
A transitive HORPO for curried systems
Liye Guo �Â

Radboud University Nijmegen, Netherlands

Cynthia Kop � Â

Radboud University Nijmegen, Netherlands

Abstract
The higher-order recursive path ordering is one of the oldest, but still very effective, methods to
prove termination of higher-order TRSs. A limitation of this ordering is that it is not transitive
(and its transitive closure is not computable). We will present a transitive variation of HORPO.
Unlike previous HORPO definitions, this method can be used directly on terms in curried notation.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Higher-order term rewriting, termination, recursive path ordering

Funding The authors are supported by the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075.

1 Introduction

Termination problems have been studied by the term rewriting community for decades. In
higher-order termination, one of the earliest techniques was HORPO [2], a higher-order
extension of the recursive path ordering [3]. This definition has seen a series of improvements
over the years, culminating in the powerful Computability Path Ordering (CPO) [1].

Interestingly, the relations �horpo and �cpo are not transitive. To obtain a well-founded
ordering, we must use the transitive closure �+

horpo (resp. �+
cpo), but this is not computable.

Hence, for many rules that can in theory be oriented by HORPO, this cannot be found in
practice. This limitation is particularly problematic when HORPO is transposed to formalisms
where lambda abstractions occur more often on the left-hand side of a rule, since we may for
instance have f(λx.g(x), Y ) �cpo (λx.g(x)) · Y �cpo g(Y ), but not f(λx.g(x), Y ) �cpo g(Y ).

To address this issue, the second author explored an alternative HORPO in her PhD
thesis [5]: following an idea from the iterative path ordering [4], we use an annotation ? to
mark an obligation to decrease a term. This can be harnessed to obtain a transitive definition.
Like HORPO and CPO, StarHorpo was defined on a formalism with functional (uncurried)
notation; application is encoded as a family of function symbols. Consequently, in curried
specifications, the same few symbols occur over and over, making the method hard to apply.

In this paper, we adapt StarHorpo to a curried system. This is not just a notational
matter: allowing function symbols to take a variable number of arguments poses new technical
challenges. This is work in progress; we will focus on the core aspects of the method. For
now, we omit lambda abstractions and type orderings as used in CPO. However, the eventual
goal is to define a transitive ordering that strictly includes CPO for curried systems.

2 Preliminaries

2.1 Applicative TRS
For presentation, we shall consider an applicative term rewriting system. We assume that
a set S of base types is given, and the set T of simple types is generated by the grammar
T ::= S | (T → T ). Right-associativity is assigned to → so that some parentheses in types
can be omitted. We postulate two disjoint sets F and V, called the set of function symbols
and the set of variables, respectively. We assume that every function symbol and variable

mailto:l.guo@cs.ru.nl
https://www.cs.ru.nl/~liyeguo
mailto:c.kop@cs.ru.nl
https://www.cs.ru.nl/~cynthiakop/


A transitive HORPO for curried systems

has exactly one simple type, and we write a : A for a of type A. In this paper, we let f and
g range over the set F , x over the set V and a over F ∪ V.

The set T of pre-terms is generated by the grammar T ::= F(T, . . . ,T) | V(T, . . . ,T). The
set of terms consists of pre-terms which can be given a simple type by the following rule:

a : A1 → · · · → An → B t1 : A1 . . . tn : An (a ∈ F ∪ V)
a(t1, . . . , tn) : B

A term has only one type. When n = 0, we omit the parentheses and write a instead of a().
The application of a term t = a(t1, . . . , tn) : A→ B to another term tn+1 : A, denoted by

t · tn+1, is defined to be a(t1, . . . , tn, tn+1). We assign to · left-associativity. Type-preserving
functions from variables to terms are called substitutions. Every substitution σ extends to a
type-preserving function σ̄ from terms to terms. We write tσ for σ̄(t) and define it as follows:
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ), and x(t1, . . . , tn)σ = σ(x) · t1σ · · · tnσ.

A rewrite rule `→ r is an ordered pair where ` and r are terms of the same type, variables
occurring in r also occur in `, and ` = f(t1, . . . , tn). Given a set R of rewrite rules, t→R t′

if and only if one of the following conditions is true:
t = `σ, t′ = rσ and `→ r ∈ R for some substitution σ.
t = t1 · t2, t′ = t1

′ · t2 and t1 →R t1
′.

t = t1 · t2, t′ = t1 · t2′ and t2 →R t2
′.

→R is called the rewrite relation. This paper concerns the well-foundedness of →R.
In the above definition, the application operator · is distinct from the function symbols,

and terms are lists headed by a function symbol or a variable. An equivalent and commonly
used alternative is to consider · as part of term formation and terms as binary trees. In this
view, we would for instance write f · t1 · t2, or just f t1 t2, instead of f(t1, t2). We favor our
current presentation to stress the similarities to the existing recursive path orderings, which
are typically defined on formalisms with functional notation. We do not consider application
as function symbols, as this would be detrimental to our method.

2.2 HORPO
We review a simple higher-order recursive path ordering [2] reformulated for the above
formalism. Given a well-founded ordering I on F , called the precedence, s �horpo t if and
only if s has the same type as t and one of the following conditions is true:
(1) s = f(s1, . . . , sm) and ∃i si �horpo t.
(2) s = f(s1, . . . , sm), t = t1 · t2 · · · tn and f(s1, . . . , sm) |� {t1, . . . , tn}.
(3) s = f(s1, . . . , sm), t = g(t1, . . . , tn), f I g and f(s1, . . . , sm) |� {t1, . . . , tn}.
(4) s = f(s1, . . . , sm), t = f(t1, . . . , tm), (s1, . . . , sm) �lex

horpo (t1, . . . , tm) and f(s1, . . . , sm) |�
{t1, . . . , tm}.

(5) s = s1 · s2, t = t1 · t2, s1 �horpo t1, s2 �horpo t2 and s 6= t.
In the above definition, �horpo is the reflexive closure of �horpo, �lex

horpo lexicographically
compares lists of the same length by �horpo, and f(s1, . . . , sm) |� {t1, . . . , tn} stands for
∀i (f(s1, . . . , sm) �horpo ti ∨ ∃j sj �horpo ti). We remark that the multiset extension in the
definition [2] is omitted for simplicity’s sake. The relation �horpo is well-founded, monotonic
(i.e., t1 �horpo t1

′ implies t1 · t2 �horpo t1
′ · t2, and t2 �horpo t2

′ implies t1 · t2 �horpo t1 · t2′),
and stable (i.e., t �horpo t

′ implies tσ �horpo t
′σ for all substitutions σ). If in addition →R is

compatible with �horpo (i.e., ` �horpo r for all `→ r ∈ R), then →R is well-founded.
As an example, consider the following definition of a recursor for the natural numbers:

rec(O, Y, F )→ Y rec(s(X), Y, F )→ F (X, rec(X,Y, F ))



L. Guo and C. Kop

where O : nat, s : nat → nat and rec : nat → nat → (nat → nat → nat) → nat are the
function symbols, and the types of the variables X, Y and F can be deduced. In order
to show the well-foundedness of →R, we need only to find a precedence I making →R
compatible with the generated relation �horpo. While rec(O, Y, F ) �horpo Y follows from the
first condition, rec(s(X), Y, F ) �horpo F (X, rec(X,Y, F )) can be obtained as follows:

F �horpo F

X �horpo X 1
s(X) �horpo X

s(X) �horpo X Y �horpo Y F �horpo F 4
rec(s(X), Y, F ) �horpo rec(X,Y, F )

2
rec(s(X), Y, F ) �horpo F (X, rec(X,Y, F ))

The precedence can be any well-founded ordering on F . The above process of finding the
precedence can be automated by encoding the constraints ` �horpo r in a propositional
formula that is fed to a SAT solver, as demonstrated in [8] for the first-order RPO.

The usefulness of �horpo is limited by the type restriction—only terms of the same type
can be compared. Let us extend the above example with the following rewrite rules:

add(O, Y )→ Y add(s(X), Y )→ s(add(X,Y )) sum(X)→ rec(X, O, add)

where add : nat → nat → nat and sum : nat → nat. If we ignore the rewrite rule on
the right, we need only add I s to complete the proof. Since the rule on the right only
removes occurrences of sum, it seems harmless. However, sum(X) �horpo rec(X, O, add) is
not obtainable due to the type restriction: neither sum(X) nor X has the same type as add
so the necessary premise sum(X) |� {add} does not hold. This problem is addressed in [2] by
introducing computable closures. We will provide an alternative in the next section.

3 StarHorpo

Let F? be F ] (F × T ), in which a function symbol is either a function symbol f ∈ F , or an
ordered pair (f,A), written as f?

A, where f ∈ F and A ∈ T . We assume f?
A : A and F?∩V = ∅.

With F?, terms are generated and typed likewise. Given a term f(t1, . . . , tn) where ti : Ai

for all i, the newly introduced function symbols allow us to have f?(t1, . . . , tn) : B for any
B, where f? stands for f?

A1→···→An→B. We will omit the type and write just f? whenever
the type can be deduced from the context. In the above translation from f(t1, . . . , tn) to
f?(t1, . . . , tn), marking the head symbol serves two purposes:

f?(t1, . . . , tn) can have a different type from the type of f(t1, . . . , tn).
f?(t1, . . . , tn) encodes an obligation to make f(t1, . . . , tn) smaller [4, 7].

We further assume that every marked function symbol f? in a term is followed by at least
minar(f) arguments, where the function minar : F → N is called the minimal arity.

A term is said to be unmarked if it does not contain any marked function symbol. Given
minar and the precedence I on F , s �? t if and only if s has the same type as t, t is unmarked,
and one of the following conditions is true:

Put s = f(s1, . . . , sm), m ≥ minar(f) and f?(s1, . . . , sm) �? t.
Select s = f?(s1, . . . , sm) and ∃i si · f?(s1, . . . , sm) · · · f?(s1, . . . , sm) �? t.
Copy s = f?(s1, . . . , sm), t = g(t1, . . . , tn), f I g and ∀i f?(s1, . . . , sm) �? ti.

Lex s = f?(s1, . . . , sm), t = f(t1, . . . , tn), (s1, . . . , sminar(f)) �lex
? (t1, . . . , tn)

and ∀i f?(s1, . . . , sm) �? ti.
Mono s = s1 · s2, t = t1 · t2, s1 �? t1, s2 �? t2 and s 6= t.



A transitive HORPO for curried systems

In the above definition, �? is the union of �? and the identity relation on unmarked terms,
and (s1, . . . , sminar(f)) �lex

? (t1, . . . , tn) if and only if ∃i ≤ min(minar(f), n) (si �? ti ∧ ∀j <
i sj = tj). Occurrences of f?(s1, . . . , sm) in the conditions always have an appropriate type,
and the number of occurrences of f?(s1, . . . , sm) in Select is determined by the type of si.

e : a→ a→ a

f : ((a→ a)→ a→ a)→ a→ a

g : (a→ a)→ a→ a

h : a

g I e

g I h Copy
g?(f?(g)) > h

Lex
f?(g, g?(f?(g))) > f(g, h)

Select
g?(f?(g)) > f(g, h)

Copy
g?(f?(g)) > e(f(g, h))

Put
g(f?(g)) > e(f(g, h))

Select
f?(g) > e(f(g, h))

Put
f(g) > e(f(g, h))

Figure 1 Non-well-foundedness from drop-
ping the minar restriction

Put allows us to mark a function symbol
without changing its type. When we do so, it
is required that the marked function symbol
f? takes at least minar(f) arguments. With-
out this restriction, the ordering, denoted by
>, will end up allowing the derivation in Fig-
ure 1. By Mono, we get an infinite sequence
f(g) > e(f(g, h)) > e(e(f(g, h), h)) > · · ·,
which shows that > is not well-founded. The
“minimal arity” restriction is necessary be-
cause Select may cause function symbols to
take extra arguments, which is not the case
for HORPO, and taking into account the ex-
tra arguments in a Lex step can break well-
foundedness, as shown in Figure 1.

We note that marked function symbols play
a role only in generating �?. Because →R
is a relation on unmarked terms, we should
consider the restriction of �? to unmarked terms when showing the well-foundedness of →R.
Like �horpo, the restriction of �? to unmarked terms is well-founded, monotonic and stable,
which means we only need to find a combination of I and minar that makes →R compatible
with the generated relation �?.

For example, sum(X) �? rec(X, O, add) can be obtained as follows, with minar(sum) = 1:

sum I rec
X �? X Select

sum?(X) �? X
sum I O Copy

sum?(X) �? O
sum I add Copy

sum?(X) �? add
Copy

sum?(X) �? rec(X, O, add)
Put

sum(X) �? rec(X, O, add)
Unlike �horpo, �? is necessarily transitive, which we exemplify with the rewrite sequence

rec(s(s(X)), Y, add)→R add(s(X), rec(s(X), Y, add))→R s(add(X, rec(s(X), Y, add))).

With either �horpo or �?, we can see that in each of the rewrite steps, the term on the
left-hand side is greater than the one on the right-hand side, using only add I s and
minar(rec) = minar(add) = 1. If we skip the term in the middle and try to directly compare
the first and the last in the sequence, �horpo fails unless we further impose rec I s. This
shows that �horpo is not transitive as imposing extra assumptions can be problematic when
there are other rewrite rules in the system. On the other hand, with �?, we do have the
following derivation (with irrelevant part omitted):

add I s

... Lex
add?(rec?(. . .), rec?(. . .)) �? add(X, rec(s(X), Y, add))

Copy
add?(rec?(. . .), rec?(. . .)) �? s(add(X, rec(s(X), Y, add)))

Put
add(rec?(. . .), rec?(. . .)) �? s(add(X, rec(s(X), Y, add)))

Select
rec?(s(s(X)), Y, add) �? s(add(X, rec(s(X), Y, add)))

Put
rec(s(s(X)), Y, add) �? s(add(X, rec(s(X), Y, add)))



L. Guo and C. Kop

In the above derivation, we “select” add in rec?(s(s(X)), Y, add) by Select. This reflects the
derivation of rec(s(X), Y, F ) �? F (X, rec(X,Y, F )), in which F is selected. This step is
not available with �horpo. Also by Select, add gets two arguments, each with a marked head
symbol. The arguments are later compared with some arguments on the right-hand side by
Lex. This capacity to postpone comparison is vital to the transitivity of �?.

To automate StarHorpo, standard SAT encoding techniques (see, e.g., [8]) can be used.
The only limitation is that, to ensure termination, the number of size-increasing applications
of Select until the right-hand side is decreased should be bounded. This is implemented in
the second author’s termination tool Wanda [6], which features the original StarHorpo.

Finally, let us discuss what would happen if we encoded application as function symbols.
In this perspective, we could ignore types and view a curried system as a first-order (uncurried)
system with a single binary function symbol @. However, all complex terms are thus headed
by the same binary function symbol, which sharply limits the applicability of recursive path
orderings since we can rarely take advantage of the head symbol comparison, when we apply
Copy. Consider the system with only one rewrite rule f(X)→ g(X,X), where f : a→ a and
g : a→ a→ a. This rule is easily oriented by �? (or �horpo) with f I g, but its applicative
first-order counterpart, @(f, X) → @(@(g, X), X), cannot be tackled. Even if we do not
ignore types and introduce a separate symbol @A,B : (A→ B)→ A→ B for any types A
and B, the same problem still arises: @a,a(f, X) �? @a,a(@a,a→a(g, X), X) is not obtainable.

4 Conclusion

We have adapted StarHorpo to an applicative system. Changing the underlying formalism
requires extra attention: the arity restriction of functional notation should not be dropped
naively; instead, we impose the minimal arity, a weaker version of arity, on StarHorpo.
Interestingly, on the same applicative system, our definition of HORPO does not seem in
need of any kind of arity. While this definition is indeed more powerful in some cases,
without Select, which can give function symbols extra arguments, HORPO is not necessarily
transitive. We thus incorporate both Select and minar into StarHorpo to gain transitivity
while maintaining well-foundedness.

In order to have CPO included in StarHorpo for curried systems, we still need to take
into account lambda abstractions and type orderings, as well as the multiset extension, in
our definition. Furthermore, another direction for future work is to apply StarHorpo to
determine the termination of functional programs, which may require us to extend StarHorpo
with support for real-world data types such as integers and floating-point numbers.

References
1 F. Blanqui, J. Jouannaud, and A. Rubio. The computability path ordering: The end of a

quest. In Proc. CSL, 2008.
2 J. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS, 1999.
3 S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering. Unpublished

Manuscript, University of Illinois, 1980.
4 J.W. Klop, V. van Oostrom, and R. de Vrijer. Iterative lexicographic path orders. In Algebra,

Meaning, and Computation. 2006.
5 C. Kop. Higher Order Termination. PhD thesis, VU Amsterdam, 2012.
6 C. Kop. WANDA – a higher-order termination tool. In Proc. FSCD, 2020.
7 C. Kop and F. van Raamsdonk. A higher-order iterative path ordering. In Proc. LPAR, 2008.
8 P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving termination

using recursive path orders and SAT solving. In Proc. FroCoS, 2007.


	1 Introduction
	2 Preliminaries
	2.1 Applicative TRS
	2.2 HORPO

	3 StarHorpo
	4 Conclusion

