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Abstract. This paper introduces the XTR public key system. XTR is

based on a new method to represent elements of a subgroup of a mul-

tiplicative group of a �nite �eld. Application of XTR in cryptographic

protocols leads to substantial savings both in communication and com-

putational overhead without compromising security.

1 Introduction

The DiÆe-Hellman (DH) key agreement protocol was the �rst published prac-
tical solution to the key distribution problem, allowing two parties that have
never met to establish a shared secret key by exchanging information over an
open channel. In the basic DH scheme the two parties agree upon a generator
g of the multiplicative group GF(p)∗ of a prime �eld GF(p) and they each send
a random power of g to the other party. Assuming both parties know p and g,
each party transmits about log2(p) bits to the other party.

In [7] it was suggested that �nite extension �elds can be used instead of prime
�elds, but no direct computational or communication advantages were implied.
In [22] a variant of the basic DH scheme was introduced where g generates a
relatively small subgroup of GF(p)∗ of prime order q. This considerably reduces
the computational cost of the DH scheme, but has no e�ect on the number of
bits to be exchanged. In [3] it was shown for the �rst time how the use of �nite
extension �elds and subgroups can be combined in such a way that the number of
bits to be exchanged is reduced by a factor 3. More speci�cally, it was shown that
elements of an order q subgroup of GF(p6)∗ can be represented using 2 log2(p)
bits if q divides p2 − p + 1. Despite its communication eÆciency, the method
of [3] is rather cumbersome and computationally not particularly eÆcient.

In this paper we present a greatly improved version of the method from [3]
that achieves the same communication advantage at a much lower computational
cost. We refer to our new method as XTR, for EÆcient and Compact Subgroup
Trace Representation. XTR can be used in conjunction with any cryptographic
protocol that is based on the use of subgroups and leads to substantial savings in
communication and computational overhead. Furthermore, XTR key generation
is very simple. We prove that using XTR in cryptographic protocols does not
a�ect their security. The best attacks we are aware of are Pollard's rho method
in the order q subgroup, or the Discrete Logarithm variant of the Number Field
Sieve in the full multiplicative group GF(p6)∗. With primes p and q of about



1024=6 ≈ 170 bits the security of XTR is equivalent to traditional subgroup sys-
tems using 170-bit subgroups and 1024-bit �nite �elds. But with XTR subgroup
elements can be represented using only about 2 ∗ 170 bits, which is substantially
less than the 1024-bits required for their traditional representation.

The amount of computation required by a full exponentiation using XTR is
less than the time required by a full scalar multiplication in an Elliptic Curve
cryptosystem (ECC) over a 170-bit prime �eld, and thus substantially less than
the time required by a full exponentiation in either RSA or traditional subgroup
discrete logarithm systems of equivalent security. XTR achieves security simi-
lar to RSA for much smaller key sizes than RSA. Although ECC key sizes can
be somewhat further reduced than XTR key sizes, in many circumstances (e.g.
storage), key sizes of ECC and XTR will be comparable. However, XTR is not
a�ected by the uncertainty still marring ECC security. Key selection for XTR
is very fast compared to RSA, and orders of magnitude easier and faster than
for ECC. As a result XTR may be regarded as the best of two worlds, RSA and
ECC. It is an excellent alternative to either RSA or ECC in applications such as
SSL/TLS (Secure Sockets Layer, Transport Layer Security), public key smart-
cards, WAP/WTLS (Wireless Application Protocol, Wireless Transport Layer
Security), IPSEC/IKE (Internet Protocol Security, Internet Key Exchange), and
SET (Secure Electronic Transaction).

In [14] it is argued that ECC is the only public key system that is suitable
for a variety of environments, including low-end smart cards and over-burdened
web servers communicating with powerful PC clients. XTR shares this advan-
tage with ECC, with the distinct additional advantage that XTR key selection
is very easy. This makes it easily feasible for all users of XTR to have public keys
that are not shared with others, unlike ECC where a large part of the public
key is often shared between all users of the system. Also, compared to ECC,
the mathematics underlying XTR is straightforward, thus avoiding two common
ECC-pitfalls: ascertaining that unfortunate parameter choices are avoided that
happen to render the system less secure, and keeping abreast of, and incorporat-
ing additional checks published in, newly obtained results. The latest example
of the latter is [8], where yet another condition a�ecting the security of ECC
over �nite �elds of characteristic two is described. As a consequence the ECC
implementation of the draft Internet Key Exchange protocol (part of IPSec) had
to be revised. It may be due to such examples that A.M. Odlyzko advises to use
ECC key sizes of at least 300 bits in [16], even for moderate security needs.

XTR is the �rst method we are aware of that uses GF(p2) arithmetic to
achieve GF(p6) security, without requiring explicit construction of GF(p6). Let
g be an element of order q > 6 dividing p2−p+1. Because p2−p+1 divides the
order p6−1 of GF(p6)∗ this g generates an order q subgroup of GF(p6)∗. Since q
does not divide any ps − 1 for s = 1; 2; 3 (cf. [11]), the subgroup generated by g
cannot be embedded in the multiplicative group of any true sub�eld of GF(p6).
We show, however, that arbitrary powers of g can be represented using a single
element of the sub�eld GF(p2), and that such powers can be computed eÆciently
using arithmetic operations in GF(p2) while avoiding arithmetic in GF(p6).

2



In Section 2 we describe XTR, and in Section 3 we explain how the XTR
parameters can be found quickly. Applications and comparisons to RSA and
ECC are given in Section 4. In Section 5 we prove that using XTR does not have
a negative impact on the security.

2 Subgroup representation and arithmetic

2.1 Preliminaries

Let p ≡ 2 mod 3 be a prime such that the sixth cyclotomic polynomial evaluated
in p, i.e., �6(p) = p

2 − p+1, has a prime factor q > 6. In subsection 3.1 we give
a fast method to select p and q. By g we denote an element of GF(p6)∗ of order
q. Because of the choice of q, this g is not contained in any proper sub�eld of
GF(p6) (cf. [11]). Many cryptographic applications (cf. Section 4) make use of the
subgroup 〈g〉 generated by g. In this section we show that actual representation
of the elements of 〈g〉 and of any other element of GF(p6) can be avoided. Thus,
there is no need to represent elements of GF(p6), for instance by constructing a
sixth or third degree irreducible polynomial over GF(p) or GF(p2), respectively.
A representation of GF(p2) is needed, however. This is done as follows.

From p ≡ 2 mod 3 it follows that p mod 3 generates GF(3)∗, so that the
zeros � and �

p of the polynomial (X3 − 1)=(X − 1) = X
2 + X + 1 form an

optimal normal basis for GF(p2) over GF(p). Because �i = �
i mod 3, an element

x ∈ GF(p2) can be represented as x1�+x2�
p = x1�+x2�

2 for x1; x2 ∈ GF(p). In
this representation of GF(p2) an element t of GF(p) is represented as −t�− t�

2,
e.g. 3 is represented as −3�− 3�2. Arithmetic operations in GF(p2) are carried
out as follows.

For any x = x1� + x2�
2 ∈ GF(p2) we have that xp = x

p

1�
p + x

p

2�
2p =

x2�+ x1�
2. It follows that pth powering in GF(p2) does not require arithmetic

operations and can thus be considered to be for free. Squaring of x1�+ x2�
2 ∈

GF(p2) can be carried out at the cost of two squarings and a single multiplication
in GF(p), where as customary we do not count the cost of additions in GF(p).
Multiplication in GF(p2) can be done using four multiplications in GF(p). These
straightforward results can simply be improved to three squarings and three
multiplications, respectively, by using a Karatsuba-like approach (cf. [10]): to
compute (x1� + x2�

2) ∗ (y1� + y2�
2) one computes x1 ∗ y1, x2 ∗ y2, and (x1 +

x2) ∗ (y1 + y2), after which x1 ∗ y2 + x2 ∗ y1 follows using two subtractions.
Furthermore, from (x1� + x2�

2)2 = x2(x2 − 2x1)� + x1(x1 − 2x2)�
2 it follows

that squaring in GF(p2) can be done at the cost of two multiplications in GF(p).
Under the reasonable assumption that a squaring in GF(p) takes 80% of the
time of a multiplication in GF(p) (cf. [4]), two multiplications is faster than three
squarings. Finally, to compute x ∗ z − y ∗ zp ∈ GF(p2) for x; y; z ∈ GF(p2) four
multiplications in GF(p) suÆce, because, with x = x1�+ x2�

2, y = y1�+ y2�
2,

and z = z1�+ z2�
2, it is easily veri�ed that x ∗ z − y ∗ zp = (z1(y1 − x2 − y2) +

z2(x2 − x1 + y2))�+ (z1(x1 − x2 + y1) + z2(y2 − x1 − y1))�
2. Thus we have the

following.
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Lemma 2.1.1 Let x; y; z ∈ GF(p2) with p ≡ 2 mod 3.

i. Computing xp is for free.

ii. Computing x2 takes two multiplications in GF(p).
iii. Computing x ∗ y takes three multiplications in GF(p).
iv. Computing x ∗ z − y ∗ zp takes four multiplications in GF(p).

For comparison purposes we review the following well known results.

Lemma 2.1.2 Let x; y; z ∈ GF(p6) with p ≡ 2 mod 3, and let a; b ∈ Z with

0 < a; b < p. Assume that a squaring in GF(p) takes 80% of the time of a

multiplication in GF(p) (cf. [4]).

i. Computing x2 takes 14:4 multiplications in GF(p).
ii. Computing x ∗ y takes 18 multiplications in GF(p).
iii. Computing xa takes an expected 23:4 log2(a) multiplications in GF(p).
iv. Computing x

a ∗ yb takes an expected 27:9 log2(max(a; b)) multiplications in

GF(p).

Proof. Since p ≡ 2 mod 3, GF(p6) can be represented using an optimal normal
basis over GF(p) so that the `reduction' modulo the minimal polynomial does
not require any multiplications in GF(p). Squaring and multiplication in GF(p6)
can then be done in 18 squarings and multiplications in GF(p), respectively,
from which i and ii follow. For iii we use the ordinary square and multiply
method, so we get log2(a) squarings and an expected 0:5 log2(a) multiplica-
tions in GF(p6). For iv we use standard multi-exponentiation, which leads to
log2(max(a; b)) squarings and 0:75 log2(max(a; b)) multiplications in GF(p6).

2.2 Traces

The conjugates over GF(p2) of h ∈ GF(p6) are h, hp
2

, and hp
4

. The trace Tr(h)
over GF(p2) of h ∈ GF(p6) is the sum of the conjugates over GF(p2) of h, i.e.,

Tr(h) = h+hp
2

+hp
4

. Because the order of h ∈ GF(p6)∗ divides p6−1, i.e., p6 ≡ 1

modulo the order of h, we have that Tr(h)p
2

= Tr(h), so that Tr(h) ∈ GF(p2).
For h1; h2 ∈ GF(p6) and c ∈ GF(p2) we have that Tr(h1+h2) = Tr(h1)+Tr(h2)
and Tr(c ∗ h1) = c ∗ Tr(h1). That is, the trace over GF(p2) is GF(p2)-linear.
Unless speci�ed otherwise, conjugates and traces in this paper are over GF(p2).

The conjugates of g of order dividing p2− p+1 are g, gp−1 and g−p because
p
2 ≡ p− 1 mod p2 − p+ 1 and p

4 ≡ −p mod p2 − p+ 1.

Lemma 2.2.1 The roots of X3 − Tr(g)X2 + Tr(g)pX − 1 are the conjugates

of g.

Proof. We compare the coeÆcients of X3 − Tr(g)X2 + Tr(g)pX − 1 with the
coeÆcients of the polynomial (X−g)(X−g

p−1)(X−g
−p). The coeÆcient of X2

follows from g+gp−1+g−p = Tr(g), and the constant coeÆcient from g
1+p−1−p =

1. The coeÆcient of X equals g ∗ gp−1+ g ∗ g−p+ g
p−1 ∗ g−p = g

p+ g
1−p+ g

−1.
Because 1− p ≡ −p2 mod p2 − p + 1 and −1 ≡ p

2 − p mod p2 − p + 1, we �nd
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that gp + g
1−p + g

−1 = g
p + g

−p
2

+ g
p
2−p = (g + g

−p + g
p−1)p = Tr(g)p, which

completes the proof.

Similarly (and as proved below in Lemma 2.3.4.ii), the roots of X3−Tr(gn)X2+
Tr(gn)pX − 1 are the conjugates of gn. Thus, the conjugates of gn are fully
determined by X

3 − Tr(gn)X2 + Tr(gn)pX − 1 and thus by Tr(gn). Since
Tr(gn) ∈ GF(p2) this leads to a compact representation of the conjugates of gn.
To be able to use this representation in an eÆcient manner in cryptographic pro-
tocols, we need an eÆcient way to compute Tr(gn) given Tr(g). Such a method
can be derived from properties of g and the trace function. However, since we
need a similar method in a more general context in Section 3, we consider the
properties of the polynomial X3 − cX

2 + c
p
X − 1 for general c ∈ GF(p2) (as

opposed to c's that are traces of powers of g).

2.3 The polynomial F (c;X)

De�nition 2.3.1 For c ∈ GF(p2) let F (c;X) be the polynomial X3 − cX
2 +

c
p
X − 1 ∈ GF(p2)[X ] with (not necessarily distinct) roots h0, h1, h2 in GF(p6),

and let �(c; n) = h
n
0 + h

n
1 + h

n
2 for n ∈ Z. We use the shorthand cn = �(c; n).

In this subsection we derive some properties of F (c;X) and its roots.

Lemma 2.3.2

i. c = c1.

ii. h0 ∗ h1 ∗ h2 = 1.
iii. hn0 ∗ hn1 + h

n
0 ∗ hn2 + h

n
1 ∗ hn2 = c−n for n ∈ Z.

iv. F (c; h−p

j
) = 0 for j = 0; 1; 2.

v. c−n = cnp = c
p
n for n ∈ Z.

vi. Either all hj have order dividing p2 − p+ 1 and > 3 or all hj ∈ GF(p2).
vii. cn ∈ GF(p2) for n ∈ Z.

Proof. The proofs of i and ii are immediate and iii follows from ii . From
F (c; hj) = h

3
j
− ch

2
j
+ c

p
hj − 1 = 0 it follows that hj �= 0 and that F (c; hj)

p =

h
3p
j
−c

p
h
2p
j
+c

p
2

h
p

j
−1 = 0. With cp

2

= c and hj �= 0 it follows that −h3p
j
(h−3p

j
−

ch
−2p
j

+ c
p
h
−p

j
− 1) = −h3p

j
∗ F (c; h−p

j
) = 0, which proves iv.

From iv it follows, without loss of generality, that either hj = h
−p

j
for j =

0; 1; 2, or h0 = h
−p

0 , h1 = h
−p

2 , and h2 = h
−p

1 , or that hj = h
−p

j+1 mod 3 for
j = 0; 1; 2. In either case v follows. Furthermore, in the �rst case all hj have
order dividing p + 1 and are thus in GF(p2). In the second case, h0 has order

dividing p+1, h1 = h
−p

2 = h
p
2

1 and h2 = h
−p

1 = h
p
2

2 so that h1 and h2 both have
order dividing p2−1. It follows that they are all again in GF(p2). In the last case

it follows from 1 = h0 ∗h1 ∗h2 that 1 = h0 ∗h−p

2 ∗h−p

0 = h0 ∗hp
2

0 ∗h−p

0 = h
p
2−p+1
0

so that h0 and similarly h1 and h2 have order dividing p
2 − p+1. If either one,

say h0, has order at most 3, then h0 has order 1 or 3 since p2 − p + 1 is odd.
It follows that the order of h0 divides p2 − 1 so that h0 ∈ GF(p2). But then h1
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and h2 are in GF(p2) as well, because hj = h
−p

j+1 mod 3. It follows that in the last

case either all hj have order dividing p
2− p+1 and > 3, or all hj are in GF(p2),

which concludes the proof of vi.

If all hj ∈ GF(p2), then vii is immediate. Otherwise F (c;X) is irreducible
and its roots are the conjugates of h0. Thus cn = Tr(hn0 ) ∈ GF(p2) (cf. 2.2).
This concludes the proof of vii and Lemma 2.3.2.

Remark 2.3.3 It follows from Lemma 2.3.2.vi that F (c;X) ∈ GF(p2)[X ] is
irreducible if and only if its roots have order dividing p2 − p+ 1 and > 3.

Lemma 2.3.4

i. cu+v = cu ∗ cv − c
p
v
∗ cu−v + cu−2v for u; v ∈ Z.

ii. F (cn; h
n

j
) = 0 for j = 0; 1; 2 and n ∈ Z.

iii. F (c;X) is reducible over GF(p2) if and only if cp+1 ∈ GF(p).

Proof. With the de�nition of cn, c
p
n = c−n (cf. Lemma 2.3.2.v), and Lemma

2.3.2.ii, the proof of i follows from a straightforward computation.

For the proof of ii we compute the coeÆcients of (X−h
n
0 )(X−h

n
1 )(X−h

n
2 ).

We �nd that the coeÆcient of X2 equals −cn and that the constant coeÆcient
equals −hn0 ∗hn1 ∗hn2 = −(h0∗h1 ∗h2)n = −1 (cf. Lemma 2.3.2.ii). The coeÆcient
of X equals hn0 ∗ hn1 + h

n
0 ∗ hn2 + h

n
1 ∗ hn2 = c−n = c

p
n (cf. Lemma 2.3.2.iii and v).

It follows that (X − h
n
0 )(X − h

n
1 )(X − h

n
2 ) = F (cn; X) from which ii follows.

If F (c;X) is reducible then all hj are in GF(p
2) (cf. Remark 2.3.3 and Lemma

2.3.2.vi). It follows that h
(p+1)p
j

= h
p+1
j

so that hp+1
j

∈ GF(p) for j = 0; 1; 2 and
cp+1 ∈ GF(p). Conversely, if cp+1 ∈ GF(p), then c

p

p+1 = cp+1 and F (cp+1; X) =

X
3−cp+1X

2+cp+1X−1. Thus, F (cp+1; 1) = 0. Because the roots of F (cp+1; X)
are the (p + 1)st powers of the roots of F (c;X) (cf. iv), it follows that F (c;X)
has a root of order dividing p+ 1, i.e., an element of GF(p2), so that F (c;X) is
reducible over GF(p2). This proves iii.

Lemma 2.3.2.v and Lemma 2.3.4.i lead to a fast algorithm to compute cn for
any n ∈ Z.

Corollary 2.3.5 Let c, cn−1, cn, and cn+1 be given.

i. Computing c2n = c
2
n
− 2cp

n
takes two multiplications in GF(p).

ii. Computing cn+2 = c∗cn+1−cp∗cn+cn−1 takes four multiplications in GF(p).

iii. Computing c2n−1 = cn−1 ∗ cn − c
p ∗ cpn + c

p

n+1 takes four multiplications in

GF(p).

iv. Computing c2n+1 = cn+1 ∗ cn − c ∗ cp
n
+ c

p

n−1 takes four multiplications in

GF(p).

Proof. The identities follow from Lemma 2.3.2.v and Lemma 2.3.4.i: with u =
v = n and c0 = 3 for i, with u = n+ 1 and v = 1 for ii, u = n− 1, v = n for iii,
and u = n+ 1, v = n for iv. The cost analysis follows from Lemma 2.1.1.

De�nition 2.3.6 Let Sn(c) = (cn−1; cn; cn+1) ∈ GF(p2)3.
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Algorithm 2.3.7 (Computation of Sn(c) given c) If n < 0, apply this al-
gorithm to −n and use Lemma 2.3.2.v. If n = 0, then S0(c) = (cp; 3; c) (cf.
Lemma 2.3.2.v). If n = 1, then S1(c) = (3; c; c2 − 2cp) (cf. Corollary 2.3.5.i). If
n = 2, use Corollary 2.3.5.ii and S1(c) to compute c3 and thereby S2(n). Oth-
erwise, to compute Sn(c) for n > 2 let m = n. If m is even, then replace m by
m−1. Let m = 2 �m+1, �S �m(c) = Sm(c), �k = 1, and compute �S�k(c) = S3(c) using
Corollary 2.3.5.ii and S(2). Let �m =

Pr

j=0 �mj2
j with �mj ∈ {0; 1} and �mr = 1.

For j = r − 1; r − 2; : : : ; 0 in succession do the following:

{ If �mj = 0 then use �S�k(c) = (c2�k; c2�k+1; c2�k+2) to compute �S2�k(c) = (c4�k;
c4�k+1; c4�k+2) (using Corollary 2.3.5.i for c4�k and c4�k+2 and Corollary 2.3.5.iii
for c4�k+1) and replace �k by 2�k.

{ If �mj = 1 then use �S�k(c) = (c2�k; c2�k+1; c2�k+2) to compute �S2�k+1(c) =
(c4�k+2; c4�k+3; c4�k+4) (using Corollary 2.3.5.i for c4�k+2 and c4�k+4 and Corol-
lary 2.3.5.iv for c4�k+3) and replace �k by 2�k + 1,

After this iteration we have that �k = �m and Sm(c) = �S �m(c). If n is even
use Sm(c) = (cm−1; cm; cm+1) to compute Sm+1(c) = (cm; cm+1; cm+2) (using
Corollary 2.3.5.ii) and replace m by m+ 1. As a result we have Sn(c) = Sm(c).

Theorem 2.3.8 Given the sum c of the roots of F (c;X), computing the sum cn

of the nth powers of the roots takes 8 log2(n) multiplications in GF(p).

Proof. Immediate from Algorithm 2.3.7 and Corollary 2.3.5.

Remark 2.3.9 The only di�erence between the two di�erent cases in Algorithm
2.3.7 (i.e., if the bit is o� or on) is the application of Corollary 2.3.5.iii if the bit
is o� and of Corollary 2.3.5.iv if the bit is on. The two computations involved,
however, are very similar and take the same number of instructions. Thus, the
instructions carried out in Algorithm 2.3.7 for the two di�erent cases are very
much alike. This is a rather unusual property for an exponentiation routine and
makes Algorithm 2.3.7 much less susceptible than usual exponentiation routines
to environmental attacks such as timing attacks and Di�erential Power Analysis.

2.4 Computing with traces

It follows from Lemma 2.2.1 and Lemma 2.3.4.ii that

Sn(Tr(g)) = (Tr(gn−1); T r(gn); T r(gn+1))

(cf. De�nition 2.3.6). Furthermore, given Tr(g) Algorithm 2.3.7 can be used to
compute Sn(Tr(g)) for any n. Since the order of g equals q this takes 8 log2(n mod
q) multiplications in GF(p) (cf. Theorem 2.3.8). According to Lemma 2.1.2.iii
computing g

n given g can be expected to take 23:4 log2(q) multiplications in
GF(p). Thus, computing Tr(gn) given Tr(g) is almost three times faster than
computing g

n given g. Furthermore, Tr(gn) ∈ GF(p2) whereas gn ∈ GF(p6).
So representing, storing, or transmitting Tr(gn) is three times cheaper than it
is for gn. Unlike the methods from for instance [2], we do not assume that p
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has a special form. Using such primes leads to additional savings by making the
arithmetic in GF(p) faster (cf. Algorithm 3.1.1).

Thus, we replace the traditional representation of powers of g by their traces.
The ability to quickly compute Tr(gn) based on Tr(g) suÆces for the imple-
mentation of many cryptographic protocols (cf. Section 4). In some protocols,
however, the product of two powers of g must be computed. For the standard
representation this is straightforward, but if traces are used, then computing
products is relatively complicated. We describe how this problem may be solved
in the cryptographic applications that we are aware of. Let Tr(g) ∈ GF(p2) and
Sk(Tr(g)) ∈ GF(p2)3 (cf. De�nition 2.3.6) be given for some secret integer k
(the private key) with 0 < k < q. We show that Tr(ga ∗ gbk) can be computed
eÆciently for any a; b ∈ Z.

De�nition 2.4.1 Let A(c) =

0
@
0 0 1
1 0 −cp
0 1 c

1
A and Mn(c) =

0
@
cn−2 cn−1 cn

cn−1 cn cn+1

cn cn+1 cn+2

1
A be

3 × 3-matrices over GF(p2) with c and cn as in De�nition 2.3.1, and let C(V )
denote the center column of a 3× 3 matrix V .

Lemma 2.4.2 Sn(c) = Sm(c) ∗ A(c)n−m and Mn(c) = Mm(c) ∗ A(c)n−m for

n;m ∈ Z.

Proof. For n −m = 1 the �rst statement is equivalent with Corollary 2.3.5.ii.
The proof follows by induction to n−m.

Corollary 2.4.3 cn = Sm(c) ∗ C(A(c)n−m).

Lemma 2.4.4 The determinant of M0(c) equals D = c
2p+2 + 18cp+1 − 4(c3p +

c
3)− 27 ∈ GF(p). If D �= 0 then

M0(c)
−1 =

1

D
∗
0
@

2c2 − 6cp 2c2p + 3c− c
p+2

c
p+1 − 9

2c2p + 3c− c
p+2 (c2 − 2cp)p+1 − 9 (2c2p + 3c− c

p+2)p

c
p+1 − 9 (2c2p + 3c− c

p+2)p (2c2 − 6cp)p

1
A :

Proof. This follows from a simple computation using Lemma 2.3.2.v and Corol-
lary 2.3.5 combined with the fact that x ∈ GF(p) if xp = x.

Lemma 2.4.5 det(M0(Tr(g))) = (Tr(gp+1)p − Tr(gp+1))2 �= 0.

Proof. This follows by observing that M0(Tr(g)) is the product of the Vander-

monde matrix

0
@
g
−1

g
−p

2

g
−p

4

1 1 1

g g
p
2

g
p
4

1
A and its inverse, and therefore invertible. The

determinant of the Vandermonde matrix equals Tr(gp+1)p − Tr(gp+1).

Lemma 2.4.6 A(Tr(g))n = M0(Tr(g))
−1 ∗ Mn(Tr(g)) can be computed in a

small constant number of operations in GF(p2) given Tr(g) and Sn(Tr(g)).
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Proof. Tr(gn±2) and thus Mn(Tr(g)) can be computed from Sn(Tr(g)) using
Corollary 2.3.5.ii. The proof follows from Lemmas 2.4.2, 2.4.4, 2.4.5, and 2.1.1.i.

Corollary 2.4.7 C(A(Tr(g))n) =M0(Tr(g))
−1 ∗ (Sn(Tr(g)))T .

Algorithm 2.4.8 (Computation of Tr(ga ∗ gbk)) Let Tr(g), Sk(Tr(g)) (for
unknown k), and a; b ∈ Z with 0 < a; b < q be given.

1. Compute e = a=b mod q.

2. Compute Se(Tr(g)) (cf. Algorithm 2.3.7).

3. Compute C(A(Tr(g))e) based on Tr(g) and Se(Tr(g)) using Corollary 2.4.7.

4. Compute Tr(ge+k) = Sk(Tr(g)) ∗ C(A(Tr(g))e) (cf. Corollary 2.4.3).

5. Compute Sb(Tr(g
e+k)) (cf. Algorithm 2.3.7), and return Tr(g(e+k)b) = Tr(ga∗

g
bk).

Theorem 2.4.9 GivenM0(Tr(g))
−1, Tr(g), and Sk(Tr(g)) = (Tr(gk−1); T r(gk);

T r(gk+1)) the trace Tr(ga∗gbk) of ga∗gbk can be computed at a cost of 8 log2(a=b
modq) + 8 log2(b) + 34 multiplications in GF(p).

Proof. The proof follows from a straightforward analysis of the cost of the
required matrix vector operations and Theorem 2.3.8.

Assuming that M0(Tr(g))
−1 is computed once and for all (at the cost of a small

constant number of operations in GF(p2)), we �nd that Tr(ga ∗ gbk) can be
computed at a cost of 16 log2(q) multiplications in GF(p). According to Lemma
2.1.2.iv this computation would cost about 27:9 log2(q) multiplications in GF(p)
using the traditional representation. Thus, in this case the trace representation
achieves a speed-up of a factor 1.75 over the traditional one. We conclude that
both single and double exponentiations can be done substantially faster using
traces than using previously published techniques.

3 Parameter selection

3.1 Finite �eld and subgroup size selection

We describe fast and practical methods to select the �eld characteristic p and
subgroup size q such that q divides p2 − p + 1. Denote by P and Q the sizes
of the primes p and q to be generated, respectively. To achieve security at least
equivalent to 1024-bit RSA, 6P should be set to about 1024, i.e., P ≈ 170, and
Q can for instance be set at 160. Given current cryptanalytic methods we do
not recommend choosing P much smaller than Q.

Algorithm 3.1.1 (Selection of q and `nice' p) Find r ∈ Z such that q =
r
2− r+1 is a Q-bit prime, and next �nd k ∈ Z such that p = r+ k ∗ q is a P -bit
prime that is 2 mod 3.
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Algorithm 3.1.1 is quite fast and it can be used to �nd primes p that satisfy
a degree two polynomial with small coeÆcients. Such p lead to fast arithmetic
operations in GF(p). In particular if the search for k is restricted to k = 1 (i.e.,
search for an r such that both r

2 − r + 1 and r
2 + 1 are prime and such that

r
2 + 1 ≡ 2 mod 3) the primes p have a very nice form; note that in this case
r must be even and p ≡ 1 mod 4. On the other hand, such `nice' p may be
undesirable from a security point of view because they may make application
of the Discrete Logarithm variant of the Number Field Sieve easier. Another
method to generate p and q that does not have this disadvantage (and thus
neither the advantage of fast arithmetic modulo p) is the following.

Algorithm 3.1.2 (Selection of q and p) First, select aQ-bit prime q ≡ 7 mod
12. Next, �nd the roots r1 and r2 ofX

2−X+1 mod q. It follows from q ≡ 1 mod 3
and quadratic reciprocity that r1 and r2 exist. Since q ≡ 3 mod 4 they can be
found using a single ((q+1)=4)th powering modulo q. Finally, �nd a k ∈ Z such
that p = ri + k ∗ q is a P -bit prime that is 2 mod 3 for i = 1 or 2.

The run time of Algorithms 3.1.1 and 3.1.2 is dominated by the time to �nd the
primes q and p. A precise analysis is straightforward and left to the reader.

3.2 Subgroup selection

We consider the problem of �nding a proper Tr(g) for an element g ∈ GF(p6)
of order q dividing p2−p+1 and > 3. Note that there is no need to �nd g itself,
�nding Tr(g) suÆces. Given Tr(g) for an unspeci�ed g, a subgroup generator
can be computed by �nding a root in GF(p6) of F (Tr(g); X). We refer to this
generator as g and to the subgroup 〈g〉 as the XTR group. Note that all roots of
F (Tr(g); X) lead to the same XTR group.

A straightforward approach to �nd Tr(g) would be to �nd a third degree ir-
reducible polynomial over GF(p2), use it to represent GF(p6), to pick an element

h ∈ GF(p6) until h(p
6−1)=q �= 1, to take g = h

(p6−1)=q , and to compute Tr(g).
Although conceptually easy, this method is less attractive from an implementa-
tion point of view. A faster method that is also easier to implement is based on
the following lemma.

Lemma 3.2.1 For a randomly selected c ∈ GF(p2) the probability that F (c;X) ∈
GF(p2)[X ] is irreducible is about one third.

Proof. This follows from a straightforward counting argument. About p2 − p

elements of the subgroup of order p2 − p+1 of GF(p6)∗ are roots of monic irre-
ducible polynomials of the form F (c;X) (cf. Lemma 2.2.1 and Lemma 2.3.4.ii).
Since each of these polynomials has three distinct roots, there must be about
(p2−p)=3 di�erent values for c in GF(p2)\GF(p) such that F (c;X) is irreducible.

With Remark 2.3.3 it follows that it suÆces to pick a c ∈ GF(p2) until F (c;X) is
irreducible and until c(p2−p+1)=q �= 3 (cf. De�nition 2.3.1), and to take Tr(g) =
c(p2−p+1)=q . The resulting Tr(g) is the trace of some g of order q, but explicit
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computation of g is avoided. As shown in [13] the irreducibility test for F (c;X) ∈
GF(p2)[X ] can be done very fast, but, obviously, it requires additional code.
We now present a method that requires hardly any additional code on top of
Algorithm 2.3.7.

Algorithm 3.2.2 (Computation of Tr(g))

1. Pick c ∈ GF(p2)\GF(p) at random and compute cp+1 using Algorithm 2.3.7.
2. If cp+1 ∈ GF(p) then return to Step 1.
3. Compute c(p2−p+1)=q using Algorithm 2.3.7.
4. If c(p2−p+1)=q = 3, then return to Step 1.
5. Let Tr(g) = c(p2−p+1)=q .

Theorem 3.2.3 Algorithm 3.2.2 computes an element of GF(p2) that equals

Tr(g) for some g ∈ GF(p6) of order q. It can be expected to require 3q=(q − 1)
applications of Algorithm 2.3.7 with n = p + 1 and q=(q − 1) applications with

n = (p2 − p+ 1)=q.

Proof. The correctness of Algorithm 3.2.2 follows from the fact that F (c;X) is
irreducible if cp+1 �∈ GF(p) (cf. Lemma 2.3.4.iii). The run time estimate follows
from Lemma 3.2.1 and the fact that cp+1 �∈ GF(p) if F (c;X) is irreducible (cf.
Lemma 2.3.4.iii).

In [13] we present an even faster method to compute Tr(g) if p �≡ 8 mod 9.

3.3 Key size

The XTR public key data contain two primes p and q as in 3.1 and the trace
Tr(g) of a generator of the XTR group (cf. 3.2). In principle the XTR public
key data p, q, and Tr(g) can be shared among any number of participants, just
as in DSA (and EC-DSA) �nite �eld (and curve), subgroup order, and subgroup
generator may be shared. Apart from the part that may be shared, someone's
XTR public key may also contain a public point Tr(gk) for an integer k that
is kept secret (the private key). Furthermore, for some applications the values
Tr(gk−1) and Tr(gk+1) are required as well (cf. Section 4). In this section we
discuss how much overhead is required for the representation of the XTR public
key in a certi�cate, i.e., on top of the user ID and other certi�cation related bits.

The part (p; q; T r(g)) that may be shared causes overhead only if it is not
shared. In that case, (p; q; T r(g)) may be assumed to belong to a particular user
or group of users in which case it is straightforward to determine (p; q; T r(g)),
during initialization, as a function of the user (or user group) ID and a small
number of additional bits. For any reasonable choice of P and Q (cf. 3.1) the
number of additional bits on top of the user ID, i.e., the overhead, can easily
be limited to 48 (6 bytes) (cf. [13]), at the cost of a one time application of
Algorithm 2.3.7 with n = (p2 − p+1)=q by the recipient of the public key data.

We are not aware of a method to reduce the overhead caused by a user's public
point Tr(gk) ∈ GF(p2). Thus, representing Tr(gk) in a certi�cate requires rep-
resentation of 2P bits. The two additional values Tr(gk−1); T r(gk+1) ∈ GF(p2),
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however, can be represented using far fewer than 4P bits, at the cost of a very
reasonable one time computation by the recipient of the public key.

This can be seen as follows. Since det(A(c)k) = 1, the equation from Lemma
2.4.6 leads to a third degree equation in Tr(gk−1), given Tr(g), Tr(gk), and
Tr(gk+1), by taking the determinants of the matrices involved. Thus, at the
cost of a small number of pth powerings in GF(p2), Tr(gk−1) can be deter-
mined based on Tr(g), Tr(gk), and Tr(gk+1) and two bits to indicate which
of the roots equals Tr(gk−1). In [13] we present, among others, a conceptually
more complicated method to determine Tr(gk−1) based on Tr(g), Tr(gk), and
Tr(gk+1) that requires only a small constant number of operations in GF(p), and
a method to quickly determine Tr(gk+1) given Tr(g) and Tr(gk) that works if
p �≡ 8 mod 9. Because this condition is not unduly restrictive we may assume
that the two additional values Tr(gk−1); T r(gk+1) ∈ GF(p2) do not have to be
included in the XTR public key data, assuming the public key recipient is able
and willing to carry out a fast one time computation given the XTR public
key data (p; q; T r(g); T r(gk)). If this computation if infeasible for the recipient,
then Tr(gk+1) must be included in the XTR public key data; computation of
Tr(gk−1) then takes only a small constant number of operations in GF(p).

4 Cryptographic applications

XTR can be used in any cryptosystem that relies on the (subgroup) discrete
logarithm problem. In this section we describe some applications of XTR in
more detail: DiÆe-Hellman key agreement in 4.1, ElGamal encryption in 4.2,
and Nyberg-Rueppel message recovery digital signatures in 4.3, and we compare
XTR to RSA and ECC (cf. [15]).

4.1 XTR-DH

Suppose that Alice and Bob who both have access to the XTR public key data
p, q, Tr(g) want to agree on a shared secret key K. This can be done using the
following XTR version of the DiÆe-Hellman protocol:
1. Alice selects at random a ∈ Z, 1 < a < q − 2, uses Algorithm 2.3.7 to

compute Sa(Tr(g)) = (Tr(ga−1); T r(ga); T r(ga+1)) ∈ GF(p2)3, and sends
Tr(ga) ∈ GF(p2) to Bob.

2. Bob receives Tr(ga) from Alice, selects at random b ∈ Z, 1 < b < q − 2,
uses Algorithm 2.3.7 to compute Sb(Tr(g)) = (Tr(gb−1); T r(gb); T r(gb+1)) ∈
GF(p2)3, and sends Tr(gb) ∈ GF(p2) to Bob.

3. Alice receives Tr(gb) from Bob, uses Algorithm 2.3.7 to compute Sa(Tr(g)
b) =

(Tr(g(a−1)b); T r(gab); T r(g(a+1)b)) ∈ GF(p2)3, and determines K based on
Tr(gab) ∈ GF(p2).

4. Bob uses Algorithm 2.3.7 to compute Sb(Tr(g)
a) = (Tr(ga(b−1)); T r(gab);

T r(ga(b+1))) ∈ GF(p2)3, and determines K based on Tr(gab) ∈ GF(p2).

The communication and computational overhead of XTR-DH are both about
one third of traditional implementations of the DiÆe-Hellman protocol that are
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based on subgroups of multiplicative groups of �nite �elds, and that achieve the
same level of security (cf. Subsection 2.4).

4.2 XTR-ElGamal encryption

Suppose that Alice is the owner of the XTR public key data p, q, Tr(g), and that
Alice has selected a secret integer k, computed Sk(Tr(g)), and made public the
resulting value Tr(gk). Given Alice's XTR public key data (p; q; T r(g); T r(gk)),
Bob can encrypt a messageM intended for Alice using the following XTR version
of the ElGamal encryption protocol:
1. Bob selects at random b ∈ Z, 1 < b < q − 2, and uses Algorithm 2.3.7 to

compute Sb(Tr(g)) = (Tr(gb−1); T r(gb); T r(gb+1)) ∈ GF(p2)3.
2. Bob uses Algorithm 2.3.7 to compute Sb(Tr(g

k)) = (Tr(g(b−1)k); T r(gbk);
T r(g(b+1)k)) ∈ GF(p2)3.

3. Bob determines a symmetric encryption key K based on Tr(gbk) ∈ GF(p2).
4. Bob uses an agreed upon symmetric encryption method with key K to en-

crypt M , resulting in the encryption E.
5. Bob sends (Tr(gb); E) to Alice.

Upon receipt of (Tr(gb); E), Alice decrypts the message in the following way:
1. Alice uses Algorithm 2.3.7 to compute Sk(Tr(g

b)) = (Tr(gb(k−1)); T r(gbk);
T r(gb(k+1))) ∈ GF(p2)3.

2. Alice determines the symmetric encryption keyK based on Tr(gbk) ∈ GF(p2).
3. Alice uses the agreed upon symmetric encryption method with key K to

decrypt E, resulting in the encryption M .

The message (Tr(gb); E) sent by Bob consists of the actual encryption E, whose
length strongly depends on the length ofM , and the overhead Tr(gb) ∈ GF(p2),
whose length is independent of the length of M . The communication and com-
putational overhead of XTR-ElGamal encryption are both about one third of
traditional implementations of the ElGamal encryption protocol that are based
on subgroups of multiplicative groups of �nite �elds, and that achieve the same
level of security (cf. Subsection 2.4).

Remark 4.2.1 XTR-ElGamal encryption as described above is based on the
common hybrid version of ElGamal's method, i.e., where the key K is used in
conjunction with an agreed upon symmetric key encryption method. In more
traditional ElGamal encryption the message is restricted to the key space and
`encrypted' using, for instance, multiplication by the key, an invertible operation
that takes place in the key space. In our description this would amount to re-
quiring that M ∈ GF(p2), and by computing E as K ∗M ∈ GF(p2). Compared
to non-hybrid ElGamal encryption, XTR saves a factor three on the length of
both parts of the encrypted message, for messages that �t in the key space (of
one third of the `traditional' size).

Remark 4.2.2 As in other descriptions of ElGamal encryption it is implicitly
assumed that the �rst component of an ElGamal encrypted message represents
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Tr(gb), i.e. the conjugate of a power of g, which should be explicitly veri�ed
in some situations. This can explicitly be tested by checking that Tr(gb) ∈
GF(p2) \ GF(p), that Tr(gb) �= 3, and by using Algorithm 2.3.7 to compute
Sq(Tr(g

b)) = (Tr(gb(q−1)); T r(gbq); T r(gb(q+1))) and to verify that Tr(gbq) = 3.
This follows using methods similar to the ones presented in Section 3.

4.3 XTR-Nyberg-Rueppel signatures

Let, as in 4.2, Alice's XTR public key data consist of p, q, Tr(g), and Tr(gk). Fur-
thermore, assume that Tr(gk−1) and Tr(gk+1) (and thus Sk(Tr(g))) are avail-
able to the veri�er, either because they are part of the public key, or because they
were reconstructed by the veri�er (either from (p; q; T r(g); T r(gk); T r(gk+1)) or
from (p; q; T r(g); T r(gk))). We describe the XTR version of the Nyberg-Rueppel
(NR) message recovery signature scheme, but XTR can also be used in other
`ElGamal-like' signature schemes. To sign a message M containing an agreed
upon type of redundancy, Alice does the following:

1. Alice selects at random a ∈ Z, 1 < a < q − 2, and uses Algorithm 2.3.7 to
compute Sa(Tr(g)) = (Tr(ga−1); T r(ga); T r(ga+1)) ∈ GF(p2)3.

2. Alice determines a symmetric encryption key K based on Tr(ga) ∈ GF(p2).

3. Alice uses an agreed upon symmetric encryption method with key K to
encrypt M , resulting in the encryption E.

4. Alice computes the (integer valued) hash h of E.

5. Alice computes s = (k ∗ h+ a) mod q ∈ {0; 1; : : : ; q − 1}.
6. Alice's resulting signature on M is (E; s).

To verify Alice's signature (E; s) and to recover the signed message M , the
veri�er Bob does the following.

1. Bob checks that 0 ≤ s < q; if not failure.

2. Bob computes the hash h of E.

3. Bob replaces h by −h mod q ∈ {0; 1; : : : ; q − 1}.
4. Bob uses Algorithm 2.4.8 to compute Tr(gs ∗ ghk) based on Tr(g) and

Sk(Tr(g)).

5. Bob uses Tr(gs ∗ ghk) (which equals Tr(ga)) to decrypt E resulting in M .

6. The signature is accepted ⇐⇒ M contains the agreed upon redundancy.

XTR-NR is considerably faster than traditional implementations of the NR
scheme that are based on subgroups of multiplicative groups of �nite �elds of
the same security level. The length of the signature is identical to other variants
of the hybrid version of the NR scheme (cf. Remark 4.2.1): an overhead part of
length depending on the desired security (i.e., the subgroup size) and a message
part of length depending on the message itself and the agreed upon redundancy.
Similar statements hold for other digital signature schemes, such as DSA.
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4.4 Comparison to RSA and ECC

We compare XTR to RSA and ECC. For the RSA comparison we give the run
times of 1020-bit RSA and 170-bit XTR obtained using generic software. For
ECC we assume random curves over prime �elds of about 170-bits with a curve
subgroup of 170-bit order, and we compare the number of multiplications in
GF(p) required for 170-bit ECC and 170-bit XTR applications. This `theoretical'
comparison is used because we do not have access to ECC software.

If part of the public key is shared (ECC or XTR only), XTR and ECC public
keys consist of just the public point. For ECC its y-coordinate can be derived
from the x-coordinate and a single bit. In the non-shared case, public keys may
be ID-based or non-ID-based3. For ECC, the �nite �eld, random curve, and
group order take ≈ 595 bits, plus a small number of bits for a point of high
order. Using methods similar to the one alluded to in Subsection 3.3 this can be
reduced to an overhead of, say, 48 bits (to generate curve and �eld based on the
ID and 48 bits) plus 85 bits for the group order information. For XTR the sizes
given in Table 1 follow from Subsection 3.3. For both RSA and XTR 100 ran-

Table 1. RSA, XTR, ECC key sizes and RSA, XTR run times.

shared ID-based non-ID-based key encrypting decrypting

keysize keysize keysize selection (verifying) (signing)

1020-bit RSA n/a 510 bits 1050 bits 1224 ms 5 ms 40 (no CRT: 123) ms

170-bit XTR 340 388 bits 680 bits 73 ms 23 ms 11 ms

170-bit ECC 171 304 bits 766 bits

Table 2. 170-bit ECC, XTR comparison of number of multiplications in GF(p).

encrypting decrypting encryption signing verifying signature DH speed DH size

overhead overhead

ECC 3400 1921 (1700) 171 (340) bits 1700 2575 170 bits 3842 (3400) 171 (340) bits

XTR 2720 1360 340 bits 1360 2754 170 bits 2720 340 bits

dom keys were generated. (ECC parameter generation is much slower and more
complicated than for either RSA or XTR and not included in Table 1.) For RSA
we used random 32-bit odd public exponents and 1020-bit moduli picked by
randomly selecting 510-bit odd numbers and adding 2 until they are prime. For
XTR we used Algorithm 3.1.2 with Q = 170 and P ≥ 170 and the fast Tr(g) ini-
tialization method mentioned at the end of Subsection 3.2. For each RSA key 10
encryptions and decryptions of random 1020-bit messages were carried out, the
latter with Chinese remaindering (CRT) and without (in parentheses in Table
1). For each XTR key 10 single and double exponentiations (i.e., applications of
Algorithms 2.3.7 and 2.4.8, respectively) were carried out for random exponents
< q. For RSA encryption and decryption correspond to signature veri�cation

3 ID based key generation for RSA a�ects the way the secret factors are determined.

The ID based approach for RSA is therefore viewed with suspicion and not generally

used. A method from [23], for instance, has been broken, but no attack against the

methods from [12] is known. For discrete logarithm based methods (such as ECC

and XTR) ID-based key generation a�ects only the part of the public key that is not

related to the secret information, and is therefore not uncommon for such systems.
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and generation, respectively. For XTR single exponentiation corresponds to de-
cryption and signature generation, and double exponentiation corresponds to
signature veri�cation and, approximately, encryption. The average run times
are in milliseconds on a 450 MHz Pentium II NT workstation. The ECC �gures
in Table 2 are based on the results from [4]; speed-ups that may be obtained
at the cost of specifying the full y-coordinates are given between parentheses.
The time or number of operations to reconstruct the full public keys from their
compressed versions (for either system) is not included.

5 Security

5.1 Discrete logarithms in GF(pt)

Let 〈
〉 be a multiplicative group of order !. The security of the DiÆe-Hellman
protocol in 〈
〉 relies on the DiÆe-Hellman (DH) problem of computing 


xy

given 

x and 


y. We write DH(
x; 
y) = 

xy. Two other problems are related

to the DH problem. The �rst one is the DiÆe-Hellman Decision (DHD) problem:
given a; b; c ∈ 〈
〉 determine whether c = DH(a; b). The DH problem is at least
as diÆcult as the DHD problem. The second one is the Discrete Logarithm (DL)
problem: given a = 


x ∈ 〈
〉 with 0 ≤ x < !, �nd x = DL(a). The DL problem
is at least as diÆcult as the DH problem. It is widely assumed that if the DL
problem in 〈
〉 is intractable, then so are the other two. Given the factorization
of !, the DL problem in 〈
〉 can be reduced to the DL problem in all prime order
subgroups of 〈
〉, due to the Pohlig-Hellman algorithm [17]. Thus, for the DL
problem we may assume that ! is prime.

Let p, q, Tr(g) be (part of) an XTR public key. Below we prove that the
security of the XTR versions of the DL, DHD, and DH problem is equivalent to
the DL, DHD, and DH problem, respectively, in the XTR group (cf. Subsection
3.2). First, however, we focus on the DL problem in a subgroup 〈
〉 of prime
order ! of the multiplicative group GF(pt)∗ of an extension �eld GF(pt) of
GF(p) for a �xed t. There are two approaches to this problem (cf. [1], [5], [9],
[11], [16], [19], [21]): one can either attack the multiplicative group or one can
attack the subgroup. For the �rst attack the best known method is the Discrete
Logarithm variant of the Number Field Sieve. If s is the smallest divisor of t
such that 〈
〉 can be embedded in the subgroup GF(ps)∗ of GF(pt)∗, then the
heuristic expected asymptotic run time for this attack is L[ps; 1=3; 1:923], where
L[n; v; u] = exp((u+ o(1))(ln(n))v(ln(ln(n)))1−v). If p is small, e.g. p = 2, then
the constant 1.923 can be replaced by 1.53. Alternatively, one can use one of
several methods that take O(

√
!) operations in 〈
〉, such as Pollard's Birthday

Paradox based rho method (cf. [18]).

This implies that the diÆculty of the DL problem in 〈
〉 depends on the size
of the minimal surrounding sub�eld of 〈
〉 and on the size of its prime order !. If
GF(pt) itself is the minimal surrounding sub�eld of 〈
〉 and ! is suÆciently large,
then the DL problem in 〈
〉 is as hard as the general DL problem in GF(pt). If
p is not small the latter problem is believed to be as hard as the DL problem
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with respect to a generator of prime order ≈ ! in the multiplicative group of a
prime �eld of cardinality ≈ p

t (cf. [6], [20]). The DL problem in that setting is
generally considered to be harder than factoring t ∗ log2(p)-bit RSA moduli.

The XTR parameters are chosen in such away that the minimal surround-
ing �eld of the XTR group is equal to GF(p6) (cf. Section 1), such that p is
not small, and such that q is suÆciently large. It follows that, if the complexity
of the DL problem in the XTR group is less than the complexity of the DL
problem in GF(p6), then the latter problem is at most as hard as the DL prob-
lem in GF(p3), GF(p2), or GF(p), i.e., the DL problem in GF(p6) collapses to
its true sub�elds. This contradicts the above mentioned assumption about the
complexity of computing discrete logarithms in GF(pt). It follows that the DL
problem in the XTR group may be assumed to be as hard as the DL problem
in GF(p6), i.e., of complexity L[p6; 1=3; 1:923]. Thus, with respect to known at-
tacks, the DL problem in the XTR group is generally considered to be more
diÆcult than factoring a 6 ∗ log2(p)-bit RSA modulus, provided the prime order
q is suÆciently large. By comparing the computational e�ort required for both
algorithms mentioned above, it turns out that if p and q each are about 170 bits
long, then the DL problem in the XTR group is harder than factoring an RSA
modulus of 6 ∗ 170 = 1020 bits.

5.2 Security of XTR

Discrete logarithm based cryptographic protocols can use many di�erent types
of subgroups, such as multiplicative groups of �nite �elds, subgroups thereof
(such as the XTR group), or groups of points of elliptic curves over �nite �elds.
As shown in Section 4 the XTR versions of these protocols follow by replacing
elements of the XTR group by their traces. This implies that the security of
those XTR versions is no longer based on the original DH, DHD, or DL problems
but on the XTR versions of those problems. We de�ne the XTR-DH problem
as the problem of computing Tr(gxy) given Tr(gx) and Tr(gy), and we write
XDH(gx; gy) = g

xy. The XTR-DHD problem is the problem of determining
whether XDH(a; b) = c for a; b; c ∈ Tr(〈g〉). Given a ∈ Tr(〈g〉), the XTR-DL

problem is to �nd x = XDL(a), i.e., 0 ≤ x < q such that a = Tr(gx). Note that
if x = DL(a), then so are x ∗ p2 mod q and x ∗ p4 mod q.

We say that problem A is (a; b)-equivalent to problem B, if any instance of
problem A (or B) can be solved by at most a (or b) calls to an algorithm solving
problem B (or A).
Theorem 5.2.1 The following equivalences hold:

1. The XTR-DL problem is (1; 1)-equivalent to the DL problem in 〈g〉.
2. The XTR-DH problem is (1; 2) equivalent to the DH problem in 〈g〉.
3. The XTR-DHD problem is (3; 2)-equivalent to the DHD problem in 〈g〉.
Proof. For a ∈ GF(p2) let r(a) denote a root of F (a;X).

To compute DL(y), let x = XDL(Tr(y)), then DL(y) = x ∗ p2j mod q for
either j = 0, j = 1, or j = 2. Conversely, XDL(a) = DL(r(a)). This proves i.
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To compute DH(x; y), compute di = XDH(Tr(x ∗ gi); T r(y)) for i = 0; 1,

then r(di) ∈ {(DH(x; y) ∗ yi)p2j : j = 0; 1; 2}, from which DH(x; y) follows.
Conversely, XDH(a; b) = Tr(DH(r(a); r(b))). This proves ii.

To prove iii, it easily follows that DH(x; y) = z if and only if XDH(Tr(x);
T r(y)) = Tr(z) andXDH(Tr(x∗g); T r(y)) = Tr(z∗y). Conversely,XDH(a; b) =

c if and only if DH(r(a); r(b)) = r(c)p
2j

for either j = 0, j = 1, or j = 2. This
proves iii and completes the proof of Theorem 5.2.1.

Remark 5.2.2 It follows from the arguments in the proof of Theorem 5.2.1 that
an algorithm solving either DL, DH, or DHD with non-negligible probability can
be transformed in an algorithm solving the corresponding XTR problem with
non-negligible probability, and vice versa.

It follows from the arguments in the proof of Theorem 5.2.1.ii that in many
practical situations a single call to an XTR-DH solving algorithm would suÆce
to solve a DL problem. As an example we mention DH key agreement where the
resulting key is actually used after it has been established.

Remark 5.2.3 Theorem 5.2.1.ii states that determining the (small) XTR-DH
key is as hard as determining the whole DH key in the representation group
〈g〉. From the results in [24] it actually follows that determining the image of
the XTR-DH key under any non-trivial GF(p)-linear function is also as hard
as the whole DH key. This means that, for example, �nding the � or the �

2

coeÆcient of the XTR-DH key is as hard as �nding the whole DH key, implying
that cryptographic applications may be based on just one of the coeÆcients.
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