
Introducing Meta-Interfaces into Java

Peep K�ungas, Vahur Kotkas, and Enn Tyugu

Software Department

Institute of Cybernetics at Tallinn Technical University, Estonia

fpeep,vahur,tyugug@cs.ioc.ee

In the present work we apply a formal program construction method with

the aim of increasing the 
exibility of Java classes. This work relates to recent

results in the dynamic composition of software and component-based program

development.

A meta-interface is a speci�cation that introduces a collection of interface

variables of a class and de�nes, which interface variables are computable from

others under what conditions.
For instance, having a class Triangle with methods sinF indSide, sinF ind-

Angle for computing based on theorem of sine: a

sin(A) =
b

sin(B) =
c

sin(C) ; we can

introduce interface variables for all angles (A, B, C) and sides (a, b, c) of the
triangle and declare a meta-interface that will specify the methods that can be
used. Such meta-interface could look as follows:

var a, b, c, A, B, C : any

rel a,A,B -> b {sinFindSide}

...

rel b,B,a -> A {sinFindAngle}

Here sinF indSide and sinF indAngle are implementations of the sine theo-

rem in Java methods. The meta-interface just declares how these methods can

be used.
After introducing an extension of the language that allows one to use equa-

tions, we can specify this meta-interface by using a shorter description and do
not need the methods implemented by programmers:

var a,b,c, A,B,C : any

rel a/sin(A)=b/sin(B)

rel a/sin(A)=c/sin(C)

rel c/sin(C)=b/sin(B)

Note that the components speci�ed in a meta-interface as of type any have

to be actual components of the Java class and their type is determined by the

Java declarations.

The meta-interface is used as follows: one writes a request for synthesis

of a method with input x1; : : : ; xm, where m > 0, and output y, whereas

x1; : : : ; xm; y are variables speci�ed in the meta-interface, for instance, in the

form x1& : : :&xm ! y, and uses a prover to prove that this formula is derivable

from the speci�cation of the meta-interface.

The prover returns a sequence of rules applied in the proof, which from the

synthesis point of view represents an algorithm we use to generate the program



code to solve the problem. Thus the algorithm is the co-result (or side-e�ect) of

the proving process.

A meta-interface can be written for two di�erent purposes. First, it may

specify possible usage of the class, i.e. its derivable methods, like in our ex-

ample. Second, it can be used as a speci�cation showing how some application

software should be composed from components supplied with meta-interfaces.

In the latter case, a new class can be built completely from a speci�cation of

its meta-interface. The aim of introducing meta-interfaces is to make classes as

components more 
exible.

To illustrate the usage of meta-interfaces let us specify a class for solving

a computational problem on two triangles that have one common side and one

common angle (see following �gure).

AB

C

a b

c

t1 t2a

C

B Ac

b

Values of some components of triangles are given, as can be seen from the
following class code.

class Problem implements metaInterface {

public static String[] metaInterface = {

"var t1, t2 : any",

"rel t1.b==t2.a",

"rel t1.A==t2.B"};

Triangle t1 = new Triangle(), t2 = new Triangle();

public void main(String[] args) {

Problem p = new Problem();

p.t1.b = 5;

p.t1.B = 70;

p.t2.A = 40;

String name = SSP.synthesize(p, "t1.a -> t2.b");

SSP.exec(name, p, new Integer(4));

}

}

As a result of the call SSP:synthesize a new method will be synthesized (see

method xf17634 below) that realizes the requested computational problem.
The method SSP:exec executes the synthesized method and as a result mod-

i�es the object p by assigning proper value to the component t2:b.

public void xf17634(Problem p, int i) {

p.t1.a = i;

p.t1.A = p.t1.sinFindAngle(p.t1.b, p.t1.B, p.t1.a);

p.t2.a = p.t1.b;

p.t2.B = p.t1.A;

p.t2.b = p.t2.sinFindSide(p.t2.a, p.t2.A, p.t2.B);

}


