Formal Reasoning 2023
Solutions Test Block 2: Languages and Automata
(09/11/23)

Languages
1. What is XA not used for in this course?

a symbol from the alphabet X

)
b)
(c)

)

(d) a label for a transition in a non-deterministic finite automaton

(a) is correct (a
(b) a word from >*

a reg ’11 ar expr ession

Answer (a) is correct.

The A in this course occurs in several situations:

e To indicate the empty word, which implies that A € ¥*.
e To indicate a regular expression r for which £(r) = A.
e To indicate so-called A-transitions in NFAs which allow transitions

from one state to another without reading any symbols.

However, it is never used as a symbol in the alphabet.
2. For which regular expression 75 do we have that
L(re) = {w € {a,b}" | w contains an even number of b’s}

(a) r9 = a*(ba*ba*)*
(b) 19 = a*(ba*b)*a*
(c) ro = (aUDbb)*
(d)

(a) is correct

T

%)

all three of these possibilities

Answer (a) is correct.

Each word w € L(ry) can be split up into several parts:

e The word w starts with zero or more a’s until the first b (if there is
any), which is realized by the expression a*.

e If there is no b at all, then all symbols in w are just a’s.

e After this initial series of a’s, we can divide w in (possibly zero)
blocks that start with a b, followed by any number of a’s, followed
by a second b to make sure that each block has an even number of
b’s, followed again by any number of a’s, where all a’s until the next
b should be taken into account. Such a block is represented by the
expression ba*ba*.

e Repetition of these blocks makes sure that all words in this language
can be created by the expression a*(ba*ba*)*.

In addition, it is easy to see that the other candidates do not create all
words with an even number of b’s:



(c) is correct

e The expression (a U bb)* prevents creating the word bab, as there is
no way to create an a in between the two b’s.

e The expression a*(ba*b)a* prevents creating the word bbabb, as there
is no way to create an a in between two blocks with each two b’s.

e And if these two expressions aren’t correct, the answer ‘all three of
these possibilities’ is obviously wrong.

. Consider > followli ontext-free grammar G3 for a le age with al-
3. Consider the following context-free grammar G5 for a language with al

phabet {a,e h,[,n,0,r,s,t,v,y,J, M, }:

S— N,V |N,V_UN
N — John | Mary

V' — loves | hates
How many different productions are there in G5 for the word:
John loves ,Mary

a) 1
b) 3
c) 6
d)

—~ o~

—

none of the above

—

Answer (c) is correct.

Any production of the word John_loves Mary starts with the step S —
NUV N and after this the two N’s and the single V' have to be replaced
by two nouns and a verb. The order in which this is done is completely free.
And this means that we have three options to choose the first non-terminal
that is being replaced, then two options for the second non-terminal that
is being replaced, and finally, there is no choice anymore for the last non-
terminal to be replaced. So the number of different paths is 3 x 2 x 1 =6.

. Consider the context-free grammar Gy:

S — AB
A—aA| A
B bB |\

Someone wants to show that ba € L(G4) and considers the property:
Py(w) := [in w there is no b before an (1,]

Is this a suitable invariant for this? Explain your answer.

No, this is not a suitable invariant for showing that ba ¢ £(G4). In fact,
it isn’t even an invariant! Take v = Ba. Then obviously P(Ba) does hold.
However, we also have the production Ba — bBa, but P(bBa) clearly
doesn’t hold. So the proposed property is not an invariant.



(b) is correct

Automata
5. We define the language Ls by:
Ls := L(a"bb*) = {a"b™ | n € Nyn > 0,m € Nym > 0}
Consider the following statement:

Each deterministic finite automaton M with £(M) = Ls has to
have at least three states, because there has to be a final state
which will be different from the initial state, and there also has
to be a non-final state that is different from the initial state.

Is this correct?

(a) Yes, this is correct. Each M with L(M) = Ls will have a sink state
(which for example will be reached after processing ba), which is a

non-final state that is different from the initial state.

(b) Yes, this is correct. However, a machine M with £(M) = L5 does
not need to have a sink state. There can be more than one non-final

state different from the initial state.

(¢) No, this is not correct. There is a DFA with less than three states

for the language Ls.

(d) No, this is not correct. The minimal number of states needed for Ls

is indeed three, but the argumentation is not correct.

Answer (b) is correct.

As X\ & Ly it follows that the initial state is not a final state. And asb € L
we know that any DFA accepting this language must have a final state.
So each DFA for this language must have at least two states. However,
note also that ba & L5, so after reading b and getting in the end state, we
need an a transition to a non-final state. This non-final state cannot be
the initial state, as that would allow looping and the word bab would be
accepted. So it must be a new non-final state. And hence we have at least
three states. And although the simplest way would be to make this new
non-final state a sink, it doesn’t have to be a sink. Instead of a sink, we
can add more non-final states and create loops within a set of non-final
states that have no way to reach final states anymore. See for instance

this DFA:

@ba@/i\\
gy

6. Consider the following statement:

If a deterministic finite automaton M with alphabet {a, b} has
exactly three states, and there is a word w € L(M) with |w| = 3,
then the language £(M) will contain infinitely many different
words.

Which of the following holds?



(a) is correct

(a) This is correct. When processing the word w, at least one state will
be encountered twice, and by going around that loop, one can find
arbitrary large words in L(M).

(b) This is correct. A language of a DFA always contains infinitely many
different words.

(¢) This is not correct. A word w with three symbols is too short to
necessarily encounter the same state twice. There is a machine with
these properties that only accepts finitely many different words.

(d) This is not correct. If the automaton M has no final states, the
language of M will be empty, and will certainly not contain infinitely
many different words.

Answer (a) is correct.

For reading a word w with three symbols, we need exactly three steps in
the automaton. And as we also have a starting state, it means that for
reading such a word we need four states. Now because we only have three
states, the pigeonhole principle tells us that there is at least one state that
is visited at least twice. So there is a loop involved in the path of accepting
w. Now this means that we can follow this loop arbitrarily often and still
end up in an accepting state, which means that there are indeed infinitely
many different words in the language.

Note that the other ‘This is correct.” option makes no sense as a DFA does
not need to have final states and in that situation the language accepted
by the automaton is the empty language, which does not have infinitely
many words, but zero words.

. Consider the following deterministic finite automaton Mz:

/q\baqa’b

Give the right linear context-free grammar that corresponds to this au-
tomaton. Do not simplify the grammar in any way, just give the result
of the conversion from automata to grammars as it was described in the
lectures and course notes.

Let us associate state gy with the non-terminal S, ¢; with A, and g2 with
B. Then the grammar corresponding to the automaton becomes

S — aS|bA
A—aB|bA|A
B — aB | bB

Note that this is indeed a right linear context-free grammar.

8. Consider the following quintuple:

Ms = ({a},{q0, a1}, 90,9, 0s)



(a) is correct

with

Is this a correct non-deterministic finite automaton?

a) Yes, it is.

(
(

b) No, the machine does not have final states.
(¢) No, the machine has no transitions for the symbol a.

(d) No, the state ¢; is not reachable from the initial state qq.

Answer (a) is correct.

This is what the automaton looks like in a diagram:

(2))»

The definition of an NFA allows an empty set of final states. It just
means that the corresponding language will be empty, so it is not a very
interesting automaton, but it is allowed.

In addition, one of the differences between an NFA and a DFA is that an
NFA doesn’t need to have exactly one outgoing transition for each symbol
of the alphabet in each state. In particular, it is allowed that none of the
states has an outgoing a transition.

And finally, as there are no restrictions on the transitions in an NFA, it
is allowed to have non-reachable states. In fact, that is also allowed for
DFAs. The fact is that these non-reachable states play no role in accepting
words as they are not adding anything to the language.



