
Formal Reasoning 2017
Solutions Test Block 3: Discrete Mathematics and Modal

Logic
(20/12/17)

1. (a) Give two non-isomorphic graphs G1 and G2 that have six vertices
such that each vertex has degree three.

Take for instance:
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The same graphs, but in a different representation:

G1

1

2 3

4

56

G2

a

b

c d

e

f

It is clear that G1 and G2 have six vertices and that each vertex has
degree three. Some reason why the graphs cannot be isomorphic:

• Graph G1 is not planar but G2 is. Note that G1 = K3,3 and for
that graph we know there is no planar representation. And for
G2 the planar representation is given.

• The chromatic number of G1 is 2 and the chromatic number of
G2 is 3. See the answer to the next question.

• Graph G1 is bipartite and G2 is not. This follows for instance
from the chromatic number.

• The shortest cycle in G1 has length 4 and the shortest cycle in
G2 has length 3. Bipartite graphs don’t have cycles of odd length
and cycles cannot have length two either. So a shortest cycle in
G1 is 1→ 2→ 3→ 4. In G2 a shortest cycle is 1→ 2→ 3.

We didn’t prove it but we think these are the only two possible
graphs.

(b) Give the chromatic number of your graphs G1 and G2. Explain your
answer.
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The chromatic number of G1 is two, because it is a bipartite graph.
And because of edge (1, 2) it cannot be colored with one color.

Note that graph G2 contains a triangle a, b and c. And for triangles
we know they cannot be colored with less than three colors. And
the picture above proves that it is indeed possible to color G2 with
exactly three colors. So its chromatic number is three.

(c) Explain whether your graph G1 has an Euler path and whether your
graph G2 has a Hamilton path. In both cases, if such a path exists,
give it explicitly and if such a path doesn’t exist, explain why it
doesn’t exist.

An Euler path is a path that contains all edges exactly once. A
Hamilton path is a path that contains all vertices exactly once.

Since we don’t know which graph is your G1 we give the answers for
both our G1 and G2.

None of the graphs have an Euler path, because in both graphs there
are six vertices with degree three, and for an Euler path to exist there
must be at most two vertices of an odd degree.

Both graphs have a Hamilton path. For G1 take 1 → 2 → 3 → 4 →
5→ 6. For G2 take a→ b→ c→ d→ e→ f .

2. We define the so-called subfactorial of n, denoted as !n, by this recursive
definition:

!0 = 1

!(n + 1) = (n + 1)·!n + (−1)n+1 for n ≥ 0

(a) Compute !2 and explain how you did this.

We use the recursive definition:

!0 = 1

!1 = !(0 + 1)

= (0 + 1)·!0 + (−1)0+1

= 1 · 1 + (−1)1

= 1− 1

= 0

!2 = !(1 + 1)

= (1 + 1)·!1 + (−1)1+1

= 2 · 0 + (−1)2

= 0 + 1

= 1

(b) Prove by induction that !n is even whenever n is odd and that !n is
odd whenever n is even, for all natural numbers n.

Proposition: 0
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!n is even whenever n is odd and !n is odd whenever n is even for
all n ≥ 0.

Proof by induction on n. 1

We first define our predicate P as:
P (n) := !n is even whenever n is odd and !n is odd whenever n is 2
even

Base Case. We show that P (0) holds, i.e. we show that 3
!0 is even whenever 0 is odd and !0 is odd whenever 0 is even.
This indeed holds, because 4
0 is even and !0 = 1 which is odd.

Induction Step. Let k be any natural number such that k ≥ 0. 5
Assume that we already know that P (k) holds, i.e. we assume
that 6
!k is even whenever k is odd and !k is odd whenever k is even.
(Induction Hypothesis IH)
We now show that P (k + 1) also holds, i.e. we show that 7
!(k + 1) is even whenever k + 1 is odd and !(k + 1) is odd when-
ever k + 1 is even.
This indeed holds, because we can make a case distinction on k 8
being odd or even and get the following two results.

• If we assume that k is odd, we have to prove that !(k + 1) is
odd.
This holds because

– !(k + 1) = (k + 1)·!k + (−1)k+1

– and k + 1 is even,

– and by induction !k is even,

– hence (k + 1)·!k is also even,

– (−1)k+1 is always odd, independent of the value of k,

– hence (k + 1)·!k + (−1)k+1 is odd,

– so !(k + 1) is odd.

• If we assume that k is even, we have to prove that !(k + 1)
is even.
This holds because

– !(k + 1) = (k + 1)·!k + (−1)k+1

– and k + 1 is odd,

– and by induction !k is odd,

– hence (k + 1)·!k is also odd,

– (−1)k+1 is always odd, independent of the value of k,

– hence (k + 1)·!k + (−1)k+1 is even,

– so !(k + 1) is even.

So in both cases we have proven what we needed to prove, so the
induction stepholds.

Hence it follows by induction that P (n) holds for all n ≥ 0. 9

3. In how many ways can we distribute five distinguishable objects into three
non-empty indistinguishable groups? Write your answer in terms of Stir-
ling numbers of the second kind and give a sufficiently large part of the
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triangle for these Stirling numbers to make sure that all numbers you use
are visible and marked.

The answer is
{
5
3

}
= 25. Because we have to divide the six objects into

three non-empty groups, we don’t have to take into account the values for{
5
2

}
and

{
5
1

}
, because these have empty groups.
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4. (a) Using the dictionary

S it snows

give an English rendering of the formula S → ¬�¬S according to
doxastic logic.

In doxastic logic S → ¬�¬S means:

If it snows then I don’t believe that it doesn’t snow.

Or if we use the valid transformation to S → ♦S:

If it snows then the fact that it snows doesn’t contradict my
beliefs.

(b) A formula f is called true in the logic D if f is true in all serial Kripke
models. The notation for this is �D f . Show that �D S → ¬�¬S
does not hold.

So we have to give a serial Kripke model M1 for which M1 � S →
¬�¬S does not hold. So in other words, each world inM1 must have
at least one outgoing arrow to be a serial Kripke model and there
must be at least one world x1 in M1 such that x1 
 S → ¬�¬S
doesn’t hold. This implies that S should hold in x1 but that ¬�¬S
does not hold in x1, which obviously implies that �¬S should hold
in x1. And this means that in all reachable worlds of x1 formula S
should not hold. But this is easy. Take for instance:

M1 : x1 S
**

x2kk

Now we prove that this model is indeed a correct counterexample.

• Note thatM1 is serial because all worlds have at least one reach-
able world.

• Clearly x1 
 S.

• And also clearly x2 6
 S, hence x2 
 ¬S.
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• Since R(x1) = {x2} we get that x1 
 �¬S.

• But then we get that x1 6
 ¬�¬S.

• And using the truth table of the implication we now get we get
that x1 6
 S → ¬�¬S.

• And hence M1 6� S → ¬�¬S.

• And hence 6�D S → ¬�¬S.

(c) What is the counterpart of the formula S → ¬�¬S in LTL, if you
may only use the operators F , X , U , ¬, ∧, ∨, → and ↔, and the
new formula must have the exact same meaning as the original one?
Note: You don’t have to use all these operators, but you are not
allowed to use operators that aren’t listed.

The counterpart of formula S → ¬�¬S using only allowed operators
in LTL is S → FS.

5


