
Formalising Dynamic Composition and

Evolution in Java Systems

Claus Pahl

Dublin City University, School of Computer Applications

Dublin 9, Ireland

cpahl@compapp.dcu.ie

Abstract. The Java platform allows the dynamic establishment and

closure of connections and also the composition and customisation of

components at deployment time. In order to guarantee reliability and

maintainability in dynamic evolving systems, we take a process-oriented

view on composition and interaction. This is supported by a contract

concept to formalise matching of suitable service provider and requestor.

1 Motivation

Forming a contract between service provider and service requestor can constrain
the invocation of remote or unknown methods [1], leading to more reliable sys-

tems. Since dynamic loading of classes is possible in Java, objects can interact
via RMI, and beans can use each others services [2] - possibly assembled and
customised at deployment time -, respective means to control the use of services
should be in place. A contract-based composition framework is su�cient for
static systems, but systems do evolve over time. Requirements change and force
contracts to be renegotiated. This can be addressed by embedding a concept of
contracts into a model of change. Reasoning about the impact of dynamic com-
position and change is important to achieve reliability for evolving systems. We
adapt a process calculus to capture the establishment and release of contracts.

2 Contracts and Connectors

The �-calculus shall be used to model the process of establishing contracts and
connections between components. The �-calculus o�ers means to specify commu-
nication between agents in a distributed environment. Objects communicating
through RMI and beans are agents in this sense. Modelling the process of change
using a process calculus is justi�ed by a similarity between mobility and evo-
lution. Mobility in the �-calculus is de�ned as a change of neighbourhood, i.e.,
a change of the links that an agent has with its environment. In the same way
evolution might require changes in connections between interacting objects or
between beans. Requirements of a client, formulated using pre- and postcondi-
tions, need to be satis�ed, or matched, by a service provider, formalised using the
re�nement calculus. Interfaces can be used to form contracts between a server



component and a client component. A requested and a provided method have to
be matched based on their speci�cations (pre- and postconditions) to form a con-
tract. The matching construct is re�nement v. The provider needs to satisfy the
needs of the requestor, i.e., a provided method n should re�ne the requirements
of m:

m v n
4
= pre(m) ! pre(n) ^ post(n)! post(m) (1)

The process of matching and creating a connector is described by:

Req cChmi:C 0jProv cC(n):P 0
mvn
�! priv m (C 0jP 0fm=ng) (2)

This rule is constrained by the re�nement m v n, i.e. it matches a service re-
quest m and a provided service n. This request is handled on a contract channel
cC. This step establishes a (private) connection m between the provider and
its client. Interactions between them, e.g. invocations of remote methods, can
now be executed via the connector m. This rule can model contracts between
client and server using RMI or between beans assembled to larger components.
Connectors occur in two forms in Java. Firstly, as a remote computation, i.e., a
service channel is used to invoke a remote method. Secondly, as a local compu-
tation, i.e., a data channel is used to load the class which contains the code to
be executed. Connectors are an abstraction to capture remote and mobile code.

In order to formalise the constraint language within the dynamic framework,
we need to see objects as entities with internal structure. We use hidden algebras
to de�ne semantical structures, embedding this into dynamic logic.

3 Management of Change

This framework for change and evolution in Java can be expanded into concepts
to determine the e�ects of change and to manage evolving systems. Both speci�-
cations of service requests and available services might change due to changes in
the overall requirements or the environment. Changes in one component might
force changes in other components - change is propagated. A framework based
on matching and internal correctness conditions can help to determine the e�ects
of change. This framework can be de�ned based on the dynamic logic semantics
used to embed pre- and postconditions. Matching is used to determine the e�ect
of change to contracts. Internal component correctness relations form a measure
for the e�ect of contract changes on a component implementation.

References

[1] L.F. Andrade and J.L. Fiadero. Interconnecting Objects via Contracts. In R. France

and B. Rumpe, editors, Proceedings 2nd Int. Conference UML'99 - The Uni�ed

Modeling Language. Springer Verlag, LNCS 1723, 1999.
[2] S. Cimato and P. Ciancarini. A formal approach to the speci�cation of java com-

ponents. In B. Jacobs, G. T. Leavens, P. M�uller, and A. Poetzsch-He�ter, editors,

Formal Techniques for Java Programs. Tech. Rep. 251, University of Hagen, 1999.


