
Tuple Interpretations and Applications to
Higher-Order Runtime Complexity
Cynthia Kop � Â

Institute for Computation and Information Sciences, Radboud University, The Netherlands

Deivid Vale �Â

Institute for Computation and Information Sciences, Radboud University, The Netherlands

Abstract
Tuple interpretations are a class of algebraic interpretation that subsumes both polynomial and
matrix interpretations as it does not impose simple termination and allows non-linear interpretations.
It was developed in the context of higher-order rewriting to study derivational complexity of
algebraic functional systems. In this short paper, we continue our journey to study the complexity
of higher-order TRSs by tailoring tuple interpretations to deal with innermost runtime complexity.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Complexity analysis, higher-order term rewriting, tuple interpretations

Funding The authors are supported by the NWO TOP project “ICHOR”, NWO 612.001.803/7571
and the NWO VIDI project “CHORPE”, NWO VI.Vidi.193.075.

1 Introduction

The step-by-step computational model induced by term rewriting naturally gives rise to a
complexity notion. Here, complexity is understood as the number of rewriting steps needed
to reach a normal form. In the rewriting setting, a complexity function bounds the length
of the longest rewrite sequence parametrized by the size of the starting term. Two distinct
complexity notions are commonly considered: derivational and runtime. In the former, the
starting term is unrestricted which allows initial terms with nested function calls. The latter
only considers rewriting sequences beginning with basic terms. Intuitively, basic terms are
those where a single function call is performed with data objects as arguments.

There are many techniques to bound the runtime complexity of term rewriting [2, 4].
However, most of the literature focuses on the first-order case. We take a different approach
and regard higher-order term rewriting. We present a technique that takes advantage of
tuple interpretations [3] tailored to deal with an innermost rewriting strategy. The defining
characteristic of tuple interpretations is to allow for a split of the complexity measure into
abstract notions of cost and size. The former is usually interpreted as natural numbers,
which accounts for the number of steps needed to reduce terms to normal forms. Meanwhile,
the latter is interpreted as tuples over naturals carrying abstract notions of size.

2 Preliminaries

The Syntax of Terms and Rules We assume familiarity with the basics of term rewriting.
We will here recall notation for applicative simply-typed term rewriting systems.

Let B be a set of base types (or sorts). The set TB of simple types is built using the
right-associative ⇒ as follows. Every ι ∈ B is a type of order 0. If σ, τ are types of order n

and m respectively, then σ ⇒ τ is a type of order max(n + 1, m). A signature is a non-empty
set F of function symbols together with a function typeOf : F −→ TB. Additionally, we
assume, for each σ ∈ TB, a countable infinite set of type-annotated variables Xσ disjoint from
F . We will denote f, g, . . . for function symbols and x, y, . . . for variables.

mailto:c.kop@cs.ru.nl
https://www.cs.ru.nl/~cynthiakop
https://orcid.org/0000-0002-6337-2544
mailto:deividvale@cs.ru.nl
https://www.cs.ru.nl/~deividvale
https://orcid.org/0000-0003-1350-3478

2 Tuple Interpretations and Applications to Higher-Order Runtime Complexity

This typing scheme imposes a restriction on the formation of terms which consists of
those expressions s such that s :: σ can be derived for some type σ using the following clauses:
(i) x :: σ, if x ∈ Xσ; (ii) f :: σ, if typeOf(f) = σ; and (iii) (s t) :: τ , if s :: σ ⇒ τ and t :: τ .
Application is left-associative. We denote vars(s) for the set of variables occurring in s and
say s is ground if vars(s) = ∅. A rewriting rule ℓ → r is a pair of terms of the same type
such that ℓ = f ℓ1 . . . ℓm and vars(ℓ) ⊇ vars(r). An applicative simply-typed term rewriting
system (shortly denoted TRS), is a set R of rules. The rewrite relation induced by R is the
smallest monotonic relation that contains R and is stable under application of substitution.
A term s is in normal form if there is no t such that s → t. The innermost rewrite relation
induced by R is defined as follows:

ℓγ →i rγ, if ℓ → r ∈ R and all proper subterms of ℓγ are in R-normal form;
s t →i s′ t, if s →i s′; and s t →i s t′, if t →i t′.

In what follows we only allow for innermost reductions. So, we drop the i from the arrow,
and s → t is to be read as s →i t. We shall use the explicit notation if confusion may arise.

▶ Example 1. We will use a system over the sorts nat (numbers) and list (lists of numbers).
Let 0 :: nat, s :: nat ⇒ nat, nil :: list, cons :: nat ⇒ list ⇒ list, and F, G ∈ Xnat⇒nat; types of
other function symbols and variables can be easily deduced.

map F nil → nil comp F G x → F (G x)
map F (cons x xs) → cons (F x) (map F xs) app F x → F x

d 0 → 0 add x 0 → x

d (s x) → s (s (d x)) add x (s y) → s (add x y)

Functions and orderings A quasi-ordered set (A, ⊒) consists of a nonempty set A and a
quasi-order ⊒ over A. A well-founded set (A, >, ≥) is a nonempty set A together with a
well-founded order > and a compatible quasi-order ≥ on A, i.e., > ◦ ≥ ⊆ >. For quasi-
ordered sets A and B, we say that a function f : A −→ B is weakly monotonic if for all
x, y ∈ A, x ⊒A y implies f(x) ⊒B f(y). If (B, >, ≥) is a well-founded set, then > and ≥
induce a point-wise comparison on A −→ B as usual. If A, B are quasi-ordered, the notation
A =⇒ B refers to the set of all weakly monotonic functions from A to B. Functional equality
is extensional. The unit set is the quasi-ordered set defined by unit = ({u}, ⊒), where u ⊒ u.

3 Higher-Order Tuple Interpretations for Innermost Rewriting

To define interpretations, we will start by providing an interpretation of types (Def. 2). Types
σ are interpreted by tuples LσM that carry information about cost and size. We will first
show how application works in this newly defined cost-size domain (Def. 4). Interpretation
of types will then set the domain for the tuple algebras we are interested in (Def. 7).

▶ Definition 2 (Interpretation of Types). For each type σ, we define the cost-size tuple
interpretation of σ as LσM = Cσ × Sσ where Cσ (respectively Sσ) is defined as follows:

Cσ = N × F c
σ Sι = (NK[ι], ⊒), K[ι] ≥ 1

F c
ι = unit Sσ⇒τ = Sσ =⇒ Sτ

F c
σ⇒τ = (F c

σ × Sσ) =⇒ Cτ ,

where F c
σ⇒τ (Sσ⇒τ) is the set of weakly monotonic functions from F c

σ × Sσ to Cτ (Sσ to Sτ).
The quasi-ordering on those sets is the induced point-wise comparison. The set LσM is ordered
as follows: ((n, f), s) ≻ ((m, g), t) if n > m, f ≥ g and s ⊒ t; and ((n, f), s) ≽ ((m, g), t) if
n ≥ m, f ≥ g and s ⊒ t.

C. Kop and D. Vale 3

The cost tuple Cσ = N × F c
σ of LσM holds the cost information of reducing a term of type

σ to its normal form. It is composed of a numeric and functional component. Base types,
which are naturally not functional, have the unit set for F c

ι ; the cost tuple of a base type is
then Cι = N × unit. Functional types do possess an intrinsically functional component (the
cost of applying the function), which in our setting is expressed by F c

σ⇒τ = F c
σ × Sσ =⇒ Cτ .

For functional types the numeric component represents the cost of partial application.
To determine the number K[ι], associated to each sort ι, we use a semantic approach that

takes the intuitive meaning of the sort we are interpreting into account. The sort nat for
instance represents natural numbers, which we implement in unary format. Hence, it makes
sense to reckon the number of successor symbols occurring in terms of the form (sn 0) :: nat
as their size. This gives us K[nat] = 1. Another example is the sort list (of natural numbers):
it is natural to regard measures like length and maximum element size. This results in
K[list] = 2. Example 8 below shows how to interpret data constructors using this intuition.

The next lemma expresses the soundness of our approach, that is, cost-size tuples define
a well-founded domain for the interpretation of types.

▶ Lemma 3. For each type σ, the set Cσ is well-founded and Sσ quasi-ordered. Their product,
that is, (LσM, ≻,≽), is well-founded.

Semantic Application To interpret each term s :: σ to an element of LσM (Def. 7), we
will need a notion of application for cost-size tuples. Specifically, given a functional type
σ ⇒ τ , a cost-size tuple f ∈ Lσ ⇒ τM, and x ∈ LσM, our goal is to define the application
f · x of f to x. Let us illustrate the idea with a concrete example: consider the type
σ = (nat ⇒ nat) ⇒ list ⇒ list, which is the type of map defined in Example 1. The function
map takes as argument a function F of type nat ⇒ nat and a list q, and applies F to each
element of q. The cost interpretation of map is a functional in Cσ parametrized by functional
arguments carrying the cost and size information of F and a cost-size tuple for q.

N ×

the functional cost of map︷ ︸︸ ︷
((unit × N =⇒ N × unit)︸ ︷︷ ︸

cost of F

× (N =⇒ N)︸ ︷︷ ︸
size of F

=⇒ (N × (unit︸ ︷︷ ︸
cost of q

× N2︸︷︷︸
size of q

=⇒ N × unit))),

Hence, we write an element of such space as the tuple (n, f c). Size sets are somewhat simpler
with (N =⇒ N)︸ ︷︷ ︸

size of F

=⇒ N2︸︷︷︸
size of q

=⇒ N2. Therefore, a functional cost-size tuple f is represented by

f = ⟨(n, f c), f s⟩. An argument to such a cost-size tuple is then an element in the domain of
f c and f s, respectively. Therefore, we apply f to a cost-size tuple x of the form ⟨(m, gc), gs⟩
where gc is the cost of computing F and gs is the size of F . We proceed by applying the
respective functions, so f c(gc, gs) = (k, h) belongs to Clist, and add the numeric components
together obtaining: f · x = ⟨(n + m + k, f c(gc, gs)), f s(gs)⟩. Notice that this gives us a new
cost-size tuple with cost component in N× (Clist =⇒ Clist) and size component in Slist =⇒ Slist.

▶ Definition 4. Let σ ⇒ τ be an arrow type, f = ⟨(n, f c), f s⟩ ∈ Lσ ⇒ τM, and x =
⟨(m, gc), gs⟩ ∈ LσM. The application of f to x, denoted f · x, is defined by:

let f c(gc, gs) = (k, h); then ⟨(n, f c), f s⟩ · ⟨(m, gc), gs⟩ = ⟨(n + m + k, h), f s(gs)⟩

Semantic application is left-associative and respects a form of application rule.

▶ Lemma 5. If f is in Lσ ⇒ τM and x is in LσM, then f · x belongs to LτM.

4 Tuple Interpretations and Applications to Higher-Order Runtime Complexity

▶ Remark 6. In order to ease notation, we project sets π1 : A × unit −→ A and π2 : unit ×
A −→ A and compose functions with projections, so a function in unit × A =⇒ B × unit is
lifted to a function in A =⇒ B. The functional cost of map is then read as follows:

N ×

the functional cost of map︷ ︸︸ ︷
((N =⇒ N)︸ ︷︷ ︸

cost of F

× (N =⇒ N)︸ ︷︷ ︸
size of F

=⇒ (N × (N2︸︷︷︸
size of q

=⇒ N)))

The N component of Cσ⇒τ is specific to innermost rewriting (it does not occur in [3]). We
need this to handle rules of non-base type; for example, if add 0 → id, then the cost tuple of
add 0 is (1, λλx.0). However, since in most cases the first component is 0, we will typically omit
these zeroes and simply write for instance λλFq.f c(F, q) instead of (0, λλF.⟨0, λλq.f c(F, q)⟩).
To compute using Definition 4 we still use the complete form.

Tuple algebras are higher-order weakly monotonic algebras [1] with cost-size tuples as
interpretation domain.

▶ Definition 7 (Higher-order tuple algebra). A higher-order tuple algebra over a signature
(B, F , typeOf) consists of: (i) a family of cost/size tuples {LσM}σ∈TB and (ii) an interpretation
function J which maps each f ∈ F of type σ to a cost-size tuple in LσM.

▶ Example 8. Following the semantics discussed previously, we interpret the constructors
for both nat and list as follows. We call the first component of Slist length and the second
maximum element size. Those are abbreviated using the letters l and m, respectively.

J0 = ⟨0, 0⟩ Js = ⟨λλx.0, λλx.x + 1⟩
Jnil = ⟨0, ⟨0, 0⟩⟩ Jcons = ⟨λλxq.0, λλxq.⟨ql + 1, max(x, qm)⟩⟩

The cost-size tuples for 0 and nil are all 0s, as expected. The size components for s and
cons describe the increase in size when new data is created. We interpret functions from
Example 1 as follows:

Japp = ⟨λλFx.F c(x) + 1, λλFx.F s(x)⟩
Jd = ⟨λλx.x + 1, λλx.2x⟩

Jadd = ⟨λλxy.y + 1, λλxy.x + y⟩
Jcomp = ⟨λλFGx.F c(Gs(xs)) + 1, λλFGx.F s(Gs(x))⟩
Jmap = ⟨λλFq.qlF

c(qm) + 1, λλFq.⟨ql, F s(qm)⟩⟩

A valuation α is a function that maps each x :: σ to a cost-size tuple in LσM. Due to
innermost strategy, we can assume the interpretation of every variable x :: ι has zero cost.
This is formalized by assigning α(x) = ⟨(0, u), xs⟩, for all x ∈ X of base type. In this
paper, we shall only consider valuations that satisfy this property. Variables of functional
type, however, may carry cost information even though any instance of a redex needs to be
normalized. Hence, we set α(F) = ⟨(0, f c), f s⟩ when F :: σ ⇒ τ .

▶ Definition 9. We extend J to an interpretation J·Kα,J of terms as follows:

JxKα,J = α(x) JfKα,J = ⟨(n, J c
f), J s

f ⟩, n ∈ N Js tKα,J = JsKα,J · JtKα,J

We are interested in interpretations satisfying a compatibility requirement:

▶ Theorem 10 (Innermost Compatibility Theorem). Let α be a valuation. If JℓKα,J ≻ JrKα,J
for all rules ℓ → r ∈ R, then JsKα,J ≻ JtKα,J , whenever s →i

R t.

One can check that the TRS from Example 1 interpreted as in Example 8 satisfy the
compatibility requirement.

REFERENCES 5

4 Higher-Order Innermost Runtime Complexity

In this section, we briefly limn how the cost-size tuple machinery allow us to reason about
innermost runtime complexity. We start by reviewing basic definitions.

▶ Definition 11. A symbol f ∈ F is a defined symbol if it occurs at the head of a rule, i.e.,
there is a rule f ℓ1 . . . ℓk → r ∈ R. A symbol c of order at most 1 is a data constructor if it
is not a defined symbol. A data term has the form c d1 . . . dk with c a constructor and each
di a data term. A term s is basic if s :: ι and s is of the form f d1 . . . dm with f a defined
symbol and all d1, . . . , dm data terms. The set TB(F) collects all basic terms.

▶ Remark 12. Notice that our notion of data is intrinsically first-order. This is motivated by
applications of rewriting to full program analysis where even if higher-order functions are
used a program has type ι1 ⇒ . . . ⇒ ιm ⇒ κ. The sorts ιi are the input data types and κ

the output type of the program.

▶ Definition 13. The innermost derivation height of s is dhR(s) = {n | ∃t : s →n t}. The
innermost runtime complexity function with respect to a TRS R is ircR(n) = max{dhR(s) |
s ∈ TB(F) ∧ |s| ≤ n}.

To reasonably bound the innermost runtime complexity of a TRS R, we require that size
interpretations of constructors have their components bounded by an additive polynomial,
that is, a polynomial of the form λλx1 . . . xk.

∑k
i=1 xi + a, with a ∈ N.

We can build programs by adding a new main function taking data variables as arguments
and combine it with rules computing functions, including higher-order ones. For instance,
using rules from Example 1, we can compute a program that adds a number x to every
element in a list q as follows: main x q → map (add x) q. Hence, computing this program on
inputs n and list q is equivalent to reducing the term main n q to normal form. Its runtime
complexity is therefore bounded by the cost-tuple of Jmain n qK.

5 Conclusion

In this short paper, we shed light on how to use cost-size tuple interpretations to bound inner-
most runtime complexity of higher-order systems. We defined a new domain of interpretations
that takes the intricacies of innermost rewriting into account and defined how application
works in this setting. The compatibility result allows us to make use of interpretations as
a way to bound the length of derivation chains, as it is expected from an interpretation
method. As current, and future work, we are working on automation techniques to find
interpretations and develop a completely rewriting-based automated tool for complexity
analysis of functional programs.

References

1 C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewriting. In Proc. RTA,
2012. doi:10.4230/LIPIcs.RTA.2012.176.

2 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair
method. In Proc. IJCAR, 2008. doi:10.1007/978-3-540-71070-7_32.

3 C. Kop and D. Vale. Tuple interpretations for higher-order complexity. In Proc. FSCD,
2021. doi:10.4230/LIPIcs.FSCD.2021.31.

4 L. Noschinski, F. Emmes, and J. Giesel. Analysing innermost runtime complexity of term
rewriting by dependency pairs. JAR, 2013. doi:10.1007/s10817-013-9277-6.

https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.1007/s10817-013-9277-6

	1 Introduction
	2 Preliminaries
	3 Higher-Order Tuple Interpretations for Innermost Rewriting
	4 Higher-Order Innermost Runtime Complexity
	5 Conclusion

