
Constructions and Properties of k out of n
visual secret sharing schemes ∗

Eric R. Verheul
Ministry of the Interior

P.O. Box 20010
2500 EA, the Hague, the Netherlands

E-mail Eric.Verheul@pobox.com
and

Henk C.A. van Tilborg
Department of Mathematics and Computing Science

Eindhoven University of Technology
P.O. Box 513 5600 MB, Eindhoven, the Netherlands

E-mail henkvt@win.tue.nl

Abstract

The idea of visual k out of n secret sharing schemes was introduced
in [?]. Explicit constructions for k = 2 and k = n can be found there.
For general k out of n schemes bounds have been described.

Here, two general k out of n constructions are presented. Their
parameters are related to those of maximum size arcs or MDS codes.
Further, results on the structure of k out of n schemes, such as bounds
on their parameters, are obtained. Finally, the notion of coloured
visual secret sharing schemes is introduced and a general construction
is given.
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1 Introduction

The possibility of using human visual intelligence as part of a symmetrical
cipher algorithm, was first discussed in [?]. Independently, the notion of
visual k out of n secret sharing schemes is introduced [?]. The idea is that
an image (e.g. picture or text) is transformed into n transparencies (shares),
in such a way that if one puts any k-tuple of transparencies on top of each
other, the original image is again visible, while with any (k − 1)-tuple of
transparencies no information about the original image is released (in the
sense that any possibility is equally likely). Actually, the concept of a visual
2 out of 2 secret sharing scheme constitutes to a visual symmetrical cipher,
earlier described in [?, p.1019].

The technique, explained in [?], divides any pixel of the original image into b
subpixels. On each transparency some subpixels of any pixel are white while
the others are black.
When held to the light, white subpixels let through light and black subpixels
stop it. So when several transparencies on top of each other are held to the
light, one sees the “or” result of the transparencies, i.e. a subpixel is seen
as white if all underlying subpixels are white, otherwise it is seen as black.
A pixel (the total of the b subpixels) will be observed as white if sufficiently
many subpixels (at least h) are white, while it will be observed as black if
not to many of them (at most l) are white. Here h > l are some non-negative
integers.
In the mathematical model of this technique, white (sub)pixels are repre-
sented with 0 (“they form no obstruction to light”) and black (sub)pixels are
represented with 1 (“they stop light”). To give a formal definition, let z(v) de-
note the number of zero coordinates of a vector v (note that z(v)+w(v) = b,
where w(v) denotes the Hamming weight of v). From [?] we now quote -
with some notational changes- the following definition of a k out of n secret
sharing scheme, or k out of n scheme for short.

Definition 1.1 A k out of n visual secret sharing system S = (C0, C1) con-
sists of two collections of n× b Boolean matrices C0 and C1. To share a white
pixel, the dealer randomly chooses one of the matrices in C0, and to share
a black pixel, the dealer randomly chooses one of the matrices in C1. The
n transparencies (rows) are distributed over the n users (participants of the
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system). The chosen matrix defines the colour of the b subpixels of that par-
ticular pixel in each one of the n transparencies (a 1 stands for black and 0
for white). The solution is considered valid if the following three conditions
are met:

1. For any S in C0, the “or” v of any k of the n rows satisfies z(v) ≥ h.

2. For any S in C1, the “or” v of any k of the n rows satisfies z(v) ≤ l.

3. For any i1 < i2 < . . . < is in {1, 2, . . . , n} with s < k, the two collec-
tions of s × b matrices Dj for j ∈ {0, 1} obtained by restricting each
n × b matrix in Cj (where j = 0, 1) to rows i1, i2, . . . , is are indistin-
guishable in the sense that they contain the same matrices with the
same frequencies.

Here h > l and b is called the blocklength of the scheme S. By the third
property, the first rows of the matrices in C0, and C1 give rise to the same
frequency-tables. Hence, the cardinality of C0, must coincide with the cardi-
nality of C1 and will be denoted with r. The parameters of a scheme will be
denoted by [b; h, l; r] or [b; h, l] when r is not relevant.
In [?] the contrast between combined shares that come from a white pixel and
a black pixel is implicitly defined as h−l, and the loss of contrast as (h−l)/b.
This concept of contrast is not really suitable. For an intuitive justification:
consider the contrast of two adjacent buildings A and B in the night, formed
by the number of illuminated windows. Then the contrast formed by 100
illuminated windows in A and 99 in B, is much less than 1 illuminated window
in A and 0 in B. Aside from intuition, also references in literature suggest
that the contrast between two optical regions is characterised by the relative
difference of the irradiance within the regions. See [?, p.272] and [?, p.34]
(Willem van den Bosch is thanked for pointing out these references). In the
present circumstances we therefore would like to propose (h − l)/(h + l) as
measure of contrast, and the loss of contrast as (h− l)/b(h + l).
Usually one is interested in schemes of high contrast and low blocklength.
Observe that contrast is maximal when l = 0, which is a motivation to call
schemes of type [b; h, l = 0] maximal contrast schemes.
In [?] constructions can be found of k out of n visual secret sharing systems
with parameters:
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k n b h l r

2 n n n− 1 n− 2 n!
k k 2k 2 0 2k!
k k 2k−1 1 0 2k−1!

Further, existence proofs for two types of general k out of n visual secret
sharing systems are given by means of hash functions. The first system has
blocklength b = nk2k−1 and the second b = log(n)2O(klogk). Due to a different
concept of “contrast” only the quantities α = (h − l)/b are given in [?]; in
the first system this equals (2 exp)−k/

√
2πk, in the second this equals 2−Ω(k).

Many schemes in [?] are examples of a generic method to construct k out
of n schemes that we shall describe now. Let A0 and A1 be Boolean n × b
matrices and h > l integers, such that:

1-2. The “or” v of any k out of n rows of A0 (resp. A1) satisfies z(v) ≥ h
(resp. z(v) ≤ l).

3. For any i1 < i2 < . . . < is in {1, . . . , n} with s < k, the matrices A0

and A1 restricted to rows i1, i2, . . . is are equal modulo a permutation
of the columns.

Then, by letting C0 (resp. C1) consist of all matrices obtained by permutations
of the columns of A0 (resp. A1) one obtains a k out of n scheme (with
parameters [b; h, l; b!]). Such schemes we call generated by A0 and A1. Observe
that the implementation of schemes of these types require little (computer)
memory, as the collections C0 and C1 are fully determined by A0, A1 and
permutations of b elements.
As an example, in [?] the following 2 out of n visual secret sharing scheme
with b = n and h = n− 1, l = n− 2 is generated by:

A0 =




1 0 . . . 0
1 0 . . . 0
. . . . . .
1 0 . . . 0


 ; A1 =




1 0 . . . 0
0 1 . . . 0
. . . . . .
0 0 . . . 1


 .

Observe that the contrast of this scheme equals 1/(2n − 3) which for large
n is nearly zero; by interchanging 0 and 1 one obtains a 2 out of n scheme
with maximal contrast 1!
Next, suppose that A0 and A1 satisfy the following strengthing of 3:

4



3’ For each any i1 < i2 < . . . < is and j1 < j2 < . . . < js in {1, ..., n} with
s < k, the matrix A0 restricted to rows i1, i2, ..., is and A1 restricted to
rows j1, j2, ..., js are equal modulo a permutation of the columns.

Then the pair A0, A1 is called systematic and the k out of n scheme they
generate is called a strong k out of n scheme. Finally, we note that strong
schemes are an example of the uniform schemes of [?], which are schemes
for which z(v) of the “or” v of any s < k transparencies in C0 or C1 only
depends on the number s. Actually, one of our results (Theorem ??) states
that uniform schemes give rise to strong schemes in a very canonical way.

In Sections ?? and ?? we propose two explicit strong k out of n visual secret
sharing systems. Their parameters are connected to notions in finite geom-
etry and coding theory. To this end we first review the theory that we need
for these constructions.

2 Some facts about arcs and MDS codes

Let Vm(q) denote the m-dimensional vectorspace over the Galois field GF (q).
As usual, the cardinality of a set A will be denoted by |A|. A (sub)set of
cardinality k will be called a k-(sub)set.

Definition 2.1 For fixed q and m ≥ 1, an n-arc is defined as an n-subset A
of Vm(q) with the property that each m elements in A are linearly indepen-
dent.
The maximum n for which an n-arc in Vm(q) exists will be denoted by r(q, m).

Quite clearly, r(q, 1) = q − 1 for all q. From now on we assume that m ≥ 2.
There is a well-known relation between the r(q,m)-function and the existence
of q-ary Maximum Distance Separable (MDS) codes, i.e. q-ary [n,m, d] codes
with d = n−m + 1. For definitions and proofs, we refer the reader to [?] (in
particular to Ch. 11, §2).

Theorem 2.2 Let q be some prime power and n and m integers, where
m ≥ 2. Then the following statements are equivalent.

1. An n-arc exists in Vm(q),

2. n ≤ r(m, q),
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3. A q-ary [n, n−m,m + 1] MDS code exists,

4. A q-ary [n,m, n−m + 1] MDS code exists.

Lemma 2.3 For all m ≥ 2,

r(q, m + 1) ≤ r(q, m) + 1. (1)

Proof: Consider an n-arc A = {a1, a2, . . . , an} in Vm+1(q). By simple basis
manipulations, we may assume that a1 = (0, . . . , 0, 1). Remove the last coor-
dinate from the other n−1 vectors in the arc. Since A is an n-arc in Vm+1(q),
it follows that these n − 1 shortened vectors (in Vm(q)) have the property
that any m-tuple of them is linearly independent. In other words, we have
found an (n − 1)-arc in Vm(q). It follows that n − 1 ≤ r(q, m). Substitution
of n = r(q, m + 1) yields (??). 2

Theorem 2.4 The following relations hold for r(q,m):

r(q, 2) = q + 1 (2)

q + 1 ≤ r(q, m) ≤ q + m− 1 if 2 ≤ m ≤ q − 1, (3)

r(q, m) = m + 1 if m ≥ q. (4)

Proof: Although known from the literature, we show all the above state-
ments.
Relation (??) is just a particular case of (??).
The left most inequality in (??) again follows from an explicit construction.
Indeed, the vectors (0, . . . , 0, 1) and (1, ω1, . . . , ωm−1) with ω in GF (q) form
an (q + 1)-arc, as follows readily with a Vandermonde matrix argument.
The second inequality in (??) is a direct consequence of Lemma ??.
To prove that r(q,m) ≥ m + 1, one can take any basis a1, a2, . . . , am in
Vm(q) and add the vector am+1 =

∑m
i=1 ai to obtain an (m + 1)-arc. On

the other hand, if r(q, m) = m + 2 (or more) and m ≥ q we get a con-
tradiction from Theorem ?? 4), because the Hamming bound implies that
an [m + 2,m, 3] code does not exist. Indeed, qm (1 + (m + 2)(q − 1)) ≥
qm (1 + (q + 2)(q − 1)) > qm+2, for m ≥ q. 2

It is a well-known conjecture that for 2 ≤ m ≤ q − 1 the actual value of
r(q,m) is q + 1, except when q is even and m = 3 or q − 1, in which case
r(q,m) = q + 2. The conjecture has been proven for many cases. For an
overview of the current situation we refer to [?] or [?].
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3 A k out of n scheme

To construct k out of n visual secret sharing schemes we shall make use
of linearly independent functionals defined on Vm(q). For any given basis
of Vm(q) there is a one-to-one correspondence between functionals F (x) on
Vm(q) and vectors f in Vm(q) which is given by

F (x) = (f, x) = f1x1 + f2x2 + . . . + fmxm.

Clearly, functionals Fi(x), 1 ≤ i ≤ l, are linearly independent if and only if
the corresponding vectors f

i
, 1 ≤ i ≤ l, are linearly independent.

Consider a numbering of the vectors in Vm(q), say u1, u2, . . . , uqm . The n×qm

representation matrix S of n functionals Fi(x), 1 ≤ i ≤ n, with respect to
the vectors ui, 1 ≤ i ≤ qm, is defined by

Si,j = Fi(uj), 1 ≤ i ≤ n, 1 ≤ j ≤ qm. (5)

Elementary linear algebra shows the following lemmas.

Lemma 3.1 Let, in the above notation, k be the dimension of the linear
span of n functionals. Then the representation matrix S of these functionals
will contain exactly qm−k all-zero columns.
If n = k = m (exactly m linearly independent functionals are considered)
each vector in Vm(q) occurs exactly once as a column in S.

Proof: The null-space of k independent functionals of Vm(q) has dimension
m− k. 2

Lemma 3.2 Let Fi, 1 ≤ i ≤ k, be a set of linearly independent functionals
on Vm(q) (so k ≤ m) and let S be the representation matrix of this set with
respect to the vectors uj, 1 ≤ j ≤ qm.
Let Gi, 1 ≤ i ≤ k, be a second set of linearly independent functionals on
Vm(q). Then a (second) numbering v1, v2, . . . , vqm of the vectors in Vm(q) ex-
ists such that the representation matrix T of the functionals Gi’s with respect
to the vectors vj, 1 ≤ j ≤ qm, is identical to S.

Proof: It suffices to prove the lemma for k = m (otherwise add suitable
linearly independent functionals to both sets).
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Consider the two m × qm matrices S = (Fi(uj))ij and S ′ = (Gi(uj))ij. By
Lemma ??, S and S ′ have the same column set, so there exists a permutation
π of {1, 2, . . . , qm} with induced permutation matrix P such that S = S ′P.
Equivalently,

Fi(uj) = Gi(uπ(j)) for all 1 ≤ i ≤ m, 1 ≤ j ≤ qm.

Putting vj = uπ(j), 1 ≤ j ≤ qm, one gets that

Tij = Gi(uπ(j)) = Fi(uj) = Sij.

2

The lemmas above make it possible to prove that the scheme below yields a
k out of n visual secret sharing scheme. In the construction, the value of q
has to be sufficiently large.

Construction 3.3 A strong k out of n visual secret sharing scheme with
parameters b = (qk − 1)/(q − 1), h = 1, l = 0, |C0| = |C1| = qk! can be
obtained from the following steps.

1. Choose a finite field size q with r(q, k − 1) ≥ n and r(q, k) ≥ n.

Identify the vectors in Vm(q) that are a scalar multiple of each other
and discard 0. One obtains PGm−1(q), the (m − 1)-dimensional pro-
jective space over GF (q). It contains (qm − 1)/(q − 1) vectors. Con-
sider any numbering of the vectors in Vm(q), say u1, u2, . . . , uqm and
let v1, v2, . . . , v(qm−1)/(q−1), be the reduced set of vectors constituting
PGm−1(q).

2. Choose functionals F1, F2, . . . , Fn on Vk(q), such that any k of them are
linearly independent. This is possible by the definition of r(q, k).

Let S be the representation matrix of the functionals Fi, 1 ≤ i ≤ n,
with respect to the numbering uj, 1 ≤ j ≤ qk. Let S ′ be the restriction
of S to the columns indexed by vj, 1 ≤ j ≤ (qm − 1)/(q − 1). Replace
all non-zero elements in S ′ by 1.

The n× (qm−1)/(q−1) binary matrices generated by S ′ form the class
C1.
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3. Choose n functionals, say G′
1, G

′
2, . . . , G

′
n defined on Vk−1(q), such that

any (k − 1) of them are linearly independent. Extend their definition
in the canonical way to obtain the functionals G1, G2, . . . , Gn on Vk(q)
(so Gi(x1, . . . , xk−1, xk) := G′

1(x1, . . . , xk−1)). Any k − 1 of them are
linearly independent, but any k-tuple is linearly dependent, because the
dimension of Vk−1(q) is k − 1.

Convert the representation matrix T of the functionals Gi in the same
way as above to a binary n× (qm−1)/(q−1) matrix T ′. The n× (qm−
1)/(q − 1) binary matrices generated by T ′ form the class C0.

Proof: The “or” of any k rows of a matrix in C1 consists of only ones, because
by Lemma ?? (2-nd statement) the q-ary representation matrix from which
it is obtained, when restricted to these k rows, contains each possible column
exactly once and the 0 column was removed.
The “or” of any k rows of a matrix in C0 contains 1 zero and (qk− q)/(q− 1)
ones, because by Lemma ?? (1-st statement) the q-ary representation matrix
from which it is obtained, when restricted to these k rows, contains each
possible column exactly once. The security of the scheme (see Definition ??)
also follows from Lemma ??. 2

To construct a k out of k scheme in the above way, it suffices to take q = 2 (see
(??)). In this case, Construction ?? reduces to what amounts to a modest
improvement of Construction I in [?].
If n− 1 is a prime power, one can take q = n− 1 (see (??)). The blocklength
of this k out of n scheme equals ((n− 1)k − 1)/(n− 2).
Let us compare our scheme with the two corresponding schemes of [?] - also
mentioned in Section ??. The first scheme has a larger blocklength, the
second one has a much smaller blocklength. Both schemes have less contrast
than the above scheme. Also, the first scheme in [?] has more loss of contrast.
We were not able to compare the loss of contrast of the second scheme of [?]
with ours.

4 A second k out of n scheme

As in the previous section, we start with some general considerations. Let
G(x) and F1(x), F2(x), . . . , Fn(x) be functionals defined on Vm(q). Let uj, 1 ≤
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j ≤ qm−1, be a numbering of the vectors x in Vm(q) for which G(x) = 0 and
vj, 1 ≤ j ≤ qm−1, likewise for the vectors x in Vm(q) for which G(x) = 1.
These numberings define the n× qm−1 representation matrices S and T by

Sij = Fi(uj), 1 ≤ i ≤ n, 1 ≤ j ≤ qm−1, (6)

Tij = Fi(vj), 1 ≤ i ≤ n, 1 ≤ j ≤ qm−1. (7)

It is again a matter of elementary linear algebra to prove the following lemma.

Lemma 4.1 Consider functionals G and Fi, 1 ≤ i ≤ n, on Vm(q). The
following three statements are equivalent:

1. For each numbering vj, 1 ≤ j ≤ qm−1, of G−1(1) a numbering uj, 1 ≤
j ≤ qm−1, of G−1(0) exists (and the other way around) such that the
representation matrices S and T , defined by (??) and (??) are the
same.

2.
(⋂n

i=1 F−1
i (0)

)
∩G−1(1) 6= ∅,

3. G is not in the span of F1, F2, . . . , Fn.

Proof:
2) ⇒ 1): Let a be an element in the left hand side of statement 2. above.
Further, let vj, 1 ≤ j ≤ qm−1 be a numbering of G−1(1) with representation
matrix T. Then uj = vj − a, 1 ≤ j ≤ qm−1 is a numbering of G−1(0) and
its representation matrix T equals S, because Fi(uj) = Fi(vj − a) = Fi(vj)−
Fi(a) = Fi(vj), 1 ≤ j ≤ qm−1, and G(uj) = G(vj − a) = G(vj) − G(a) =
1− 1 = 0.
The proof of the “other way around” in condition 1) (i.e. the role of G−1(0)
and G−1(1) are interchanged) goes the same way.

1) ⇒ 2): Choose numberings of the elements in G−1(0) and G−1(1) such
that the corresponding representation matrices S and T are identical. Since
S contains the all-zero column at least once, there must be a vector in
G−1(1), say a, for which Fi(a) = 0, for all 1 ≤ i ≤ n. This means that

a ∈
(⋂n

i=1 F−1
i (0)

)
∩G−1(1).

2) ⇔ 3): This equivalence is well-known (compare for instance with [?,
Lemma 3.9]). 2
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Construction 4.2 A strong k out of n visual secret sharing scheme with
parameters b = qk−1, h = 1, l = 0, |C0| = |C1| = qk−1! can be obtained from
the following steps.

1. Choose a finite field size q such that rq(k) ≥ n + 1.

2. Choose n + 1 functionals on Vk(q), to be called F1, F2, . . . , Fn and G,
such that any k of them are linearly independent (so, the intersection
of the kernel of any k of them is just {0}).

3. Let S be the representation matrix of the functionals Fi, 1 ≤ i ≤ n,
with respect to a numbering uj, 1 ≤ j ≤ qk−1, of G−1(0). Replace all
non-zero elements in S by 1.

The n× qk−1 matrices generated by S form the class C1.

4. Let T be the representation matrix of the functionals Fi, 1 ≤ i ≤ n,
with respect to a numbering vj, 1 ≤ j ≤ qk−1, of G−1(1). Replace all
non-zero elements in T by 1.

The n× qk−1 matrices generated by T form the class C0.

Proof: By Lemma ??, the “or” of k rows of T has no zeroes and qk−1 ones.
The “or” of k rows of S has precisely 1 zero and qk−1 − 1 ones. The rest of
the proof also follows from Lemma ??. 2

When k = n one can take q = 2 and the above scheme reduces to Construc-
tion II in [?].
If n is a prime power, one can take q = n (see (??)). The blocklength of this
k out of n scheme equals nk−1. The comparison of our scheme with the two
corresponding schemes of [?] - also mentioned in Section ?? - is similar to
the comparison at the end of Section ??.
In many cases, Construction ?? gives k out of n schemes with smaller block-
length than Construction ?? (e.g. if k = n). However there are situations
where the opposite is true. For instance, if n − 1 is a prime power, then
Construction ?? gives a blocklength of ((n− 1)k − 1)/(n− 2). On the other
hand, it can be easily shown that the blocklength of Construction ?? is at
least nk−1, which is larger than the first blocklength.
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5 Bounds on k out of n schemes

In this section we will obtain some results on the structure of k out of n
secret sharing schemes. In order to prove these results we develop a method
of decomposing a k out of n secret sharing scheme into two k − 1 out of
n−1 schemes. The significance of this method lies in the fact that it enables
proofs by induction. Let us first mention some of our results.

Theorem 5.1 For any k out of n secret sharing scheme with parameters
[b; h, l] we have b ≥ (h− l)2k−1.

Theorem 5.2 Let b(k, n) be the minimal blocklength of any uniform k out
of n scheme, then b(k, n) ≥ 2 · b(k − 1, n − 1). Moreover, if g is minimal

with respect to
(

g
bg/2c

)
≥ n− k + 2, then b(k, n) ≥ g · 2k−2. In particular, the

blocklength of any uniform k out of n scheme with k 6= n is at least 3 · 2k−2.

Theorem 5.3 Let S = (C0, C1) be a uniform k out of n scheme with parame-
ters [b; h, l]. Then any A0 in C0 and A1 in C1 are systematic and the scheme
generated by A0 and A1 yields a strong k out of n scheme with parameters
[b; h, l].

Theorem ?? is an improvement of [?, Theorem 1] of Naor and Shamir. More-
over, contrary to the proof of Naor and Shamir, ours is given within the
context of visual sharing schemes. From Theorem ?? one easily deduces that
the loss of contrast of any k out of k scheme [b; h, l] is at least 1/(h + l)2k−1.
Hence the k out of k scheme with parameters [2k−1; 1, 0] mentioned in Section
?? has minimal loss of contrast.
We first introduce some convenient notions. Let A be an n × b Boolean
matrix and r the i-th row in A. Then the 1-restriction, (resp. 0-restriction)
matrix of A with respect to the i-th row is the restriction of A to the column
where r has 1-coordinates (resp. 0-coordinates). Observe that the number
of rows in these restrictions equals n− 1. Their number of columns depends
on the weight of r, however their sum equals b.
This notion can be naturally extended to a collection C of n × b Boolean
matrices that all have an i-th row of the same weight. Hence in this situation
we can also speak of the 0-restriction and 1-restriction of C with respect to
the (fixed) i-th row.
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Now suppose that S = (C0, C1) is a k(> 1) out of n scheme with parameters
[b; h, l]. Let i ∈ {1, 2, ..., n} and let r be a vector which occurs as an i-th row
in a matrix of C0 (and hence in C1). Also let b0 (resp. b1) be the number of
zeros (resp. ones) in r. We now decompose S in three steps.

1. C̃0 (resp. C̃1) consists of all matrices in C0 (resp. C1), whose i-th row
has the same weight as r (cf. condition 3 of a visual sharing scheme).

2. Let D0 (resp. D1) be the 0-restriction of C̃0 (resp. C̃1) with respect to
the i-th row.

3. Let E0 (resp. E1) be the 1-restriction of C̃1 (resp. C̃0) with respect to
the i-th row (note the interchange of 0 and 1).

Lemma 5.4 In the above context:
(D0,D1) is a k − 1 out of n− 1 scheme with parameters [b0; h, l].

Let zmax be the maximal value of z(v) over all v, where v is the “or” of any
k− 1 rows different from i of any matrix in either C̃0 or C̃1. The integer zmin

is obtained similarly by replacing “maximal” with “minimal”.

If zmax − zmin < h− l, then (E0, E1) yields a k − 1 out of n− 1 scheme with
parameters [b1; zmin− l, zmax−h]. Moreover, if S is uniform then zmax = zmin

and the schemes (D0,D1) and (E0, E1) are also uniform.

Proof: The proof of the first assertion of the lemma is a straightforward
verification. In the proof of the second part (about (E0, E1)), the assertions
about the blocksize being b1 and that the third condition of a visual secret
sharing scheme is satisfied, follow also with a straightforward verification.
Thus only the two separation properties remain to be proven for this part.
To show the first separation property, let E be a (k−1)× b1 submatrix of an
element in E0. Then E can be obtained by the 1-restriction to the i-th row
of a k × b submatrix C of an element in C1. Denote the i-th row of C by r.
Also, let Ĉ denote the (k − 1)× b submatrix of C obtained by removing the
i-th row from C. So E is a submatrix of Ĉ and Ĉ is a submatrix of C.
Now let z be the number of zero columns in Ĉ, i.e. the “or” u of Ĉ satisfies
z(u) = z. Each such column has either a zero or a one on the corresponding
position in r, giving rise to two types of columns in C. Hence if the numbers
of these columns in C are denoted by respectively z0 and z1, then z = z0 +z1.
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Observe that the “or” v of C satisfies z(v) = z0 and that the “or” w of E
satisfies z(w) = z1. Moreover, z ≤ zmax by construction and z0 ≥ h by
definition. Hence, z1 ≤ zmax − h.
In a similar fashion one proves that the “or” w of E in E1 satisfies z(w) ≥
zmin− l. As zmin− l > zmax−h by assumption, this concludes the proof that
(E0, E1) is a secret sharing scheme.

Let us now turn to the last statement of the lemma. That zmax = zmin if S
is uniform follows directly. The verification of the uniformity of (D0,D1) is
once again straightforward. To verify that (E0, E1) is uniform, let s < k and
let E be an s × b1 submatrix in E0 or E1. Then E can be obtained by the
1-restriction of an (s + 1)× b1 submatrix C of an element in C0 or C1 to the
i-th row r. Also, let Ĉ denote the s× b submatrix of C obtained by removing
the i-th row from C. So E is a submatrix of Ĉ and Ĉ is a submatrix of C.
Now let z be the number of zero columns in Ĉ, i.e. the “or” u of Ĉ satisfies
z(u) = z. Each such column has either a zero or a one on the corresponding
position in r, giving rise to two types of columns in C. Hence, if the numbers
of these columns in C are denoted by respectively z0 and z1, then z = z0 +z1.
Observe that the “or” v of C satisfies z(v) = z0 and that the “or” w of D
satisfies z(w) = z1. Moreover, by uniformity, z and z0 only depend on s,
hence so does z1. 2

We remark that there exist examples of k out of n schemes (even generated
ones) in which (E0, E1), is not a visual secret sharing scheme (i.e. does not
satisfy the first two conditions of a visual secret sharing scheme).
As an illustration of the above technique, let (C0, C1) be the following [7;1,0]
3 out of 3 visual sharing scheme, where C0 and C1 are respectively generated
by:




0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0


 ;




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 .

When restricting this scheme to the third row, we have zmin = zmax = 1.
Then, the [3;1,0] 2 out of 2 scheme (D0, D1) and the [4;1,0] 2 out of 2 scheme
(E0, E1) are generated by

(
0 1 1
0 1 1

)
;

(
0 1 1
1 0 1

)

14



respectively by
(

0 0 1 1
0 1 0 1

)
;

(
0 0 1 1
1 1 0 0

)
.

Proof of Theorem ??: As taking k transparencies of a k out of n scheme
yields a k out of k scheme, it suffices to prove the theorem for k out of k
schemes. To this end, we will use induction to k. Observe that the result for
k = 1 is evident. Now assume the validity of of Theorem ?? for all k− 1 out
of k − 1 schemes.
As an intermediate result we shall prove the result for schemes generated
by two Boolean k × b matrices A0, A1 with parameters [b; h, l]. Note that
- in the context of Lemma ?? - for any row index i (say i = 1) we have
z = zmax = zmin. Hence taking the 0-restrictions and 1-restrictions to the
first row, yields two k − 1 out of k − 1 schemes with respective parameters
[b0; h, l] and [b1; z− l, z− h]. By induction b0 ≥ (h− l)2k−2 and b1 ≥ (z− l−
(z − h))2k−2 = (h− l)2k−2. Hence b = b0 + b1 ≥ (h− l)2k−1, as desired.
For a proof for general k out of k schemes (C0, C1) we will use the following
nice trick from [?]. Let r = |C0| = |C1| and form the Boolean n × (b · r)
matrices A0 (resp. A1) by concatenating all matrices in C0 (resp. C1). Then
A0 and A1 generate a k out of k scheme with parameters [r · b; r · h, r · l].
Hence by the intermediate result r · b ≥ r(h− l)2k−1, or b ≥ (h− l)2k−1. 2

Proof of Theorem ??: The first part of Theorem ?? follows directly from
the last part of Lemma ??.
For a proof of the second part of the theorem, we will use induction to k, n.
Observe that if the integer g satisfies the condition mentioned in the theorem
for any k, n, then it also satisfies this condition for k − 1, n − 1. Hence, if
the result is valid for k − 1, n − 1 then the validity for k, n follows directly
from the first part of Theorem ??. It therefore suffices to prove the “basis”
of the induction, i.e. the situation where k = 2. To this end, let (C0, C1) be
a uniform 2 out of n scheme, and let S in C1.
Let g be minimal with respect to

(
g

bg/2c
)
≥ n. Observe that the n rows of S

must be (pairwise) different. Hence if the weight of any row (transparency)

is denoted by h, then b must satisfy
(

b
h

)
≥ n (consider the rows as subsets of

{1, . . . k}). As the last left hand side is less or equal to
(

b
bb/2c

)
the (minimal)

number g will be less than b, proving the result for k = 2. 2

15



Proof of Theorem ??: For a proof of Theorem ?? we will use induction
to k. Observe that the result for k = 1 is evident. Now assume the validity
of Theorem ?? for all (uniform) k − 1 out of n schemes. Let S = (C0, C1) be
a k out of n scheme and let A0 (resp. A1) be an s× b submatrix (s < k) of
an element C0 in C0 (resp. C1 in C1). If s = 1 then A0 and A1 are evidently
systematic, hence we may assume that s ≥ 2.
As an intermediate result we shall show that A0 and A1 are systematic if
C0 and C1 have a common row number i. Indeed, by decomposing S to the
i-th row into k− 1 out of n− 1 symmetric schemes (Lemma ??), the matrix
A0 (resp. A1) decomposes into two Ȧ0 and Ä0 (resp. Ȧ1 and Ä1). By the
induction hypothesis both Ȧ0, Ȧ1 and Ä0, Ä1 are systematic. Now as the
i-th row of A0 equals the i-th row of A1 modulo a permutation of b elements
(they have the same weight), this means that A0 and A1 are also systematic.
The general case follows from the intermediate result by considering two
chains A0,1, A0,2, . . . , A0,t and A1,1, A1,2 . . . , A1,t of s × b submatrices of C0

and C1 respectively with A0,0 = A0 and A1,t = A1 such that each A0,j, A1,j

and A0,j+1, A0,j and A0,j, A1,j+1 have a common row. 2

With respect to Theorem ??: one can find k out of n schemes (C0, C1) in
which no selection of matrices in C0 and C1 generates a k out of n (sub-)-
scheme. We next give a bound on the blocklength of high-contrast visual
secret sharing schemes, i.e. schemes of type [b; h, 0].

Theorem 5.5 For any k out of n scheme with parameters [b; h, 0] we have

b ≥ h ·
(

n
k−1

)
.

Proof: Consider such a scheme and let C be any matrix from the accompa-
nying collection of Boolean matrices C1. It follows from the first and third
condition of a visual secret sharing scheme that each submatrix of C con-
sisting of k − 1 rows of C has at least h zero columns. Moreover, it follows
from l = 0 that C has no columns with more than k − 1 zeros. Hence the
blocklength b must be as least as big as the number of h times the number
of (k − 1)-subsets of {1, ..., n}, i.e. h ·

(
n

k−1

)

2

For fixed k and large n, the expression
(

n
k−1

)
is approximately equal to

nk−1/(k − 1)!. Hence, the previous result at least indicates that the block-
lengths of the high-contrast k out of n schemes constructed in Sections ??
and ?? are fairly optimal.
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It seems like a natural question whether interchanging zeros and ones in any
k out of n scheme yields another (the “dual”) k out of n scheme. Alas, one
can construct 2 out of 2 schemes whose “dual” is not a 2 out of 2 scheme.
To this end, consider the [4; 2, 1; 4!] 2 out of 2 schemes (C1

0 , C1
1) and (C2

0 , C2
1)

respectively generated by

(
0 0 1 1
0 0 1 1

)
,

(
0 0 1 1
0 1 0 1

)

and
(

0 0 1 1
0 0 0 1

)
,

(
0 0 1 1
1 0 0 0

)
.

Now let (C0, C1) be the “union” of these schemes, i.e. C0 = C1
0 ∪ C2

0 and
C1 = C1

1 ∪ C2
1 , then this yields a [4; 2, 1; 2 · 4!] 2 out of 2 scheme. However, if

(C∗0 , C∗1) denotes the “dual” of this scheme, then

(
1 1 0 0
1 1 1 0

)
∈ C∗0 ;

(
1 1 0 0
1 0 1 0

)
∈ C∗1 .

Hence, (C∗0 , C∗1) can never yield a 2 out of 2 scheme. The following result,
however, settles the above question for uniform schemes.

Theorem 5.6 Let S = (C0, C1) be a uniform k out of n scheme and let F
(resp. G) be constructed from C0 (resp. C1) by interchanging zero and one.
Then, (F , G) yields an uniform k out of n scheme for n even, and (G, F)
yields a uniform k out of n scheme for n odd.

For the proof of this theorem we need the following lemma.

Lemma 5.7 Let S = (C0, C1) be a uniform k out of n scheme with parame-
ters [b; h, l] and let A be a k × b submatrix of an element in C0 or C1. Also
for each v in V2(k) let e(v) be the number of columns in A equal to v. Then
for v1, v2 in V2(k):

e(v1) + e(v2)(−1)1+weight(v1−v2),

is independent of A.
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Proof: It suffices to prove the lemma in the case that weight(v1 − v2) = 1.
The general case can then be shown by an inductive argument. Moreover,
without loss of generality we may assume that v1 and v2 only differ in their
first coordinate. Then the remaining k−1 elements give rise to an element v
in V2(k−1). By removing the first row of A we obtain a (k−1)×b submatrix
A′. Now, e(v1) + e(v2) is precisely the number of columns in A′ equal to v.
By Theorem ?? this number only depends on k− 1, i.e. is independent of A.

2

The previous lemma and its proof can be readily generalized to s× b subma-
trices for s < k.

Proof of Theorem ??: Let n be odd. Also let S = (C0, C1) be a uniform
k out of n scheme and let A be a k × b submatrix of an element in C0 or C1.
By Lemma ?? the number z defined as the number of all-zero vectors plus
all-one vectors is independent of A. As the number of all-zero vectors in A
is at least h, the number of all-one vectors in A is at most z − l. Similarly,
if A is a submatrix of an element of a member of C1, then the number of
one vectors in A is at least z − l. Hence the interchanging of zeros and ones
yields a [b; z − l, z − h] scheme. The proof for n even is similar.

2

We remark that the dual (in the sense of Theorem ??) of any 1 out of n scheme
yields once again such a scheme (trivial). Moreover, by arguing similarly as
in the proof of Theorem ??, one can show that the same is true for any 2
out of 2 scheme generated by two matrices. This explains why the 2 out of
2 counterexample preceding Theorem ?? is not of this type.

6 Coloured k out of n Secret Sharing Schemes

The secret sharing schemes as proposed in [?] only deal with secretly sharing
black & white images. It seems only natural to develop a method of secretly
sharing coloured images (or images with grey-levels). In this section we will
(briefly) describe such a method. At the end of this section we will indicate
some applications.
A coloured image is seen as an array of pixels, each of which is of colour
k0, k1, . . . , kc−1. Here c is the number of colours and ki is called the i-th
colour. Clearly, we can look upon a tone image with grey-levels g0, . . . , gr−1
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Figure 1: Representation of three colours

as a coloured picture with colours g0, . . . , gr−1.
Each pixel is divided into b subpixels of colour 0, 1, . . . , c−1. These subpixels
interrelate which each other in the following way. When subpixels are put
on top of each other and held to the light, one sees a “generalized” or, i.e. if
all subpixels are of colour i then one sees light of colour i, otherwise one sees
no light at all (i.e. black).
These “special” properties of subpixels can be constructed as follows. Con-
sider a circle (of small radius) divided in c equal circle-sectors 0, 1, . . . , c− 1.
Then a subpixel of colour i corresponds with such a circle where sector i has
colour ki and all other sectors are black. Compare Figure 1.
Before giving a formal definition of a colour secret sharing scheme, or colour
scheme for short, we introduce some convenient notations. First, we shall
always assume that the c colours are elements of a Galois field. Second,
we denote black by •. Moreover, the sign • is always distinguishable from
the c colours, although of course the colour black might be one of the c
colours. Next, the generalized “or” of elements in {k0, . . . , kc−1} equals ki if
all elements are equal to ki, otherwise it equals •. Finally, for a vector v with
coordinates in {k0, k1, . . . , kc−1} ∪ {•} we let zi(v) (i = 0, . . . , c − 1) denote
the number of coordinates in v equal to colour i.

Definition 6.1 A k out of n c-colour visual secret sharing system

S = (C0; C1, . . . , Cc−1),

consists of c collections of n × b q-ary matrices, in which the c colours are
elements of the Galois field GF (q) To share a pixel of colour i, the dealer
randomly chooses one of the matrices in Ci. The chosen matrix defines the
colour of the b subpixels in each one of the n transparencies. The solution is
considered valid if the following three conditions are met for all 0 ≤ i ≤ c−1:

1 For any S in Ci, the generalized “or” v of any k of the n rows satisfies
zi(v) ≥ h.
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2 For any S in Ci, the generalized “or” v of any k of the n rows satisfies
zj(v) ≤ l, for j 6= i.

3 For any i1 < i2 < . . . < is in {1, 2, . . . , n} with s < k, the collections of
s× b matrices Dj for j ∈ {0, 1, . . . , c− 1} obtained by restricting each
n×b matrix in Cj to rows i1, i2, . . . , is are indistinguishable in the sense
that they contain the same matrices with the same frequencies.

As before, h > l and b is called the blocklength of the scheme. Also, the
cardinalities of the Ci, must coincide and are denoted with r. In our con-
struction of colour schemes a particular form of n-arcs of functionals plays a
prominent role.

Definition 6.2 An n-arc of functionals G,F1, F2, . . . , Fn−1 on Vm(q) is called
coinciding (with respect to G) provided for each m−subset M of {1, 2, . . . n−
1}

( ⋂

i∈M

F−1
i (1)

)
∩G−1(1) 6= ∅.

The maximum n for which an coinciding n-arc of functionals in Vm(q) exists
will be denoted by s(q, m).

Lemma 6.3 The following relations hold for s(q, m):

1. s(q,m) ≥ q. If m− 1 and q− 1 are not relatively prime then s(q,m) ≥
q + 1.

2. s(q,m) ≥ m. If q > 2 or m is odd, then s(q, m) ≥ m + 1.

Proof: For a proof of the first statement, one can easily verify that the func-
tionals G,F1, F2, . . . , Fq−1 on Vm(q) corresponding with - any permutation of
- the vectors (1, ω1, . . . , ωm−1) with ω in GF (q) form a coinciding q-arc. Now
suppose that k−1 and q−1 are not relatively prime. Let us try - cf. the proof
of Theorem ?? - to make this arc one larger by adding the functional corre-
sponding to (0, . . . , 0, 1). Under the stated condition the mapping x → xm−1

is not surjective. Hence there exists a (non-zero) y ∈ GF (q) not occuring as
last coordinate in any of the q + 1 vectors determining the functionals. This
implies that all functionals take a non-zero value on (−y, 0, . . . , 0, 1). Hence,
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by dividing the functionals by their value on (−y, 0, . . . , 0, 1) we obtain a
coinciding (q + 1)-arc.
For a proof of the second statement, one can easily verify that the functionals
G,F1, F2, . . . , Fm−1 on Vm(q) corresponding with - any permutation of - the
unit vectors of Vm(q) constitute a coinciding m-arc. If q > 2 or m odd, then
there exists a non-zero t ∈ GF (q) such that λ = t + m− 1 6= 0. Now expand
the last m-arc with the functional corresponding to the vector λ−1(1, . . . , 1, t).
Then one clearly obtains an (m+1)-arc of functionals which all take the value
1 on (1, . . . , 1).

2

Theorem 6.4 Let q be a finite field size such that q ≥ c and s(q, k) ≥ n+1.
Then a k out of n colour visual secret sharing scheme with c colours exists
with parameters b = qk−1, h = 1, l = 0, r = qk−1!

Proof: Let {k0, . . . , kc−1} be any c-subset of GF (q). Also choose an coincid-
ing (n + 1)-arc of functionals G,F1, . . . , Fn on Vk(q). Now proceed similar
to Construction ??: for each j = 0, . . . c − 1 construct the representation
matrices Sj of the functionals Fi, 1 ≤ i ≤ n, with respect to a numbering of
G−1(kj).
Now for each j = 0, . . . , c − 1 let Cj, be generated by Sj. Observe that for
any k-subset K of {1, . . . , n} and j ∈ {0, . . . , c− 1}

( ⋂

i∈K

F−1
i (kj)

)
∩G−1(kj) 6= ∅. (8)

This implies the first condition of a colour visual secret sharing scheme.
For a proof of the second condition, we argue by contradiction. Suppose
that S in Ci, is such that the generalized “or” v of any k of the n rows
satisfies zj(v) > 0 for j 6= i. Without loss of generality we may assume that
these rows are 1, . . . k. This then implies the existence of an x ∈ Vk(q) with
F1(x) = . . . = Fk(x) = kj, while G(x) = ki 6= kj. Let y be any element in
the left hand side of Equation ??, then

y − x

kj − ki

∈
(

k⋂

i=1

F−1
i (0)

)
∩G−1(1) 6= ∅.

This contradicts the dimension k of Vk(q) by Lemma ??.
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Finally, also the security condition of a colour scheme follows from Lemma
??. 2

As an illustration, below are the three matrices belonging to colours 0, 1, 2
respectively, generating a 3 out of 3 scheme with three colours.




0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
0 1 2 1 2 0 2 0 1







0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
2 0 1 0 1 2 1 2 0







0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2
1 2 0 2 0 1 0 1 2


 .

Let c > 2 be a prime power. Then by taking q = c (cf. Lemma ??) the above
construction produces: a k out of k scheme with c colours for all k; a k out
of c− 1 scheme with c colours for k < c; a k out of c scheme with c colours
for k < c if k − 1 and c− 1 are not relatively prime.

The above proof actually shows a special property of the k out of n colour
visual schemes of Theorem ??: when putting k transparencies on top of each
other and held to the light precisely one colour (the shared one) is shown.
We remark that this property can - at least in principle - be used to securely
(and cheaply!) share short messages (e.g. passwords, combinations of safes)
represented in the “alphabet” of the used colors. That is, passwords or safe-
combination consist of colours (e.g. “blue green red red green blue”) instead
of alpha-numerical characters. This, for instance, can be applied in situations
where no computer-assistance is available (e.g. as a back-up) or desirable.
It is mentioned in [?] that in black & white visual cryptography one can
send one of the shares by fax. Similarly, in coloured visual cryptography one
can send one of the coloured shares by email, and use the (colour) computer
screen as one as the shares. One could also print the share on a colour printer.
In this fashion one can make use of information technology without having
to entrust anybody with the resulting, final secret information. Indeed, the
final computation is done by the human visual system.

For example, let us assume that we are using dots of diameter 0.5 cm with
9 colours. A 3 out of 9 visual sharing scheme with 9 colours will use 92 = 81
coloured dots for each colour of the password. As there is room for roughly
20 · 30/0.25 = 2400 dots on an A4 overhead sheet, we can use such a sheet
to construct a 3 out of 9 visual sharing scheme for a 29 · log 9 ≈ 90 bit
safe-combination.
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7 Summary

We have introduced a notion of contrast of a visual secret sharing scheme that
is more physically justifiable than the one given in [?]. Moreover, we have
presented two new constructions for k out of n visual secret sharing schemes
which are both of maximal contrast, contrary to the two schemes constructed
in [?]. The blocklengths of our schemes are within the blocklengths of schemes
of the same parameters k and n in [?].
We have also presented some theoretical results on visual secret sharing
schemes. One result is on decomposing one visual secret sharing scheme into
two other ones with smaller parameters. Several bounds on the blocklengths
of schemes are derived, improving [?, Theorem 1]. A further result shows that
(k − 1)× b submatrices of k out of n uniform schemes, as introduced in [?],
are essentially equal to each other (modulo a column permutation). A final
result states that the “dual” of a uniform scheme (formed by interchanging
one and zero) is once again a uniform scheme.
Finally, we have presented a construction for coloured visual secret sharing
schemes, sharing coloured images instead of black & white ones as in [?]. We
have also indicated some applications for it.
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