Improving Static Dependency Pairs for Higher-Order Rewriting

Carsten Fuhs¹ and Cynthia Kop²

- 1 Birkbeck, University of London, United Kingdom carsten@dcs.bbk.ac.uk
- 2 Radboud University Nijmegen, The Netherlands c.kop@cs.ru.nl

— Abstract

We revisit the static dependency pair method for termination of higher-order term rewriting. In this extended abstract, we propose a static dependency pair framework based on an extended notion of computable dependency chains that harnesses the computability-based reasoning used in the soundness proof of static dependency pairs. This allows us to propose a new termination proving technique to use in combination with static DPs: the *computable* subterm criterion.

Digital Object Identifier 10.4230/LIPIcs.WST.2018.

1 Introduction

This paper deals with higher-order term rewriting with β -reduction and λ -abstractions. Here a particular topic of interest is *termination*, the property that all (well-formed) terms have only finite reductions. In the first-order setting, the *Dependency Pair (DP) framework* [8] has proven to be an extremely successful foundation for automated termination analysis tools. While several DP approaches (static [12, 14] and dynamic [13, 10]) exist for higher-order rewriting, so far a general DP framework has been proposed only in the PhD thesis [9]. We build on ideas from [2, 9] to propose such a DP framework, here specialised to static DPs, and include a completely new processor which can offer a simple syntactic termination criterion.

2 Algebraic Functional Systems with Meta-variables

Henceforth, we shall assume familiarity with term rewriting, simple types and the λ -calculus. We use a simplified version of Algebraic Functional Systems with Meta-variables (AFSMs) that Kop [9] proposes to capture a number of higher-order rewrite formalisms (cf. [9, Ch. 3]).

We fix disjoint sets \mathcal{F} of function symbols and \mathcal{V} of variables, each symbol a equipped with a type σ . We also fix a set \mathcal{M} , disjoint from \mathcal{F} and \mathcal{V} , of meta-variables, each equipped with a type declaration $[\sigma_1 \times \cdots \times \sigma_k] \to \tau$ (where τ and all σ_i are simple types). Meta-terms are expressions s where $s : \sigma$ can be derived for some type σ by the following clauses:

- (F) $\mathbf{f}: \sigma$ if $\mathbf{f}: \sigma \in \mathcal{F}$ (A) $\lambda x.s: \sigma \to \tau$ if $x: \sigma \in \mathcal{V}$ and $s: \tau$
- $(\mathsf{M}) \quad Z[s_1,\ldots,s_k]: \tau \quad \text{if} \quad Z: [\sigma_1 \times \cdots \times \sigma_k] \to \tau \in \mathcal{M} \text{ and } s_1: \sigma_1,\ldots,s_k: \sigma_k$

Terms are meta-terms without meta-variables, so derived without clause (M). Patterns are meta-terms where all meta-variable occurrences have the form $Z[x_1, \ldots, x_k]$ with all x_i distinct variables. The λ binds variables as in the λ -calculus. Unbound variables are called *free*, FV(s) is the set of free variables in s, and FMV(s) is the set of meta-variables occurring in s. A meta-term s is closed if $FV(s) = \emptyset$. Meta-terms are considered modulo α -conversion. Application (\mathfrak{O}) is left-associative; abstractions (Λ) extend as far to the right as possible. A meta-term s has type σ if $s : \sigma$; it has base type if $\sigma \in S$, the set of sorts. A meta-term s has a sub-meta-term t (subterm if t is a term), written $s \succeq t$, if (a) s = t, (b) $s = \lambda x.s'$ and $s' \succeq t$, (c) $s = s_1 s_2$ and $s_1 \succeq t$ or $s_2 \succeq t$, or (d) $s = Z[s_1, \ldots, s_k]$ and some $s_i \succeq t$.

XX:2 Improving Static Dependency Pairs for Higher-Order Rewriting

A meta-substitution is a type-preserving function γ from variables and meta-variables to meta-terms; if $Z : [\sigma_1 \times \cdots \times \sigma_k] \to \tau$ then $\gamma(Z)$ has the form $\lambda y_1 \ldots y_k . u : \sigma_1 \to \ldots \to \sigma_k \to \tau$. Let dom $(\gamma) = \{x \in \mathcal{V} \mid \gamma(x) \neq x\} \cup \{Z \in \mathcal{M} \mid \gamma(Z) \neq \lambda y_1 \ldots y_k . Z[y_1, \ldots, y_k]\}$ (the domain of γ). We let $[b_1 := s_1, \ldots, b_n := s_n]$ be the meta-substitution γ with $\gamma(b_i) = s_i, \gamma(z) = z$ for $z \in \mathcal{V} \setminus \{\vec{b}\}$, and $\gamma(Z) = \lambda y_1 \ldots y_k . Z[y_1, \ldots, y_k]$ for $Z \in \mathcal{M} \setminus \{\vec{b}\}$. A substitution is a meta-substitution mapping everything in its domain to terms. The result $s\gamma$ of applying a meta-substitution γ to a meta-term s is obtained recursively (with implicit α -conversion):

$$\begin{aligned} x\gamma &= \gamma(x) & \text{if } x \in \mathcal{V} \\ \mathbf{f}\gamma &= \mathbf{f} & \text{if } \mathbf{f} \in \mathcal{F} \\ Z[s_1, \dots, s_k]\gamma &= t[x_1 := s_1\gamma, \dots, x_k := s_k\gamma] & \text{if } \gamma(Z) = \lambda x_1 \dots x_k.t \end{aligned}$$

Essentially, applying a meta-substitution with meta-variables in its domain combines a substitution with a β -development, e.g., $X[nil, 0][X := \lambda x.plus (len x)]$ equals plus (len nil) 0.

A rule is a pair $\ell \Rightarrow r$ of closed meta-terms of the same type both in β -normal form with ℓ a pattern of the form $\mathbf{f} \ \ell_1 \cdots \ell_n$ with $\mathbf{f} \in \mathcal{F}$, and $FMV(r) \subseteq FMV(\ell)$. A set of rules \mathcal{R} induces a rewrite relation $\Rightarrow_{\mathcal{R}}$ as the smallest monotonic relation on terms that includes β -reduction (denoted as \Rightarrow_{β}) and has $\ell \delta \Rightarrow_{\mathcal{R}} r \delta$ whenever $\ell \Rightarrow r \in \mathcal{R}$ and δ is a substitution on domain $FMV(\ell)$. Rewriting is allowed at any position of a term, even below a λ . \mathcal{R} is terminating if there is no infinite reduction $s_0 \Rightarrow_{\mathcal{R}} s_1 \Rightarrow_{\mathcal{R}} \ldots$. The set $\mathcal{D} \subseteq \mathcal{F}$ of defined symbols consists of those $\mathbf{f} \in \mathcal{F}$ such that a rule $\mathbf{f} \ \ell_1 \cdots \ell_n \Rightarrow r$ exists.

An AFSM is a pair $(\mathcal{F}, \mathcal{R})$; types of (meta-)variables can be derived from context.

▶ Example 1 (Ordinal recursion). Let \mathcal{F} contain at least 0 : ord, s : ord → ord, lim : (nat → ord) → ord for ordinals, zero : nat, succ : nat → nat for \mathbb{N} , and the symbol rec : ord → nat → (ord → nat → nat) → ((nat → ord) → (nat → nat) → nat) → nat}. Let \mathcal{R} be:

 $\begin{array}{rcl} \operatorname{rec} \operatorname{O} K \ F \ G \ \Rightarrow \ K, & \operatorname{rec} (\operatorname{s} X) \ K \ F \ G \Rightarrow F \ X \ (\operatorname{rec} X \ K \ F \ G), \\ \operatorname{rec} (\operatorname{lim} H) \ K \ F \ G \ \Rightarrow \ G \ H \ (\lambda m. \operatorname{rec} \ (H \ m) \ K \ F \ G) \end{array}$

Then rec (s 0) zero ($\lambda vz.z$) ($\lambda xy.zero$) $\Rightarrow_{\mathcal{R}}$ ($\lambda vz.z$) 0 (rec 0 zero ($\lambda vz.z$) ($\lambda xy.zero$)) \Rightarrow_{β} ($\lambda z.z$) (rec 0 zero ($\lambda vz.z$) ($\lambda xy.zero$)) \Rightarrow_{β} rec 0 zero ($\lambda vz.z$) ($\lambda xy.zero$) $\Rightarrow_{\mathcal{R}}$ zero.

3 Computability

A common technique in higher-order termination is Tait and Girard's *computability* notion [15]. There are several ways to define computability predicates; here we follow, e.g., [1, 3, 4, 5] in considering *accessible meta-variables* using a form of the *computability closure* [3]:

▶ **Definition 2** (Accessible arguments). We fix a quasi-ordering \succeq^{S} on the set of sorts (base types) S with well-founded strict part $\succ^{S} := \succeq^{S} \setminus \preceq^{S}$. For $\sigma \equiv \sigma_{1} \to \ldots \to \sigma_{m} \to \kappa$ (with $\kappa \in S$) and sort ι , let $\iota \succeq^{S}_{+} \sigma$ if $\iota \succeq^{S} \kappa$ and each $\iota \succ^{S}_{-} \sigma_{i}$, and let $\iota \succ^{S}_{-} \sigma$ if $\iota \succ^{S} \kappa$ and each $\iota \succeq^{S}_{+} \sigma_{i}$. (The relation $\iota \succeq^{S}_{+} \sigma$ corresponds to " ι occurs only positively in σ " in [1, 4, 5].)

For $\mathbf{f} : \sigma_1 \to \ldots \to \sigma_m \to \iota \in \mathcal{F}$, let $Acc(\mathbf{f}) = \{i \mid 1 \leq i \leq m \land \iota \succeq^{\mathcal{S}}_+ \sigma_i\}$. For $x : \sigma_1 \to \ldots \to \sigma_m \to \iota \in \mathcal{V}$, let $Acc(x) = \{i \mid 1 \leq i \leq m \land \sigma_i \text{ has the form } \tau_1 \to \ldots \to \tau_n \to \kappa$ for some $n \in \mathbb{N}$ with $\iota \succeq^{\mathcal{S}} \kappa\}$. We write $s \supseteq_{\mathsf{acc}} t$ if either s = t, or $s = \lambda x.s'$ and $s' \supseteq_{\mathsf{acc}} t$, or $s = a \ s_1 \cdots s_n$ with $a \in \mathcal{F} \cup \mathcal{V}$ and $s_i \supseteq_{\mathsf{acc}} t$ for some $i \in Acc(a)$.

▶ **Theorem 3** (\mathcal{R} -computability). For \mathcal{R} a set of rules, there exists a predicate " \mathcal{R} -computable" on terms which satisfies the following properties:

- \bullet s: $\sigma \to \tau$ is \mathcal{R} -computable iff s t is \mathcal{R} -computable whenever t: σ is \mathcal{R} -computable;
- $s:\iota$ for ι a sort is \mathcal{R} -computable iff (1) s is terminating under $\Rightarrow_{\mathcal{R}} \cup \Rightarrow_{I}$ and (2) if $s \Rightarrow_{\mathcal{R}}^{*}$ $f s_{1} \cdots s_{m}$ then s_{i} is \mathcal{R} -computable for all $i \in Acc(f)$. Here, $f s_{1} \cdots s_{m} \Rightarrow_{I} s_{i} t_{1} \cdots t_{n}$ if both sides have (possibly different) base types, $i \in Acc(f)$, and all t_{j} are \mathcal{R} -computable.

The above notion of computability is adapted from [1, 3, 4, 5] to account for AFSMs. It is an instance of a *strong computability predicate* following [11], identified by a syntactic criterion. This instance gives a more liberal restriction (in our Def. 9) than their default predicate SC, which is directly used to define the "plain function passing" criterion in [12, 14].

▶ **Example 4.** Consider a quasi-ordering $\succeq^{\mathcal{S}}$ such that ord $\succ^{\mathcal{S}}$ nat. In Ex. 1, we then have ord $\succeq^{\mathcal{S}}_{+}$ nat \rightarrow ord. Therefore, $1 \in Acc(\lim)$, which gives $\lim H \succeq_{acc} H$.

4 Static DPs for Accessible Function Passing AFSMs

We will adapt static DPs to our AFSM formalism and propose an alternative applicability criterion. Similar to DPs in the first-order setting, static DPs employ *marked symbols*:

▶ **Definition 5** (Marked symbols, DPs). Define $\mathcal{F}^{\sharp} := \mathcal{F} \uplus \{ \mathbf{f}^{\sharp} : \sigma \mid \mathbf{f} : \sigma \in \mathcal{D} \}$. For a meta-term s, let $s^{\sharp} := \mathbf{f}^{\sharp} s_1 \cdots s_k$ if $s = \mathbf{f} s_1 \cdots s_k$ with $\mathbf{f} \in \mathcal{D}$; let $s^{\sharp} := s$ otherwise. A *DP* is a pair $\ell \Rightarrow p$ where ℓ is a closed pattern $\mathbf{f} \ \ell_1 \cdots \ell_m$, p is a meta-term $\mathbf{g} \ p_1 \cdots p_k$, and both ℓ and p are β -normal and have (possibly different) base types.

The original static approaches define DPs as pairs $\ell^{\sharp} \Rightarrow p^{\sharp}$ with $\ell \Rightarrow r$ a rule and p a subterm $g p_1 \cdots p_k$ of r (their rules use *terms*, not *meta-terms*). This can set bound variables from r free in p. Here, we replace such variables by meta-variables. (So our "variables" mimic $(\lambda$ -)bound variables in functional programming, and our "meta-variables" free variables.)

▶ **Definition 6** (*SDP*). For a meta-term *s*, *metafy*(*s*) denotes *s* with all free variables replaced by corresponding fresh meta-variables. For an AFSM (\mathcal{F}, \mathcal{R}), $SDP(\mathcal{R}) = \{\ell^{\sharp} \Rightarrow metafy(p^{\sharp}) \mid \ell \Rightarrow r \in \mathcal{R} \land r \succeq p \land \ell \text{ and } p \text{ have base types } \land p \text{ has the form g } p_1 \cdots p_k \text{ for some g } \in \mathcal{D}\}.$

Right-hand sides of static DPs may contain meta-variables that do not occur on the left:

▶ **Example 7.** For Ex. 1, we obtain $SDP(\mathcal{R}) = \{ \operatorname{rec}^{\sharp} (\mathfrak{s} X) \ K \ F \ G \Rightarrow \operatorname{rec}^{\sharp} X \ K \ F \ G, \operatorname{rec}^{\sharp} (\operatorname{lim} H) \ K \ F \ G \Rightarrow \operatorname{rec}^{\sharp} (H \ M) \ K \ F \ G \}.$

Dependency chains capture sequences of function calls, similar to the first-order setting:

▶ Definition 8 (Dependency chain, minimal chain). Let \mathcal{P} be a set of DPs and \mathcal{R} be a set of rules. A (finite or infinite) $(\mathcal{P}, \mathcal{R})$ -dependency chain (or just $(\mathcal{P}, \mathcal{R})$ -chain) is a sequence $[(\rho_0, s_0, t_0), (\rho_1, s_1, t_1), \ldots]$ where each $\rho_i \in \mathcal{P}$ and all s_i, t_i are terms, such that for all i:

1. if $\rho_i = \ell_i \Rightarrow p_i$, then there exists a substitution γ on domain $FMV(\ell_i) \cup FMV(p_i)$ such that $s_i = \ell_i \gamma$ and $t_i = p_i \gamma$; and

2. we can write $t_i = \mathbf{f} \ u_1 \cdots u_n$ with $\mathbf{f} \in \mathcal{F}^{\sharp}$, $s_{i+1} = \mathbf{f} \ w_1 \cdots w_n$ and each $u_j \Rightarrow_{\mathcal{R}}^* w_j$.

A $(\mathcal{P}, \mathcal{R})$ -chain is *minimal* if the strict subterms of all t_i are terminating under $\Rightarrow_{\mathcal{R}}$.

Static DPs are sound if the AFSM's rules are accessible function passing (AFP). Intuitively: meta-variables of a higher type may occur only in "safe" places in the left-hand sides of rules.

▶ Definition 9 (Accessible function passing). An AFSM $(\mathcal{F}, \mathcal{R})$ is accessible function passing (AFP) if there exists a sort ordering $\succeq^{\mathcal{S}}$ following Def. 2 such that:

- all function symbols f are fully applied in \mathcal{R} , i.e., they occur only with the maximum number of arguments permitted by their type;
- for all $f \ell_1 \cdots \ell_m \Rightarrow r \in \mathcal{R}$ and all $Z \in FMV(r)$: there are some variables x_1, \ldots, x_k and some *i* such that $\ell_i \geq_{acc} Z[x_1, \ldots, x_k]$.

This definition is strictly more liberal than the notions of *plain function passing* in [12, 14] as adapted to AFSMs; this lets us handle examples like ordinal recursion (Ex. 1) not covered by [12, 14]. However, [12, 14] consider a different formalism, with polymorphism and rules whose left-hand side is not a pattern. Our restriction is closer to the "admissible" rules in [2], which

XX:4 Improving Static Dependency Pairs for Higher-Order Rewriting

are defined using a pattern computability closure [1]. It is also an instance of the ATRFP notion [11], which is parametrised by a strong computability predicate and accessibility relation.

▶ **Example 10.** The AFSM from Ex. 1 is AFP because of the sort ordering ord \succ^{S} nat (see also Ex. 4), yet it is not plain function passing following [14].

▶ Theorem 11. If $(\mathcal{F}, \mathcal{R})$ is non-terminating and AFP, then there is an infinite minimal $(SDP(\mathcal{R}), \mathcal{R})$ -chain.

This theorem corresponds to results in [2, 11, 12], but imposes a different admissibility restriction: our notion is strictly more liberal than the syntactic criterion in [12], is likely less liberal than the semantic restriction in [11] (although we could not find an example that is ATRFP but not AFP), and mostly (although not entirely) implies the restriction in [2].

The computability inherent in dependency chains using SDP lets us strengthen Thm. 11: rather than considering *minimal* chains, we require (some) subterms of all t_i to be *computable*:

▶ **Definition 12.** A $(\mathcal{P}, \mathcal{R})$ -chain $[(\ell_0 \Rightarrow p_0, s_0, t_0), (\ell_1 \Rightarrow p_1, s_1, t_1), \ldots]$ is \mathcal{U} -computable for a set of rules \mathcal{U} if $\Rightarrow_{\mathcal{U}} \supseteq \Rightarrow_{\mathcal{R}}$, for all *i* there exists a substitution γ_i with $s_i = \ell_i \gamma_i$ and $t_i = p_i \gamma_i$, and $(\lambda x_1 \ldots x_n . v) \gamma_i$ is \mathcal{U} -computable for all *v* such that $p_i \ge v$ and $FV(v) = \{x_1, \ldots, x_n\}$.

▶ Theorem 13. (a) If an AFSM $(\mathcal{F}, \mathcal{R})$ is non-terminating and AFP, then there is an infinite \mathcal{R} -computable $(SDP(\mathcal{R}), \mathcal{R})$ -chain. (b) Every \mathcal{U} -computable $(\mathcal{P}, \mathcal{R})$ -chain is minimal.

This theorem does not have a true counterpart in the literature. The main result of [11] does require the immediate arguments of each s_i, t_i to be computable, but not other sub-metaterms. Note that the reverse of (a) does *not* hold; terminating AFSMs \mathcal{R} with infinite \mathcal{R} -computable $(SDP(\mathcal{R}), \mathcal{R})$ -chains do exist [7, Ex. 3.23 (report version 1)].

5 Static DP Framework & Computable Subterm Criterion Processor

The static DP framework follows the first-order DP framework [8], as an extendable framework for proving termination where new termination methods can easily be added as *processors*. In Thm. 16, we will propose a new processor: the *computable subterm criterion*.

Thus far, we have reduced the problem of termination to the non-existence of certain chains. Following the first-order DP framework, we formalise this further via *DP problems*:

▶ Definition 14 (DP problem). A *DP* problem is a tuple $(\mathcal{P}, \mathcal{R}, m)$ with \mathcal{P} a set of DPs, \mathcal{R} a set of rules, and $m \in \{\text{minimal}, \text{arbitrary}\} \cup \{\text{computable}_{\mathcal{U}} \mid \mathcal{U} \text{ a set of rules}\}$. A DP problem $(\mathcal{P}, \mathcal{R}, m)$ is finite if there exists no infinite $(\mathcal{P}, \mathcal{R})$ -chain that is \mathcal{U} -computable if $m = \text{computable}_{\mathcal{U}}$ or minimal if m = minimal. For the different levels of permissiveness, we use a transitive-reflexive relation \succeq generated by computable $_{\mathcal{U}} \succeq \text{minimal} \succeq \text{arbitrary}$.

Thm. 13 now becomes: an AFSM $(\mathcal{F}, \mathcal{R})$ is terminating if (but not only if) it is AFP and $(SDP(\mathcal{R}), \mathcal{R}, \mathsf{computable}_{\mathcal{R}})$ is finite. We add a flag value $\mathsf{computable}_{\mathcal{R}}$ over the first-order framework for chains with computability restrictions. The core idea of the DP framework is to simplify a set of DP problems stepwise via *processors* until nothing remains to be proved:

▶ Definition 15 (Processor). A dependency pair processor (or just processor) is a function that takes a DP problem and returns a set of DP problems. A processor Proc is sound if a DP problem M is finite whenever all elements of Proc(M) are finite.

To prove finiteness of a DP problem M: (1) let $A := \{M\}$; (2) while $A \neq \emptyset$: select a $Q \in A$ and a sound processor *Proc*, let $A := (A \setminus \{Q\}) \cup Proc(Q)$. If this terminates, M is a finite DP problem. Many processors are possible; here we present an extension of the subterm criterion [12, 10, 11], dubbed *computable subterm criterion*, that *needs* the new flag.

C. Fuhs and C. Kop

▶ **Theorem 16** (Computable subterm criterion processor). Let $M = (\mathcal{P}_1 \uplus \mathcal{P}_2, \mathcal{R}, \text{computable}_{\mathcal{U}})$ be a DP problem. A projection function ν maps meta-terms to natural numbers such that for all DPs $\ell \Rightarrow p \in \mathcal{P}_1 \uplus \mathcal{P}_2$, the function $\overline{\nu}$ with $\overline{\nu}(\mathbf{f} \ s_1 \cdots s_m) = s_{\nu(\mathbf{f})}$ is well-defined for ℓ and p. For meta-terms s and t of base types, we define $s \sqsupset t$ if $s \neq t$ and (a) $s \trianglerighteq_{\mathsf{acc}} t$ or (b) there exists a meta-variable Z with $s \trianglerighteq_{\mathsf{acc}} Z[x_1, \ldots, x_k]$ and $t = Z[t_1, \ldots, t_k] \ s_1 \cdots s_n$. Then the processor Proc_{compsub} that maps M to $\{(\mathcal{P}_2, \mathcal{R}, \mathsf{computable}_{\mathcal{U}})\}$ is sound if a projection function ν exists with $\overline{\nu}(\ell) \sqsupset \overline{\nu}(p)$ for all $\ell \Rightarrow p \in \mathcal{P}_1$ and $\overline{\nu}(\ell) = \overline{\nu}(p)$ for all $\ell \Rightarrow p \in \mathcal{P}_2$.

▶ Example 17. \mathcal{R} from Ex. 1 is terminating if $(\mathcal{P}, \mathcal{R}, \mathsf{computable}_{\mathcal{R}})$ with $\mathcal{P} = SDP(\mathcal{R})$ is finite (see Ex. 7). Consider the projection function ν with $\nu(\mathsf{rec}^{\sharp}) = 1$. As $\mathsf{s} \ X \trianglerighteq_{\mathsf{acc}} X$ and $\lim H \trianglerighteq_{\mathsf{acc}} H$, we have $\mathsf{s} \ X \sqsupset X$ and $\lim H \sqsupset H \ M$. So $Proc_{\mathsf{compsub}}(\mathcal{P}, \mathcal{R}, \mathsf{computable}_{\mathcal{R}}) = \{(\emptyset, \mathcal{R}, \mathsf{computable}_{\mathcal{R}})\}$. As there are no DPs left, this implies termination of the original \mathcal{R} .

6 Conclusion

We have extended the static DP method by a more relaxed applicability criterion and the new *computable subterm criterion*. The full version [7] of the paper has proofs and further extensions, such as *formative* reductions [6, 10], applications to proving non-termination, and dynamic DPs [10] in a unified DP framework with many other processors.

— References

- 1 F. Blanqui. Termination and confluence of higher-order rewrite systems. In RTA '00, 2000.
- 2 F. Blanqui. Higher-order dependency pairs. In Proc. WST '06, 2006.
- 3 F. Blanqui. Termination of rewrite relations on λ -terms based on Girard's notion of reducibility. *Theoretical Computer Science*, 611:50–86, 2016.
- 4 F. Blanqui, J. Jouannaud, and M. Okada. Inductive-data-type systems. *Theoretical Computer Science*, 272(1-2):41–68, 2002.
- 5 F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering. *Logical Methods* in Computer Science, 11(4), 2015.
- 6 C. Fuhs and C. Kop. First-order formative rules. In Proc. RTA-TLCA '14, 2014.
- 7 C. Fuhs and C. Kop. The unified higher-order dependency pair framework. Technical Report arXiv:1805.09390 [cs.LO], 2018. https://arxiv.org/abs/1805.09390.
- 8 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combining techniques for automated termination proofs. In *Proc. LPAR '04*, 2005.
- 9 C. Kop. *Higher Order Termination*. PhD thesis, VU Amsterdam, 2012.
- 10 C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional systems. Logical Methods in Computer Science, 8(2):10:1–10:51, 2012.
- 11 K. Kusakari. Static dependency pair method in functional programs. IEICE Transactions on Information and Systems, E101.D(6):1491–1502, 2018.
- 12 K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on strong computability for higher-order rewrite systems. *IEICE Transactions on Information* and Systems, 92(10):2007–2015, 2009.
- 13 M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair method for proving termination of higher-order rewrite systems. *IEICE Transactions on Information* and Systems, E84-D(8):1025–1032, 2001.
- 14 S. Suzuki, K. Kusakari, and F. Blanqui. Argument filterings and usable rules in higher-order rewrite systems. *IPSJ Transactions on Programming*, 4(2):1–12, 2011.
- 15 W. Tait. Intensional interpretation of functionals of finite type. Journal of Symbolic Logic, 32(2):187–199, 1967.