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This position paper sketches some opportunities in applying
formal methods for security, more specifically security of
software.

A killer application for formal methods?
At first sight – and even at second sight – security looks like
an interesting application area for formal methods.
One reason for this is that security flaws have a higher

impact than more harmless bugs. This might justify or even
require the extra effort to invest in using formal methods.
Indeed, the highest levels of certification using the Com-
mon Criteria security evaluation standard require the use of
formal methods.

Another reason is that some security problems are orthog-
onal to – or at least largely independent of – the functionality
of a system. Indeed, security vulnerabilities can be seen as
‘anti-functionality’: functionality that is unintentionally pro-
vided, also to attackers, which should not be available at all.
Given that writing complete functional specifications is hard,
and totally unfeasible in most cases, concentrating on partial
specs that ensure some generic safety properties problems
might provide a better return of investment, also because
such specs could be re-used across applications.
Unfortunately, things are not so simple. Security proper-

ties can be tricky to specify. Indeed, attackers can be very
creative in finding and exploiting new loopholes. A com-
mon and natural way to specify security properties is in a
‘negative’ way, by saying that something – some type of
attack – is not supposed to be possible. For example, a web
application should not be vulnerable to SQL injection or XSS.
List of these negative properties are useful in testing, as they
suggest negative tests (i.e. test-cases which are supposed
to fail, by triggering some error response), but they are not
immediately helpful in construction. Moreover, these lists
of negative properties are typically incomplete. They only
address a limited set of known potential problems, not all
potential problems.
Moreover, sometimes security problems arise because it

turns out fundamental assumptions about programs can be
broken by an attacker, invalidating the very abstractions that
we use in formal methods to reason about programs. Classic
examples here are fault attacks (for example the Rowhammer
attack to flip some bits in DRAM memory) or information
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leaking through side-channels (for example the Spectre and
Meltdown timing attacks on modern CPUs). Of course, our
formal models could be refined to accomodate these low-
level attacks, but at the (high) cost of extra complexity.

Security functionality , secure functionality
When investigating at the security of software, it is natural
to focus on the security functionality, i.e. the functional-
ity specifically intended to provide some security guaran-
tees, such as access control checks or security protocols like
SSL/TLS. Such functionality is obviously security-critical.
However, while this may suggest rewarding aspects or

components to investigate, it is dangerous to fall into the trap
of thinking that such security functionality is the only or
even the most important area to look for problems. Not only
the security functionality has to be secure: all functionality
needs to be, as security vulnerabilities can lurk in any line of
code that can be triggered by input controlled by the attacker.
The bulk of security bugs is not in code specifically aimed
at achieving some security goal, but is in more mundane
functionality, say the parsing of PDF files or the rendering
of some graphical format, with Flash as the most notorious
example.

LangSec: back to basics?
The paradigm of LangSec (language-theoretic security)1 pro-
vides very good insights into the root causes of the over-
whelming majority of security flaws, namely bugs in han-
dling input, which typically boil down to bugs in the parsing
and processing input languages and formats, rather than
bugs in the application logic.

One problem is with the input languages themselves: they
are typically overly complex, too expressive, and poorly –
and informally – specified. To make matters worse, there
are many of these languages, at every level of the network
and software stack, and they can be combined or nested.
A further problem here is that the code to process these
languages is typically hand-coded, and not obtained using
parser generation.

Ironically – or embarrassingly, for the computing science
community – theories for formal language definitions and
parser generation are some of the oldest andmost established
areas in formal methods. Still, somehow the whole world is
still writing long prose documents to specify languages and
1See also http:\langsec.org, esp. [1], or [7] for a more recent entry point into
the LangSec literature.

http:\langsec.org


protocols, and then hand-coding parsers – often in memory
unsafe languages like C or C++, where the potential security
impact of flaws is the biggest (namely remote code execution).
There is a huge opportunity here to provide better notations
and tools to prevent all this misery. Or maybe these already
exist, and we should do a better job in training people – incl.
our students – on how to use them?
One step further from formal specs and associated code

generation for parsers and pretty printers would be domain-
specific programming languages to support different input
formats and languages as first class citizens, as envisioned
in Wyvern [8].

Security Testing & Model Extraction
The past decade has seen a lot of fruitful interaction be-
tween formal methods and testing, also in security testing.
An interesting trend is the use of formal methods, notably
symbolic/concolic execution, for security testing [6, 11] or
even going one step further and actually develop exploits
as in the angr tool [10]. If we cannot get developers to use
formal methods, maybe we should concentrate efforts on
getting security testers and hackers to use formal methods?
(Of course, with more robust parser code that has generated
from formal language specs, as we argue for above, it should
be harder to find security flaws . . . )
Test techniques can also provide a way to obtain formal

specs from implementations. Given the difficulty of obtain-
ing formal models this is an interesting direction of work.
Existing fuzzers can already reverse-engineer input formats
[2, 3], and state machine inference can be used to extract
security-relevant behaviour from code [9].
All such formal techniques for security testing or model

inference could be combined with machine-based learning
or AI approaches, to improve results and/or the level of
automation.

Practical information flow
Information flow properties are an interesting class of se-
curity properties. Information flow can be used to track po-
tential leakage of confidential information or to track the
flow of tainted input to places where such input may do
damage. Research on information flow has a long history,
dating back to the 1970s [4], and ad-hoc information anal-
yses are implemented in code analysis for security flaws –
aka Static Application Security Testing (SAST), by tools such
as Coverity, Checkmarx, or Fortify, but flexible and practical
approaches to express and enforce information flow for pro-
grams in popular programming languages (e.g. [5] for Java)
are still rare and not commonly used.

New (and safer) programming languages, new
opportunities?
One positive development for security in recent years has
been the advent of new programming languages – Rust, D,

Go, Swift, Nim, . . . – where safety is very much a design goal.
Some of these languages are specifically aimed for low-level
programming and might become viable, widely-used, and
safer alternatives for C/C++ and then reduce the prevalence
of memory corruption problems.
The advent of these new languages is a double-edged

sword. An advantage is that they are designed to be more
amenable to formal analysis and have some security guaran-
tees built in at the language level. A downside is that new
languages require new tools. Building and maintaining good
formal methods tools is a major bottleneck, so here the ad-
vent of new languages is bad news. For researchers these
new languages represent new research opportunities. This
may be good news, if this new research gets us further, or
bad news, if this research is merely repeating and recycling
the same old ideas without getting us further.
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