,T))→ cons(F (H), map(λx. F (x), T)) and up(X)
→ map(λx. s(x), X) are algebraic; note that this notion only concerns the left-
hand side of a rule.

Algebraic HRSs clearly form a restriction of the usual HRSs. One might
compare them to simply typed term rewriting systems (STTRSs) [1,2], but unlike
STTRSs, abstractions are permitted in terms. To note the difference, consider
the algebraic system LAMBDA with function symbols @ : o⇒ o⇒ o and Λ : (o⇒
o) ⇒ o, and single rule @(Λ(λx. Z(x)), Y) → Z(Y). In an STTRS this system
would be terminating, as every rule makes the term shorter. As an HRS, this
system implements untyped lambda-calculus, and is evidently not terminating!

All rewrite systems where the left-hand sides are η-equivalent to abstraction-
free terms can be transformed into an algebraic system, without affecting termi-
nation. As this includes the HRS-representation of functional programs in any
of the common languages, the restriction does not seem excessive.

The reason to consider algebraic HRSs is that in combination with left-linearity
steps which take place below an abstraction can be postponed.

Definition 2. A step s → t is algebraic if it does not occur inside an abstrac-
tion: either s = lγ, t = rγ, l → r ∈ R or s = f(s1, . . . , si, . . . , sn), t =
f(s1, . . . , s′i, . . . , sn) and si → s′i by an algebraic step.

Lemma 1. In an algebraic and left-linear HRS non-algebraic steps can be post-
poned: if s →∗ t there exists q such that s →∗ q algebraicly and q →∗ t non-
algebraicly.

From now on, we consider a fixed algebraic and left-linear HRS.

3 Dependency Pairs, Chains and Orderings

The basic idea of dependency pairs is to identify minimal non-terminating terms.
To this end we combine the rewrite relation with a subterm relation for HRSs.

Definition 3. The subterm relation, notation D, is generated by the clauses:
1. sD s,
2. a(s1, . . . , sn)D t if si D t for some i, for a ∈ V ∪ F ,
3. λx. sD t if s[x := c]D t.

Here, cσ : σ is a new symbol for each type σ. The substitution [x := c] maps
every variable xi : σ in {x} to cσ.

The subterms of f(λx.X(x)) are f(λx.X(x)), λx.X(x), X(c), and c. We have
just a single constant cσ for every type σ; this doesn’t cause problems due to
left-linearity. The relation D has all the nice properties of the normal subterm
relation; in particular →R ·D is terminating if and only if →R is terminating.

Let F# denote F extended with for every defined symbol f its marked version
f # with the same arity. Let Fc = F ∪ C, where C contains the fresh constants
cσ. Let F#

c = F# ∪ C. We define s# as f #(s1, . . . , sn) if s = f(s1, . . . , sn) with
f defined and s# = s otherwise. Now we are ready to define dependency pairs.

Definition 4. Given a rewrite rule l → r, the pair of terms l# p# is a
dependency pair for l→ r if pE r and either p is headed by a defined symbol, or
p = X(s1, . . . , sn) with X a free variable in r and n > 0. The set of dependency
pairs of R is denoted by DP(R), or by DP if R is clear from the context.

For example, in the HRS {f(λx. Z(x)) → Z(g(a)), g(x) → h(x)}, the depen-
dency pairs are: f#(λx. Z(x)) Z(g(a)) and f#(λx. Z(x)) g#(a).

Dependency pairs find their use in the notion of a dependency chain: a sequence
of dependency pairs with certain properties.

Definition 5. A dependency chain for R is a sequence [(li, pi, ti, γi) | i ∈ A]
with either A = N or A = {1, . . . , N} for some N such that, for all i:

– li pi ∈ DP(R),
– If pi is headed by f # for some f , then ti = piγi,
– If pi is headed by a variable, then there is q such that ti = q# and piγi D q,

but not q E γi(x) for any x, nor q E sγi for any sC pi,
– ti→∗R,inli+1γi+1.

The dependency chain is safe if always ti→∗R,inli+1γi+1 by only algebraic steps.

Theorem 1. An algebraic and left-linear HRS is terminating if it has no infinite
safe dependency chain.

The proof is straightforward; the safe condition holds because non-algebraic re-
ductions can be postponed. Note that the condition in the theorem is sufficient,
not required. There are terminating HRSs which admit an infinite (safe) depen-
dency chain. This is because a non-terminating subterm may be beta-reduced
away immediately.

To prove non-existence of a safe dependency chain we generate a set of inequal-
ities from DP(R). If these inequalities can be satisfied by a so-called quasi-
monotonic ordering pair, termination follows.

Definition 6. A quasi-monotonic ordering pair is a pair (>,≥) of an ordering
and a quasi-ordering, comparing base-type terms of equal types) such that:

1. > and ≥ combine: > · ≥ is contained in >,
2. if si has base type and si ≥ s′i, then f(s1, . . . , si, . . . , sn) ≥ f(s1, . . . , s′i, . . . , sn)
3. if s is simple then s > t implies sγ > tγ and s ≥ t implies sγ ≥ tγ

We say a quasi-monotonic ordering pair (>,≥) is well-founded if > is well-
founded. Comparing the definition for an ordering pair to similar definitions in
the literature, requirements 2 and 3 are weakened versions from having the pair
quasi-monotonic and closed under substitution.

Definition 7. A dependency ordering for DP and R is a quasi-monotonic or-
dering pair (>,≥) satisfying the following inequalities:

1. l > p for all dependency pairs l p ∈ DP,
2. l ≥ r for all rules l→ r ∈ R,
3. lγ > t# for all pairs l p ∈ DP with p headed by a variable X, substitution

γ and tE pγ such that t is headed by a defined symbol and neither tE γ(X)
or tE sγ for any direct subterm s of p.

The first two of these requirements are usual for dependency orderings; re-
quirement 3 replaces the subterm property in [6]. Requirement 3 always holds if
D is contained in ≥ (since then lγ > pγ ≥ t), but there may be other ways.

Theorem 2. DP(R) and R admit a well-founded dependency ordering if and
only if there is no infinite safe dependency chain over R.

4 Argument Filterings

The idea behind argument filterings is to simplify the constraints on the rewrite
rules and the dependency pairs by omitting some arguments of function symbols.

An argument filtering is defined as a partial function that maps a symbol
f : σ1 ⇒ . . .⇒ σn ⇒ b in F# to either some i ∈ {1, . . . , n} (the collapsing case),
or to a sequence [i1, . . . , ik] with 1 ≤ i1 < i2 < . . . < ik ≤ n. In the collapsing
case σi should have output-type b. Note that both unmarked and marked symbols
are filtered, but the symbols cσ, used to replace bound variables, are not.

Given an argument filtering A, let FA contain all symbols in F#
c , and ad-

ditionally for every function symbol f : σ1 ⇒ . . . ⇒ σn ⇒ b in F# with
A(f) = [i1, . . . , ik] a fresh filtered function symbol fA : σi1 ⇒ . . . ⇒ σik ⇒ b.
In the argument filtering of a term a symbol is not filtered if one of its argu-
ments contains a bound variable (clause 2), and in the collapsing case the fresh
constants c are used.

Definition 8. Given an argument filtering A, the term filtering fil is defined
as fil(s) = fil∅(s), where the auxiliary mapping filX is defined by the clauses:

1. filX(λy. s) = λy. filX∪{y}(s),
2. filX(a(s1, . . . , sn)) = a(filX(s1), . . . , filX(sn))

if a /∈ Dom(A) or X ∩ FV (a(s1, . . . , sn)) 6= ∅,
3. filX(a(s1, . . . , sn)) = a#(fil(si1), . . . , fil(sik))

if a ∈ Dom(A), X ∩ FV (a(s1, . . . , sn)) = ∅ and A(a) = [i1, . . . , ik],
4. filX(a(s1, . . . , λx. si, . . . , sn)) = fil{x}(si)[x := c]

if a ∈ Dom(A), X ∩FV (a(s1, . . . , sn)) = ∅ and A(a) = i (x may be empty).

For example, let F = {f : o ⇒ o ⇒ o, a : o} and A(f) = []. Then
fil∅(λx. f(x, f(a, a))) = λx. fil{x}(f(x, f(a, a))) = λx. f(fil{x}(x), fil{x}(f(a, a))) =
λx. f(x, fA). In a filtered term a symbol might both occur in normal and filtered
form. The filtered and unfiltered symbols should be considered as different sym-
bols.

To each ordering pair (�,�) over T (FA), we associate a pair (>,≥) over
T (F#) in the natural way: s > t iff fil(s) � fil(t), s ≥ t iff fil(s) � fil(t).

Theorem 3. Let (�,�) be a quasi-monotonic ordering pair on T (FA) which
satisfies the following requirements:

1. � contains the superterm relation B (but doesn’t have to be monotonic),
2. always f(x1, . . . , xn) � fil(f(x1, . . . , xn)) if all xi are (free) variables, and

also f(x1, . . . , xn) � fil(f #(x1, . . . , xn)) for defined symbols f ,
3. fil(l) � fil(p) for all l p ∈ DP(R),
4. fil(l) � fil(r) for all l→ r ∈ R.

Then the associated pair is a dependency filtering for R; well-founded iff � is.

That is, to prove termination of R it suffices to find a well-founded ordering pair
over the filtered rules, satisfying the requirements in the theorem.

5 Concluding Remarks

In this paper we have defined a new generalization of dependency pairs with ar-
gument filterings for left-linear HRSs that are algebraic. algebraic. For left-linear
first-order TRSs, our definition of dependency pairs coincides with the original
one. Also, a higher-order generalization of argument filterings is given. The work
has been done for HRSs, but the results are equally viable for different styles of
higher-order rewriting, as long as the rules are presented in eta-long form. The
results have been implemented in a tool, WANDA, which will participate in the
termination competition of 2010.

For future work, we aim to further investigate dependency graphs and less
standard filterings (for instance replacing a term f(s1, sm) by s1 ·s2). We also in-
tend to look into non-eta-normal algebraic systems, without transforming them.

References

1. T. Aoto and Y. Yamada. Dependency pairs for simply typed term rewriting. In
J. Giesl, editor, Proceedings of the 6th International Conference on Rewriting Tech-
niques and Applications (RTA 2005), volume 3467 of LNCS, pages 120–134, Nara,
Japan, April 2005. Springer Verlag.

2. T. Aoto and Y. Yamada. Argument filterings and usable rules for simply typed de-
pendency pairs (extended abstract). In Proceedings of the 4th International Work-
shop on Higher-Order Rewriting (HOR 2007), pages 21–27, Paris, France, June
2007. Workshop proceedings.

3. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

4. K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method
based on strong computability for higher-order rewrite systems. IEICE Transactions
on Information and Systems, 92(10):2007–2015, 2009.

5. M. Sakai and K. Kusakari. On dependency pair method for proving termination
of higher-order rewrite systems. IEICE Transactions on Information and Systems,
E88-D(3):583–593, 2005.

6. Y. Sakai, M. Watanabe and T. Sakabe. An extension of the dependency pair method
for proving termination of higher-order rewrite systems. IEICE Transactions on
Information and Systems, E84-D(8):1025–1032, 2001.

