Formal Reasoning 2022
Solutions Test Block 2: Languages and Automata
(10/11/22)

Languages
1. Does the equality
(LL)* = L*L*

hold for every language L?

(a) Yes, and both languages are always equal to L*.
(b) Yes, but they are not always equal to L*.

(¢) No, if you take L = {a, b} then the word ab is only in one of the two
languages (LL)* and L*L*.

(d) No, if you take L = {a,b} then the word a is only in one of the two
(d) is correct languages (LL)* and L*L*.
Answer (d) is correct.

If L = {a,b} then a € L* and A € L*. Hence a € L*L*. However, the
language (LL)* only has words of even length, as LL = {aa, ab, ba, bb}
and the length of the word a is odd.

L((ab)*(ba)*) N L((ba)*(ab)*) = ...

(a) L((ab)* U (ba)*)
(b) L((ab)* N (ba)*)
(c) £

) N

(a) is correct a

C

(N

one of the above.

(d

Answer (a) is correct.

First let us write down some words in L((ab)*(ba)*):
A, ab,ba, abab,abba,baba, ababab,ababba,abbaba,bababa,
And let us also write down some words in L£((ba)*(ab)*):
A, ba,ab, baba,baab,abab, bababa,babaab,baabab, ababab,
So if we take the intersection of these two languages we get words like
A, ab,ba, abab,baba, ababab,bababa,

Now let us see what we can say about the given options:

(a) L((ab)* U (ba)*): Maybe a bit surprising due to the change of N on
the level of languages to U on the level of regular expressions, this
is indeed correct. The regular expression (ab)* produces the words
A, ab, abab, ababab, . .. and the regular expression (ba)* produces the
words A, ba, baba, bababa, . . . and taking the union of these languages
gives the same set of words that we described above.

(b) L((ab)* N (ba)*): This is not even a language as the N can not be
used in regular expressions.

(¢) L(A): This language does not include the word ab, so it isn’t right.
(d) None of the above: This is obviously not correct.

3. Is the language
{a"b"c™ | n,m € N}
context-free? Explain your answer.
A context-free language is a language that is generated by a context-
free grammar. This language is generated by the following context-free
grammar, so it is indeed context-free.

S — AC
A— aAb| A
C—cC|A

The productions work as follows (it is not needed to provide this part of
the explanation):

e The start symbol S is always being replaced by the non-terminals A
and B.

e The non-terminal A is used to build a™b".
e The non-terminal C' is used to build ¢™.

Some other correct solutions:

S— A
S—AlSe A— BC
A= aAb| A B — aBb| A

C—cC|A

4. Consider the context-free grammar G:

S —aA
A— aA|bA| A
and the property
P(w) := (w starts with a)
Is this property an invariant for this grammar?
(a) Yes, because the property holds for all words in £(G).
(b) Yes, because once a word in a production starts with a this will not
change anymore.
(¢) is correct (¢) No, the property does not hold for S.
(d) No, A — @A is a production step, and the property holds for aA but
not for A.
Answer (c) is correct.

If P(w) would be an invariant then P(S) should hold. But it does not, as
the word S does not start with the letter a.

Automata

5. Consider the two deterministic finite automata M; and Ms given by the
state diagrams:

@ o

(a) L(My) = L(M>)

(b) L(My) C L(M>)
(c) is correct (¢) L(My) C L(M;).

(d) None of the above.

Answer (c) is correct.

Let us start by writing down some words in L(M;):
A, ab, abab, ababab,
And now let us write down some words in £(Ms):
ab, abab, ababab,

So the languages are not the same and the only difference is that \ €
L(Mj) but not A € L(Ms).

Now let us see what we can say about the given options:

(c)

(M) C L(My). This is correct: all words accepted by M are also
accepted by M, but, in addition, M; also accepts A, so L(Ms) is
indeed a strict subset of £(My).

(d) None of the above. This is obviously not correct.

Note that if go in M would have been a final state then £(M;) = L(Ms)
would have been true!

6. Give a right-linear context-free grammar with at most three non-terminals
for the language:

{w € {a,b}" | w does not contain abb}

Hint: Make a deterministic finite automaton for this language first.

We start by making a DFA for the language

{w € {a,b}" | w does contain abb}

b
() () —"~(@)
a
b a a,b

Then, by swapping final and non-final states, we transform this into a
DFA that accepts the requested language

{w € {a,b}* | w does not contain abb}

b
@~ (@)——~(w)
a
b a ab

And by identifying state g with non-terminal S, ¢; with A, ¢» with B
and g3 with C, we get the right-linear context-free grammar:

S aA|bS| A
A= aA|bB| A
B aA|bC | A
C —aC | bC

This is a correct grammar for the language, but it has too many non-
terminals. However, as C' doesn’t add anything (as ¢s is a sink), we can

simplify the grammar to:

S aA|bS | A
A5 aA|bB| A
B —aA| X

Instead of removing C' we can also substitute B in A and end up with
three non-terminals:

S—aA|bS| A

A— aA|baA|bbC | b| A

C —aC | bC

If we do both reductions we get:

S —aA|bS|A
A—aA|baA|b]| A

All of these equivalent grammars are right-linear as there is no rule where
there is a non-terminal on the right hand side that isn’t at the far right.

(b) is correct

(¢) is correct

7. Consider the non-deterministic finite automaton (3, @, qo, F,) with the

state diagram:

What is the value of 6(q1,a)?

) 0(qi,a) =
(q1,a) = {<11}
5((11 a) = {(]0 (11}

None of the above.

(d

Answer (b) is correct.

Let us review the given options:

(a) 0(q1,a) = ¢q1: This can’t be correct as the result of § should be a set.

(b) §(q1,a) = {q1}: This is correct; the only state you can go from ¢y
with an a is ¢ itself.

(¢) 6(q1,a) = {qo,q1}: This is not correct as there is no a-arrow from ¢
going to qqg.

(d) None of the above: This is obviously not correct.

8. Let be given a deterministic finite automaton M with exactly three states,

for which it holds that aaaaabbbbb = a®b®> € L(M). Is it then always the
case that also a"b> € L(M) for some n > 57

(a) No, this is never the case.
(b) No, this holds for some automata with this property, but not for all.

(c) Yes, because when processing the first five a’s, the automaton has
to go through a loop (because there are not enough different states),
which can be repeated.

(d) Yes, because any machine with this property will accept all words in

L(a*b*).

Answer (c) is correct.

If there are exactly three states qg, q1, and g2, then it is possible to deal
with the string aa without loops: start in the initial state gg, read the first
a and go to a second state g, read the second a and go to a third state
q2-

However, for the third a one needs to reuse one of the previously used
states qo, q1, or g2, as there simply is no fourth unused state anymore.
But this means indeed that there must be a loop somewhere in reading
the five a’s, which implies that this loop can be traversed several times
to accept a word a™b® for some n > 5. This is known as the Pumping
Lemma.

Note that there really exist DFAs with exactly three states that accept
the word aaaaabbbbb, for instance

m““
b b a,b

However, this automaton does not accept abb, so it does not accept L(a*b*),
hence the last option is indeed incorrect.

