
Software Security

Buffer Overflows
public enemy number 1

Erik Poll
Digital Security

Radboud University Nijmegen

The good news

C is a small language that is close to the hardware

• you can produce highly efficient code

• compiled code runs on raw hardware with minimal infrastructure

C is typically the programming language of choice

• for highly efficient code

• for embedded systems (which have limited capabilities)

• for system software (operating systems, device drivers,...)

2

The bad news : using C(++) is dangerous

3

Essence of the problem

Suppose in a C program we have an array of length 4

char buffer[4];

What happens if we execute the statement below ?

buffer[4] = ‘a’;

This is UNDEFINED! ANYTHING can happen !

If the data written (ie. the “a”) is user input that can be controlled

by an attacker, this vulnerability can be exploited:

anything that the attacker wants can happen.

4

Solution to this problem

• Check array bounds at runtime

– Algol 60 proposed this back in 1960!

• Unfortunately, C and C++ have not adopted this solution,

for efficiency reasons.

(Perl, Python, Java, C#, and even Visual Basic have)

• As a result, buffer overflows have been the no 1 security

problem in software ever since

5

Problems caused by buffer overflows

• The first Internet worm, and all subsequent ones (CodeRed,

Blaster, ...), exploited buffer overflows

• Buffer overflows cause in the order of 50% of all security alerts

– Eg check out CERT, cve.mitre.org, or bugtraq

• Trends

– Attacks are getting cleverer

• defeating ever more clever countermeasures

– Attacks are getting easier to do, by script kiddies

6

Any C(++) code acting on untrusted input is at risk

• code taking input over untrusted network

– eg. sendmail, web browser, wireless network driver,...

• code taking input from untrusted user on multi-user system,

– esp. services running with high privileges (as ROOT on
Unix/Linux, as SYSTEM on Windows)

• code acting on untrusted files

– that have been downloaded or emailed

• also embedded software -

eg. in devices with (wireless) network connections such as
mobile phones, RFID card, airplane navigation systems, ...

7

How does buffer overflow work?

Memory management in C/C++

• A program is responsible for its memory management

• Memory management is very error-prone

– Who here has had a C(++) program crash with a
segmentation fault?

Technical term: C and C++ do not offer memory-safety

• Typical bugs:

– Writing past the bound of an array

– Pointer trouble

• missing initialisation, bad pointer arithmetic, use after de-
allocation (use after free), double de-allocation, failed
allocation, forgotten de-allocation (memory leaks)...

• For efficiency, these bugs are not detected at run time:

– behaviour of a buggy program is undefined

9

10

Process memory layout

Arguments/ Environment

Stack

Unused Memory

Heap (dynamic data)

Static Data

Program Code .text
Low

addresses

High

addresses
Stack grows

down,

by procedure

calls

Heap grows

up,

eg. by malloc

and new.data

11

Stack overflow

The stack consists of Activation Records:

AR main()

AR f()

Stack grows

downwards

void f(int x) {

char[8] buf;

gets(buf);

}

void main() {

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards

12

Stack overflow

What if gets() reads more than 8 bytes ? :

AR main()

AR f()

void f(int x) {

char[8] buf;

gets(buf);

}

void main() {

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards

13

Stack overflow

What if gets() reads more than 8 bytes ?

AR main()

AR f()

void f(int x) {

char[8] buf;

gets(buf);

}

void main() {

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards

14

Stack overflow

What if gets() reads more than 8 bytes ?

AR main()

AR f()

Stack grows

downwards

void f(int x) {

char[8] buf;

gets(buf);

}

void main() {

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards

never use
gets()!

Stack overflow

• How the attacks works: overflowing buffers to corrupt data

• Lots of details to get right:

– No nulls in (character-)strings

– Filling in the correct return address:

• Fake return address must be precisely positioned

• Attacker might not know the address of his own string

– Other overwritten data must not be used before return from function

– …

• Variant: Heap overflow of a buffer allocated on the heap instead

of the stack

15

What to attack? Fun with the stack

Overflowing stack-allocated buffer buf3 to

• corrupt return address

– ideally, let this return address point to another buffers where

the attack code is placed

• corrupt function pointers, such as fp

• corrupt any other data on the stack, eg. b2, i, b1, buf2,..

...

void f(char* buf1, char* buf2, bool b1) {

int i;

bool b2;

void (*fp)(int);

char[] buf3;

....

}

What to attack? Fun on the heap

struct account {

int number;

bool isSuperUser;

char name[20];

int balance;

} overrun name to corrupt the
values of other fields in the struct

What causes buffer overflows?

Example: gets

char buf[20];

gets(buf); // read user input until

// first EoL or EoF character

• Never use gets

• Use fgets(buf, size, stdin) instead

19

Example: strcpy

char dest[20];

strcpy(dest, src); // copies string src to dest

• strcpy assumes dest is long enough ,

and assumes src is null-terminated

• Use strncpy(dest, src, size) instead

20

Spot the defect! (1)

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix);

// copies the string prefix to buf

strncat(buf, path, sizeof(buf));

// concatenates path to the string buf

21

Spot the defect! (1)

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix);

// copies the string prefix to buf

strncat(buf, path, sizeof(buf));

// concatenates path to the string buf

Another common mistake is giving sizeof(path) as 3rd argument...

22

strncat’s 3rd parameter is number of

chars to copy, not the buffer size

Spot the defect! (2)

char src[9];

char dest[9];

char* base_url = ”www.ru.nl”;

strncpy(src, base_url, 9);

// copies base_url to src

strcpy(dest, src);

// copies src to dest

23

char src[9];

char dest[9];

char* base_url = ”www.ru.nl”;

strncpy(src, base_url, 9);

// copies base_url to src

strcpy(dest, src);

// copies src to dest

Spot the defect! (2)

24

base_url is 10 chars long, incl. its

null terminator, so src will not be

null-terminated

Spot the defect! (2)

char src[9];

char dest[9];

char* base_url = ”www.ru.nl”;

strncpy(src, base_url, 9);

// copies base_url to src

strcpy(dest, src);

// copies src to dest

25

base_url is 10 chars long, incl. its

null terminator, so src will not be

null-terminated

so strcpy will overrun the buffer dest

Example: strcpy and strncpy

• Don’t replace

strcpy(dest, src)

by

strncpy(dest, src, sizeof(dest))

but by

strncpy(dest, src, sizeof(dest)-1)

dst[sizeof(dest)-1] = `\0`;

if dest should be null-terminated!

• Btw: a strongly typed programming language could of course

enforce that strings are always null-terminated...

26

Spot the defect! (3)

char *buf;

int i, len;

read(fd, &len, sizeof(int));

// read sizeof(int) bytes, ie. an int,

// and store these in len

buf = malloc(len);

read(fd,buf,len); // read len bytes into buf

27

Spot the defect! (3)

char *buf;

int i, len;

read(fd, &len, sizeof(int));

// read sizeof(int) bytes, ie. an int,

// and store these in len

buf = malloc(len);

read(fd,buf,len); // read len bytes into buf

28

len might become negative

len cast to unsigned, so negative length overflows

read then goes beyond the end of buf

29

Spot the defect! (3)

char *buf;

int i, len;

read(fd, &len, sizeof(len));

if (len < 0)

{error ("negative length"); return; }

buf = malloc(len);

read(fd,buf,len);

Remaining problem may be that buf is not null-terminated

30

Spot the defect! (3)

char *buf;

int i, len;

read(fd, &len, sizeof(len));

if (len < 0)

{error ("negative length"); return; }

buf = malloc(len+1);

read(fd,buf,len);

buf[len] = '\0'; // null terminate buf

May result in integer overflow;

we should check that
len+1 is positive

Spot the defect! (5)

#define MAX_BUF 256

void BadCode (char* input)

{ short len;

char buf[MAX_BUF];

len = strlen(input);

if (len < MAX_BUF) strcpy(buf,input);

}

31

Spot the defect! (5)

#define MAX_BUF 256

void BadCode (char* input)

{ short len;

char buf[MAX_BUF];

len = strlen(input);

if (len < MAX_BUF) strcpy(buf,input);

}

The integer overflow is the root problem, but the (heap) buffer

overflow that this enables make it exploitable

32

What if input is longer than 32K ?

len will be a negative number,

due to integer overflow

hence: potential

buffer overflow

33

Spot the defect! (4)

#ifdef UNICODE

#define _sntprintf _snwprintf

#define TCHAR wchar_t

#else

#define _sntprintf _snprintf

#define TCHAR char

#endif

TCHAR buff[MAX_SIZE];

_sntprintf(buff, sizeof(buff), ”%s\n”, input);

[slide from presentation by Jon Pincus]

34

#ifdef UNICODE

#define _sntprintf _snwprintf

#define TCHAR wchar_t

#else

#define _sntprintf _snprintf

#define TCHAR char

#endif

TCHAR buff[MAX_SIZE];

_sntprintf(buff, sizeof(buff), ”%s\n”, input);

The CodeRed worm exploited such an mismatch: code written under the
assumption that 1 char was 1 byte allowed buffer overflows after the move
from ASCI to Unicode

Spot the defect! (4)

_sntprintf’s 2nd param is # of chars in

buffer, not # of bytes

[slide from presentation by Jon Pincus]

Spot the defect! (6)

bool CopyStructs(InputFile* f, long count)

{ structs = new Structs[count];

for (long i = 0; i < count; i++)

{ if !(ReadFromFile(f,&structs[i])))

break;

}

}

35

Spot the defect! (6)

bool CopyStructs(InputFile* f, long count)

{ structs = new Structs[count];

for (long i = 0; i < count; i++)

{ if !(ReadFromFile(f,&structs[i])))

break;

}

}

And this integer overflow can lead to a (heap) buffer overflow.

Since 2005 the Visual Studio C++ compiler adds check to prevent this

36

effectively does a
malloc(count*sizeof(type))

which may cause integer overflow

Spot the defect! (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url is valid and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

// skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buff2, buff1);

...

37

[slide from presentation by Jon Pincus]

Spot the defect! (7)

Loop termination (exploited by Blaster)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url is valid and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

// skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buff2, buff1);

...

38

what if there is no ‘/’ in the URL?

[slide from presentation by Jon Pincus]

length up to the first null

Spot the defect! (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url is valid and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

// skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url != ’/’) && (*url++ != 0);

strcpy(buff2, buff1);

...

39

[slide from presentation by Jon Pincus]

What about 0-length URLs?

Is buff1 always null-terminated?

Spot the defect! (8)

#include <stdio.h>

int main(int argc, char* argv[])

{ if (argc > 1)

printf(argv[1]);

return 0;

}

This program is vulnerable to format string attacks, where calling
the program with strings containing special characters can result
in a buffer overflow attack.

40

Format string attacks

• New type of attack, invented/discovered in 2000.

• Strings can contain special characters, eg %s in

printf(“Cannot find file %s”, filename);

Such strings are called format strings

• What happens if we execute the code below?

printf(“Cannot find file %s”);

• What can happen if we execute

printf(string)

where string is user-supplied ?

Esp. if it contains special characters, eg %s, %x, %n, %hn?

41

format strings for printf

printf(”j has the value %i ” , j);

// %i to print integer value

printf(”j has the value %x in hex ” , j);

// %x to print 4-byte hexadecimal value

”j has the value %i ” is called a format string

Other printing functions also accept format strings.

Any guess what

printf(”j has the value %x in hex ”);

does?

It will print the top 4 bytes of the stack

42sws1

Leaking data from the stack

int main(int argc, char** argv)

int pincode = 1234;

printf(argv[1]);

}

How can an attacker learn the value of pincode ?

Supplying %x%x%x as input will dump top 12 bytes of the stack

43

Leaking data from anywhere

printf(”str has the value %s ” , str);

// %s to print a string, ie a char*

Any guess what

printf(”str has the value %s ”);

does?

It interprets the top of the stack as a pointer (an address) and prints the

string allocated in memory at that address

Of course, there might not be a string allocated at that address.

printf simply prints whatever is in memory up to the next null terminator

44

Corrupting data with format string attack

int j;

char* msg; ...

printf(”how long is this? %n”, &j);

%n causes the number of characters printed to be written to j.

Here it will give j the value 14

Any guess what

printf(”how long is this? %n”, msg”);

will do?

It interprets the top of the stack as an address, and writes the value 14 to it

Summary malicious format strings

Interesting inputs for the string str to attack printf(str)

• %x%x%x%x%x%x%x%x

will print bytes from the top of the stack

• %s

will interpret the top bytes of the stack as an address X, and then

prints the string starting at that address A in memory, ie. it dumps

all memory from A up to the next null terminator

• %n

will interpret the top bytes of the stack as an address X, and then

writes the number of characters output so far to that address

Example really malicious format strings

An attacker can try to control which address X is used

for reading from memory using %s or for writing to memory using %n

with specially crafted format strings of the form

• \xEF\xCD\xCD\xAB %x %x ... %x %s

With the right number of %x characters, this will print the string located

at address ABCDCDEF

• \xEF\xCD\xCD\xAB %x %x ... %x %n

With the right number of %x characters, this will write the

number of characters printed so far to location ABCDCDEF

The tricky things are inserting the right number of %x, and

choosing an interesting address

Format string attacks

48

Format string attacks are easy to spot & fix:

replace printf(str)

with printf(“%s”, str)

Recap: buffer overflows

• buffer overflow is #1 weakness in C and C++ programs

– because these language are not memory-safe

• tricky to spot

• typical cause: poor programming with arrays and strings

– esp. library functions for null-terminated strings

• related attacks

• format string attack: another way of corrupting stack

• integer overflows: a stepping stone to get buffer overflows

49

Runtime aka dynamic countermeasures

stack canaries

• introduced in StackGuard in gcc

• a dummy value - stack canary or cookie - is written on the stack

in front of the return address and checked when function returns

• a careless stack overflow will overwrite the canary, which can

then be detected.

• a careful attacker can overwrite the canary with the correct

value.

• additional countermeasures:

– use a random value for the canary

– XOR this random value with the return address

– include string termination characters in the canary value

51

Further improvements of stack canaries

• PointGuard

– also protects other data values, eg function pointers, with

canaries

• ProPolice's Stack Smashing Protection (SSP) by IBM

– also re-orders stack elements to reduce potential for trouble:

swapping parameters x and y on the stack changes whether

overrunning x can corrupt y

this is especially dangerous if y is a function pointer

• Stackshield has a special stack for return addresses, and can

disallow function pointers to the data segment

52

Non-eXecutable memory (NX aka WX)

Distinguish

• executable memory (for storing code)

• non-executable memory (for storing data)

and let processor refuses to execute non-executable code

This can be done for the stack, or for arbitrary memory pages

How does this help?

Attacker can no longer jump to his own attack code,
as any input he provides as attack code will be non-executable

53

Non-eXecutable memory (NX aka WX)

Modern CPUs provide such NX bits in hardware:

• Intel calls it eXecute-Disable (XD)

• AMD calls it Enhanced Virus Protection

• Supported by many operating systems

• MacOs X

• Data Execution Prevention (DEP) on Windows

• OpenBSD W^X

• ExecShield and PAX patches in Linux

Return-to-libc attacks

Way to get around non-executable memory:

overflow the stack to jump to code that is already there,

esp. library code in libc

instead of jumping to your own attack code.

libc is a rich library that offers many possibilities for attacker, eg.
system, exec, fork

Many libraries, incl. libc, provide enough operations to be

Turing complete! So an attacker can do anything with such a

library.

55

Address Space Layout Randomisation (ASLR)

• Attacker needs detailed information on memory layout

• By randomising the layout every time we start a program

• ie. moving the offset of the heap, stack, etc, by some random
value

the attacker’s life becomes much harder

It prevents the attacker from being able to easily predict target
addresses

56

Dynamic countermeasures (recap)

• canaries

• non-executable memory

• address space layout randomisation (ASLR)

None of these countermeasures are perfect!

A determined attacker can and will find a way around them.

eg by figuring out cookie values, offset used in address randomisation,
key used to encode instructions, returning to libc, etc

Moreover, they do not protect against heap overflows

57

Windows 2003 Stack Protection

The subtle ways in which things can still go wrong...

• Enabled with /GS command line option

• Similar to StackGuard, except that when canary is corrupted,

control is transferred to an exception handler

• Exception handler information is stored ... on the stack

– http://www.securityfocus.com/bid/8522/info

• Countermeasure: register exception handlers, and don't trust

exception handlers that are not registered or on the stack

• Attackers may still abuse existing handlers or point to exception

outside the loaded module...

58

Other countermeasures

Countermeasures

We can take countermeasures at different points in time

– before we even begin programming

– during development

– at compilation time

– when testing

– when executing code

to prevent, migitate, or detect buffer overflows problems

60

Prevention

• Don’t use C or C++

You can write insecure code in any programming language, but some

languages make it easier to write insecure programs than others

C(++) programmer is like trapeze artist without safety net

61

Prevention

Many languages are not prone to memory errors like C(++).

These are often called safe languages, because they offer memory-safety

and sometimes also type-safety.

Examples: Java, C#

Typical characteristics of safe languages:

– checking array bounds

– checking for null values

– default initialisation

– no pointer arithmetic

– no dynamic memory management with malloc() and free(),

but automatic memory management using garbage collector

– strong type checking

– exception on integer overflow

– more precisely defined semantics

62

Prevention

• Better programmer awareness & training

Eg read – and make other people read –

– C(++) Secure Coding Standards by CERT
https://www.securecoding.cert.orgps://www.securecoding.cert.org

– Building Secure Software, J. Viega & G. McGraw, 2002

– Writing Secure Code, M. Howard & D. LeBlanc, 2002

– Secure programming for Linux and UNIX HOWTO, D. Wheeler,

63

https://www.securecoding.cert.org/

Dangerous C system calls
source: Building secure software, J. Viega & G. McGraw, 2002

Extreme risk

• gets

High risk

• strcpy

• strcat

• sprintf

• scanf

• sscanf

• fscanf

• vfscanf

• vsscanf

• streadd

64

• strecpy

• strtrns

• realpath

• syslog

• getenv

• getopt

• getopt_long

• getpass

Low risk

• fgets

• memcpy

• snprintf

• strccpy

• strcadd

• strncpy

• strncat

• vsnprintf

Moderate risk

• getchar

• fgetc

• getc

• read

• bcopy

Generic defence mechanisms

• Reducing attack surface

Not running or even installing certain software, or enabling all

features by default, mitigates the threat

• Mitigating impact by reducing permissions

Reducing OS permissions of software (or user) will restrict the

damage that an attack can have

• principle of least privilege

65

Better string libraries (1)

• libsafe.h provides safer, modified versions of eg. strcpy

– prevents buffer overruns beyond current stack frame in the
dangerous functions it redefines

• libverify enhancement of libsafe

– keeps copies of the stack return address on the heap, and checks if
these match

66

Better string libraries (2)

• glib.h provides Gstring type for dynamically growing null-

terminated strings in C

– but failure to allocate will result in crash that cannot be intercepted,

which may not be acceptable

• Strsafe.h by Microsoft guarantees null-termination and always

takes destination size as argument

• C++ string class

– but data() and c-str()return low level C strings, ie char*,

with result of data()is not always null-terminated on all

platforms...

67

Runtime detection on instrumented binaries

There are many memory error detection tools that instrument

binaries to allow runtime detection of memory errors, esp.

• out-of-bounds access

• use-after-free bugs on heap

with some overhead (time, memory space) but no false positives

For example Valgrind (Memcheck), Dr. Memory, Purify, Insure++,

BoundsChecker, Cachegrind, Intel Parallel Inspector, Discoverer,

AddressSanitizer

68

Safer variants of C

Some approaches go further and propose safer dialects of C

which include

• bound checks,

• type checks

• automated memory management, to ensure memory safety

– by garbage collection or region-based memory management

Examples are Cyclone, CCured, Vault, Control-C, Fail-Safe C, …

69

Fuzzing aka fuzz testing

Testing for security can be difficult!

– How to hit the right cases?

A classic technique to find buffer overflow weaknesses

is fuzz testing

• send random, very long inputs, to an application

• if the application crashes, with a segmentation fault (segfault), it
contains buffer overflows

The nice thing is that this is easy to automate!

70

Code review & Static Analysis

• Code reviews

Expensive & labour intensive

• Code scanning tools aka static analysis
Automated tools that look for suspicious patterns in code;
ranges for CTRL-F or grep, to advanced analyses

Incl. free tools
– RATS – also for PHP, Python, Perl
– Flawfinder , ITS4,
– PREfix, PREfast by Microsoft

plus other commercial tools
Coverity, PolySpace, Klockwork, CodeWizard, Cqual, Fortify
....

71

(formal) verification

The most extreme form of static analysis:

• Program verification

proving by mathematical means (eg Hoare logic) that

memory management of a program is safe

– extremely labour-intensive 

– eg hypervisor verification project by Microsoft & Verisoft:

• http://www.microsoft.com/emic/verisoft.mspx

Beware: in industry “verification” means testing,

in academia it means formal program verification

72

Conclusions

Summary

• Buffer overflows are a top security vulnerability

• Any C(++) code acting on untrusted input is at risk

or: Any C(++) code is at risk

• Getting rid of buffer overflow weaknesses in C(++) code is hard

and may prove to be impossible

– Ongoing arms race between countermeasures and ever

more clever attacks.

– Attacks are not only getting cleverer, using them is getting

easier

74

Moral of the story

• Don’t use C(++), if you can avoid it

– but use a safer language that provides memory safety

• If you do have to use C(++), become or hire an expert

75

Want to read more?

• V. van der Veen, N. dutt-Sharma, L. Cavallaro, H. Bos

Memory Errors: The Past, The Present and the Future

Nice historical overview of attacks, defences, and trends

• Y. Younan,W. Joosen, F. Piessens,

Code injection in C and C++:

a survey of vulnerabilities and countermeasures

More details on workings of buffer overflows and
very comprehensive overview of countermeasures

76

