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The good news

C is a small language that is close to the hardware

• you can produce highly efficient code

• compiled code runs on raw hardware with minimal infrastructure

C is typically the programming language of choice 

• for highly efficient code

• for embedded systems (which have limited capabilities)

• for system software (operating systems, device drivers,...)
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The bad news : using C(++) is dangerous
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Essence of the problem

Suppose in a C program we have an array of length 4

char buffer[4];

What happens if we execute the statement below ?

buffer[4] = ‘a’;

This is UNDEFINED!   ANYTHING can happen !

If the data written (ie. the “a”) is user input that can be controlled 

by an attacker, this vulnerability can be exploited:                       

anything that the attacker wants can happen.
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Solution to this problem

• Check array bounds at runtime

– Algol 60 proposed this back in 1960!

• Unfortunately, C and C++ have not adopted this solution,          

for efficiency reasons.

(Perl, Python, Java, C#, and even Visual Basic have)

• As a result, buffer overflows have been the no 1 security 

problem in software ever since
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Problems caused by buffer overflows

• The first Internet worm, and all subsequent ones (CodeRed, 

Blaster, ...), exploited buffer overflows

• Buffer overflows cause in the order of 50% of all security alerts 

– Eg check out CERT, cve.mitre.org, or bugtraq

• Trends

– Attacks are getting cleverer 

• defeating ever more clever countermeasures

– Attacks are getting easier to do, by script kiddies
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Any C(++) code acting on untrusted input is at risk

• code taking input over untrusted network

– eg. sendmail, web browser, wireless network driver,...

• code taking input from untrusted user on multi-user system, 

– esp. services running with high privileges  (as ROOT on 
Unix/Linux, as SYSTEM on Windows)

• code acting on untrusted files

– that have been downloaded or emailed 

• also embedded software                                                      -

eg. in devices with (wireless) network connections such as 
mobile phones, RFID card, airplane navigation systems, ... 
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How does buffer overflow work?



Memory management in C/C++

• A program is responsible for its memory management

• Memory management is very error-prone

– Who here has had a C(++) program crash with a 
segmentation fault?

Technical term: C and C++ do not offer memory-safety

• Typical bugs:

– Writing past the bound of an array

– Pointer trouble

• missing initialisation, bad pointer arithmetic, use after de-
allocation (use after free), double de-allocation, failed 
allocation, forgotten de-allocation (memory leaks)...

• For efficiency, these bugs are not detected at run time:

– behaviour of a buggy program is undefined

9



10

Process memory layout

Arguments/ Environment

Stack

Unused Memory

Heap (dynamic data)

Static Data 

Program Code .text
Low 

addresses

High 

addresses
Stack grows

down, 

by procedure 

calls

Heap grows

up, 

eg. by malloc

and new.data
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Stack overflow

The stack consists of Activation Records:

AR main()

AR f()

Stack grows

downwards

void f(int x) {

char[8] buf;

gets(buf);

}

void main() { 

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards
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Stack overflow

What if gets() reads more than 8 bytes ? :

AR main()

AR f()

void f(int x) {

char[8] buf;

gets(buf);

}

void main() { 

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards
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Stack overflow 

What if gets() reads more than 8 bytes ?

AR main()

AR f()

void f(int x) {

char[8] buf;

gets(buf);

}

void main() { 

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards
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Stack overflow

What if gets() reads more than 8 bytes ?

AR main()

AR f()

Stack grows

downwards

void f(int x) {

char[8] buf;

gets(buf);

}

void main() { 

f(…); …
}

void format_hard_disk(){…}

x

return address

buf[4..7]

buf[0..3]

Buffer grows

upwards

never use 
gets()!



Stack overflow

• How the attacks works: overflowing buffers to corrupt data

• Lots of details to get right:

– No nulls in (character-)strings

– Filling in the correct return address: 

• Fake return address must be precisely positioned

• Attacker might not know the address of his own string

– Other overwritten data must not be used before return from function

– …

• Variant: Heap overflow of a buffer allocated on the heap instead 

of the stack
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What to attack? Fun with the stack

Overflowing stack-allocated buffer buf3 to

• corrupt return address

– ideally, let this return address point to another buffers where 

the attack code is placed 

• corrupt function pointers, such as fp

• corrupt any other data on the stack, eg. b2, i, b1, buf2,.. 

...

void f(char* buf1, char* buf2, bool b1) {

int  i; 

bool b2;

void (*fp)(int);

char[] buf3;

....

}



What to attack? Fun on the heap

struct account {

int  number; 

bool isSuperUser;

char name[20];

int  balance;

} overrun name to corrupt the 
values of other fields in the struct



What causes buffer overflows?



Example: gets

char buf[20];

gets(buf); // read user input until 

// first EoL or EoF character

• Never use gets

• Use fgets(buf, size, stdin) instead

19



Example: strcpy

char dest[20];

strcpy(dest, src); // copies string src to dest

• strcpy assumes dest is long enough ,

and assumes src is null-terminated 

• Use strncpy(dest, src, size) instead
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Spot the defect! (1)

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix); 

// copies the string prefix to buf

strncat(buf, path, sizeof(buf)); 

// concatenates path to the string buf
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Spot the defect! (1)

char buf[20];

char prefix[] = ”http://”;

...

strcpy(buf, prefix); 

// copies the string prefix to buf

strncat(buf, path, sizeof(buf)); 

// concatenates path to the string buf

Another common mistake is giving sizeof(path) as 3rd argument...
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strncat’s 3rd parameter is number of 

chars to copy, not the buffer size



Spot the defect! (2)

char src[9];

char dest[9];

char* base_url = ”www.ru.nl”;

strncpy(src, base_url, 9); 

// copies base_url to src

strcpy(dest, src);

// copies src to dest
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char src[9];

char dest[9];

char* base_url = ”www.ru.nl”;

strncpy(src, base_url, 9); 

// copies base_url to src

strcpy(dest, src);

// copies src to dest

Spot the defect! (2)
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base_url is 10 chars long, incl. its 

null terminator, so src will not be 

null-terminated



Spot the defect! (2) 

char src[9];

char dest[9];

char* base_url = ”www.ru.nl”;

strncpy(src, base_url, 9); 

// copies base_url to src

strcpy(dest, src);

// copies src to dest
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base_url is 10 chars long, incl. its 

null terminator, so src will not be 

null-terminated

so strcpy will overrun the buffer dest



Example: strcpy and strncpy

• Don’t replace

strcpy(dest, src)

by  

strncpy(dest, src, sizeof(dest))

but by

strncpy(dest, src, sizeof(dest)-1)

dst[sizeof(dest)-1] = `\0`;

if dest should be null-terminated!

• Btw: a strongly typed programming language could of course 

enforce that strings are always null-terminated...
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Spot the defect!  (3)

char *buf;

int i, len;

read(fd, &len, sizeof(int)); 

// read sizeof(int) bytes, ie. an int,

// and store these in len

buf = malloc(len);

read(fd,buf,len); // read len bytes into buf
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Spot the defect!  (3)

char *buf;

int i, len;

read(fd, &len, sizeof(int)); 

// read sizeof(int) bytes, ie. an int,

// and store these in len

buf = malloc(len);

read(fd,buf,len); // read len bytes into buf
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len might become negative

len cast to unsigned, so negative length overflows

read then goes beyond the end of buf
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Spot the defect!  (3)

char *buf;

int i, len;

read(fd, &len, sizeof(len));

if (len < 0)

{error ("negative length"); return; }

buf = malloc(len);

read(fd,buf,len);

Remaining problem may be that buf is not null-terminated 
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Spot the defect!  (3)

char *buf;

int i, len;

read(fd, &len, sizeof(len));

if (len < 0)

{error ("negative length"); return; }

buf = malloc(len+1);

read(fd,buf,len);

buf[len] = '\0'; // null terminate buf

May result in integer overflow; 

we should check that 
len+1 is positive



Spot the defect!  (5)

#define MAX_BUF 256

void BadCode (char* input)

{   short len;

char buf[MAX_BUF];

len = strlen(input);

if (len < MAX_BUF) strcpy(buf,input);

}
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Spot the defect!  (5) 

#define MAX_BUF 256

void BadCode (char* input)

{   short len;

char buf[MAX_BUF];

len = strlen(input);

if (len < MAX_BUF) strcpy(buf,input);

}

The integer overflow is the root problem, but the (heap) buffer 

overflow that this enables make it exploitable
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What if input is longer than 32K ?

len will be a negative number, 

due to integer overflow

hence: potential

buffer overflow
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Spot the defect!  (4)

#ifdef UNICODE

#define _sntprintf _snwprintf

#define TCHAR wchar_t

#else

#define _sntprintf _snprintf

#define TCHAR char

#endif

TCHAR buff[MAX_SIZE]; 

_sntprintf(buff, sizeof(buff), ”%s\n”, input);

[slide from presentation by Jon Pincus]
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#ifdef UNICODE

#define _sntprintf _snwprintf

#define TCHAR wchar_t

#else

#define _sntprintf _snprintf

#define TCHAR char

#endif

TCHAR buff[MAX_SIZE];

_sntprintf(buff, sizeof(buff), ”%s\n”, input);

The CodeRed worm exploited such an mismatch: code written under the 
assumption that 1 char was 1 byte allowed buffer overflows after the move 
from ASCI to Unicode

Spot the defect!  (4)  

_sntprintf’s 2nd param is # of chars in 

buffer, not # of bytes

[slide from presentation by Jon Pincus]



Spot the defect!  (6)

bool CopyStructs(InputFile* f, long count)

{   structs = new Structs[count];

for (long i = 0; i < count; i++)

{ if !(ReadFromFile(f,&structs[i])))

break;

}

}
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Spot the defect!  (6)

bool CopyStructs(InputFile* f, long count)

{   structs = new Structs[count];

for (long i = 0; i < count; i++)

{ if !(ReadFromFile(f,&structs[i])))

break;

}

}

And this integer overflow can lead to a (heap) buffer overflow.

Since 2005 the Visual Studio C++ compiler adds check to prevent this
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effectively does a 
malloc(count*sizeof(type))

which may cause integer overflow



Spot the defect!  (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url is valid and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

// skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’);

strcpy(buff2, buff1);

...
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[slide from presentation by Jon Pincus]



Spot the defect!  (7)

Loop termination (exploited by Blaster)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url is valid and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

// skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url++ != ’/’); 

strcpy(buff2, buff1);

...
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what if there is no ‘/’ in the URL?

[slide from presentation by Jon Pincus]

length up to the first null



Spot the defect!  (7)

char buff1[MAX_SIZE], buff2[MAX_SIZE];

// make sure url is valid and fits in buff1 and buff2:

if (! isValid(url)) return;

if (strlen(url) > MAX_SIZE – 1) return;

// copy url up to first separator, ie. first ’/’, to buff1

out = buff1;

do {

// skip spaces

if (*url != ’ ’) *out++ = *url;

} while (*url != ’/’) && (*url++ != 0);

strcpy(buff2, buff1);

...
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[slide from presentation by Jon Pincus]

What about 0-length URLs?

Is buff1 always null-terminated?



Spot the defect!  (8)

#include <stdio.h>

int main(int argc, char* argv[]) 

{  if (argc > 1) 

printf(argv[1]);

return 0;

}

This program is vulnerable to format string attacks, where calling 
the program with strings containing special characters can result 
in a buffer overflow attack.
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Format string attacks 

• New type of attack, invented/discovered in 2000.                 

• Strings can contain special characters,  eg %s in

printf(“Cannot find file %s”, filename);

Such strings are called format strings

• What happens if we execute the code below?

printf(“Cannot find file %s”); 

• What can happen if we execute

printf(string) 

where string is  user-supplied ? 

Esp. if it contains special characters, eg %s, %x, %n, %hn?
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format strings for printf

printf( ”j has the value %i ” , j);  

// %i to print integer value

printf( ”j has the value %x in hex ” , j);  

// %x to print 4-byte hexadecimal value

”j has the value %i ” is called a format string

Other printing functions also accept  format strings.

Any guess what

printf(”j has the value %x in hex ”); 

does?

It will print the top 4 bytes of the stack

42sws1



Leaking data from the stack

int main( int argc,  char** argv)

int pincode = 1234;

printf(argv[1]); 

}

How can an attacker learn the value of pincode ?

Supplying %x%x%x as input will dump top 12 bytes of the stack
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Leaking data from anywhere

printf( ”str has the value %s ” , str);  

// %s to print a string, ie a char*

Any guess what

printf(”str has the value %s ”); 

does?

It interprets the top of the stack as a pointer  (an address) and prints the 

string allocated in memory at that address

Of course, there might not be a string allocated at that address.

printf simply prints whatever is in memory up to the next null terminator
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Corrupting data with format string attack 

int j;

char* msg; ...

printf( ”how long is this? %n”, &j);  

%n causes the number of characters printed to be written to j.

Here it will give j the value 14

Any guess what

printf(”how long is this? %n”, msg”);  

will do?

It interprets the top of the stack as an address, and writes the value 14 to it



Summary malicious format strings

Interesting inputs for the string str to attack printf(str)

• %x%x%x%x%x%x%x%x

will print bytes from the top of the stack

• %s

will interpret the top bytes of the stack as an address X,  and then

prints the string starting at that address A in memory, ie. it dumps

all memory from A up to the next null terminator

• %n

will interpret the top bytes of the stack as an address X, and then  

writes the number of characters output so far to that address



Example really malicious format strings

An attacker can try to control which address X is used                                             

for reading from memory using %s or for writing to memory using %n

with specially crafted format strings of the form

• \xEF\xCD\xCD\xAB %x %x   ... %x %s

With the right number of %x characters, this will print the string located 

at address ABCDCDEF

• \xEF\xCD\xCD\xAB %x %x   ... %x %n

With the right number of %x characters, this will write the 

number of characters printed so far to location ABCDCDEF

The tricky things are inserting the right number of %x,  and 

choosing an interesting address



Format string attacks
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Format string attacks are easy to spot & fix:

replace printf(str) 

with printf(“%s”, str)



Recap: buffer overflows

• buffer overflow is #1 weakness in C and C++ programs

– because these language are not memory-safe

• tricky to spot

• typical cause: poor programming with arrays and strings

– esp. library functions for null-terminated strings

• related attacks

• format string attack: another way of corrupting stack

• integer overflows: a stepping stone to get buffer overflows
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Runtime aka dynamic countermeasures



stack canaries

• introduced in StackGuard in gcc

• a dummy value - stack canary or cookie - is written on the stack 

in front of the return address and checked when function returns

• a careless stack overflow will overwrite the canary, which can 

then be detected.

• a careful attacker can overwrite the canary with the correct 

value.

• additional countermeasures:

– use a random value for the canary

– XOR this random value with the return address

– include string termination characters in the canary value
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Further improvements of stack canaries

• PointGuard

– also protects other data values, eg function pointers, with 

canaries 

• ProPolice's Stack Smashing Protection (SSP) by IBM

– also re-orders stack elements to reduce potential for trouble:

swapping parameters x and y on the stack changes whether 

overrunning x can corrupt y

this is especially dangerous if y is a function pointer

• Stackshield has a special stack for return addresses, and can 

disallow function pointers to the data segment
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Non-eXecutable memory (NX aka WX)

Distinguish

• executable memory (for storing code)

• non-executable memory (for storing data)

and let processor refuses to execute non-executable code

This can be done for the stack, or for arbitrary memory pages

How does this help?

Attacker can no longer jump to his own attack code,                          
as any input he provides as attack code will be non-executable
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Non-eXecutable memory (NX aka WX)

Modern CPUs provide such NX bits in hardware:

• Intel calls it eXecute-Disable (XD)

• AMD calls it  Enhanced Virus Protection

• Supported by many operating systems 

• MacOs X

• Data Execution Prevention (DEP) on Windows

• OpenBSD W^X

• ExecShield and PAX patches in Linux



Return-to-libc attacks

Way to get around non-executable memory:

overflow the stack to jump to code that is already there,

esp. library code in libc

instead of jumping to your own attack code.

libc is a rich library that offers many possibilities for attacker, eg.   
system, exec, fork

Many libraries, incl. libc, provide enough operations to be 

Turing complete!  So an attacker can do anything with such a

library.
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Address Space Layout Randomisation (ASLR)

• Attacker needs detailed information on memory layout

• By randomising the layout every time we start a program

• ie. moving the offset of the heap, stack, etc, by some random 
value

the attacker’s life becomes much harder

It prevents the attacker from being able to easily predict target 
addresses
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Dynamic countermeasures (recap)

• canaries

• non-executable memory

• address space layout randomisation (ASLR)

None of these countermeasures are perfect!

A determined attacker can and will find a way around them.

eg by figuring out cookie values, offset used in address randomisation, 
key used to encode instructions, returning to libc, etc

Moreover, they do not protect against heap overflows
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Windows 2003 Stack Protection

The subtle ways in which things can still go wrong...

• Enabled with /GS command line option

• Similar to StackGuard, except that when canary is corrupted, 

control is transferred to an exception handler

• Exception handler information is stored ... on the stack

– http://www.securityfocus.com/bid/8522/info

• Countermeasure: register exception handlers, and don't trust 

exception handlers that are not registered or on the stack

• Attackers may still abuse existing handlers or point to exception 

outside the loaded module...
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Other countermeasures



Countermeasures

We can take countermeasures at different points in time

– before we even begin programming

– during development

– at compilation time

– when testing

– when executing code 

to prevent, migitate, or detect buffer overflows problems
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Prevention

• Don’t use C or C++  

You can write insecure code in any programming language, but some 

languages make it easier to write insecure programs than others

C(++) programmer is like trapeze artist without safety net
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Prevention

Many languages are not prone to memory errors like C(++). 

These are often called safe languages, because they offer memory-safety 

and sometimes also type-safety. 

Examples: Java, C#

Typical characteristics of safe languages:

– checking array bounds

– checking for null values

– default initialisation

– no pointer arithmetic

– no dynamic memory management with malloc() and free(),            

but automatic memory management using garbage collector

– strong type checking

– exception on integer overflow

– more precisely defined semantics
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Prevention

• Better programmer awareness & training

Eg read – and make other people read –

– C(++) Secure Coding Standards by CERT         
https://www.securecoding.cert.orgps://www.securecoding.cert.org

– Building Secure Software, J. Viega & G. McGraw, 2002

– Writing Secure Code, M. Howard & D. LeBlanc, 2002

– Secure programming for Linux and UNIX HOWTO,   D. Wheeler,
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https://www.securecoding.cert.org/


Dangerous C system calls
source: Building secure software, J. Viega & G. McGraw, 2002

Extreme risk

• gets

High risk

• strcpy

• strcat

• sprintf

• scanf

• sscanf

• fscanf

• vfscanf

• vsscanf

• streadd
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• strecpy

• strtrns

• realpath

• syslog

• getenv

• getopt

• getopt_long

• getpass

Low risk

• fgets

• memcpy

• snprintf

• strccpy

• strcadd

• strncpy

• strncat

• vsnprintf

Moderate risk

• getchar

• fgetc

• getc

• read

• bcopy



Generic defence mechanisms

• Reducing attack surface

Not running or even installing certain software, or enabling all 

features by default, mitigates the threat

• Mitigating impact by reducing permissions 

Reducing OS permissions of software (or user) will restrict the 

damage that an attack can have

• principle of least privilege
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Better string libraries (1)

• libsafe.h provides safer, modified versions of eg. strcpy

– prevents buffer overruns beyond current stack frame in the 
dangerous functions it redefines

• libverify enhancement of libsafe

– keeps copies of the stack return address on the heap, and checks if 
these match
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Better string libraries (2)

• glib.h provides Gstring type for dynamically growing null-

terminated strings in C

– but failure to allocate will result in crash that cannot be intercepted, 

which may not be acceptable 

• Strsafe.h by Microsoft guarantees null-termination and always 

takes destination size as argument

• C++ string class

– but data() and c-str()return low level C strings, ie char*,

with result of data()is not always null-terminated on all 

platforms...
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Runtime detection on instrumented binaries

There are many memory error detection tools that  instrument  

binaries to allow runtime detection of memory errors, esp.

• out-of-bounds access 

• use-after-free bugs on heap

with some overhead (time, memory space)  but no false positives

For example Valgrind (Memcheck), Dr. Memory, Purify, Insure++, 

BoundsChecker, Cachegrind, Intel Parallel Inspector, Discoverer, 

AddressSanitizer
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Safer variants of C

Some approaches go further and propose safer dialects of C

which include

• bound checks,

• type checks

• automated memory management, to ensure memory safety

– by garbage collection or region-based memory management

Examples are Cyclone, CCured, Vault, Control-C, Fail-Safe C, …
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Fuzzing aka fuzz testing

Testing for security can be difficult!

– How to hit the right cases?

A classic technique to find buffer overflow weaknesses 

is fuzz testing 

• send random, very long inputs, to an application

• if the application crashes, with a segmentation fault (segfault), it 
contains buffer overflows

The nice thing is that this is easy to automate!
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Code review & Static Analysis

• Code reviews

Expensive & labour intensive

• Code scanning tools aka static analysis
Automated tools that look for suspicious patterns in code;
ranges for CTRL-F or grep, to advanced analyses

Incl. free tools
– RATS – also for PHP, Python, Perl
– Flawfinder , ITS4, 
– PREfix, PREfast by Microsoft

plus other commercial tools 
Coverity, PolySpace, Klockwork, CodeWizard, Cqual, Fortify   
....
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(formal) verification

The most extreme form of static analysis:

• Program verification

proving by mathematical means (eg Hoare logic) that 

memory management of a program is safe

– extremely labour-intensive 

– eg hypervisor verification project by Microsoft & Verisoft:

• http://www.microsoft.com/emic/verisoft.mspx

Beware: in industry “verification” means testing,                                        

in academia it means formal program verification
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Conclusions



Summary

• Buffer overflows are a top security vulnerability 

• Any C(++) code acting on untrusted input is at risk 

or: Any C(++) code is at risk

• Getting rid of buffer overflow weaknesses in C(++) code is hard 

and may prove to be impossible

– Ongoing arms race between countermeasures and ever 

more clever attacks.

– Attacks are not only getting cleverer, using them is getting 

easier
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Moral of the story

• Don’t use C(++),  if you can avoid it

– but use a safer language that provides memory safety

• If you do have to use C(++), become or hire an expert
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Want to read more?

• V. van der Veen, N. dutt-Sharma, L. Cavallaro, H. Bos

Memory Errors: The Past, The Present and the Future

Nice historical overview of attacks, defences, and trends

• Y. Younan,W. Joosen, F. Piessens,

Code injection in C and C++:  

a survey of vulnerabilities and countermeasures

More details on workings of buffer overflows and                               
very comprehensive overview of countermeasures
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