
Towards a full formal specification of the
JavaCard API

Hans Meijer and Erik Poll

Computing Science Institute, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

{hans,erikpoll}@cs.kun.nl

Abstract. This paper reports on ongoing work to develop a formal spec-
ification of the JavaCard API using the specification language JML.
It discusses the specification of the JCSystem class, which deals with
the JavaCard firewall, (atomic) transactions and transient objects. The
JCSystem class seems to be the hardest class in the API to specify, and
it is closely connected with some of the peculiarities of JavaCard as
opposed to Java.

1 Introduction

There has been a lot of work on formalisations of the Java(Card) platform.
(For a comprehensive overview see [4].) However, most of the work has concen-
trated on the Java(Card) Virtual Machine, and there has only been very little
work on formalisations of the other component of the JavaCard platform, the
JavaCard API. This paper reports on an ongoing effort to develop a formal
specification of the JavaCard API using the specification language JML. Our
ultimate goal is to use a formal specification of the API to verify API implemen-
tations and to use it as a basis for the verification of JavaCard applets. But of
course a formal specification of the API is of wider interest, notably to improve
and clarify existing informal documentation. For verification we want to use the
LOOP tool developed in Nijmegen [1], which gives a formal semantics to Java

programs and acts as a front-end to the theorem prover PVS. The first —very
modest— steps to verify JML-annotated JavaCard code using the LOOP tool
and the theorem prover PVS are reported in [2].

Earlier work on ‘lightweight’ formal JML specifications for the JavaCard

API is reported in [13, 14]. This paper discusses the specification of the JCSystem
class, which is the class in the API that deals with the JavaCard firewall,
(atomic) transactions and transient objects. The JCSystem class seems to be the
most difficult class in the API to specify, as it cannot be described completely
independently of some basic features of the JavaCard Virtual Machine. The
class is closely connected with some of the peculiarities of JavaCard as opposed
to Java.

This work is part of the EU-sponsored VerifiCard-project which aims to
provide formal descriptions of the JavaCard platform and to provide tools

2

for applet verification based on these formal descriptions. (For more details see
http://www.verificard.org.)

2 JML

JML [8, 9] is a behavioural interface specification language tailored to Java.
It can be used to specify Java classes and interfaces by annotating code with
invariants and pre- and postconditions of methods, in the style of Eiffel, also
known as ‘Design by Contract’ [10]. JML annotations are a special kind of Java

comments: they are preceded by //@, or enclosed between /*@ and @*/, so that
they are simply ignored by a Java compiler.

Methods can be specified in JML by so-called normal behaviours. These are
of the form:

/*@ normal_behavior
@ requires: <precondition> ;
@ ensures: <postcondition> ;
@*/

Such a ‘normal behaviour’ specification states that if the precondition holds at
the beginning of a method invocation, then the method terminates normally (i.e.
without throwing an exception) and the postcondition will hold at the end of
the method invocation.

Pre- and postconditions are simply standard Java boolean expressions, ex-
tended with several additional operators, for example \forall for universal
quantification and ==> for implication. A few more of these additional opera-
tions will be explained as we go along.

Java methods can terminate abruptly, by throwing exceptions. If a method
can throw an exception, then a more general form of method specification than
the normal behaviour above is needed:

/*@ behavior
@ requires: <precondition> ;
@ ensures: <postcondition>;
@ signals: (Exception1) <condition1>;

@
...

@ signals: (Exceptionn) <conditionn>;
@*/

Such a ‘behaviour’ specification states that if the precondition holds at the be-
ginning of a method invocation, then the method either terminates normally
or terminates abruptly by throwing one of the listed exceptions; if the method
terminates normally, then the postcondition will hold; if the method throws an
exception, then the corresponding condition will hold.

More than one (normal) behaviour can be specified for a single method. This
simply means that the method has to satisfy all of the given (normal) behaviours.

3

This is a convenient way to specify different cases in the behaviour of a method.
The default pre- and postconditions are requires: true and ensures: true,
and these may be omitted in specifications.

In addition to requires, ensures and signals clauses, methods specifica-
tions can also include modifiable clauses. These clauses specify so-called frame
conditions, which say that only certain fields may have their values changed by a
method. For example, modifiable:x specifies that a method changes only field
x.

One feature of JML that is of particular importance for this paper is the
possibility of using so-called model fields (or model variables). Model fields are
declared in JML annotations and provide specification-only variables: they can
not be used in program code, but only in JML assertions. Typically, model fields
are introduced to refer to some part of the ‘state’ encapsulated by objects of a
class, a ‘piece of state’ on which the informal specification implicitly relies, and
on which the formal JML specification will explicitly rely. As far as the class
JCSystem discussed in this paper is concerned, the main difficulty in developing
formal JML specifications is introducing appropriate model fields.

Ultimately, there should be a relation between the model variables used in
the specification and variables actually used in the implementation, and this
relation can again be stated as a JML annotation. Of course, if a method is
native, which is the case for many methods of JCSystem, there is no concrete
implementation to which the models variables can be related.

Normally a model variable and the way its value changes in response to
invocations of certain methods is completely described by the specifications of
these methods. However, as will be discussed later, for some model variables
used in the specification of JCSystem this is not the case. The value of some
model variables does not only change in response to certain method invocations,
but can also change as a side-effect of basic JavaCard language constructs.

3 The JavaCard API

Together with the JavaCard virtual machine (JCVM), the JavaCard API
forms the JavaCard runtime environment, or JCRE, as illustrated in Figure 1.
The JCVM provides the interpretation of the basic JavaCard language, i.e.
of all the JavaCard language constructs. The API is a collection of classes
and interfaces providing additional functionality that can be used in JavaCard

programs. The JavaCard API (version 2.1.1) [5] comprises 18 classes for ex-
ceptions, 16 interfaces for working with cryptographic keys and only 10 funda-
mental classes (in the package javacard.framework). Of these ISO7816, Util,
Applet and Shareable are elementary from a specification perspective, PIN and
OwnerPIN facilitate working with PIN-codes, and AID is a datatype for the iden-
tification of applets.

Part of the JavaCard API – namely the classes APDU and JCSystem – can
be understood as an interface to the miniature operating system running on
the smart card. The class APDU is the interface of the device driver handling

4

�
 �	Applet 1
�
 �	Applet 2 · · ·

�
 �	Applet n

JavaCard

Virtual Machine (JCVM)
JavaCard

API

Java Card Runtime Environment (JCRE)

device drivers, cryptography, . . .

smart card hardware

Fig. 1. The JavaCard Platform

communication of the smart card and the card reader, aka the Card Acceptance
Device (CAD). A (still incomplete) formal specification for APDU is discussed
in [14]. The class JCSystem provides an interface to the core of the operating
system, dealing with the firewall, (atomic) transactions and transient objects.
Its specification is the topic of this paper.

A diagram such as Figure 1 is somewhat misleading, as it suggests a clear
division between the JCVM and the API, whereas there is a close connection:
some parts of the API concern features that are an integral part of the JCVM. It
would be more accurate to have some overlap between the API and JCVM boxes
in Figure 1. The one class in the API that would be in this overlap is JCSystem,
as the functionality it provides is intimately connected with the JCVM. A com-
plicating factor in understanding the connection between JCVM and API is
that the specification of the JCVM [7] is given at byte-code level, whereas the
specification of the API [5] is given at source-code level. The additional JCRE
specification [6], which gives the most detailed description of the connection be-
tween JCVM and API, uses byte code level in some parts and source code in
others.

4 JCSystem

The JCSystem class offers the functionality for 3 basic ingredients of the Java-

Card platform:

1. the creation of objects in transient memory which are cleared when the
applet is deselected or when the card is reset;

2. atomic transactions enabling the undoing of certain (partial) updates when
power is lost;

3. the firewall which restricts the access of an applet’s objects by other applets
unless explicitly granted.

5

This functionality is embodied in 15 methods (not counting the method
getVersion which yields the current version number), listed in Figure 2 be-
low. These methods may be considered as the system calls of the JavaCard

operating system by which applets have access to the basic features of Java-

Card. We will discuss the formal specification of transience and the firewall in
some detail, and sketch that of atomicity.

As far as the three features listed above are concerned it is hard to draw a line
between the API and the JavaCard language (or the JCVM). Unlike the other
API classes the class JCSystem does not provide a piece of functionality that
provides an addition to the bare JCVM and that can be understood in isolation,
as the three features are really an integral part of the JavaCard language.
This is what makes the specification of JCSystem essentially more difficult than
the specification of the other API classes. Indeed, the class JCSystem is not
only specified in Sun’s API specification [5], but is also extensively discussed
in the JavaCard Runtime Environment (JCRE) specification [6]. A still more
detailed description is given by Sun’s Java reference implementation of the
JavaCard API. In particular, the reference implementation of Sun includes
a class Dispatcher that does not contain any public fields or methods and is
therefore not included in the API specification. It contains the main method
which performs card initialization (creates fundamental objects like the APDU
buffer and installs built-in applets; it is called only once) and card reset (at
each power up), and drives the main loop of the card, which processes APDUs
resulting in the (de)selection of applets or the dispatching of APDUs to or from
the currently selected applet.

The basis for our formal JML specification of JCSystem is provided by the
three sources of information mentioned above: the (informal) JavaCard API
specification [5], the JavaCard Runtime Environment (JCRE) specification [6],
and Sun’s reference implementation of the API. The following sections discuss
the different parts of JCSystem, dealing with transient objects, the firewall, and
the transaction mechanism, in more detail.

4.1 Transient objects

The JavaCard platform assumes the presence of both persistent memory which
retains data even if power is lost, and transient memory which is cleared upon
power loss. When objects are created by the new operator, they are allocated in
persistent memory. The class JCSystem provides methods for creating objects in
transient memory; these objects are always arrays.

The method

makeTransientBooleanArray (short length, byte event)

creates (allocates) an array of booleans of the given length in transient memory.
The array is persistent in the sense that it survives card resets, but its contents
are cleared (i.e. set to false) when the card is reset (e.g. after power loss), or
when the applet which created it is deselected. This choice is determined by the
parameter event, which can be CLEAR ON RESET or CLEAR ON DESELECT.

6

public final class JCSystem {

public static short getVersion();

/* methods for transient objects */

public static native byte isTransient(Object theObj);

public static native boolean[] makeTransientBooleanArray(short length,

byte event);

public static native byte[] makeTransientByteArray(short length,

byte event);

public static native short[] makeTransientShortArray(short length,

byte event)

public static native Object[] makeTransientObjectArray(short length,

byte event) ;

/* methods for the transaction mechanism */

public static native void beginTransaction() throws TransactionException;

public static native void abortTransaction() throws TransactionException;

public static native void commitTransaction() throws TransactionException;

public static native byte getTransactionDepth();

public static native short getUnusedCommitCapacity();

public static native short getMaxCommitCapacity();

/* methods for the firewall */

public static AID getAID();

public static AID lookupAID(byte[] buffer, short offset, byte length);

public static AID getPreviousContextAID();

public static Shareable getAppletShareableInterfaceObject(AID serverAID,

byte parameter);

}

Fig. 2. The methods of JCSystem

7

The methods makeTransientByteArray, makeTransientShortArray, make-
TransientObjectArray are completely analogous. The method isTransient
(Object theObj) yields a byte with value NOT A TRANSIENT OBJECT,
CLEAR ON RESET or CLEAR ON DESELECT with the obvious meaning.

For a formal specification, we first note that a normal behavior of make-
TransientBooleanArray requires a restriction on the values of its parameters:
0 ≤ length ≤ free where free is the amount of available free transient memory,
and event ∈ {CLEAR ON RESET, CLEAR ON DESELECT}. The firewall imposes addi-
tional restrictions. The firewall relies on a partitioning of the object system into
separate objects spaces called contexts. The JCRE manages a context for each ap-
plet, and the firewall restricts access across boundaries between these contexts.
Because of the firewall, the normal behavior of makeTransientBooleanArray
requires that if event equals CLEAR ON DESELECT, the currently active context
should equal the currently selected context.

These conditions together constitute the precondition of the normal behav-
ior of the method. Each possible way to negate this precondition represents
a precondition of an exceptional behavior, where an exception is thrown. For
instance, if length > free, a SystemException is thrown with reason code
SystemException.NO TRANSIENT SPACE.

The postcondition of makeTransientBooleanArray’s normal behavior
should express that its result is a non-null transient Boolean array with the
correct length, event and contents (viz. all falses), that free decreases by an
amount of length1. Finally, the JML operation \fresh can be used to say that
the result is a ‘freshly’ allocated object. Before writing the actual JML-code of
this specification, we should note that the variable free, the notions ‘currently
active context’ and ‘currently selected context’, and the ‘event’ property of a
(transient) object are not directly available when the method is applied. There-
fore, we introduce JML model variables for free (which we call freeTransient)
as well as for the contexts, and assume that each object has an ‘event’ model field
telling whether that object is NOT A TRANSIENT OBJECT, or else CLEAR ON RESET
or CLEAR ON DESELECT.

We must make sure when verifying the API and applets that the values
of these model variables and properties are properly maintained. For instance,
the increase and decrease of the run-time stack of the JCVM will influence
freeTransient. The ‘currently active context’ can change with a method call,

and is (in)directly registered in the JCVM run-time-stack. The ‘currently se-
lected context’ changes with the (de)selection of applets by the dispatcher. In
some cases (the changes in) the values of model variables and properties can be
maintained in the JML-specification itself. For instance, one could imagine that
the value of the ‘currently selected context’ is maintained in the select- and
deselect-methods of the Applet-class. Otherwise, the maintenance has to be
built in into the semantics of the relevant JavaCard statements.

1 Here we possibly oversimplify things a bit, e.g. we ignore any fixed overhead to record
the length of the array.

8

public static native boolean[] makeTransientBooleanArray(short length,

byte event)

throws SystemException;

/*@ normal_behavior

@ requires: 0 <= length && length <= _freeTransient &&

@ (event == CLEAR_ON_RESET || event == CLEAR_ON_DESELECT) &&

@ (event == CLEAR_ON_DESELECT

@ ==> _selectedContext == _activeContext);

@ modifiable: _freeTransient;

@ ensures: \result != null && \result.length == length &&

@ \result._event == event && \fresh(\result) &&

@ _freeTransient == \old(_freeTransient) - length &&

@ \forall (byte i) 0 <= i < length ==> \result[i] == false;

@ also

@ behavior

@ signals: (SystemException e)

@ (e.getReason() == SystemException.ILLEGAL_VALUE &&

@ (length < 0 ||

@ (event != CLEAR_ON_RESET && event != CLEAR_ON_DESELECT)))

@ ||

@ (e.getReason() == SystemException.NO_TRANSIENT_SPACE &&

@ _freeTransient < length)

@ ||

@ (e.getReason() == SystemException.ILLEGAL_TRANSIENT &&

@ event == CLEAR_ON_DESELECT &&

@ _selectedContext != _activeContext);

@*/

Fig. 3. JML specification of makeTransientBooleanArray

We will not resolve this issue here, and just assume that the appropriate
(model) variables and properties are available and properly maintained. By con-
ventions, their names are distinguished by an initial underscore.

This then results in the JML-specification for makeTransientBooleanArray
in Figure 3.

The JavaCard documentation does not specify the behavior in the case
where length < 0. Whatever class declares freeTransient should specify the
invariant 0 <= freeTransient (possibly also giving an upper limit by means
of a constant MAX SIZE OF TRANSIENT). The question may be raised whether
it is necessary to specify that the allocation is not actually done in persistent
memory (as is required by the informal specification), or even that the allocation
does not use memory which is already allocated to other objects.

The actual clearing of transient arrays should be specified in the dispatcher.
This may call for a detailed administration of all created transient arrays, ne-
cessitating an extension of our specification. For instance, we might use a model
variable transientMemory modelling the whole transient memory and specify

9

the precise allocation in the ensures-clause of the normal behavior (and make
freeTransient a field of transientMemory). Alternatively, one could model

a separate transient memory for ‘clear on reset’ arrays and separate transient
memories for ‘clear on deselect’ arrays for each possible applet, identified by its
AID.

The specification of isTransient is rather trivial:

public static native byte isTransient(Object theObj);

/*@ behavior
@ ensures: \result == theObj._event;
@*/

4.2 The firewall

The firewall mechanism prohibits an applet’s access to objects owned (created)
by other applets. The rules as detailed in the JavaCard Runtime Environment
(JCRE) specification are quite elaborate. The main principles are that the JCRE
can access any object, but applets can only access objects owned by applets in the
same package, objects designated as JCRE entry-point objects, and ‘shareable’
objects to which access is explicitly granted by their owners.

Applets have a certain context, which is basically the package they belong
to, and the JCRE is considered to have no context. As long as an applet is
selected, that applet’s context is the currently selected context. When a method
of an applet is called, that applet’s context becomes the currently active context.
There is also a ‘previous context’ which is the context of the applet which called
the currently active method, possibly via intermediate JCRE methods.

JCSystem provides a method

public static Shareable getAppletShareableInterfaceObject
(AID serverAID, byte parameter)

by which an applet may ask permission to access an object owned by
the applet identified by the given serverAID. It follows from the infor-
mal API specification [5] (from the specifications of getAppletShareable-
InterfaceObject of the class JCSystem and of getShareableInterface-
Object of class Applet, to be precise) that this method calls the method
getShareableInterfaceObject of the applet identified by serverAID, pass-
ing it the AID of the calling applet (or null if the caller is a JCRE-method) and
the given parameter. The AID of the calling applet can be obtained using the
method getPreviousContextAID. If the serverAID is invalid, null is returned.
Therefore, if the server is valid, and the caller is valid (or the JCRE), the spec-
ification of getAppletShareableInterfaceObject will be that of the server’s
getShareableInterfaceObject.

This is formalized in the JML-specification for getAppletShareable-
InterfaceObject in Figure 4. It requires the introduction of more model vari-
ables, as discussed below.

10

public static Shareable getAppletShareableInterfaceObject(AID serverAID,

byte parameter)

/*@ normal_behavior

@ requires: _previousContext == _jcreContext &&

@ _registeredAIDs.has(serverAID);

@ ensures: \result ==

@ (_appletTable.apply(serverAID)).getShareableInterfaceObject

@ (null,parameter);

@ also

@ normal_behavior

@ requires: _previousContext != _jcreContext &&

@ _registeredAIDs.has(serverAID);

@ ensures: \result ==

@ (_appletTable.apply(serverAID)).getShareableInterfaceObject

@ (getPreviousContextAID(),parameter);

@ also

@ normal_behavior

@ requires: !_registeredAIDs.has(serverAID);

@ ensures: \result == null;

@*/

Fig. 4. JML specification of getAppletShareableInterfaceObject

The model variable previousContext is akin to the model variables
selectedContext and activeContext introduced in Section 4.1. The
selectedContext is set and reset when applets are selected and deselected.

The other two have to be maintained as part of the semantics of the method
call. In fact, their values could be extracted from the run-time stack. The related
model constant jcreContext represents the context of the JCRE; it is different
from any applet’s context.

Two model variables used in the specification of getAppletShareable-
InterfaceObject are of more complicated types than the model variables seen
so far. First, there is a model variable registeredAIDs, which is the set of all the
AID’s of installed applets. Second, there is a model variable appletTable, which
is a partial function from AID’s to applets, that, given an AID, returns the applet
with that AID, if such an applet is installed. So the domain of appletTable
will be registeredAIDs, and this could in fact be included as an invariant.
The values of these model variables will change in response to invocations of the
method register of an applet.

In specifications one often needs model variables that represents sets and
functions, such as registeredAIDs and appletTable above. For this rea-
son the JML distribution comes with a package edu.iastate.cs.jml.models
that implements many mathematical notions that are frequently needed in
specifications. This package provides suitable classes for registeredAIDs and
appletTable:

11

public model JMLObjectSet _registeredAIDs;
public model JMLObjectToObjectMap _appletTable;

The method has for JMLObjectSet and apply for JMLObjectToObjectMap
used in the specification of getAppletShareableInterfaceObject in Fig-
ure 4 have the obvious interpretations. A detailed description of these
classes is given as part of the JML release that can be obtained at
http://www.cs.iastate.edu/∼leavens/JML.html.

Sun’s reference implementation of the JavaCard API provides a particu-
lar representation of the information in registeredAIDs, appletTable, and
previousAID. In fact, it uses an array of objects theAppletTable to record

the mapping appletTable. Internally, the reference implementation does not
use AIDs but indexes in this array to identify applets. To ensure that the spec-
ification is in agreement with this implementation one would use the standard
technique of establishing an invariant that expresses the correspondence between
the abstract model variable and the concrete implementation.

The method lookupAID, by which an applet can obtain AIDs to pass to
getAppletShareableInterfaceObject accesses the internal applet table in
much the same way as getAppletShareableInterfaceObject and is easy to
specify.

The two remaining methods related to the firewall, getAID and
getPreviousContextAID, return the AIDs associated with the current and
the previous applet context, respectively. They could be specified by introduc-
ing model variables currentContextAID and previousContextAID, and then
specifying

public static AID getPreviousContextAID()

/*@ normal_behaviour
@ ensures: \result == _previousContextAID;
@*/

and similarly for getAID. But observe that there is then effectively no
difference between getPreviousContextAID() and the method vari-
able previousContextAID. One could simply do away with the model
variable and use the method instead. (Indeed, the specification of
getAppletShareableInterfaceObject in Figure 4 already uses the
method invocation getPreviousContextAID() rather than some model
variable previousContextAID.) Essentially the methods getAID and
getPreviousContextAID are too fundamental for an interesting specifica-
tion in JML.

Something interesting that could still be specified is the relation between
contexts and AIDs. A model variable for this relation could be introduced
in order to express the invariants that hold between currentContext and
currentContextAID and previousContext and previousContextAID.

12

4.3 Atomic Transactions

All updates of single array elements, object fields and class fields in persistent
memory are atomic. If a failure or power loss occurs during an update, the field
is restored to its previous value. With modern hardware it is not difficult to obey
this requirement, and in formal specifications atomic updates are in fact silently
assumed. The Util-class of the JavaCard API provides methods for atomic
and non-atomic updates of arrays.

For more complicated updates, the JCSystem-class provides the meth-
ods beginTransaction(), abortTransaction() and commitTransaction().
A (hidden) variable transactionDepth, which is 0 initially, is incre-
mented by beginTransaction(), decremented by abortTransaction() and
commitTransaction(), but should always have a value of 0 or 1, otherwise
a TransactionException is thrown. This outlines a behavior specification of
these methods.

Essentially, beginTransaction() should create a ‘backup’ of persistent
memory in a second persistent memory, and abortTransaction() should ‘re-
store’ it. However, this is not feasible as the amount of persistent memory is
severely restricted and writing to it is expensive. Therefore, a commit buffer is
provided, the size of which is implementation-dependent. The use of this buffer
may follow different schemes (as outlined in [12]), of which we just choose one
(‘old value logging’, as opposed to ‘new value logging’) for our specification.

For each update of a byte of persistent memory, if transactionDepth >
0, the value to be overwritten is recorded in the commit buffer, provided
that no value is yet recorded for that byte. The buffer is cleared by
commitTransaction(), but abortTransaction() restores the old values. Also,
abortTransaction() is implicitly called when the JCRE regains control, upon
applet deselection, card reset (e.g. after a power loss), or any kind of failure. This
may happen even if abortTransaction() is in progress. Consequently, from the
perspective of the applets, the result of such a transaction is always consistently
the collection of new values or the collection of old values. The atomicity of trans-
actions ultimately relies on the fact that the decrease of transactionDepth is
atomic, and the last action of abortTransaction().

Moreover, any object created during a transaction, either in persis-
tent or in transient memory, is deleted and has its memory freed upon
abortTransaction(). Each reference to such an object, even on the run-time
stack, is set to null.

In the specification we introduce a (rather complicated) model variable
theCommitBuffer. We assume that the semantics of updates and object cre-

ation is extended so as to include the recording of old values and pointers in
this model object. The specification of abortTransaction() will state that the
values of all object fields and array elements recorded in the commit buffer equal
those recorded, that any references to newly created objects are set to null and
that the memory of these objects is freed.

The specification of three other methods dealing with atomic transac-
tions, getTransactionDepth, getUnusedCommitCapacity and getMaxCommit-

13

Capacity are quite straightforward. The latter two extract properties from
theCommitBuffer.

5 Related Work

Most of the work on formalising the JavaCard platform has focussed on the
JCVM rather than the API. Still, some (formal) models of transaction mecha-
nism, firewall, and transient memory have been given. For example, transaction
mechanisms are described in [15] (using B), [12] and [3] (using Z), and the fire-
wall in [11] (using B). As mentioned earlier, as far as firewall, atomic actions,
and transient memory are concerned it is hard to draw a line between the API
and JCVM, so this work is not unrelated to what we have done. The model
variables we need in our JML specifications should have counterparts in formal
descriptions of the JCVM, as explained in more detail below.

6 Conclusion

Although some details of the specification of the JavaCard API are some-
what subtle, the specification as a whole turns out to be rather small. All
methods have a specification which is not essentially larger than that of
makeTransientBooleanArray as given in Figure 3.

The model variables that have to be introduced in our JML specifications
make explicit many of the informal notions used in the existing informal docu-
mentation. This can help to clarify and improve these informal specifications.

Normally, the values of model variables and the way these change in re-
sponse to methods invocations is completely described by the JML specifica-
tions. However, for many model variables used in the specification of JCSystem
this is not the case. Maintaining the correct values of these model variables is
an integral part of the semantics of normal JavaCard statements. For exam-
ple, any assignment to a persistent object field that occurs during a transac-
tion affects theCommitBuffer, so the semantics of assignment should include
this side-effect on theCommitBuffer. Or, to give another example, the variable
activeContext may need to be changed at every method invocation, so the

semantics of method invocation should include a side-effect on activeContext.
Note that a comprehensive account of all such examples comes down to a spec-
ification of the differences between Java and JavaCard.

All this means that ultimately a specification of the JavaCard API cannot
be considered on its own, but has to be considered together with a formalisation
of the JavaCard language itself, e.g. a formal description of the JCVM or
—in our case— our denotational semantics of JavaCard in PVS. The ‘side-
effects’ mentioned above should then be made part of the implementation of
certain virtual machine instructions (e.g. invoke bytecodes) c.q. be included in
the semantics of JavaCard source code statements. The list of model variables
needed in a formal JML specification gives a good overview of the variables that
have to be maintained by a JCVM in order to, say, implement the firewall.

14

When verifying JavaCard source code using the LOOP tool and PVS, ver-
ifying any properties that depend on (the model variables of) JCSystem will re-
quire some mechanism by which (JML) model variables can be associated with
the external operations they are subject to. How this should be accomplished is
a matter of further investigation. Note that this issue is not particular to our
approach to verification using the LOOP tool and PVS: whenever one wants to
adapt an existing approach of Java-verification to JavaCard the question of
how to deal with the peculiarities of JavaCard as opposed to Java arises.

References

1. J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In
T. Margaria and W. Yi, editors, Tools ans Algorithms for the Construction and
Analysis of Software (TACAS), number 2031 in LNCS, pages 299–312. Springer,
Berlin, 2001.

2. J. van den Berg, B. Jacobs, and E. Poll. Formal Specification and Verification
of JavaCard’s Application Identifier Class. In I. Attali and T. Jensen, editors,
Proceeding of the first JavaCard Workshop (JCW’2000), LNCS. Springer Verlag,
2001. To appear.

3. P. H. Hartel, M. J. Butler, E. de Jong, and M. Longley. Transacted memory for
smart cards. In 10th Formal Methods for Increasing Software Productivity (FME),
LNCS. Springer Verlag, 2001.

4. P. H. Hartel and L. A. V. Moreau. Formalizing the safety of Java, the Java virtual
machine and Java Card. ACM Computing Surveys, 2001. to appear.

5. The Java Card 2.1.1 Application Programming Interface (API). Sun Microsystems,
2000.

6. The Java Card 2.1.1 Runtime Environment (JCRE) Specification. Sun Microsys-
tems, 2000.

7. The Java Card 2.1.1 Virtual Machine (JCVM) Specification. Sun Microsystems,
2000.

8. G.T. Leavens, A.L. Baker, and C. Ruby. JML: A notation for detailed design. In
H. Kilov and B. Rumpe, editors, Behavioral Specifications of Business and Systems,
pages 175–188. Kluwer, 1999.

9. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Techn. Rep. 98-06, Dep. of Comp. Sci.,
Iowa State Univ. (http://www.cs.iastate.edu/∼leavens/JML.html), 1999.

10. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd rev. edition,
1997.

11. Stéphanie Motré. Formal model and implementation of the Java Card dynamic se-
curity policy. Technical Report SM-99-09, Gemplus Research Lab, 1999. Presented
at AFADL’2000.

12. Marcus Oestreicher. Transactions in Java Card. In 15th Annual Computer Security
Applications Conference (ACSAC’99), pages 291–298. IEEE, 1999.

13. E. Poll, J. van den Berg, and B. Jacobs. Specification of the JavaCard API in
JML. In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, Fourth Smart Card
Research and Advanced Application Conference (CARDIS’2000), pages 135–154.
Kluwer Acad. Publ., 2000.

14. E. Poll, J. van den Berg, and B. Jacobs. Formal Specification of the JavaCard API
in JML: The APDU class. Computer Networks, 2001. To appear.

15

15. Denis Sabatier and Pierre Lartigue. The use of the B formal method for the
design and the validation of the transaction mechanism for smart card applications.
Formal Method in System Design, 17(3):145–272, 2000. Special issue on FM’99.

