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Two ways to hunt for security vulnerabilities

Dynamic analysis

looking at the behaviour
at runtime

• testing

• fuzzing

• (human) pen-testing

• ...

Static analysis

looking at the code
at compile time

• source code scanners

• source code analysers

• (human) code review 

• ...

for source code or byte code
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Both can be (partly) automated, or done manually 



To test a SUT (System Under Test) we need two things

1. test suite, ie. collection of input data

2. a test oracle 

that decides if a test was passed ok or reveals an error

i.e. some way to decide if the SUT behaves as we want 

Both defining test suites and test oracles can be a lot of work!

In worst case, for test oracle: for each individual test case, 

specify exactly what should happen

A nice & simple test oracle: just seeing if the SUT crashes

Testing Ingredients
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Measures of how good a test suite is

• statement coverage

• branch coverage

Statement coverage does not imply branch coverage; eg for

void f (int x, y) { if (x>0) {y++};

y--; }

statement coverage needs 1 test case,                          
branch coverage needs 2

• More complex coverage criteria exists, eg MCDC (Modified 

condition/decision coverage), commonly used in avionics

Coverage Criteria



High coverage criteria may discourage defensive programming

void m(File f){

if <security_check_fails> {throw (SecurityException)}

try { <the main part of the method> }

catch (SomeException) { <take some measures>;                                               

throw (SecurityException) } 

}

If the green defensive code is hard to trigger in tests  

programmers may be tempted (or forced) to remove it to 

improve coverage in testing... 

Possible perverse effect of coverage criteria
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• Normal testing will look at right, wanted behaviour for 

sensible inputs (”the happy flow”), and some inputs on 

borderline conditions

• Security testing also involves looking for the wrong, 

unwanted behaviour for really silly inputs

• Similarly, normal use of a system will reveal                                  

functional problems (users will complain)                                                 

but not                                                                                    

security problems (hackers won’t complain)

Security testing is HARD
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Security testing is HARD, in general
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space of all possible inputs

normal

inputs

. input that triggers

security bug

. some input

. .
..



Fuzzing
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1. original form of “classic” fuzzing

• trying put ridiculously long inputs

2. protocol/format fuzzing

• trying out strange inputs, given some format/language

3. state-based fuzzing

• trying out strange sequences of input

2 & 3 are essentially forms of model-based testing

Advanced forms of this become automated reverse 

engineering

Fuzzing
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Classic fuzzing
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Fuzzing

try really long inputs for string arguments to trigger 

segmentation faults and hence find buffer overflows

Benefit: can be automated, because test suite of long 

inputs can be automatically generated, and test oracle is 

trivial: just check if the program crashes

This original idea has been generalised to other settings.

The general idea of fuzzing: using semi-random, automatically 

generated test data that is likely to trigger security 

problems that can automatically be detected

Fuzzing
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For memory safe languages,  such as Java or C#, 

classic fuzzing would not be able to spot buffer overflows?

Yes it can!

Fuzzing can still reveal bugs in a components of the Java or 

.NET platform that were written in C(++):

Virtual Machine, the bytecode verifier, or libraries with 

native code

For example, fast graphics libraries often rely on native code

Fuzzing in memory safe languages?
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Fuzzing some format, language, ...
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• Incorrectly parsing input formats or input languages is a 

common cause of security vulnerabilities

For example:

• email adresses

• X509 certificates

• audio, image & video formats: JPG, MPEG, MP3, MP4, ...

• HTML

• XML

• ....

Fuzzing file formats
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Buffer Overrun in JPEG Processing (GDI+) Could Allow Code 

Execution                                                                                        

Impact of Vulnerability: Remote Code Execution                                                   

Maximum Severity Rating: Critical                                            

Recommendation : Customers should apply the update 

immediately

Root cause: a zero sized comment field, without content. 

Microsoft Security Bulletin MS04-028
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CVE reference:   CVE-2007-0243                                                               

Sun Java JRE GIF Image Processing Buffer Overflow Vulnerability

Critical: Highly critical  

Impact: System access   

Where: From remote

Description:  A vulnerability has been reported in Sun Java   
Runtime Environment (JRE). The vulnerability is caused due to an 
error when processing GIF  images and can be exploited to cause 
a heap-based buffer overflow via a specially crafted GIF image 
with an image width of 0.                                                                                               

Successful exploitation allows execution of arbitrary code.

Even in “safe”programming languages…
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• Could we fuzz a web application in the hope to find security 

flaws?

• SQL injection

• XSS

• ...

Effectively an automated pen tester

• What would be needed?

• test inputs that trigger these security flaws

• some way of detecting if a security flaw occurred

• looking at website response, or log files

Fuzzing web-applications?
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• There are many tools to fuzz web-applications 

• Spike proxy, HP Webinspect, AppScan, acunetix, WebScarab, 

Wapiti, w3af, RFuzz, WSFuzzer, SPI Fuzzer Burp, Mutilidae, ...

• Some fuzzers crawl a website, generating traffic themselves,                         

other fuzzers modify traffic generated by some other means.

• Can we expect false positives/negatives?

• false negatives due to test cases not hitting the vulnerable cases

• false positives & negatives due to incorrect test oracle, eg

• for SQL injection: not recognizing some SQL  database errors  (false 

neg)

• for XSS: signalling a correctly quoted echoed response as XSS  (false 

pos)

Fuzzing web-applications
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Protocol fuzzing based on known protocol format                       

ie format of packets or messages

Typical things to try in protocol fuzzing:

• trying out many/all possible values for specific fields

esp undefined values, or values “Reserved for Future Use” (RFU)

• giving incorrect lengths, length that are zero, or payloads 

that are too short/long

Tools for protocol fuzzing exist, eg SNOOZE, Peach, Sulley 

Protocol Fuzzing
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GSM is a very rich & complicated protocol

Example : GSM protocol fuzzing
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Field size

Message Type Indicator 2 bit

Reject Duplicates 1 bit

Validity Period Format 2 bit

User Data Header Indicator 1 bit

Reply Path 1 bit

Message Reference integer

Destination Address 2-12 byte

Protocol Identifier 1 byte

Data Coding Scheme (CDS) 1 byte

Validity Period 1 byte/7 bytes

User Data Length (UDL) integer

User Data depends on CDS and UDL

SMS message fields
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Lots of stuff to fuzz!

We can use a USRP                                                                           

(universal software radio peripheral)

with open source cell tower software

(OpenBTS)      

to fuzz lots of mobile phones

[Mulliner et al, SMS of Death]

[F vb Broek, B. Hond, A. Cedillo Torres, Security Testing of GSM Implementations]

Example: GSM protocol fuzzing



GSM fuzzing – fields fuzzed
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Fuzzing SMS layer of GSM reveals weird functionality in GSM 

standard and phones

Example: GSM protocol fuzzing
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Fuzzing SMS layer of GSM reveals weird functionality in GSM 

standard and phones

eg possibility to send faxes (!?)

Only way to get rid if this icon: reboot the phone

Example: GSM protocol fuzzing
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you have a fax!



Malformed SMS text messages showing raw memory contents, 

rather than content of the text message

Example: GSM protocol fuzzing
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• all 16 phones accepted obscure SMS variants that could be 

read using the phone’s UI, sometimes with unremovable icons

• 5  out of 16 phones would accept certain SMS messages 

without notification

• 7 out of 16 phones could be forced to reboot

• Nokia 2006 could be made to show random part of memory

• iPhone 4 and HTC Legend could be DoS-ed with an SMS 

message: they would not notify user that this message was 

received and stopped receiving further messages

GSM fuzzing results : SMS
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CBS (Cell Broadcast Service) is meant for emergency 

warnings, which a mobile phone can subscribe to.

• No crashes

• Most phones have trouble to show even correct CBS 

messages

• Galaxy Note displayed message which should be ignored

• All phones except Blackberry would accept some CBS 

messages which were not subscribed to

• All phones would ignore some messages that they were

subscribed to

GSM fuzzing results : CBS
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GSM fuzzing of SMS and CBS: results
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• Lots of success to DoS phones: phones crash, disconnect 

from the network, or stop accepting calls

• eg requiring reboot or battery removal to restart and accept calls 

• after reboot, a real network would re-deliver the SMS message, 

if no acknowledgement was sent before crashing, re-crashing 

phone!

But: not all these SMS messages could be sent over real 

network

• Strangely, there is no correlation between problems and 

phone brands & firmware versions

• ie. some similar phones have very different problems

• The scary part: what would happen if we fuzz base stations?

Example: GSM protocol fuzzing
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State-based fuzzing

of 

sequences of inputs
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Instead of fuzzing the content of individual messages, 

we can also fuzz the order of messages

using protocol state-machine to 

1. reach an interesting state in the protocol and then fuzz 

content of messages there;

2. fuzz the order of messages to discover effect of strange 

sequences

State-based Protocol Fuzzing
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• Most protocols have different types of messages,                     

which should come in a particular order,                                                      

the so-called happy flow

• We can fuzz a protocol by trying out the different types of 

messages in all possible orders

• This can reveal loop-holes in the application logic

Essentially this is a from of model-based testing, where we 

automatically test if an implementation conforms to a model 

[Tools for this: Peach, jTor] 

State-based Protocol Fuzzing
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General framework for automating testing

1. make a formal model M of (some aspect of) the SUT

2. fire random inputs to M and the SUT

3. look for differences in the response

Such a difference means an error in the SUT, or the model...

Once we have the model, the testing can be largely automated

Model based testing
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Essence of SSH transport layer                  

1. C -> S: NC 

2. S -> C: NS 

3. C -> S: exp(g,X) 

4. S -> C: k_S.exp(g,Y).{H}_inv(k_S)                                                                                      

with K=exp(exp(g,X),Y), 

H=hash(NC.NS.k_S.exp(g,X).exp(g,Y).K)

5. C -> S: {XXX}_KCS                                                                                                        

with SID=H, KCS=hash(K.H.c.SID)

6. S -> C: {YYY}_KSC                                                                                                         

with SID=H, KSC=hash(K.H.d.SID) 

Goal: establish a session key to encrypt traffic between client and 
server, as in SSL/TLS and https

Example: analysis of SSH implementations
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Essence of SSH transport layer          Real SSH transport layer  

1. C -> S: NC 

2. S -> C: NS 

3. C -> S: exp(g,X) 

4. S -> C: k_S.exp(g,Y).{H}_inv(k_S)                                                                                      

with K=exp(exp(g,X),Y), 

H=hash(NC.NS.k_S.exp(g,X).exp(g,Y).K)

5. C -> S: {XXX}_KCS                                                                                                        

with SID=H, KCS=hash(K.H.c.SID)

6. S -> C: {YYY}_KSC                                                                                                         

with SID=H, KSC=hash(K.H.d.SID) 

Example: analysis of SSH implementations
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excluding all the error transitions

back to the initial state



• One open source implementation of MIDPSSH we analysed 

forgot to implement the state machine

• a Man-in-the-Middle attacker could request a username 

& password before a session key was established, so this 

would go unencrypted over the network

Example: analysis of SSH implementations
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Example: model based testing of e-passport
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SUT

model

test 

tool

Test tool sends the same random sequence

of commands to the model and the SUT, 

and checks if the responses match

... ...



(Automated)

Reverse Engineering
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Instead of using protocol knowledge when testing

in protocol fuzzing or model-based fuzzing                                   

we can also use testing to gain knowledge about a protocol

or a particular implementation of a protocol

This is useful

1. to analyse your own code and hunt for bugs, or

2. to reverse-engineer someone else’s unknown protocol,            

eg a botnet to fingerprint or to analyse (and attack) it

In the other direction:
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Different aspects that can be learned:

• timing/traffic analysis

• protocol formats

• ie format of protocol packets

[eg using Discoverer, Dispatcher, Tupni,.... ]

• protocol state-machine      

[eg using LearnLib]

• both protocol format & state-machine 

[eg using Prospex]

What to reverse engineer?
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• passive vs active learning

ie passive observing or active testing

• active learning involves a form of fuzzing

• these approaches learns different things:                                    

passive learning produces statistics on normal use,                            

active learning will more aggresively try our strange 

things

• black box vs white box

ie only observing in/output or also looking inside running 

code

How to reverse engineer?

42



Basic idea: compare a deterministic system’s response to 

• a

• b ; a

If response is different, then

otherwise                           ?                         

Active learning with Angluin’s L* algorithm 
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a

b

?

a a

b

??



Active learning with L*
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Learner

H

Teacher

M

input

output

reset

equivalence:

M = H ?

yes or a counterexample

Equivalence can only be approximated in a black box setting;

by doing model-based testing to see if a difference can be detected

Implemented in  LearnLib library;

The learner builds hypothesis H of what the real system M is 



Our test harness implements standard EMV instructions, eg

• SELECT (to select application)

• INTERNAL AUTHENTICATE (for a challenge-response)

• VERIFY (to check the PIN code)

• READ RECORD

• GENERATE AC  (to generate application cryptogram)

LearnLib then tries to learn all possible combinations

• Most commands with fixed parameters, but some with 

different options

Test harness for EMV
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Maestro application on Volksbank bank card 

raw result
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Maestro application on Volksbank bank card

merging arrows with identical outputs
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Maestro application on Volksbank card

merging all arrows with same start & end state
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• Experiments with Dutch, German and Swedish bank and 
credit cards

• Learning takes between 9 and 26 minutes

• Editing by hand to merge arrows and name states

• Limitations

• We do not try to learn response to incorrect PIN as cards 
would block...

• We cannot learn about one protocol step which requires 
knowledge of card’s secret 3DES key

• We would also like to learns some integer parameter used in 
protocol

• No security problems found, but interesting insight in 
implementations

[F. Aarts et al, Formal models of bank cards for free, SECTEST 2013]

Formal models of banking cards for free!
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SecureCode application on Rabobank card
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used for internet banking, hence

entering PIN with VERIFY obligatory



understanding & comparing implementations

Are both implementations correct & secure? And compatible?

Presumably they both passed a Maestro-approved compliance test suite...
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Volksbank Maestro

implementation

Rabobank Maestro

implementation



• Analysing the models by hand, or with model checker, for 
flaws

• to see if all paths are correct & secure

• Fuzzing or model-based testing

• using the diagram as basis for “deeper” fuzz testing

• eg fuzzing also parameters of commands

• Program verification

• proving that there is no functionality beyond that in the 
diagram, which using testing you can never establish

• Using it when doing a manual code review

Using such protocol state diagrams
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Reverse engineering the USB-connected e.dentifier

Can we fuzz 

• USB commands

• user actions via keyboard

to find bug in ABN-AMRO

e.dentifier2  using 

automated learning?

[Arjan Blom et al, Designed to Fail:  a 

USB-connected reader for online 
banking, NORDSEC 2012]



Operating the keyboard using of 
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The                  hacker let loose on

old e.dentifier2

new e.dentifier2



Case study: analysing SSL/TLS

Work in Progress 



Early 2014: TSL bug in iOS and OSX
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• Can we use state machine learning to extract the state 

machine from TLS/SSL implementations?

• Could be find bugs that way?

• Work in progress: Joeri de Ruiter analysed 9 TLS 

implementations, and found 

• state machines of all implementations are different!

• new security flaws in 3 of them, plus another bug that 

had already been reported.

Analysing TLS implementations
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Open SSL vs GnuTLS
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GnuTLS

OpenSSL



All TLS implementations are different!
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Conclusions

• Various forms of fuzzing are great techniques to spot some 

security flaws

• More advanced forms of (protocol) fuzzing and automated reverse 

engineering (or learning) are closely related

• State machines are a great specification formalism

• easy to draw on white boards, typically omitted in official specs

and you can extract them for free from implementations

• using standard, off-the-shelf, tools like LearnLib

Useful for security analysis of protocol implementations

• for reverse engineering, fuzz testing, code reviews, or formal 

program verification
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1. original form of fuzzing

• trying put ridiculously long inputs to find buffer overflows

2. protocol/format fuzzing

• trying out strange inputs, given some format/language to find 

flaws in program logic

3. state-based fuzzing

• trying out strange sequences of input to find flaws in program 

logic

2 & 3 are essentially forms of model-based testing

Advanced forms of this become automated reverse engineering

Different forms of fuzzing for security testing 
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specifications code

implementing



model

specifications code

implementing

model-based

testing

making

model

by hand



model

specifications code

implementing

model-based

testing

or

automated

learning

making

model

by hand


