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Abstract
We revisit the static dependency pair method for termination of higher-order term rewriting. In
this extended abstract, we propose a static dependency pair framework based on an extended
notion of computable dependency chains that harnesses the computability-based reasoning used
in the soundness proof of static dependency pairs. This allows us to propose a new termination
proving technique to use in combination with static DPs: the computable subterm criterion.
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1 Introduction

This paper deals with higher-order term rewriting with β-reduction and λ-abstractions. Here
a particular topic of interest is termination, the property that all (well-formed) terms have
only finite reductions. In the first-order setting, the Dependency Pair (DP) framework [8]
has proven to be an extremely successful foundation for automated termination analysis tools.
While several DP approaches (static [12, 14] and dynamic [13, 10]) exist for higher-order
rewriting, so far a general DP framework has been proposed only in the PhD thesis [9]. We
build on ideas from [2, 9] to propose such a DP framework, here specialised to static DPs, and
include a completely new processor which can offer a simple syntactic termination criterion.

2 Algebraic Functional Systems with Meta-variables

Henceforth, we shall assume familiarity with term rewriting, simple types and the λ-calculus.
We use a simplified version of Algebraic Functional Systems with Meta-variables (AFSMs)
that Kop [9] proposes to capture a number of higher-order rewrite formalisms (cf. [9, Ch. 3]).

We fix disjoint sets F of function symbols and V of variables, each symbol a equipped
with a type σ. We also fix a setM, disjoint from F and V , of meta-variables, each equipped
with a type declaration [σ1× · · · ×σk]→ τ (where τ and all σi are simple types). Meta-terms
are expressions s where s : σ can be derived for some type σ by the following clauses:

(V) x : σ if x : σ ∈ V (@) s t : τ if s : σ → τ and t : σ
(F) f : σ if f : σ ∈ F (Λ) λx.s : σ → τ if x : σ ∈ V and s : τ
(M) Z[s1, . . . , sk] : τ if Z : [σ1 × · · · × σk]→ τ ∈M and s1 : σ1, . . . , sk : σk

Terms are meta-terms without meta-variables, so derived without clause (M). Patterns are
meta-terms where all meta-variable occurrences have the form Z[x1, . . . , xk] with all xi
distinct variables. The λ binds variables as in the λ-calculus. Unbound variables are called
free, FV (s) is the set of free variables in s, and FMV (s) is the set of meta-variables occurring
in s. A meta-term s is closed if FV (s) = ∅. Meta-terms are considered modulo α-conversion.
Application (@) is left-associative; abstractions (Λ) extend as far to the right as possible. A
meta-term s has type σ if s : σ; it has base type if σ ∈ S, the set of sorts. A meta-term s has
a sub-meta-term t (subterm if t is a term), written sD t, if (a) s = t, (b) s = λx.s′ and s′ D t,
(c) s = s1 s2 and s1 D t or s2 D t, or (d) s = Z[s1, . . . , sk] and some si D t.
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A meta-substitution is a type-preserving function γ from variables and meta-variables to
meta-terms; if Z : [σ1×· · ·×σk]→ τ then γ(Z) has the form λy1 . . . yk.u : σ1 → . . .→ σk → τ .
Let dom(γ) = {x ∈ V | γ(x) 6= x} ∪ {Z ∈ M | γ(Z) 6= λy1 . . . yk.Z[y1, . . . , yk]} (the domain
of γ). We let [b1 := s1, . . . , bn := sn] be the meta-substitution γ with γ(bi) = si, γ(z) = z

for z ∈ V \ {~b}, and γ(Z) = λy1 . . . yk.Z[y1, . . . , yk] for Z ∈ M \ {~b}. A substitution is a
meta-substitution mapping everything in its domain to terms. The result sγ of applying a
meta-substitution γ to a meta-term s is obtained recursively (with implicit α-conversion):

xγ = γ(x) if x ∈ V (s t)γ = (sγ) (tγ)
fγ = f if f ∈ F (λx.s)γ = λx.(sγ) if γ(x) = x ∧ x /∈ FV (sγ)
Z[s1, . . . , sk]γ = t[x1 := s1γ, . . . , xk := skγ] if γ(Z) = λx1 . . . xk.t

Essentially, applying a meta-substitution with meta-variables in its domain combines a sub-
stitution with a β-development, e.g.,X[nil, 0][X := λx.plus (len x)] equals plus (len nil) 0.

A rule is a pair `⇒ r of closed meta-terms of the same type both in β-normal form with
` a pattern of the form f `1 · · · `n with f ∈ F , and FMV (r) ⊆ FMV (`). A set of rules R
induces a rewrite relation ⇒R as the smallest monotonic relation on terms that includes
β-reduction (denoted as ⇒β) and has `δ ⇒R rδ whenever `⇒ r ∈ R and δ is a substitution
on domain FMV (`). Rewriting is allowed at any position of a term, even below a λ. R is
terminating if there is no infinite reduction s0 ⇒R s1 ⇒R . . . . The set D ⊆ F of defined
symbols consists of those f ∈ F such that a rule f `1 · · · `n ⇒ r exists.

An AFSM is a pair (F ,R); types of (meta-)variables can be derived from context.

I Example 1 (Ordinal recursion). Let F contain at least 0 : ord, s : ord→ord, lim : (nat→
ord)→ ord for ordinals, zero : nat, succ : nat→ nat for N, and the symbol rec : ord→
nat→ (ord→ nat→ nat)→ ((nat → ord) → (nat → nat) → nat) → nat}. Let R be:

rec 0 K F G ⇒ K, rec (s X) K F G⇒ F X (rec X K F G),
rec (lim H) K F G ⇒ G H (λm.rec (H m) K F G)

Then rec (s 0) zero (λvz.z) (λxy.zero)⇒R (λvz.z) 0 (rec 0 zero (λvz.z) (λxy.zero))⇒β

(λz.z) (rec 0 zero (λvz.z) (λxy.zero))⇒β rec 0 zero (λvz.z) (λxy.zero)⇒R zero.

3 Computability

A common technique in higher-order termination is Tait and Girard’s computability notion [15].
There are several ways to define computability predicates; here we follow, e.g., [1, 3, 4, 5] in
considering accessible meta-variables using a form of the computability closure [3]:

I Definition 2 (Accessible arguments). We fix a quasi-ordering �S on the set of sorts (base
types) S with well-founded strict part �S := �S \ �S . For σ ≡ σ1 → . . .→ σm → κ (with
κ ∈ S) and sort ι, let ι �S+ σ if ι �S κ and each ι �S− σi, and let ι �S− σ if ι �S κ and each
ι �S+ σi. (The relation ι �S+ σ corresponds to “ι occurs only positively in σ” in [1, 4, 5].)

For f : σ1 → . . . → σm → ι ∈ F , let Acc(f) = {i | 1 ≤ i ≤ m ∧ ι �S+ σi}. For
x : σ1 → . . .→ σm → ι ∈ V , let Acc(x) = {i | 1 ≤ i ≤ m∧σi has the form τ1 → . . .→ τn → κ

for some n ∈ N with ι �S κ}. We write sDacc t if either s = t, or s = λx.s′ and s′ Dacc t, or
s = a s1 · · · sn with a ∈ F ∪ V and si Dacc t for some i ∈ Acc(a).

I Theorem 3 (R-computability). For R a set of rules, there exists a predicate “R-computable”
on terms which satisfies the following properties:

s : σ → τ is R-computable iff s t is R-computable whenever t : σ is R-computable;
s : ι for ι a sort is R-computable iff (1) s is terminating under ⇒R ∪VI and (2) if s⇒∗R
f s1 · · · sm then si is R-computable for all i ∈ Acc(f). Here, f s1 · · · sm VI si t1 · · · tn if
both sides have (possibly different) base types, i ∈ Acc(f), and all tj are R-computable.
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The above notion of computability is adapted from [1, 3, 4, 5] to account for AFSMs.
It is an instance of a strong computability predicate following [11], identified by a syntactic
criterion. This instance gives a more liberal restriction (in our Def. 9) than their default
predicate SC , which is directly used to define the “plain function passing” criterion in [12, 14].

I Example 4. Consider a quasi-ordering �S such that ord �S nat. In Ex. 1, we then have
ord �S+ nat→ ord. Therefore, 1 ∈ Acc(lim), which gives lim H Dacc H.

4 Static DPs for Accessible Function Passing AFSMs

We will adapt static DPs to our AFSM formalism and propose an alternative applicability
criterion. Similar to DPs in the first-order setting, static DPs employ marked symbols:

I Definition 5 (Marked symbols, DPs). Define F ] := F ] {f] : σ | f : σ ∈ D}. For a
meta-term s, let s] := f] s1 · · · sk if s = f s1 · · · sk with f ∈ D; let s] := s otherwise. A DP
is a pair `V p where ` is a closed pattern f `1 · · · `m, p is a meta-term g p1 · · · pk, and both
` and p are β-normal and have (possibly different) base types.

The original static approaches define DPs as pairs `] V p] with ` ⇒ r a rule and p a
subterm g p1 · · · pk of r (their rules use terms, not meta-terms). This can set bound variables
from r free in p. Here, we replace such variables by meta-variables. (So our “variables” mimic
(λ-)bound variables in functional programming, and our “meta-variables” free variables.)

I Definition 6 (SDP). For a meta-term s, metafy(s) denotes s with all free variables replaced
by corresponding fresh meta-variables. For an AFSM (F ,R), SDP(R) = {`] V metafy(p]) |
`⇒ r ∈ R ∧ r D p ∧ ` and p have base types ∧ p has the form g p1 · · · pk for some g ∈ D}.

Right-hand sides of static DPs may contain meta-variables that do not occur on the left:

I Example 7. For Ex. 1, we obtain SDP(R) = {rec] (s X) K F G V rec] X K F G,

rec] (lim H) K F GV rec] (H M) K F G}.

Dependency chains capture sequences of function calls, similar to the first-order setting:

I Definition 8 (Dependency chain, minimal chain). Let P be a set of DPs and R be a set
of rules. A (finite or infinite) (P,R)-dependency chain (or just (P,R)-chain) is a sequence
[(ρ0, s0, t0), (ρ1, s1, t1), . . .] where each ρi ∈ P and all si, ti are terms, such that for all i:
1. if ρi = `i V pi, then there exists a substitution γ on domain FMV (`i) ∪ FMV (pi) such

that si = `iγ and ti = piγ; and
2. we can write ti = f u1 · · ·un with f ∈ F ], si+1 = f w1 · · ·wn and each uj ⇒∗R wj .
A (P,R)-chain is minimal if the strict subterms of all ti are terminating under ⇒R.

Static DPs are sound if the AFSM’s rules are accessible function passing (AFP). Intuitively:
meta-variables of a higher type may occur only in “safe” places in the left-hand sides of rules.

I Definition 9 (Accessible function passing). An AFSM (F ,R) is accessible function passing
(AFP) if there exists a sort ordering �S following Def. 2 such that:

all function symbols f are fully applied in R, i.e., they occur only with the maximum
number of arguments permitted by their type;
for all f `1 · · · `m ⇒ r ∈ R and all Z ∈ FMV (r): there are some variables x1, . . . , xk and
some i such that `i Dacc Z[x1, . . . , xk].

This definition is strictly more liberal than the notions of plain function passing in [12, 14]
as adapted to AFSMs; this lets us handle examples like ordinal recursion (Ex. 1) not covered by
[12, 14]. However, [12, 14] consider a different formalism, with polymorphism and rules whose
left-hand side is not a pattern. Our restriction is closer to the “admissible” rules in [2], which
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are defined using a pattern computability closure [1]. It is also an instance of the ATRFP no-
tion [11], which is parametrised by a strong computability predicate and accessibility relation.

I Example 10. The AFSM from Ex. 1 is AFP because of the sort ordering ord �S nat (see
also Ex. 4), yet it is not plain function passing following [14].

I Theorem 11. If (F ,R) is non-terminating and AFP, then there is an infinite minimal
(SDP(R),R)-chain.

This theorem corresponds to results in [2, 11, 12], but imposes a different admissibility
restriction: our notion is strictly more liberal than the syntactic criterion in [12], is likely
less liberal than the semantic restriction in [11] (although we could not find an example that
is ATRFP but not AFP), and mostly (although not entirely) implies the restriction in [2].

The computability inherent in dependency chains using SDP lets us strengthen Thm. 11:
rather than considering minimal chains, we require (some) subterms of all ti to be computable:

I Definition 12. A (P,R)-chain [(`0 V p0, s0, t0), (`1 V p1, s1, t1), . . . ] is U-computable for a
set of rules U if⇒U ⊇ ⇒R, for all i there exists a substitution γi with si = `iγi and ti = piγi,
and (λx1 . . . xn.v)γi is U-computable for all v such that pi D v and FV (v) = {x1, . . . , xn}.

I Theorem 13. (a) If an AFSM (F ,R) is non-terminating and AFP, then there is an
infinite R-computable (SDP(R),R)-chain. (b) Every U-computable (P,R)-chain is minimal.

This theorem does not have a true counterpart in the literature. The main result of
[11] does require the immediate arguments of each si, ti to be computable, but not other
sub-metaterms. Note that the reverse of (a) does not hold; terminating AFSMs R with
infinite R-computable (SDP(R),R)-chains do exist [7, Ex. 3.23 (report version 1)].

5 Static DP Framework & Computable Subterm Criterion Processor

The static DP framework follows the first-order DP framework [8], as an extendable framework
for proving termination where new termination methods can easily be added as processors.
In Thm. 16, we will propose a new processor: the computable subterm criterion.

Thus far, we have reduced the problem of termination to the non-existence of certain
chains. Following the first-order DP framework, we formalise this further via DP problems:

I Definition 14 (DP problem). A DP problem is a tuple (P,R,m) with P a set of DPs,
R a set of rules, and m ∈ {minimal, arbitrary} ∪ {computableU | U a set of rules}. A DP
problem (P,R,m) is finite if there exists no infinite (P,R)-chain that is U-computable if
m = computableU or minimal if m = minimal. For the different levels of permissiveness, we
use a transitive-reflexive relation � generated by computableU � minimal � arbitrary.

Thm. 13 now becomes: an AFSM (F ,R) is terminating if (but not only if) it is AFP and
(SDP(R),R, computableR) is finite. We add a flag value computableR over the first-order
framework for chains with computability restrictions. The core idea of the DP framework is
to simplify a set of DP problems stepwise via processors until nothing remains to be proved:

I Definition 15 (Processor). A dependency pair processor (or just processor) is a function
that takes a DP problem and returns a set of DP problems. A processor Proc is sound if a
DP problem M is finite whenever all elements of Proc(M) are finite.

To prove finiteness of a DP problem M : (1) let A := {M}; (2) while A 6= ∅: select a
Q ∈ A and a sound processor Proc, let A := (A \ {Q}) ∪ Proc(Q). If this terminates, M
is a finite DP problem. Many processors are possible; here we present an extension of the
subterm criterion [12, 10, 11], dubbed computable subterm criterion, that needs the new flag.
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I Theorem 16 (Computable subterm criterion processor). Let M = (P1 ]P2,R, computableU )
be a DP problem. A projection function ν maps meta-terms to natural numbers such that
for all DPs `V p ∈ P1 ] P2, the function ν with ν(f s1 · · · sm) = sν(f) is well-defined for `
and p. For meta-terms s and t of base types, we define s A t if s 6= t and (a) sDacc t or (b)
there exists a meta-variable Z with sDacc Z[x1, . . . , xk] and t = Z[t1, . . . , tk] s1 · · · sn. Then
the processor Proccompsub that maps M to {(P2,R, computableU )} is sound if a projection
function ν exists with ν(`) A ν(p) for all `V p ∈ P1 and ν(`) = ν(p) for all `V p ∈ P2.

I Example 17. R from Ex. 1 is terminating if (P,R, computableR) with P = SDP(R) is
finite (see Ex. 7). Consider the projection function ν with ν(rec]) = 1. As s X Dacc X and
lim H Dacc H, we have s X A X and lim H A H M . So Proccompsub(P,R, computableR) =
{(∅,R, computableR)}. As there are no DPs left, this implies termination of the original R.

6 Conclusion

We have extended the static DP method by a more relaxed applicability criterion and the
new computable subterm criterion. The full version [7] of the paper has proofs and further
extensions, such as formative reductions [6, 10], applications to proving non-termination,
and dynamic DPs [10] in a unified DP framework with many other processors.
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