
Process Algebra{Guided Design of Java Mobile

Network Applications.

Marco Carbone, Matteo Coccia, Gianluigi Ferrari, Sergio Ma�eis

Dipartimento di Informatica

Universit�a di Pisa, Italy

Highly distributed networks have now become a common platform for wide-

area applications which use network facilities to access remote resources and

services. WEB applications distinguish themselves from traditional distributed

applications mainly because they have to deal with dynamic and unpredictable

changes of network environment, e.g. availability of network connectivity, lack of

resources, dynamic service creation, network recon�guration, and so on. Mecha-

nisms to control how WEB applications can be dynamically assembled, extended

and recon�gured are therefore the key programming abstractions.

We propose a programming model and a design discipline for developing Java-

based (JINI{like) applications which exploit a programmable coordination lan-

guage amenable to formal veri�cation. Designers are forced to develop applica-

tions by clearly separating the computational modules from the coordination

ones. The distinguishing feature of our approach is that the coordination lan-

guage takes the shape of a distributed process calculus which provides mecha-

nisms for mobility of coordinating agents and for explicit distribution of modules

and their dynamic assembling over wide-are networks. The separation between

computation and coordination makes the calculus amenable to be e�ectively an-

alyzed with formal techniques. Hence behavioural properties can be stated and

possibly established, enforcing correctness for the programmable coordination

policies.

Our coordination/scripting language ED� is based on a variant of Hennessy and

Riely's Distributed �-calculus (D�) [3], and extends it with new mechanisms to

manage locations, to cope with IP name spaces, and with a new communica-

tion primitive allowing more powerful interactions (e.g. negotiation of services).

ED� is endowed with a formal LTS semantics and a structural congruence re-

lation amenable to formal proof techniques such as bisimulation-based equiv-

alences, control-ow analyses and many others. Related work includes several

scripting/architecture-description languages: in particular Piccola [1], but also

Darwin [5] and Nomadic Pict [6], and the application of formal methods to Java

(here we mention [4, 2]).

Follows an example explaining some of the features of the language and its in-

tended use: the de�nition of a service-fetching abstract operation FIND, meant

to retrieve on behalf of some client sitting at location Client, a service Service

starting the search from a given server location Server.



rec FIND(Client; Server; Service; Result):

go Server:lookUp(Client"; Servicel; R#)?

(go Client:Result(R"):

lookUp(Client"; (addr; Service)l; NewAddr#)?

(FIND(Client;NewAddr; Service; Result);

go Client:Result(FAIL"):0))

This process �rst moves (go Server:), to the default server site. Then, by ex-

ploiting a conventional public channel (lookUp) it checks whether the service

is available: lookUp(Client"; Servicel; R#)? .Here, communication is a bidirec-

tional synchronization via typed tuples and pattern matching. In the example at

hand this feature allows us to disclose the client's identity if and only if the server

o�ers the required service. In this case, the network reference to the service is

returned as a result. The arrows specify for each argument of the typed tuple

whether it is an input, output or synchronization parameter. If the request for

the service succeeds, the process goes back to the original location and commu-

nicates the result through the channel Result. Otherwise it asks the server for

an alternative address for the service and recursively begins the fetch protocol.

Notice that typed tuples provide the mean to negotiate service requests by ex-

plicitly stating a speci�c range of values, e.g. the minimum level of service that

components are willing to accept and the maximum level that they are able to

use.

The Java implementation consists in a package providing classes for each of the

process-algebra constructs, so to stress on the programmer's side the connec-

tion with the underlying formal model. Work in progress includes a security

type system for the language, static analyzers and an extensive revision of the

implementation.

References

1. F. Achermann, S. Kneubuehl, O. Nierstrasz. Scripting Coordination Styles. In

Proc. Proc. Coordination'01, LNCS 1906, 2001.
2. S. Drossopoulou. Towards an abstract model of Java dynamic linking and veri�ca-

tion. In Proc. TIC'2000, CMU Technical Reports, CMU-CS-00-161, 2000.
3. M. Hennessy, J. Riely. Type-safe execution of mobile agents in anonymous net-

works. In J. Vitek, C. Jensen, Eds. Secure Internet Programming: Security Issues

for Distributed and Mobile Objects, LNCS State-Of-The-Art-Survey, NCS 1603,

Springer, 1999.
4. S. N. Freund and J. C. Mitchell. A formal framework for the Java Bytecode

Language and Veri�er. In ACM OOPSLA '99, pp. 147{166.
5. Je� Magee, Naranker Dulay, Susan Eisenbach, Je� Kramer Specifying Distributed

Software Architectures In. Proc. of 5th European Software Engineering Conference

(ESEC '95), LNCS 989, (Springer-Verlag), 1995.
6. Sewell, P., Wojciechowski, P.Nomadic Pict: Language and Infrastructure Design

for Mobile Agents. IEEE Concurrency, 2000.


