
Security Testing

fuzzing

protocol fuzzing

model-based testing

automated reverse engineering

Erik Poll

Radboud University Nijmegen

Two ways to hunt for security vulnerabilities

Dynamic analysis

looking at the behaviour
at runtime

• testing

• fuzzing

• (human) pen-testing

• ...

Static analysis

looking at the code
at compile time

• source code scanners

• source code analysers

• (human) code review

• ...

for source code or byte code

2

Both can be (partly) automated, or done manually

To test a SUT (System Under Test) we need two things

1. test suite, ie. collection of input data

2. a test oracle

that decides if a test was passed ok or reveals an error

i.e. some way to decide if the SUT behaves as we want

Both defining test suites and test oracles can be a lot of work!

In worst case, for test oracle: for each individual test case,

specify exactly what should happen

A nice & simple test oracle: just seeing if the SUT crashes

Testing Ingredients

3

Measures of how good a test suite is

• statement coverage

• branch coverage

Statement coverage does not imply branch coverage; eg for

void f (int x, y) { if (x>0) {y++};

y--; }

statement coverage needs 1 test case,
branch coverage needs 2

• More complex coverage criteria exists, eg MCDC (Modified

condition/decision coverage), commonly used in avionics

Coverage Criteria

High coverage criteria may discourage defensive programming

void m(File f){

if <security_check_fails> {throw (SecurityException)}

try { <the main part of the method> }

catch (SomeException) { <take some measures>;

throw (SecurityException) }

}

If the green defensive code is hard to trigger in tests

programmers may be tempted (or forced) to remove it to

improve coverage in testing...

Possible perverse effect of coverage criteria

5

• Normal testing will look at right, wanted behaviour for

sensible inputs (”the happy flow”), and some inputs on

borderline conditions

• Security testing also involves looking for the wrong,

unwanted behaviour for really silly inputs

• Similarly, normal use of a system will reveal

functional problems (users will complain)

but not

security problems (hackers won’t complain)

Security testing is HARD

6

Security testing is HARD, in general

7

space of all possible inputs

normal

inputs

. input that triggers

security bug

. some input

. .
..

Fuzzing

8

1. original form of “classic” fuzzing

• trying put ridiculously long inputs

2. protocol/format fuzzing

• trying out strange inputs, given some format/language

3. state-based fuzzing

• trying out strange sequences of input

2 & 3 are essentially forms of model-based testing

Advanced forms of this become automated reverse

engineering

Fuzzing

9

Classic fuzzing

10

Fuzzing

try really long inputs for string arguments to trigger

segmentation faults and hence find buffer overflows

Benefit: can be automated, because test suite of long

inputs can be automatically generated, and test oracle is

trivial: just check if the program crashes

This original idea has been generalised to other settings.

The general idea of fuzzing: using semi-random, automatically

generated test data that is likely to trigger security

problems that can automatically be detected

Fuzzing

11

For memory safe languages, such as Java or C#,

classic fuzzing would not be able to spot buffer overflows?

Yes it can!

Fuzzing can still reveal bugs in a components of the Java or

.NET platform that were written in C(++):

Virtual Machine, the bytecode verifier, or libraries with

native code

For example, fast graphics libraries often rely on native code

Fuzzing in memory safe languages?

12

Fuzzing some format, language, ...

13

• Incorrectly parsing input formats or input languages is a

common cause of security vulnerabilities

For example:

• email adresses

• X509 certificates

• audio, image & video formats: JPG, MPEG, MP3, MP4, ...

• HTML

• XML

•

Fuzzing file formats

14

Buffer Overrun in JPEG Processing (GDI+) Could Allow Code

Execution

Impact of Vulnerability: Remote Code Execution

Maximum Severity Rating: Critical

Recommendation : Customers should apply the update

immediately

Root cause: a zero sized comment field, without content.

Microsoft Security Bulletin MS04-028

15

CVE reference: CVE-2007-0243

Sun Java JRE GIF Image Processing Buffer Overflow Vulnerability

Critical: Highly critical

Impact: System access

Where: From remote

Description: A vulnerability has been reported in Sun Java
Runtime Environment (JRE). The vulnerability is caused due to an
error when processing GIF images and can be exploited to cause
a heap-based buffer overflow via a specially crafted GIF image
with an image width of 0.

Successful exploitation allows execution of arbitrary code.

Even in “safe”programming languages…

16

• Could we fuzz a web application in the hope to find security

flaws?

• SQL injection

• XSS

• ...

Effectively an automated pen tester

• What would be needed?

• test inputs that trigger these security flaws

• some way of detecting if a security flaw occurred

• looking at website response, or log files

Fuzzing web-applications?

17

• There are many tools to fuzz web-applications

• Spike proxy, HP Webinspect, AppScan, acunetix, WebScarab,

Wapiti, w3af, RFuzz, WSFuzzer, SPI Fuzzer Burp, Mutilidae, ...

• Some fuzzers crawl a website, generating traffic themselves,

other fuzzers modify traffic generated by some other means.

• Can we expect false positives/negatives?

• false negatives due to test cases not hitting the vulnerable cases

• false positives & negatives due to incorrect test oracle, eg

• for SQL injection: not recognizing some SQL database errors (false

neg)

• for XSS: signalling a correctly quoted echoed response as XSS (false

pos)

Fuzzing web-applications

18

Protocol fuzzing based on known protocol format

ie format of packets or messages

Typical things to try in protocol fuzzing:

• trying out many/all possible values for specific fields

esp undefined values, or values “Reserved for Future Use” (RFU)

• giving incorrect lengths, length that are zero, or payloads

that are too short/long

Tools for protocol fuzzing exist, eg SNOOZE, Peach, Sulley

Protocol Fuzzing

19

GSM is a very rich & complicated protocol

Example : GSM protocol fuzzing

20

Field size

Message Type Indicator 2 bit

Reject Duplicates 1 bit

Validity Period Format 2 bit

User Data Header Indicator 1 bit

Reply Path 1 bit

Message Reference integer

Destination Address 2-12 byte

Protocol Identifier 1 byte

Data Coding Scheme (CDS) 1 byte

Validity Period 1 byte/7 bytes

User Data Length (UDL) integer

User Data depends on CDS and UDL

SMS message fields

21

Lots of stuff to fuzz!

We can use a USRP

(universal software radio peripheral)

with open source cell tower software

(OpenBTS)

to fuzz lots of mobile phones

[Mulliner et al, SMS of Death]

[F vb Broek, B. Hond, A. Cedillo Torres, Security Testing of GSM Implementations]

Example: GSM protocol fuzzing

GSM fuzzing – fields fuzzed

23

Fuzzing SMS layer of GSM reveals weird functionality in GSM

standard and phones

Example: GSM protocol fuzzing

24

Fuzzing SMS layer of GSM reveals weird functionality in GSM

standard and phones

eg possibility to send faxes (!?)

Only way to get rid if this icon: reboot the phone

Example: GSM protocol fuzzing

25

you have a fax!

Malformed SMS text messages showing raw memory contents,

rather than content of the text message

Example: GSM protocol fuzzing

26

• all 16 phones accepted obscure SMS variants that could be

read using the phone’s UI, sometimes with unremovable icons

• 5 out of 16 phones would accept certain SMS messages

without notification

• 7 out of 16 phones could be forced to reboot

• Nokia 2006 could be made to show random part of memory

• iPhone 4 and HTC Legend could be DoS-ed with an SMS

message: they would not notify user that this message was

received and stopped receiving further messages

GSM fuzzing results : SMS

27

CBS (Cell Broadcast Service) is meant for emergency

warnings, which a mobile phone can subscribe to.

• No crashes

• Most phones have trouble to show even correct CBS

messages

• Galaxy Note displayed message which should be ignored

• All phones except Blackberry would accept some CBS

messages which were not subscribed to

• All phones would ignore some messages that they were

subscribed to

GSM fuzzing results : CBS

28

GSM fuzzing of SMS and CBS: results

29

• Lots of success to DoS phones: phones crash, disconnect

from the network, or stop accepting calls

• eg requiring reboot or battery removal to restart and accept calls

• after reboot, a real network would re-deliver the SMS message,

if no acknowledgement was sent before crashing, re-crashing

phone!

But: not all these SMS messages could be sent over real

network

• Strangely, there is no correlation between problems and

phone brands & firmware versions

• ie. some similar phones have very different problems

• The scary part: what would happen if we fuzz base stations?

Example: GSM protocol fuzzing

30

State-based fuzzing

of

sequences of inputs

31

Instead of fuzzing the content of individual messages,

we can also fuzz the order of messages

using protocol state-machine to

1. reach an interesting state in the protocol and then fuzz

content of messages there;

2. fuzz the order of messages to discover effect of strange

sequences

State-based Protocol Fuzzing

32

• Most protocols have different types of messages,

which should come in a particular order,

the so-called happy flow

• We can fuzz a protocol by trying out the different types of

messages in all possible orders

• This can reveal loop-holes in the application logic

Essentially this is a from of model-based testing, where we

automatically test if an implementation conforms to a model

[Tools for this: Peach, jTor]

State-based Protocol Fuzzing

33

General framework for automating testing

1. make a formal model M of (some aspect of) the SUT

2. fire random inputs to M and the SUT

3. look for differences in the response

Such a difference means an error in the SUT, or the model...

Once we have the model, the testing can be largely automated

Model based testing

34

Essence of SSH transport layer

1. C -> S: NC

2. S -> C: NS

3. C -> S: exp(g,X)

4. S -> C: k_S.exp(g,Y).{H}_inv(k_S)

with K=exp(exp(g,X),Y),

H=hash(NC.NS.k_S.exp(g,X).exp(g,Y).K)

5. C -> S: {XXX}_KCS

with SID=H, KCS=hash(K.H.c.SID)

6. S -> C: {YYY}_KSC

with SID=H, KSC=hash(K.H.d.SID)

Goal: establish a session key to encrypt traffic between client and
server, as in SSL/TLS and https

Example: analysis of SSH implementations

35

Essence of SSH transport layer Real SSH transport layer

1. C -> S: NC

2. S -> C: NS

3. C -> S: exp(g,X)

4. S -> C: k_S.exp(g,Y).{H}_inv(k_S)

with K=exp(exp(g,X),Y),

H=hash(NC.NS.k_S.exp(g,X).exp(g,Y).K)

5. C -> S: {XXX}_KCS

with SID=H, KCS=hash(K.H.c.SID)

6. S -> C: {YYY}_KSC

with SID=H, KSC=hash(K.H.d.SID)

Example: analysis of SSH implementations

36

excluding all the error transitions

back to the initial state

• One open source implementation of MIDPSSH we analysed

forgot to implement the state machine

• a Man-in-the-Middle attacker could request a username

& password before a session key was established, so this

would go unencrypted over the network

Example: analysis of SSH implementations

37

Example: model based testing of e-passport

38

SUT

model

test

tool

Test tool sends the same random sequence

of commands to the model and the SUT,

and checks if the responses match

... ...

(Automated)

Reverse Engineering

39

Instead of using protocol knowledge when testing

in protocol fuzzing or model-based fuzzing

we can also use testing to gain knowledge about a protocol

or a particular implementation of a protocol

This is useful

1. to analyse your own code and hunt for bugs, or

2. to reverse-engineer someone else’s unknown protocol,

eg a botnet to fingerprint or to analyse (and attack) it

In the other direction:

40

Different aspects that can be learned:

• timing/traffic analysis

• protocol formats

• ie format of protocol packets

[eg using Discoverer, Dispatcher, Tupni,....]

• protocol state-machine

[eg using LearnLib]

• both protocol format & state-machine

[eg using Prospex]

What to reverse engineer?

41

• passive vs active learning

ie passive observing or active testing

• active learning involves a form of fuzzing

• these approaches learns different things:

passive learning produces statistics on normal use,

active learning will more aggresively try our strange

things

• black box vs white box

ie only observing in/output or also looking inside running

code

How to reverse engineer?

42

Basic idea: compare a deterministic system’s response to

• a

• b ; a

If response is different, then

otherwise ?

Active learning with Angluin’s L* algorithm

43

a

b

?

a a

b

??

Active learning with L*

44

Learner

H

Teacher

M

input

output

reset

equivalence:

M = H ?

yes or a counterexample

Equivalence can only be approximated in a black box setting;

by doing model-based testing to see if a difference can be detected

Implemented in LearnLib library;

The learner builds hypothesis H of what the real system M is

Our test harness implements standard EMV instructions, eg

• SELECT (to select application)

• INTERNAL AUTHENTICATE (for a challenge-response)

• VERIFY (to check the PIN code)

• READ RECORD

• GENERATE AC (to generate application cryptogram)

LearnLib then tries to learn all possible combinations

• Most commands with fixed parameters, but some with

different options

Test harness for EMV

45

46

Maestro application on Volksbank bank card

raw result

47

Maestro application on Volksbank bank card

merging arrows with identical outputs

48

Maestro application on Volksbank card

merging all arrows with same start & end state

49

• Experiments with Dutch, German and Swedish bank and
credit cards

• Learning takes between 9 and 26 minutes

• Editing by hand to merge arrows and name states

• Limitations

• We do not try to learn response to incorrect PIN as cards
would block...

• We cannot learn about one protocol step which requires
knowledge of card’s secret 3DES key

• We would also like to learns some integer parameter used in
protocol

• No security problems found, but interesting insight in
implementations

[F. Aarts et al, Formal models of bank cards for free, SECTEST 2013]

Formal models of banking cards for free!

50

SecureCode application on Rabobank card

51

used for internet banking, hence

entering PIN with VERIFY obligatory

understanding & comparing implementations

Are both implementations correct & secure? And compatible?

Presumably they both passed a Maestro-approved compliance test suite...

52

Volksbank Maestro

implementation

Rabobank Maestro

implementation

• Analysing the models by hand, or with model checker, for
flaws

• to see if all paths are correct & secure

• Fuzzing or model-based testing

• using the diagram as basis for “deeper” fuzz testing

• eg fuzzing also parameters of commands

• Program verification

• proving that there is no functionality beyond that in the
diagram, which using testing you can never establish

• Using it when doing a manual code review

Using such protocol state diagrams

53

Reverse engineering the USB-connected e.dentifier

Can we fuzz

• USB commands

• user actions via keyboard

to find bug in ABN-AMRO

e.dentifier2 using

automated learning?

[Arjan Blom et al, Designed to Fail: a

USB-connected reader for online
banking, NORDSEC 2012]

Operating the keyboard using of

55

The hacker let loose on

old e.dentifier2

new e.dentifier2

Case study: analysing SSL/TLS

Work in Progress

Early 2014: TSL bug in iOS and OSX

60

• Can we use state machine learning to extract the state

machine from TLS/SSL implementations?

• Could be find bugs that way?

• Work in progress: Joeri de Ruiter analysed 9 TLS

implementations, and found

• state machines of all implementations are different!

• new security flaws in 3 of them, plus another bug that

had already been reported.

Analysing TLS implementations

61

Open SSL vs GnuTLS

62

GnuTLS

OpenSSL

All TLS implementations are different!

63

Conclusions

• Various forms of fuzzing are great techniques to spot some

security flaws

• More advanced forms of (protocol) fuzzing and automated reverse

engineering (or learning) are closely related

• State machines are a great specification formalism

• easy to draw on white boards, typically omitted in official specs

and you can extract them for free from implementations

• using standard, off-the-shelf, tools like LearnLib

Useful for security analysis of protocol implementations

• for reverse engineering, fuzz testing, code reviews, or formal

program verification

64

1. original form of fuzzing

• trying put ridiculously long inputs to find buffer overflows

2. protocol/format fuzzing

• trying out strange inputs, given some format/language to find

flaws in program logic

3. state-based fuzzing

• trying out strange sequences of input to find flaws in program

logic

2 & 3 are essentially forms of model-based testing

Advanced forms of this become automated reverse engineering

Different forms of fuzzing for security testing

65

specifications code

implementing

model

specifications code

implementing

model-based

testing

making

model

by hand

model

specifications code

implementing

model-based

testing

or

automated

learning

making

model

by hand

