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Abstract7

In this short paper, we consider a form of higher-order rewriting with a call-by-value evaluation8

strategy so as to model call-by-value programs. We limn a cost–size semantics to call-by-value9

rewriting: a class of algebraic interpretations to map terms to tuples which that bounds both the10

reduction’s cost and the size of normal forms.11
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1 Introduction17

This short paper is a brief exposition of the conference paper “Cost–Size Semantics for18

Call-by-Value Higher-Order Rewriting” recently accepted for publication at FSCD 2023. In19

this paper, we study complexity, which in the context of term rewriting is typically understood20

as the number of steps needed to reach a normal from when starting in terms of a certain21

shape and size. A natural way to determine these bounds is by adapting techniques for22

proving termination to deduce the complexity. There is a myriad of works following this23

idea. To mention a few, see [2, 3, 5, 10, 11, 14] for interpretation methods, [4, 9, 18] for24

lexicographic and path orders, and [8, 16] for dependency pairs.25

However, those ideas are focused on first-order term rewriting. The literature on com-26

plexity of higher-order rewriting is scarce. While there is a lot of work on complexity of27

functional programs [1, 6, 12, 15], this work uses quite different ideas from the methods28

developed for term rewriting. It would be beneficial to combine these ideas.29

In a previous work [13], we introduced an extension of the method of weakly monotonic30

algebras [7, 17] to tuple interpretations. The idea of algebras is to choose an interpretation31

domain A, and interpret terms s as elements JsK of A compositionally, in such a way that32

whenever s → t we have JsK > JtK. Hence, a rewriting step on terms implies a strict decrease33

on A. The defining characteristic of tuple interpretations is to split the complexity measure34

into abstract notions of cost and size. This coincides with ideas often used in resource35

analysis of functional programs [1, 6]. This is a popular idea, as a very similar approach was36

introduced for first-order rewriting around the same time [19].37

2 Preliminaries38

The formalism we consider here is a style of simply typed lambda calculus extended with39

function symbols and rules. The matching mechanism is modulo alpha, and beta reduction40

is included in the rewriting relation.41
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Let B be a nonempty set of base types. The set TB of simple types over B is generated42

by the grammar: TB := B | TB ⇒ TB. As usual, we assume that the ⇒ type constructor is43

right-associative. A signature F is a triple (B, Σ, ar) where B is a set of base types, Σ is a44

nonempty finite set of symbols, and ar is a function ar : Σ −→ TB. We postulate, for each45

type σ, the existence of a nonempty set Xσ of countably many variables. Furthermore, we46

impose that Xσ ∩ Xτ = ∅ whenever σ ̸= τ and let X denote the family of sets.47

The set T(F,X) — of terms built from F and X — collects those expressions s for which48

the judgment s : σ can be deduced using the following rules:49

x ∈ Xσ
x : σ

f ∈ Σ ar(f) = σ

f : σ

s : σ ⇒ τ t : σ

(s t) : τ

x ∈ Xσ s : τ

(λx. s) : σ ⇒ τ
50

We assume the usual λ-Calculus association and precedence scheme for application and51

abstraction. We shall remove unnecessary parentheses and write terms following those rules.52

Application of substitutions is defined as expected.53

Call-by-Value Higher-order Rewriting A rewrite rule ℓ → r is a pair of terms of the same54

type such that ℓ = f ℓ1 . . . ℓk and fv(r) ⊆ fv(ℓ). A term rewriting system (TRS) R is a set55

of rules. In this paper, we are interested in a restricted evaluation strategy, which limits56

reduction to terms whose immediate subterms are values:57

▶ Definition 1. A term s is a value whenever s is:58

of the form f v1 . . . vn, with each vi a value and there is no rule f ℓ1 . . . ℓk → r with k ≤ n;59

an abstraction, i.e., s = λx. t.60

Every rewrite rule ℓ → r defines a symbol f, namely, the head symbol of ℓ. For each f ∈ Σ,61

let Rf denote the set of rewrite rules that define f in R. A symbol f ∈ Σ is a defined symbol if62

Rf ̸= ∅. A constructor symbol is a symbol c ∈ Σ such that Rf = ∅. We let Σdef be the set of63

defined symbols and Σcon the set of constructor symbols. Hence, Σ = Σdef ⊎ Σcon. A ground64

constructor term is a term c s1 . . . sn with n ≥ 0, where each si is a ground constructor term.65

Notice that by definition ground constructor terms are values since there is no rule66

c ℓ1 . . . ℓk → r for any k if c ∈ Σcon. More complex values include partially applied functions67

and lambda-terms; for example, add 0 or a list of functions [add 0; λx.x; mult 0; dbl].68

▶ Definition 2. The higher-order weak call-by-value rewrite relation →v induced by69

R is defined as follows:70

f (ℓ1γ) . . . (ℓkγ) →v rγ, if f ℓ1 . . . ℓk → r ∈ R and each ℓiγ is a value;71

(λx. s) v →v s[x := v], if v is a value;72

s t →v s′ t if s →v s′; and s t →v s t′ if t →v t′.73

▶ Example 3. Let us consider two simple examples of functions encoded as rules. The first74

is map, which applies a function F : nat ⇒ nat.75

map F nil → nil add x 0 → 076

map F (cons x xs) → cons (F x) (map F xs) add x (s y) → s (add x y)77

3 Cost–Size Semantics for Types and Terms78

The kernel of the interpretation of types a function L·M that maps each type σ ∈ TB to a79

well-founded set LσM, the cost–size interpretation of σ.80
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▶ Definition 4 (Interpretation of Types). We define for each type σ the cost–size tuple81

interpretation of σ as the set LσM = Cσ × Sσ where Cσ and Sσ are defined as follows:82

Cσ = N × F c
σ Sι = NK(ι)

83

F c
ι = unit Sσ⇒τ = Sσ =⇒ Sτ84

F c
σ⇒τ = (F c

σ × Sσ) =⇒ Cτ85

The set LσM is ordered component-wise. With that this interpretation of types is well-founded,86

which was proved in the full version of this paper. Next, we need an application operator87

for applying cost–size tuples. More precisely, given a type σ ⇒ τ and cost–size tuples88

f ∈ Lσ ⇒ τM and x ∈ LσM, we define the application of f to x as follows.89

▶ Definition 5. Let σ ⇒ τ be an arrow type, f = ⟨(n, f c), f s⟩ ∈ Lσ ⇒ τM, and x =90

⟨(m, xc), xs⟩ ∈ LσM. The semantic application of f to x, denoted f · x, is defined by:91

let f c(xc, xs) = (k, h); then ⟨(n, f c), f s⟩ · ⟨(m, xc), xs⟩ = ⟨(n + m + k, h), f s(xs)⟩92

An interpretation of a signature F = (B, Σ, ar) interprets the base types in B and each93

f ∈ Σ of arity ar(f) = σ as an element of LσM which is constructed by Definition 4.94

▶ Definition 6. A cost–size tuple interpretation F for a signature F = (B, Σ, ar) consists95

of a pair of functions (JB, JΣ) where96

JB is a type interpretation key, which maps each base type ι to a size tuple NK(ι)
97

JΣ is an interpretation of symbols in Σ which maps each f ∈ Σ with ar(f) = σ to a98

cost–size tuple in LσM, where LσM is built using JB in Definition 4.99

In what follows we slightly abuse notation by writing Jf for JΣ(f) and just J for JΣ.100

▶ Example 7. As a first example of interpretation, let us interpret the data constructors from101

Example 3. Recall that 0 : nat, s : nat ⇒ nat are the constructors for nat and JB(nat) = N.102

J0 =
〈

(0, u) , 1
〉

Js =
〈

(0, λλx.(0, u)) , λλx.x + 1
〉

103

The highlighted cost components for the constructors are filled with zeroes. That is because104

in the rewriting cost model data values do not fire rewriting sequences. Intuitively, the cost105

number for 0 is 0, (because it is a value), the cost function is u (because it has base type), and106

size component is 1 (since we chose a notion of size for terms of type nat to mean “number of107

symbols”). The cost number for s is 0, the cost function is the constant function mapping to108

0, and the size component is the function λλx.x + 1 in Snat⇒nat. We interpret the constructors109

for list, i.e., nil and cons, following the same principle, with JB(list) = N2. We write a size110

tuple q in Slist as (ql, qm) since the first component is to mean the length of the list and the111

second a bound on the size of its elements.112

Jnil =
〈

(0, u) , (0, 0)
〉

Jcons =
〈

(0, λλx.(0, λλq.(0, u))) , λλxq.(ql + 1, max(x, qm))
〉

113

The highlighted cost components are filled with zeroes for lists as well. Size components are114

interpreted following the semantics we set for the two size components lenght and maximum115

element size, respectively.116

The next step is to extend the interpretation of a signature F to the set of terms. But117

first, we define valuation functions to interpret the variables in x : σ as elements of LσM.118

▶ Definition 8. A cost–size valuation α is a function that maps each x : σ to a cost-size119

tuple in LσM such that:120
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α(x) = ⟨(0, u), xs⟩, for all x ∈ X of base type; and α(F ) = ⟨(0, F c), F s⟩ when F :: σ ⇒ τ .121

▶ Definition 9. Assume given a signature F = (B, Σ, ar) and its cost–size tuple interpretation122

F = (JB, J) together with a valuation α. The term interpretation JsKJ
α of s under J and123

α is defined by induction on the structure of s as follows:124

JxKJ
α = α(x) JfKJ

α = Jf Js tKJ
α = JsKJ

α · JtKJ
α

Jλx. sKJ
α =

〈(
0, λλd.(1 + π11(JsKJ

[x:=d]α), π12(JsKJ
[x:=d]α))

)
, λλds.π2(JsKJ

[x:=(0,d)]α)
〉

,
125

where πi is the projection on the ith-component and πij is the composition πj ◦ πi, and 0 is126

a cost function of the form λλx1.(0, λλx2 . . . (0, u) . . . ). If d = (dc, ds), the notation [x := d]α127

denotes the valuation that maps x to ⟨(0, dc), ds⟩ and every other variable y to α(y).128

We write JsK for JsKJ
α whenever α and J are universally quantified or clear from the context.129

The interpretation for abstractions may seem baroque, but can be understood as follows:130

an abstraction is a value, so its cost number is 0. The cost of applying that abstraction on a131

value v is 1 plus the cost number for s[x := v] – which is obtained by evaluating JsKJ
[x:=d]α if132

d is the cost function/size pair for v. The cost function of this application is exactly the cost133

function of s[x := v]. The size of an abstraction λx.s is exactly the function that takes a size134

and maps it to the size interpretation of s where x is mapped to that size. Technically, to135

obtain the size component of JsKJ
[x:=d]α we also need a cost component, but by definition, this136

component does not play a role, so we can safely choose an arbitrary pair 0 in the right set.137

▶ Example 10. We continue with Example 7 by interpreting ground constructor terms138

fully. A ground constructor term d of type nat is of the form s (s . . . (s 0) . . . ) where the139

number n ∈ N is represented by n successive applications of s to 0. Let us write n as140

shorthand notation for such terms. Similarly, for ground constructor terms of type list,141

we write [n1; . . . ; nk] for the term cons n1 . . . (cons nk nil). The empty list constructor nil is142

written as [] in this notation. Hence, the cost–size interpretation of 3 : nat is given by:143

J3K = Js (s (s 0))K = JsK · (JsK · (JsK · J0K)) =
〈

(0, u) , 4
〉

.144

Consider, for instance, the list [1; 7; 9]. Its cost–size interpretation is given by:145

J[1; 7; 9]K = Jcons 1 (cons 7 (cons 9 nil))K =
〈

(0, u) , (3, 10)
〉

.146

The important information we can extract from such interpretations is their size component.147

Indeed, J3Ks = 4 counts the number of constructor symbols in the term representation 3 and148

J[1; 7; 9]Ks = (3, 10) gives us the length and an upper bound on the size of each element in149

[1; 7; 9]. The size interpretation for the constructors of nat and list correctly capture our150

notion of “size” given earlier.151

We give a concrete cost–size interpretation for map and add below:152

Jadd =
〈

(0, λλx.(0, λλy.(ys, u))) , λλxy.x + y
〉

.153

154

Jmap =
〈

(0, λλF.(0, λλq.(ql + F c(u, qm)ql + 1, u))) , λλFq.(ql, F (qm))
〉

,155

4 Complexity Analysis of Call-by-Value Rewriting156

Since our analysis is quantitative, our goal is not merely to find tuple interpretations that157

prove termination but also ones that provide “good” upper bounds on the complexity of158

reducing terms. To start, we will extend the notion of derivation height to our setting:159
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▶ Definition 11. The weak call-by-value derivation height of a term s, notation dhR(s), is160

the largest number n such that s →v s1 →v . . . →v sn.161

This notion is defined for all terms when the TRS is terminating. The methodology of162

weakly monotonic algebras offers a systematic way to derive bounds for the derivation height163

of a given term:164

▶ Lemma 12. If JsK = ⟨(n, F c), F s⟩, then dhR(s) ≤ n.165

As an illustration of how this is used, let us complete the interpretation of Example 3.166

We start with the system Radd. We will use the type and constructor interpretations as given167

in Example 7. The rules in Radd suggest the following cost–size interpretation:168

Jadd =
〈

(0, λλx.(0, λλy.(ys, u))) , λλxy.x + y
〉

.169

Notice that the (highlighted) cost component of Jadd suggest a linear cost measure for170

computing with add. We also set the intermediate numeric components in the cost tuple to171

zero. The reason for this choice is that in a cost tuple Cσ = N × F c
σ, the numeric component172

N captures the cost of partially applying terms, which is 0 in this case.173

Now, consider the partially applied term s = add (add 2 3) (of type nat ⇒ nat). Intuitively,174

the cost of reducing this term to normal form, is the cost of reducing the subterm add 2 3 to175

5, since the partially applied term add 5 cannot be reduced. Hence, dhR(s) = 4. This is also176

the bound we find through interpretation:177

JsK = JaddK · (JaddK · J2K · J3K)178

= JaddK · ⟨(4, u), 7⟩179

=
〈

(4, λλy.(ys, u)) , λλy.7 + y
〉

.180

While in this case the upper bound we find is tight, this is not always the case; for instance181

Jadd 0 (add 0 0)K = ⟨(3, u), 3⟩, even though dhR(add 0 (add 0 0)) = 2. We could obtain a182

tight upper bound by choosing a different interpretation, but this is also not always possible.183

With this observation, we get a framework that provides us with a systematic approach to184

establish bounds to the complexity of weak call-by-value systems. The difficulty now lies in185

developing techniques to find suitable interpretation shapes. For instance, a first example of186

a higher-order function over lists is that of map. We give a concrete cost–size interpretation187

for map below:188

Jmap =
〈

(0, λλF.(0, λλq.(ql + F c(u, qm)ql + 1, u))) , λλFq.(ql, F (qm))
〉

,189

The highlighted cost component accounts for ql possible β steps, the cost of applying the190

higher-order argument F over the list q is bounded by F c(u, qm)ql since F c is assumed to be191

weakly monotonic, and the unitary component is for dealing with the empty list case.192

5 Conclusions193

In this short paper we briefly discussed an interpretation method for higher-order rewriting194

with weak call-by-value reduction. In this approach, we build on existing work defining tuple195

interpretations [13, 19], but restrict the evaluation strategy, and define a cost–size semantics196

for types and terms which generate a whole new class of cost–size semantic techniques that197

can be used to reason about the complexity of weak call-by-value systems.198
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