Security Testing

fuzzing
protocol fuzzing
model-based testing

automated reverse engineering

Erik Poll

Radboud University Nijmegen

Two ways to hunt for security vulnerabilities

Dynamic analysis Static analysis
looking at the behaviour looking at the code

at runtime at compile time

« testing « source code scanners

« fuzzing source code analysers

« (human) pen-testing (human) code review

for source code or byte code

Both can be (partly) automated, or done manually

Testing Ingredients

To test a SUT (System Under Test) we need two things
1. test suite, ie. collection of input data

2. a test oracle

that decides if a test was passed ok or reveals an error
i.e. some way to decide if the SUT behaves as we want

Both defining test suites and test oracles can be a /lot of work!

In worst case, for test oracle: for each individual test case,
specify exactly what should happen

A nice & simple test oracle: just seeing if the SUT crashes

Coverage Criteria

Measures of how good a test suite is
- statement coverage

« branch coverage
Statement coverage does not imply branch coverage; eg for
void £ (int x, y) { if (x>0) {y++};
y--; 1}

statement coverage needs 1 test case,
branch coverage needs 2

« More complex coverage criteria exists, eg MCDC (Modified
condition/decision coverage), commonly used in avionics

Possible perverse effect of coverage criteria

High coverage criteria may discourage defensive programming
void m(File £f) {
if <security check fails> {throw (SecurityException)}
try { <the main part of the method> }
catch (SomeException) { <take some measures>;

throw (SecurityException) }

}

If the green defensive code is hard to trigger in tests
programmers may be tempted (or forced) to remove it to
improve coverage in testing...

Security testing is HARD

Normal testing will look at right, wanted behaviour for
sensible inputs (“the happy flow”), and some inputs on
borderline conditions

Security testing also involves looking for the wrong,
unwanted behaviour for really silly inputs

Similarly, normal use of a system will reveal
functional problems (users will complain)
but not

security problems (hackers won't complain)

Security testing is HARD, in general

space of all possible inputs

« SOMe input

@normal
: inputs

= input that triggers
ecurity bug

Fuzzing

Fuzzing

1. original form of “classic” fuzzing

« trying put ridiculously long inputs
2. protocol/format fuzzing

« trying out strange inputs, given some format/language
3. state-based fuzzing

« trying out strange sequences of input

2 & 3 are essentially forms of model-based testing

Advanced forms of this become automated reverse
engineering

Classic fuzzing

10

Fuzzing

Fuzzing

try really long inputs for string arguments to trigger
segmentation faults and hence find buffer overflows

Benefit: can be automated, because test suite of long
inputs can be automatically generated, and test oracle is
trivial: just check if the program crashes

This original idea has been generalised to other settings.

The general idea of fuzzing: using semi-random, automatically
generated test data that is likely to trigger security
problems that can automatically be detected

11

Fuzzing in memory safe languages?

For memory safe languages, such as Java or C#,
classic fuzzing would not be able to spot buffer overflows?
Yes it can!

Fuzzing can still reveal bugs in a components of the Java or
NET platform that were written in C(++):

Virtual Machine, the bytecode verifier, or libraries with
native code

For example, fast graphics libraries often rely on native code

12

Fuzzing some format, language, ...

13

Fuzzing file formats

Incorrectly parsing input formats or input languages is a
common cause of security vulnerabilities

For example:

« email adresses

« X509 certificates

« audio, image & video formats: JPG, MPEG, MP3, MP4, ...
« HTML

« XML

Microsoft Security Bulletin MS04-028

Buffer Overrun in JPEG Processing (GDI+) Could Allow Code

Execution
Impact of Vulnerability: Remote Code Execution

Maximum Severity Rating: Critical
Recommendation : Customers should apply the update
immediately

Root cause: a zero sized comment field, without content.

15

Even in “safe”programming languages...

CVE reference: CVE-2007-0243
Sun Java JRE GIF Image Processing Buffer Overflow Vulnerability

Critical: Highly critical
Impact: System access

Where: From remote

Description: A vulnerability has been reported in Sun Java
Runtime Environment (JRE). The vulnerability is caused due to an
error when processing GIF images and can be exploited to cause

a heap-based buffer overflow via a specially crafted GIF image
with an image width of 0.

Successful exploitation allows execution of arbitrary code.

16

Fuzzing web-applications?

Could we fuzz a web application in the hope to find security
flaws?

« SQL injection
« XSS

Effectively an automated pen tester

What would be needed?

« test inputs that trigger these security flaws
« some way of detecting if a security flaw occurred

- looking at website response, or log files

17

Fuzzing web-applications

There are many tools to fuzz web-applications

« Spike proxy, HP Webinspect, AppScan, acunetix, WebScarab,
Wapiti, w3af, RFuzz, WSFuzzer, SPI Fuzzer Burp, Mutilidae, ...

Some fuzzers crawl a website, generating traffic themselves,
other fuzzers modify traffic generated by some other means.

Can we expect false positives/negatives?

« false negatives due to test cases not hitting the vulnerable cases
« false positives & negatives due to incorrect test oracle, eg

« for SQL injection: not recognizing some SQL database errors (false
neg)

« for XSS: signalling a correctly quoted echoed response as XSS (false
pos)

18

Protocol Fuzzing

Protocol fuzzing based on known protocol format

3

ie format of packets or messages ° 4 8 16 19
Version IHL Type of Service

Total Length

Identification Flags

Fragment Cffset

Time To Live Protocol Header Checksum

Source [P Address

Destination [P Address

Options

Padding

Typical things to try in protocol fuzzing:

« trying out many/all possible values for specific fields

esp undefined values, or values “"Reserved for Future Use” (RFU)

e giving incorrect lengths, length that are zero, or payloads

that are too short/long

Tools for protocol fuzzing exist, eg SNOOZE, Peach, Sulley

19

Example : GSM protocol fuzzing

GSM is a very rich & complicated protocol

Short , Supple- Grou Broadcast
Call Location PP P
Message : mentary Call Call
CM Control : Services 2
(CC) Service (LCSs) Services Control Control
A S
MM (SMS) (SSs) (GCC) (BCC)
RR
(SMS Transport Layer)
. - Bearer Reply
Teleservice Identifier see Option Bearer Data
__________________ CDMA SMS Deliver Report Message | SMS Submit Report Message .
______ pmnm {SMS Telssenvice Layer) b
i TP-Failure Multiple Enceding
M
essage |dentifier Success Cause User Data Language User Data
TP-Failure vee | Msg_ |Message| Num_ | ,
*** |cause value Encoding| _Type | Fields CHAR Padding

SMS-Submit-Report TEDU to
SMSE Submit Report Message

SMS Deliver Repeort Message
to SMS-Deliver-Report TPDU

TP-UDL TP-UD
(User-Data}

.o TP-FCS en TP-DCS
(Failure-Cause) {Data-Coding-Scheme)| (User-Data-Length)

20

SMS message fields

Message Type Indicator
Reject Duplicates

Validity Period Format

User Data Header Indicator
Reply Path

Message Reference
Destination Address
Protocol Identifier

Data Coding Scheme (CDS)
Validity Period

User Data Length (UDL)
User Data

2 bit

1 bit

2 bit

1 bit

1 bit

integer

2-12 byte

1 byte

1 byte

1 byte/7 bytes
integer
depends on CDS and UDL

21

Example: GSM protocol fuzzing

Lots of stuff to fuzz!

We can use a USRP
(universal software radio peripheral)

with open source cell tower software
(OpenBTS)

to fuzz lots of mobile phones

[Mulliner et al, SMS of Death]

[F vb Broek, B. Hond, A. Cedillo Torres, Security Testing of GSM Implementations]

GSM fuzzing - fields fuzzed

01234567
TIF| Tl Value | PD
Message Type

RP-MR
RP-OA (1-12)
RP-DA

TP-OA (212)

TP-SCTS (7)

TP-UD (0-140)
(b) Overview of the fields we
fuzzed in the SMS-DELIVER

message.

23

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird functionality in GSM
standard and phones

24

Example: GSM protocol fuzzing

Fuzzing SMS layer of GSM reveals weird functionality in GSM
standard and phones

eg possibility to send faxes (1?)
you have a fax!

Only way to get rid if this icon: reboot the phone

25

Example: GSM protocol fuzzing

Malformed SMS text messages showing raw memory contents,

rather than content of the text message

(b) Showing the name of a wallpaper

(a) Showing garbage and two games

£
-

§‘|
{;_l 1
=

2 B
B

[l [(ol))

l'EiJ Ig_ﬂ

) |
=i
=) |
|

(2
L\k'-:f s
- Mo

26

GSM fuzzing results : SMS

all 16 phones accepted obscure SMS variants that could be

read using the phone’s UI, sometimes with unremovable icons

5 out of 16 phones would accept certain SMS messages
without notification

7 out of 16 phones could be forced to reboot
Nokia 2006 could be made to show random part of memory

iPhone 4 and HTC Legend could be DoS-ed with an SMS
message: they would not notify user that this message was
received and stopped receiving further messages

27

GSM fuzzing results : CBS

CBS (Cell Broadcast Service) is meant for emergency
warnings, which a mobile phone can subscribe to.

No crashes

Most phones have trouble to show even correct CBS
messages

Galaxy Note displayed message which should be ignored

All phones except Blackberry would accept some CBS
messages which were not subscribed to

All phones would ignore some messages that they were
subscribed to

28

GSM fuzzing of SMS and CBS: results

Legend: I: unremoveable icons, D: DoS message, M: memory bug, N: no notification,
R: Reboot S: message handling in violation of specilication.

Brand Type Firmware/OS SMS fuzz Result CBS fuzz Result
Apple iPhone 4 i0S 4.3.3 yes LD no -
Blackberry 9700 BB OS 5.0.0.743 yes 1 yes S
HTC Legend Android 2.2 yes LD no
Nokia 1100 6.64 yes | no —
Nokia 1600 RH-64 v6.90 no - yes &
Nokia 2600 4.42 ves LM,R no -
Nokia 3310 5.57 ves | yes S
Nokia 3410 5.06 yes | no
Nokia 6610 4.18 yes LN,R no -
Nokia 6610 4.74 yes ILN,R no -
Nokia 7650 4.36 ves LR no -
Nokia E70-1 3.0633.09.04 ves | no -
Nokia E71-1 110.07.127 ves | no
Samsung SGH-AB00 ABOXAVK3S yves LN.R no -
Samsung SGH-D500 D500CEED2 yes I,MR no -
Samsung Galaxy S Android 2.2.1 ves | no -
Samsung Galaxy Note Android 4.1.2 no yes S

Sony Ericsson T630 R7A011 yes LN no -

Example: GSM protocol fuzzing

« Lots of success to DoS phones: phones crash, disconnect
from the network, or stop accepting calls

« eg requiring reboot or battery removal to restart and accept calls

« after reboot, a real network would re-deliver the SMS message,
if no acknowledgement was sent before crashing, re-crashing
phone!

But: not all these SMS messages could be sent over real
network

« Strangely, there is no correlation between problems and
phone brands & firmware versions

« je. some similar phones have very different problems

« The scary part: what would happen if we fuzz base stations?

30

State-based fuzzing
of
sequences of inputs

31

State-based Protocol Fuzzing

Instead of fuzzing the content of individual messages,
we can also fuzz the order of messages
using protocol state-machine to

1. reach an interesting state in the protocol and then fuzz
content of messages there;

2. fuzz the order of messages to discover effect of strange
sequences

32

State-based Protocol Fuzzing

« Most protocols have different types of messages,
which should come in a particular order,
the so-called happy flow

« We can fuzz a protocol by trying out the different types of
messages in all possible orders

« This can reveal loop-holes in the application logic

Essentially this is a from of model-based testing, where we
automatically test if an implementation conforms to a model

[Tools for this: Peach, jTor]

33

Model based testing

General framework for automating testing

1. make a formal model M of (some aspect of) the SUT
2. fire random inputs to M and the SUT

3. look for differences in the response

Such a difference means an error in the SUT, or the model...

Once we have the model, the testing can be largely automated

34

Example: analysis of SSH implementations

Essence of SSH transport layer
1. C->S:NC

S->C: NS

C->S: exp(g,X)

H W N

S -> C: k_S.exp(qg,Y).{H}_inv(k_S)

with K=exp(exp(g,X),Y),
H=hash(NC.NS.k_S.exp(g,X).exp(g,Y).K)

5. C->S: {XXX}_KCS
with SID=H, KCS=hash(K.H.c.SID)

6. S->C:{YYY} _KSC
with SID=H, KSC=hash(K.H.d.SID)

Goal: establish a session key to encrypt traffic between client and
server, as in SSL/TLS and https

35

Example: analysis of SSH implementations

Essence of SSH transport layer Real SSH transport layer

1. C->S:NC

DISCONNECTED
CONNECT!

2 - S -> C : N S WAIT_VERSION
3 . C -> S : eXp(g ,X) VERSION RECEIVE‘Dl o \vlg;\:/‘:;{is::ow SENT
WAIT_KEXINIT

4 . S -> C . k_S . eXp(g ,Y) . { H }_l nV(k_S) o ——_ KE)([NW’SENTJ[;I;:—I;‘”Y

W|th K=eXp(eXp(g,X)rY)l KEXINIT SENT s — BT TR

H=hash(NC.NS.k_S.exp(g,X).exp(g,Y).K) -

WAIT_KEXDH_REPLY KEXDHREPLY?

5. C->S: {XXX}_KCs Sl W

with SID=H, KCS=hash(K.H.c.SID) MR

COMMUNICATION

6. S->C:{YYY} _KSC

with SID=H, KSC=hash(K.H.d.SID) excluding all the error transitions

back to the initial state

36

Example: analysis of SSH implementations

One open source implementation of MIDPSSH we analysed
forgot to implement the state machine

* a Man-in-the-Middle attacker could request a username
& password before a session key was established, so this
would go unencrypted over the network

37

Example: model based testing of e-passport

CREATE | WRITE | PUT | ‘.;r[t F Fﬁﬁ@stﬁg
ULESES -

REPUBLICA FEDERATIVA
DO BRASIL

et SM keys

BAC complete. Secure Messaging in progess

CA complete. TA possibly in progress <

5| test | .
tool >

et (TR ¢

PSO. Verify Certificate

MSE: Set DST
_ PSO. Verify Certificate -

MSE: Set AT
GET CHALLENGE
45 TAS

EXTERNAL AUTHENTICATE Sl l I

42TAZ

5 TA complete]

Test tool sends the same random sequence
of commands to the model and the SUT,
and checks if the responses match

model

38

(Automated)
Reverse Engineering

39

In the other direction:

Instead of using protocol knowledge when testing
in protocol fuzzing or model-based fuzzing
we can also use testing to gain knowledge about a protocol

or a particular implementation of a protocol

This is useful

1. to analyse your own code and hunt for bugs, or

2. to reverse-engineer someone else’s unknown protocol,
eg a botnet to fingerprint or to analyse (and attack) it

40

What to reverse engineer?

Different aspects that can be learned:
« timing/traffic analysis
« protocol formats

 ie format of protocol packets
[eg using Discoverer, Dispatcher, Tupni,....]
« protocol state-machine
[eg using LearnLib]
« both protocol format & state-machine

[eg using Prospex]

41

How to reverse engineer?

« passive vs active learning

ie passive observing or active testing
 active learning involves a form of fuzzing

« these approaches learns different things:
passive learning produces statistics on normal use,
active learning will more aggresively try our strange
things

« black box vs white box

ie only observing in/output or also looking inside running
code

42

Active learning with Angluin’s L* algorithm

Basic idea: compare a deterministic system’s response to

- a
- bja
? ?
a a
If response is different, then @/ b ’<>/7
?
a
otherwy ?
b

43

Active learning with L*

Implemented in LearnLib library;
The learner builds hypothesis H of what the real system M is

reset
Learner |
Input >
F* output |
D @ equivalence:
BT | M=H? >

C |

yes or a counterexample

Equivalence can only be approximated in a black box setting;
by doing model-based testing to see if a difference can be detected
44

Test harness for EMV

Our test harness implements standard EMV instructions, eg

SELECT (to select application)

INTERNAL AUTHENTICATE (for a challenge-response)
VERIFY (to check the PIN code)

READ RECORD

GENERATE AC (to generate application cryptogram)

LearnLib then tries to learn all possible combinations

« Most commands with fixed parameters, but some with
different options

45

Edit

APDL
i T 1an

Il e
i : | ; q ‘
N‘lll fisi ‘ il ‘
I I

AUTO

46

Maestro application on Volksbank bank card
raw result

N\
¢ mm Dinile DTk Wi Pehesnp ok et)
\/ :

Vi

sty «lc:fﬁzm "

gk W)

ik

f\
T ‘/ iy 0

el 0

“ \ \ \ “‘ \
] 4, O o e 8 e 6| e e
\ | | f \ f

47

Maestro application on Volksbank bank card
merging arrows with identical outputs

W malm 0 GET DATA { GET PROCESSIN(;gZTIDNS vald) | READ

SELE(T
GENERATE AT GET PROCESSING OPTIONS (invas) READ RECORD (invabe GET DATA (invats} INTERNAL AUTHE (GET DATA (valid) { READ RECORD (vali) SELECT
6438 9000

GA86

®W-.» e M

{ GET PROCESSING OPTIONS lvald) P&ECT
9000 9000
SELECT

20 mmm READRECORD (nvdl GET DATA (m 2 GET DATA (vaid)/ READ RECORD (vaid]
9000 | 9000
|

1 GENERATE AC 2nd GET PROCESSING OPTIONS (vai) \GENERATE AC st/ GET PROCESSING 0PTIONS|
6985

TTERNAL AUTHENTICATE
9000 | w 9000)
f |
|
f Fiised (10 DDA)

MMNJTHEWTICA READ RECORD (invahdy GET DATA (inwaldh GET DATA tvaid) | READ RECORD (vaid)
5000 |

GET DATA (vald) | READ RECORD (valic} SELECT
9000 9000

6486 |
|
GET PROCESSING CRTIONS falid))

/
v_?—-—
X‘ L)

GENERATE AC 15t TC/ ARQC
9000 ARQC
I

GENERATE AC 1t AAC GET PROCESSING OPTIONS
9000 AAC 6985

GET DATA (vali) / READ RECORD [val)
9000

GET DATA {inva

INTERNAL AUTHENTICATEREAD RECORD finva

GRMTEACIS e et
e o

680
GENERATEAC IndTC'\ GENERATEAC 2nd AAC . GENERATEAC 1 TC/AAC') GET PROCESSING OPTIONS), GENERATE AC ARQC |
9000 AKC

as| GET DATA (valid)/ READ RECORD (valis]
9000

90001

48

Maestro application on Volksbank card
merging all arrows with same start & end state

Other

GET DATA / READ RECORD

GPO performed)D

PROCESSING OPTIONS (valid) /GENERATE AC / GET PROCESSING OPTIONS

INTERNAL AUTHENTICATE

DDA performed)

Finished (no DDA) 3 >Other ET DATA / INTERNAL AUTHENTICATE / READ RECORD

SELECT

GET PROCESSING OPTIONS (valid)

GENERATE AC 1st TC / ARQC
ARQC

INTERNAL AUTHENTICATE | GENERATE AC 2nd / GET PROCESSING OPTIONS GE"ER”IE :cc 1st AAC

Finished (DDA) Y®

49

Formal models of banking cards for free!

« Experiments with Dutch, German and Swedish bank and
credit cards

« Learning takes between 9 and 26 minutes
« Editing by hand to merge arrows and name states
« Limitations

« We do not try to learn response to incorrect PIN as cards
would block...

« We cannot learn about one protocol step which requires
knowledge of card’s secret 3DES key

« We would also like to learns some integer parameter used in
protocol

« No security problems found, but interesting insight in
implementations

[F. Aarts et al, Formal models of bank cards for free, SECTEST 2013]
50

SecureCode application on Rabobank card

used for internet banking, hence

| | - i 35>
entering PIN with VERIFY obligatory

Other

Verify performed Yy SGET DATA (valid) / READ RECORD (valid) / VERIFY

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC / AAC
AAC

GENERATE AC 1st TC
TC

GENERATE AC 1st AAC
AAC

Transaction finished

51

understanding & comparing implementations

=\
Iitidsation L 0ther

N A

SELECT
o &
____ﬁ/ Snsce:\\" b
B s, M ———
// - N e ———

//" v /&y‘f{ms\c OFTIONS a\ \‘K&\
S _— N T

/ SeEct (R0 peromed TGET ATA/READ RECORD SeLecT
/ e
/ T T SN \\\\ \\\
GETPROCESSNG OPTIONS o) /GENEPATEAC GET PROCESSING OPTIONS \ NTERNAL AUTHENTICATE N\ GELET
\/—‘\ — _
T Feished(r0008) D0the /m:m\a-:r DATA INTERNAL AUTHENTICATE/ READ RECORD %
N =g >— Sy
\ \ e N N I
GET PROCESSING OFTIONS (vld) N ZEREEHTIN
e

N
o=

CEACI N P
i;_)\

—~
INTERNAL AUTHENTICATE | GENERATE AC 208/ GET PROCESSING OPTIONS ARQC requested) DGET DATA / INTERNAL AUTHENTICATE / READ RECORD

AC
\ \ 7 /
N N \ /GENERATE AC 20d TC MGENERATE AC 2nd AAC
S - Other [CENERATEAC 20d TC. [GENERATE AC 200 AAC T
o O3 o T) A e
N /‘, I
e S _
Frished DDA) YHOUTE
<2 A&

Volksbank Maestro
implementation

\ / 5
\ f < —

_ | GENERATE AC 15t AAC\\ ﬁnzame AC 1st TC/ARQC |
\\\ AAC \ / ARQC

\. T ARQCrequested

P
@)
\\\\in‘alysa‘lofﬂ('l D0ther

SELECT
=\ 4

;;rcc{gw -

— —— ~— —

-~ [other /GET PROCESSING OPTIONS (valid) e e
1 D =
\Other

<

/
\ —
'y“ >”‘~»_,A;1NTERNAL AUTNENTICATE/
\ —
\| GENERATE AC 15t TC /ARQC
/ \ ARQC =

GPO porfnrm?dj‘_)GET DATA (valid) / READ RECORD (valid) / VERIFY

(DDA performed)i’)GET DATA (valid) / READ RECORD (valid) / VERIFY

g e

|

JGENERATE AC 1st AAC
AC

N e [i

T /
S \| GENERATE AC 20d TC/ AAC /
e AAC

.

——h——— —
C_ Transaction finished >

Rabobank Maestro
implementation

Are both implementations correct & secure? And compatible?

Presumably they both passed a Maestro-approved compliance test suite...

52

Using such protocol state diagrams

Analysing the models by hand, or with model checker, for
flaws

« to see if all paths are correct & secure
Fuzzing or model-based testing
« using the diagram as basis for “deeper” fuzz testing

« eg fuzzing also parameters of commands

Program verification

« proving that there is no functionality beyond that in the
diagram, which using testing you can never establish

Using it when doing a manual code review

53

Reverse engineering the USB-connected e.dentifier

Can we fuzz

« USB commands

« user actions via keyboard
to find bug in ABN-AMRO
e.dentifier2 using

automated learning?

[Arjan Blom et al, Designed to Fail: a

USB-connected reader for online
banking, NORDSEC 2012]

Operating the keyboard using of

f -
e O e

i il it

L —

et ——

OMWY NBYV “

The hacker let loose on

old e.dentifier2

@,—» OMBINED_DATA /LONG_ERROR||LONG_ERRORROBOT_OK/TIMEOUBUSB8_CRYPTOGRAM/LONG_ERROR

COMBINED_PIN/OK /USB8_CRYPTOGRAM / CRYPTOGRAM

COMBINED_PIN /OK

COMBINED_DATA/OK||TIMEOUT /COMBINED_PIN/OK JROBOT_OK/OK ROBOT_OK/OK

°r. OMBINED_DATA/OK||[TIMEOUT \ COMBINED_PIN /OK

USB8_CRYPTOGRAM/CRYPTOGRAM

e;- COMBINED_DATA /LONG_ERROR||LONG_ERRORBUSB8_CRYPTOGRAM/LONG_ERROR

new e.dentifier2

Case study: analysing SSL/TLS
Work in Progress

OOoOO~NNOUT RS WN =

Early 2014: TSL bug in iOS and OSX

static 0SStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer
uint8 t *signature, UIntl6 signaturelLe

{

0SStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHAl.final (&hashCtx, &hashOut)) !'= 0)
goto fail;

fail:
SSLFreeBuffer(&signedHashes) ;
SSLFreeBuffer(&hashCtx) ;
return err;

60

Analysing TLS implementations

Can we use state machine learning to extract the state
machine from TLS/SSL implementations?

Could be find bugs that way?

Work in progress: Joeri de Ruiter analysed 9 TLS
implementations, and found

« state machines of all implementations are different!

* new security flaws in 3 of them, plus another bug that
had already been reported.

61

Open SSL vs GnuTLS

ClientHello
ServerHello - Certificate - ServerHelloDone

— ClientKeyExchange
Empty

GnuTLS

Finished
Empty

IpplicationData / ChangeCipherSpecs / ClientKeyExchange / Finished ClientHello / ClientKeyExchange
Empty

Alert (Fatal) 10

ApplicationData / ChangeCipherSpecs / ClientHello / Finished
Alert (Fatal) 10

‘ApplicationData

ClientHello / ClientKeyExchange / Finished
Alert (Fatal) 10 Empty

Finished)
ChangeCipherSpec - Finished &

Alert (Fatal) 10

ClientHello / ClientKeyExchange / Finished

ApplicationData / ChangeCipherSpecs
Empty

Alert (Fatal) 10

hangeCipherSpecs
Alert (Fatal) 80

ApplicationData

ChangeCipherSpecs / ClientHello / ClientKeyExchange / Finished'
Alert (Fatal) 10

Alert (Warning) 0

ApplicationData
ApplicationData - Alert (Warning) 0

Init

ClientHello
ServerHello - Certificate - ServerHelloDone

ChangeCipherSpecs ", ClientKeyExchange
Empty Empty

ChangeCipherSpecs
Empty

OpenSSL

ChangeCipherSpecs
Empty

WApplicationData / ClientKeyExchange / Finished Finish
Empty ChangeCipherSpec - Finished

Data / Finished ClientHello
Alert (Fatal) 10 Alert (Fatal) 40

Data / ClientHello / C| 1 Finished
Alert (Fatal) 10

Al ChangeCipherSpecs)
\Alert (Fatal) 20 Empty

ClientKeyExchange
Alert (Fatal) 20 - Alert (Warning) 0

‘ApplicationData / ChangeCipherSpecs / ClientHello
Alert (Fatal) 10

e Dat.
Alert (Fatal) 20 ApplicationData - Alert (Warning) 0

ClientHello Finished
Alert (Fatal) 40 - Alert (Fatal) 40 / Alert (Fatal) 10 - Alert (Fatal) 10

Al
connm ionClosed

62

All TLS implementations are different!

63

Conclusions

Various forms of fuzzing are great techniques to spot some
security flaws

More advanced forms of (protocol) fuzzing and automated reverse
engineering (or learning) are closely related

State machines are a great specification formalism

« easy to draw on white boards, typically omitted in official specs

and you can extract them for free from implementations
« using standard, off-the-shelf, tools like LearnLib

Useful for security analysis of protocol implementations

« for reverse engineering, fuzz testing, code reviews, or formal
program verification

64

Different forms of fuzzing for security testing

1. original form of fuzzing
« trying put ridiculously long inputs to find buffer overflows
2. protocol/format fuzzing

« trying out strange inputs, given some format/language to find
flaws in program logic

3. state-based fuzzing

« trying out strange sequences of input to find flaws in program
logic

2 & 3 are essentially forms of model-based testing

Advanced forms of this become automated reverse engineering

65

implementing

e e — Cardroiaes() =
3 —_—— D larer petTens Cardmy bntad roal) - F1))
> — oetonte
g — —— oee
11 hayer qutietadcarderensO » 2
” 2 - | -~ e R
. - Pr—

specifications code

]

implementing

3laer getinte

" -
Dlover gerraraicarew
D larer petTens Cardmy bntad
11 hayer g ardetensO » 20
~ vt g Vot e v - Computer WAL

o

specifications model-based
testing

making
model
by hand

Other

i >

DATA (valid) / READ RECORD (valid) / VERIFY

Verify performed

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC/ AAC
AAC

GENERATE AC 15t TC \ GENERATE AC 1st AAC
TC AAC

Transaction finished

model

]

implementing | ,

2lorer gotrwnsicarsmy

e

model-based

testinc_/
or
automated

learning

specifications

making
model
by hand

DATA (valid) / READ RECORD (valid) / VERIFY

Verify performed

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

.ARQC requested

GENERATE AC 2nd TC/ AAC
AAC

GENERATE AC 15t TC \ GENERATE AC 1st AAC
TC AAC

