
Testing the eSTV program for

the Scottish Local Government Elections

Pieter Koopman Engelbert Hubbers Wolter Pieters Erik Poll

Rene de Vries

LaQuSO, Radboud University Nijmegen, The Netherlands

pieter@laquso.com

www.laquso.com

March 30, 2007



.

1



Management Summary

This report deals with the testing of eSTV software from ERS, Electoral Reform Services. The
purpose of the test is to determine the conformance of eSTV to the WIG-rule [1]. In order
to determine conformance we have created a new implementation of the rule in the functional
programming language Clean [4]. Since this language uses a different programming paradigm
and the implementation is made completely independent from the software to be tested it is
extremely unlikely that both implementations contain the same error.

Testing is done by computing the election result for a given set of votes with both programs.
The results of both programs are compared to the level of votes numbers after each selection
and elimination step in the algorithm. This has shown to be a very sensitive test for very small
variations in the algorithm used in the programs.

These tests are executed for 808 standard test cases. These test cases are partly handcrafted
or the vote distributions in real elections for similar voting rules. Each of these sets is computed
with 4 different elimination orders. In addition the results of 5000 generated data sets and a
number of hand crafted data sets covering border situations in the algorithm are compared.
Both test sets have shown to be very effective to identify even the smallest changes in the
algorithm to compute the result of the election.

Testing of preliminary versions of eSTV showed some small inaccuracies in the program
as well as some small space for different interpretation of the rules. The Scottish Executive
provided the final interpretation of the rules (as detailed in section 7.1) and all test where
repeated for eSTV version 2.0.16. In these final tests there was an exact match for each of the
4 × 808 + 5000 = 8232 test cases.
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Chapter 1

Introduction

In the fall of 2006 the Radboud University Nijmegen was invited to tender for the contract
to provide verification services for the STV calculation software by the Scottish Executive, the
devolved government in Scotland. For the elections in May 2007 they will be introducing both e-
counting and Single Transferable Vote, STV, for the local government elections for the first time.
The eSTV program which will be used calculate the results of the Scottish Local Government
elections in May 2007, works in accordance with the rules defined in the Local Government
Election Order, which were approved by the Scottish Parliament on 25 January 2007. Whilst
they have confidence in this software, they are conscious that for the sake of certainty and
transparency there will be a need for an independent body to verify that the calculation they
are asking the software to perform, in line with a set of defined election rules, is carried out
accurately. The most appropriate form of testing was black box comparison testing where a set
of supplied data is run through a reference program and the results are compared with those
generated by the eSTV software supplied by ERS, Electoral Reform Services. The level of data
to be put through the system is anticipated to be approximately 800 sets of preferential voting
data, which will be supplied in a simple text format.

This question was redirected to LaQuSo, the laboratory for Quality Software, an initiative
of Eindhoven University of Technology and Radboud University Nijmegen. See www.laquso.

com.
LaQuSo and the Scottish Executive agreed that the LaQuSo department at the Radboud

University Nijmegen will write software to test execute the STV algorithm according to the
rules for the elections in may 2007, and run 800 standard test cases to this program and eSTV
and compare the results.
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Chapter 2

Specification

STV is a preferential voting system designed to minimize wasted votes and to provide propor-
tional representation while votes are explicitly for candidates instead of party lists. When STV
used in multi-seat constituencies as in this case, it is also called proportional representation
through the single transferable vote (PR-STV). STV usually refers to PR-STV, and as it does
here. In Australia STV is known as the Hare-Clark Proportional method, while in the United
States it is sometimes called choice voting and preference voting.

The key idea is that each person gives a preference list of candidates as a vote. This list
contains at least one candidate and at most all candidates in order of preference. In the first step
of the election process the votes are given to the first candidate in the list. When a candidate
is elected and has more votes than required, the surplus of votes is transferred proportionally
to the next candidates on the ballots assigned to that candidate. Similarly, if a candidate is
eliminated, their votes transfer to the next candidates on the ballots of that candidate.

The quota Q is computed as:

Q = ⌊
number of votes

number of seats + 1
⌋ + 1

The floor brackets ⌊x⌋ indicate rounding down of the number x. The fraction of x, if any, is
simply removed. This definition is called the droop quota, it ensures that at the number of
candidates that reach the quota is at most equal to the number of seats.

The election rules, [1], give an operational description that guides a human to determine
the result of the election by putting ballots on piles and transferring ballots to other piles. In
more abstract terms this algorithm is:

assign ballots to the first candidate ;
while (not all seats filled)
{

declare any candidate with votes >= Q elected ;
if (number of candidates == number of seats)

all candidates are elected ;
else if (there are candidates with more votes than Q)

transfer the votes of the candidate with the most votes ;
else

eliminate the candidate with the fewest votes and transfer the votes ;
}

In the situation that there is more than one candidate with the highest number of votes, we
look in the history. If one of the candidates had more votes on one of the previous iterations
of the algorithm, the surplus of that candidate is transferred first. Otherwise there is a tie. In
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a real election a human has to decide which candidate is treated first. During testing various
fixed orders of elimination are used.

If there are several candidates with the least number of votes for elimination the same
algorithm is used: look for a difference in the history, if that is not available use a tie.

Initially all votes have value one. In the transfer of votes they get a new value. The transfer
value, tv is computed as

tv =
(votes of candidate − Q) × current value

votes of candidate

After the computation the tv is truncated to five decimal places.
The votes are transferred per ballot pile to the next candidate on that ballot that is neither

elected nor eliminated. If there is not such a candidate available, the votes are added to the
nontransferable votes.

An obvious condition to be satisfied is that no votes are lost in this algorithm. The sum of
the votes of the candidates and the nontransferable votes should be equal to the initial number
of valid votes after each iteration of the algorithm.
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Chapter 3

Subject and goal of the tests

The goal of the tests is the verification of the eSTV software. This implies that we will run
eSTV for a (large) number of test cases and determine whether it is a correct implementation
of the algorithm specified by the WIG-rules [1], and outlined in chapter 2.

eSTV is a program to facilitate the counting of an STV election. Joe Otten, joe@datator.
co.uk, has the copyright of this program. It is a product of ERS, Electoral Reform Services.

eSTV is able to handle various variants of STV elections. In the GUI-based interface the
variant to be used can be determined by radio buttons. In the command line version, the
variant to be used is determined by a command line argument of the program. In addition to
eSTV there is a program called BulkTest. This is used to apply eSTV to a large number of
election data. Each set of votes is stored in a separate file. The result of the election algorithm,
intermediate numbers of votes for the candidates after each iteration of the algorithm, as well
as the elected candidates are stored in a separate file for each set of votes.

We only have access to an executable version of eSTV, not to the Delphi source code. This
implies that the verification will be done by a black box test. We supply vote distributions to
eSTV and verify the result of the election as produced by eSTV.

The program eSTV tells the user that it is limited to 3000 candidates and 100000 ballot
papers per contest. The Scottish Executive indicated that this is sufficient for the Scottish
elections in May 2007 where the electorate in any one local government contest will not exceed
26,000. Testing showed that eSTV produces overflow errors for number much larger than these
bounds. With numbers on or below these bounds we were not able to generate overflow errors.
During the execution of tests described in chapter 6 overflow errors did not occur.

During the test described in this report various versions of eSTV are used. New versions
were created based on autonomous development at ERS, issues found during the tests and our
requests to allow better tests. The final version of eSTV used in the test is 2.0.16. The final
verification verdict is based on this version.
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Chapter 4

Test plan

The most convenient way to test a piece of software with a model based test tool like Gast [2] is to
have a relation between input and output of a program that is easy to check. The construction
of the output might be complicated, but checking the output is easy. A very simple example is a
function that computes the square root of its input, multiplying the output by itself should yield
the input for all positive numbers. A somewhat more sophisticated example is the construction
of magic squares, a tiny example is depicted in the margin. It is not easy to generate large

8 3 4

1 5 9

6 7 2

squares of numbers such that the sum of all rows and columns is equal, but it is very easy to
check if a generated square is indeed a magic square (just compute the sum of all rows and
columns and compare these sums).

Unfortunately there does not exist a property to check if the result of an election is correctly
determined based on the vote distribution and the election result. Hence we decided to build our
own implementation of the election algorithm and verify the correctness of eSTV by comparing
the results to our own implementation. In order to reduce the risk that both programs contain
the same error, our implementation was developed completely independently of eSTV. Our
implementation is based only on the provided election rules and some additional information
provided by, or on behalf of, the Scottish Executive. To further reduce the occurrence of
identical errors in both programs, or the compiler used to construct the executable, we used the
high level functional programming language Clean to construct our program.

After computing an election result eSTV produces not only the direct election result, in
which candidates are elected, but also a table giving the number of votes for all candidates after
each iteration of the algorithm, as well as a log of the vote transfer. This table is produced
as a comma separated file. This csv-format is commonly used as text format for spreadsheets
and similar programs. We decided to compare the textual representation of this table in the
csv-format to verify the equality of the results of both programs. Comparing the tables will
show any slight difference in number of votes during the various iterations of the algorithm,
while the decision to elect or eliminate candidates based on different vote distributions can still
be equal. Hence, comparing the tables is a much more sensitive for way of testing than just
checking whether the same candidates are declared elected by both programs.

Apart for the votes in a text file in dat-format [3], eSTV can take user input to break ties. For
testing large number of test cases automatically such a user input is impractical. Fortunately
eSTV is able to break ties automatically, either in a fixed order or pseudo randomly. Our first
attempt was to let our own software generate all possible election results and check whether the
result generated by eSTV is part of this collection of results. This approach has the danger that
the set of election results to be generated is impractically large. In real elections ties are rare,
and even after four ties between 2 persons there are only 24 = 16 solutions. In the standard test
cases however, there are several examples where the number of ties is large. Test case T100.dat
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for example contains a tie between 23 persons with the same number of votes. Even if only
two of these persons have to be eliminated, this yields 506 different elimination orders. If all
of these candidates have to be eliminated this yields 23! = 25852016738884976640000 different
elimination orders. Indeed an impractical large value. The generation of possible solutions was
interrupted after the generation of more than 9 GByte of transfer tables.

On our request eSTV and BulkTest were changed such that four different systematic orders
can be used: for vote transfer and elimination both from front to back and from back to front.
All standard test cases were run in these four directions. For a small number of test cases also
other elimination orders were tested semi automatically.
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Chapter 5

Tooling

In order to handle the numbers with five digit precision used by the algorithm easily we con-
structed a special data type Fixed for these numbers. A number in this data type is just the
number multiplied by 105. This yields a whole (integer) number that is stored as a BigInt,
an infinite size integer, to prevent overflow problems. For this type conversion from and to
strings is defined as well a set of arithmetic operators (like comparison, addition, subtraction
and multiplication). These operators are tested with Gast in the usual way. It is no surprise
that elementary arithmetic laws do not hold for these finite precision numbers. For example
(a× b)× c 6= a× (b× c) for a = 0.33333, b = 0.50000 and c = 2.00000. This just tells us that we
have to be careful with the order of mathematical operations in the formulation of the transfer
factor. Another way to limit the effects of using finite precision numbers is by delaying the
rounding of values. A value is rounded only at to the end of the entire computation, instead of
rounding the value of each sub-computation. This is used in the election algorithm by rounding
the value of tv as defined in chapter 2, only at the end end of the computation of a new transfer
value. This rounded value of tv is then multiplied by the current value of the pile of ballots and
rounded again.

The further implementation of the election algorithm is rather straightforward. We use
lists of candidates, ballot piles and votes on a ballot to prevent any danger of problems with
bounded arrays. For very large numbers of votes or candidates this might be less efficient,
but the possibilities to make errors using lists are much smaller than with arrays. Moreover,
eSTV is limited to relatively small numbers. It appears that our implementation using lists is
significantly faster than eSTV using arrays.
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Chapter 6

Test sets

As test case we used the set of 808 standard test cases provided along with eSTV, as well as a
set of 5000 test cases generated using the Gast technology and some hand crafted test cases.

6.1 Format of the test cases

Each test case is stored in a separate text file. The names of these files end in .dat. On the
first line such a file contains the number of candidates and the number of seats. Then there is
optionally a line indicating which candidates are withdrawn, indicated by a sequence of negative
numbers. Then there is a series of lines indicating the values on the ballot papers. This sequence
is terminated by a line beginning with 0. Each line starts with the number of ballot papers
with this vote distribution, followed by the numbers of the candidates and terminated with 0.

After the votes, there are some lines containing the names of the candidates between quotes
and the name of the election. Optionally this data is followed by some comments. A typical
example is:

5 3

-3

1102 1 2 4 0

1101 2 5 4 0

398 4 0

399 3 5 4 0

0

"Alice"

"Bob"

"Clay"

"Desiree"

"Ed"

"Fake election"

Since Clay is withdrawn, the pile of 399 votes is immediately assigned to Ed. Since there
are 3000 votes (all valid) and 3 seats, the quota Q equals 3000

3+1
+1 = 751. This implies that Alice

and Bob are elected immediately. Since Alice has more votes than Bob her votes are transferred
first. Since Bob is already elected, he does not receive votes from Alice. In the next iteration
the votes of Bob are transferred. Next Desiree or Ed has to be eliminated. In the current round
they have an equal amount of votes, but in the previous round Desiree had more votes than Ed.
So, Ed is eliminated. His 399 votes are transferred to Desiree. Now the number of remaining
candidates is equal to the number of remaining seats: 1. The remaining candidate, Desiree,
is now deemed to be elected. Note that Desiree has also exceeded the quota. This ends the
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election algorithm. Due to rounding all numbers to five digits there are some rounding errors.
This explains the small number of non-transferable votes.

The lines of the corresponding .csv file that contain the transition table and are compared
in the tests are 1:

"Alice",1102,-351.00000,751.00000, ,751.00000, ,751.00000,"Elected"

"Bob",1101, ,1101.00000,-350.00000,751.00000, ,751.00000,"Elected"

"Clay","Withdrawn", , , , , , ,

"Desiree",398,+350.99802,748.99802, ,748.99802,+748.99689,1497.99491,"Elected"

"Ed",399, ,399.00000,+349.99689,748.99689,-748.99689,"-",

"Non-transferable", ,+0.00198,0.00198,+0.00311,0.00509, ,0.00509,

"Totals",3000,,3000.00000,,3000.00000,,3000.00000

In a spreadsheet, like MS Excel or Calc from Openoffice, this wil be displayed like:

Alice 1102 -351.00000 751.00000 751.00000 751.00000 Elected

Bob 1101 1101.00000 -350.00000 751.00000 751.00000 Elected

Clay Withdrawn

Desiree 398 +350.99802 748.99802 748.99802 +748.99689 1497.99491 Elected

Ed 399 399.00000 +349.99689 748.99689 -748.99689 -

Non-transferable +0.00198 0.00198 +0.00311 0.00509 0.00509

Totals 3000 3000.00000 3000.00000 3000.00000

Due to the automated test execution, displaying these tables in a spreadsheet and human
inspection is only needed to find the cause of issues spotted by the test software.

The election rules for the Scottish local government elections state that candidates cannot
withdraw after the close of nominations. However, for the purposes of testing, the Executive
indicated that withdrawn candidates should be treated as eliminated candidates. This is relevant
since some of the provided test cases contain withdrawn candidates. For this reason we include
a withdrawn candidate in the example.

The closest match of the example above for the Scottish elections is the situation where
Clay does not get any votes at all:

5 3

1102 1 2 4 0

1101 2 5 4 0

398 4 0

399 5 4 0

0

"Alice"

"Bob"

"Clay"

"Desiree"

"Ed"

"Fake election 2"

The corresponding transfer table is:

Alice 1102 -351.00000 751.00000 751.00000 751.00000 751.00000 Elected

Bob 1101 1101.00000 -350.00000 751.00000 751.00000 751.00000 Elected

Clay 0 0.00000 0.00000 - -

Desiree 398 +350.99802 748.99802 748.99802 748.99802 +748.99689 1497.99491 Elected

Ed 399 399.00000 +349.99689 748.99689 748.99689 -748.99689 -

Non-transferable +0.00198 0.00198 +0.00311 0.00509 0.00509 0.00509

Totals 3000 3000.00000 3000.00000 3000.00000 3000.00000

1Note that for a table with an equal number of columns for all rows, the last line is missing one comma (and
hence one column). Any spreadsheet will add this additional column without complaining.

In addition some empty fields are really empty (in the row totals) while others contain a space. This is not an
issue for a spreadsheet, but does matter for the textual comparison used in the tests.
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Note that Clay is now eliminated after the transfer of the surplus of Alice and Bob. Since
Clay has less votes than Desiree and Ed, he is eliminated first. There is an additional empty
column indicating the transfer of zero votes and a column indicating the new (unchanged) totals
for all candidates but Clay. In this column (and all columns to the right of it) the elimination
of Clay is indicated with a −, instead of zero votes.

6.2 Manual test cases

A small set of hand crafted test cases was used initially to test our own software. Later it was
also used to compare the results of eSTV and our software.

These test cases cover the basic behavior of the algorithm including special situations. The
special situations tested are:

1. No transfer of votes needed, the desired number of seats is filled directly.

2. Only one seat to be filled.

3. Numbers of seats one less than the number of candidates.

4. Number of seats equal to the number of candidates, no election needed.

5. Right elimination order.

6. Right transfer order.

7. Right transfer order when a candidate that is elected later has more votes to transfer than
a candidate elected earlier.

8. Filling last vacancies by the special clause in the algorithm.

9. Very large number of votes. Not exceeding the bounds mentioned above.

10. Very large number of candidates. Not exceeding the bounds mentioned above.

11. Many withdrawals, such that there are fewer candidates than seats. As noted above this
can happen in the format for data provided, but not in the real elections.

12. Votes for nonexistent candidates. Any ballot containing votes for a nonexistent candidate
should be classified as invalid.

13. Same candidate multiple times on one ballot. All these ballots should become invalid.

14. Withdraw one candidate twice. This is harmless and should be allowed.

15. Votes for withdrawn candidates. Since withdrawn candidates have to be treated as elim-
inated, this is allowed.

16. Ties for transfer.

17. Ties for elimination.

Most likely these cases are also included in the 808 provided test cases. Since there was no
documentation on these test cases, it was easier and faster to design these test cases than to
find them in the provided test suite.
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6.3 The standard test cases

The exact source of the standard test cases is not known to us. By looking at the test data and
the comments it is clear that there are manually generated test in order to cover special cases
in the election algorithm as well as data from real elections using some variant of STV.

6.4 Generated test cases

The generated test sets are constructed using the abilities of Gast to generate instances of data
types systematically. In principle all we have to do is to define a type corresponding directly to
the data format outlined above, let Gast generate instances of this type, and write each instance
in a separate file.

In this situation we have added some guidance in order to guarantee that special cases in
the algorithm (like ties and rounding of numbers) occur frequently. For testing the final version
of eSTV we generated a set of 5000 test cases.

6.5 Test execution

Generating the result of a test set of this size takes a considerable amount of time: more than
one hour for one of the four elimination options. Generating the reference results by our software
and comparing the results is about one order of magnitude faster. In the provided test set there
are 162 cases that contain a tie. The generated test suite contains 1849 cases with a tie.

Both test sets appear to be effective. If we make a change in the program that influences
the result in some situation, this situation occurs in both test sets. As usual with black box
testing, this holds only for general changes in the program. If we make a very specific case in
the program, for instance a candidate with exactly 1234.56789 votes (or a specific name) gets
always precedence in a tie, it is unlikely that this is discovered by any kind of black box testing.
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Chapter 7

Issues found

During program construction and testing a number of issues were found. Here we group them
by source.

7.1 Specification

The rules we had did not cover all aspects of the election. The issues are:

1. Withdrawal of candidates is covered by the data format and occurs in the test cases, but
is not mentioned in the rules. The election rules state that candidates cannot withdraw
after the close of nominations. However, for the purposes of testing the standard test
suite, the Executive indicated that withdrawn candidates should be treated as eliminated
candidates.

2. The rules do not specify how to treat blank ballots. In some election systems a blank vote
is valid. In this system they are invalid. This is done since blank votes have an influence
on the quota Q if they were treated as valid.

3. Also other kind of invalid ballots are not covered by the provided rules. A ballot containing
a nonexisting candidate is invalid. The entire ballot, not only the invalid candidate, is
ignored by the election algorithm. The Scottish Executive has advised that this occurrence
would not be an issue in the May elections as any non-existing candidates on the ballot
paper would simply be ignored.

4. Also forms containing a candidate twice are considered to be invalid and are ignored in the
election process. However, such a form will be harmless in the election algorithm. When
the second occurrence of the candidate is considered by the algorithm the candidate has
either been elected or eliminated. In both situations the candidate number will be ignored
by the algorithm.

5. During the tests we discovered that the rounding to five digits as prescribed by rule 48 can
be interpreted in two different ways. One way to read this is that all calculations should
be done with numbers containing (at most) five digits. Another way of reading this tell to
do the calculations in arbitrary precision and round to five digits after all computations.
The Scottish Executive confirmed that the latter interpretation was more in line with the
intention of the local Government Election Rules.
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7.2 Transfer table

The specification [5] does not prescribe exactly how to make a transfer table. A lot of different
choices appear to be possible. In all but one of these situations we have adopted our transfer
table to the table generated by eSTV.

In the first versions more than 75% of the generated transfer tables indicated an issue.
Fortunately a small number of differences in layout of the tables were responsible for the majority
of these issues.

7.3 Data format of test suite

The provided data format gives the name of each candidate on a separate line. There are a few
test cases that contain more than one name on a line. We have adapted our software such that
these case are handled correctly

7.4 Real differences

One real problem was found in an earlier β-version of eSTV. For a fully populated ballot paper
(e.g. in F002, the voter marked a full 9 preferences), the final preference is ignored in eSTV.
In most other STV rules this makes no difference - a nine-candidate ballot paper marked 1 2

3 4 5 6 7 8 9 is logically equivalent to 1 2 3 4 5 6 7 8. The lack of formal exclusions in
Scottish rules is obviously an exception. This was fixed in version 2.0.12 and still correct in the
final version 2.0.16.

A minor difference between our software and eSTV is the treatment of ballots containing only
votes for withdrawn candidates, like 100 3 0 in the example in section 6.1 above. eSTV filters
the ballots by removing withdrawn candidates before considering the ballots in the remaining
algorithm. This implies that these ballots become empty and hence invalid. Our software
considers this as a valid ballot since it is nonempty and contains only valid candidate numbers.
Since the candidate is withdrawn, the votes are added to the non-transferable votes. These
different choices result in a different number of valid votes, and hence a different quota. This
causes another transfer table. In effect eSTV treats withdrawn candidates and their votes
as nonexistent, while our software treats them as dynamically eliminated. Since the Scottish
Executive confirmed that a candidate cannot withdraw during the voting period in this election,
we have not elaborated on this.

Other really different transfer tables occurred in the tests. It appeared that they were cause
by a different interpretation of the rounding to five decimals. After agreeing on the rule that
the rounding should only be done at the end of the calculation (and implementing that rule),
all these differences disappeared.

7.5 Windows platform

eSTV does not run on all Windows XP distributions. Especially on Dutch systems there appears
to be a problem with kernel32.dll which prevents eSTV from starting properly. This problem is
still existent, but not considered as problem with the correctness of eSTV with respect to the
election rules.
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Chapter 8

Conclusion

Testing eSTV was a useful activity. A number of issues were found and solved.
Testing revealed a spot in the specification, the Scottish local government election rules,

where two different interpretations are possible. These different interpretations of the rounding
rule give different transfer tables, and hence there exists vote distributions with a different result
for both interpretations of the rules.

The subject of test, eSTV, produced a strange transfer table for some eliminated candidates
in some situations. The elimination was correct, but shown in an unexpected way.

Preliminary versions of eSTV ignored the final candidate on a fully populated ballot. This
was corrected.

Testing with the standard test suite for this kind of elections and the generated test suite
indicated the same issues after roughly the same number of tests. This indicates that both test
suites are equally effective.

No issues were found in the final version of eSTV. Since testing has been shown to be very
sensitive to small differences in the programs, it is very likely that they will produce the same
results for all inputs. Since both programs have been created independently and in a different
programming paradigm, it is very unlikely that they contain the same error. Hence, one can
have great confidence in the correctness of eSTV version 2.0.16 in calculating election results in
complete conformance with the rules defined in the Local Government Election Order approved
by the Scottish Parliament on 25 January 2007.
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