
Formal Reasoning 2024
Solutions Exam

(16/01/25)

There are six sections, with together 16 multiple choice questions and 6 open
questions. Each multiple choice question is worth 3 points, and each open
question is worth 7 points. The mark for this test is the number of points
divided by ten, The first 10 points are free. Good luck!

Propositional logic

1. Consider the following English sentence:

I do not work on Wednesday and Friday.

We use the following dictionary:

W I work on Wednesday
F I work on Friday

Which formula of propositional logic encodes the meaning of this sentence
using this dictionary?

(a) ¬W ∧ F
(b) ¬W ∨ F
(c) ¬(W ∧ F )

(d) ¬(W ∨ F )(d) is correct

Answer (d) is correct.

The direct translation of the sentence is ¬W ∧ ¬F , but that is not one of
the options. However, by applying De Morgan we get that ¬W ∧ ¬F ≡
¬(W ∨F ). Note that none of the other options is also logically equivalent.

2. A truth table for formulas with n atoms has 2n rows. This means there
are 22

n

possible different columns in such a table. For example, if the
atoms are a and b, then n = 2, which means that a truth table with these
two atoms has 22 = 4 rows, and that there are 24 = 16 possible columns.

Is there for each of those possible columns a formula of propositional logic
that has exactly that column?

(a) Yes, one can get any column with exactly one 1 using a formula
that is a conjunction of atoms and negations of atoms, and then get
arbitrary columns as disjunctions of such formulas.(a) is correct

(b) Yes, one can get any column with exactly one 1 using a formula
that is a disjunction of atoms and negations of atoms, and then get
arbitrary columns as conjunctions of such formulas.

(c) No, there are not enough formulas for that, as the function 22
n

grows
very very fast (for n = 9 this already is larger than the number of
atoms in the universe).
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(d) No, the columns with only zeroes or with only ones are not the column
of a formula of propositional logic.

Answer (a) is correct.

We provide an example for n = 2 with the atoms a and b. Let us assume
we want to find a formula f for the following column:

a b f
0 0 1
0 1 0
1 0 0
1 1 1

The positions where we have a 1 are in the rows where a = 0 and b = 0
and where a = 1 and b = 1. This means that we can make columns for
conjunctions of atoms and negations of atoms to get each one. And then
we can combine these formulas with a disjunction. In this example that
would lead to this truth table:

a b ¬a ¬b ¬a ∧ ¬b a ∧ b f = (¬a ∧ ¬b) ∨ (a ∧ b)
0 0 1 1 1 0 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 0 1 1

Note that there is nothing special about this example. It works the same
for larger examples.

This type of formulas is called ‘full disjunctive normal form’.

3. The principles of Modus Ponens and Modus Tollens are:

(f → g) ∧ f � g Modus Ponens

(f → g) ∧ ¬g � ¬f Modus Tollens

Here f and g are arbitrary formulas of propositional logic. Do these prin-
ciples hold for all f and g?

(a) Both of these principles hold for all f and g.(a) is correct

(b) Modus Ponens holds for all f and g, but Modus Tollens does not.

(c) Modus Tollens holds for all f and g, but Modus Ponens does not.

(d) Neither of these principles hold for all f and g.

Answer (a) is correct.

Let us first have a look at the Modus Ponens. Let v be a model (valuation)
such that v((f → g) ∧ f) = 1. Then automatically v(f → g) = 1 and
v(f) = 1. Note that there are three ways to get v(f → g) = 1, namely
v(f) = 0 and v(g) = 0, v(f) = 0 and v(g) = 1, and v(f) = 1 and v(g) = 1.
However, as we already know that v(f) = 1, it must be that we are in
the third situation, so in particular v(g) = 1. So for any model v with
v((f → g) ∧ f) = 1, it follows that v(g) = 1. And (f → g) ∧ f � g holds.

Now let us look at the Modus Tollens. Let v be a model such that v((f →
g) ∧ ¬g) = 1. Then automatically v(f → g) = 1 and v(¬g) = 1. Note
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that there are three ways to get v(f → g) = 1, namely v(f) = 0 and
v(g) = 0, v(f) = 0 and v(g) = 1, and v(f) = 1 and v(g) = 1. However,
as v(¬g) = 1, we know that v(g) = 0. And it must be that we are in
the first situation, so in particular v(f) = 0. So for any model v with
v((f → g) ∧ ¬g) = 1, it follows that v(f) = 0 and hence v(¬f) = 1. And
(f → g) ∧ ¬g � ¬f holds.

So both Modus Ponens and Modus Tollens hold.

Predicate logic

4. Consider the following English sentence:

Not all men own a smartphone.

We use the following dictionary:

H humans
T things

M(x) x is a man
S(x) x is a smartphone
O(x, y) x owns y

Give a formula of predicate logic which does not contain a universal quan-
tifier, that encodes the meaning of this sentence using this dictionary.

The sentence Not all men own a smartphone. is equivalent to There exists
a man who doesn’t own a smartphone. which is equivalent to There exists
a man such that there is no thing that he owns and is a smartphone. and
this sentence can be translated to the formula:

∃h ∈ H [M(h) ∧ ¬∃t ∈ T [S(t) ∧O(h, t)]]

5. Consider the structure M5 := (R, ·), where · denotes multiplication, as
well as the interpretation I5:

R R
M(x, y, z) x · y = z

Does the following hold?

(M5, I5) � ∀x, z ∈ R ∃y ∈ RM(x, y, z)

(a) Yes, one can always take y = 1, because multiplying by one does not
change the value.

(b) Yes, one can always take y = z = 0, because zero times anything is
zero.

(c) No, this does not hold in the case that x · y 6= 1 and z = 1.

(d) No, this does not hold in the case that x = 0 and z 6= 0.(d) is correct

Answer (d) is correct.

The statement claims that in model (M5, I5) for each pair of real numbers
x and z, there exists a real number y such that x · y = z. This certainly
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doesn’t hold if x = 0 and z 6= 0, as for any real number y, the product
0 · y = 0, so it can’t be equal to z.

Note that if x 6= 0 the statement does hold. In case also z = 0, then we
can take y = 0. And in case z 6= 0, we can take y = 1

x which exists as a
real number because x 6= 0.

In particular, this also indicate why the other ‘No’ option is incorrect.
The fact that x · y 6= 1 and z = 1 for some y doesn’t mean that such a y
doesn’t exist. Because we have seen that such a y always exists as long as
x 6= 0.

6. Consider the following English sentence:

There exist exactly two men.

We use the following dictionary:

H humans
M(x) x is a man

Someone proposes the following formula of predicate logic with equality
that encodes the meaning of this sentence using this dictionary:

∃x, y ∈ H [M(x) ∧M(y)]

Is this correct?

(a) Yes, this is correct.

(b) No, this formula states that there are at most two men, but it is also
true if there is only one man.

(c) No, this formula states that there are at least two men, but it is also
true if there are more than two men.

(d) No, this formula is also true if there is only one man or if there are
more than two men.(d) is correct

Answer (d) is correct.

As there is no additional clause like x 6= y, it is allowed to have only one
man as we can take x and y to be the same man. In addition, if there are
more than two men in H, the formula is also true. As long as we take real
men for x and y the formula will hold, even if we take the same men.

Languages

7. Does there exist a finite language (i.e., a language with only finitely many
words in it) with the two properties L 6⊆ {λ} and LL ⊆ L?

(a) Yes, as L = ∅ is such a language.

(b) Yes, as L = {λ} is such a language.

(c) No, languages with these two properties exist, but they are necessar-
ily infinite.(c) is correct

(d) No, a language with these two properties does not exist at all, not
even as an infinite language.
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Answer (c) is correct.

Languages with the properties L 6⊆ {λ} and LL ⊆ L do exist. In the
course notes we have already seen that if L is the language over Σ = {a, b}
where each word has an even number of a’s, then even L∗ ⊆ L. And as
LL ⊆ L∗, we get that LL ⊆ L. Obviously, this language L is infinite and
hence L 6⊆ {λ}.
Now assume that we have a finite language L such that L 6⊆ {λ}, which
means that there is a word w ∈ L such that |w| > 0. As L is finite we can
have a look at the longest words within L:

L′ := {w ∈ L | ∀v ∈ L [ |w| ≥ |v| ]} ⊆ L

This set is not empty so we can take w ∈ L′ and assume that |w| = n > 0.
Then ww ∈ LL and |ww| = 2n. However, as n > 0 we know that 2n > n,
which means that ww is longer than the longest word in L. So it certainly
isn’t in L. Hence there cannot be a finite language L such that L 6⊆ {λ}
for which LL ⊆ L.

Another way to see that a language with these two properties has to be
infinite, goes like this. As L 6⊆ {λ}, there has to be a word w ∈ L with
length n where n ≥ 1. And as LL ⊆ L it follows that ww ∈ L with length
2n. And as LL ⊆ L it follows that wwww ∈ L with length 4n. And as
LL ⊆ L it follows that wwwwwwww ∈ L with length 8n. And so on, and
on, and on. This implies that for each natural number m ∈ N we can find
a word in L with a length that is larger than m. So L cannot be finite.

Note that if L ⊆ {λ} does hold, we only have two options: L = ∅ and
L = {λ} and for both situations it does hold that LL ⊆ L.

8. Give a regular expression for the language over the alphabet Σ = {a, b}:

L8 := L
(
(a ∪ b)∗aa(a ∪ b)∗

)
Note that the language L

(
(a ∪ b)∗aa(a ∪ b)∗

)
is the language where every

word contains two consecutive a’s, so its complement L8 is the language
that does not contain two consecutive a’s. So if w ∈ L8 then, there are
three options: w doesn’t contain any a’s, each a is immediately followed
by a series of at least one b, or each a is immediately followed by a series
of at least one b, except for the last a which is also the last symbol in the
word. These observations lead to the regular expression

b∗((abb∗)∗)(λ ∪ a)

Also correct:
(ab ∪ b)∗(λ ∪ a)

9. Consider as G9:

S → SS | aS

Is this a correct context-free grammar?
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(a) Yes, and the language it defines is:

L(G9) = ∅

(a) is correct

(b) Yes, and the language it defines is:

L(G9) = {an | n ≥ 1}

(c) No, a context-free grammar needs to have a rule with λ on the right-
hand side.

(d) No, a context-free grammar needs to have a non-terminal besides the
start symbol S.

Answer (a) is correct.

Each context-free grammar is a triple 〈Σ, V,R〉 where Σ is an alphabet, V
a set of nonterminals, and R a set of production rules of the form X → w
where X ∈ V and w ∈ (Σ ∪ V )∗.

In case of G9 we can take Σ = {a}, V = {S}, and R = {S → SS, S → aS}.
And it is clear that all requirements for a grammar are met.

So it is a correct context-free grammar. However, as there are no rules
X → w where w ∈ Σ∗, it is clear that there are no finite productions, so
L(G9) = ∅.

10. Consider the context-free grammar G10 with alphabet Σ = {a}:

S → aA | λ
A→ AS

Someone wants to show that L(G10) = {λ} by giving a production for λ
and showing that the following property is an invariant of this grammar:

P (w) :=
[
w ∈ {S, λ} or w contains A

]
Does this work?

(a) Yes, this works, as the only word in {a}∗ that satisfies this invariant
is λ.(a) is correct

(b) Yes, this works. Although this is not an invariant, indeed L(G10) =
{λ}.

(c) No, this does not work, as there is no production for λ.

(d) No, this does not work, there are words u, v ∈ {S,A, a}∗ such that
P (u) holds, P (v) does not hold, and u→ v is a replacement according
to one of the rules of the grammar.

Answer (a) is correct.

First note that L(G10) ⊆ {a}∗. In addition, note that there is a production
for λ: S → λ.

It is also clear that P (an) does not hold for any n > 0. So if P is an
invariant, then it can be used to show that L(G10) = {λ}.
And P is indeed an invariant. Obviously, P (S) holds as S ∈ {S, λ}. Now
if u, v ∈ {S,A, a}∗ such that P (u) holds and u→ v there are two options:
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� u = S: In this case v = aA or v = λ and in both situations P (v)
holds.

� u contains A and hence v contains A as none of the three rules remove
an A.

Note that the situation u = λ is not an option as then there doesn’t exist
a v with λ→ v.

So P is indeed an invariant and hence it can be used to show that there
are no words beside λ in L(G10) and because of the production for λ we
get that L(G10) = {λ}.

Automata

11. There is a unique deterministic finite automaton with five states for the
language:

L11 = {w ∈ {a, b}∗ | w contains exactly one a and an odd number of b’s}

Give the right linear context-free grammar that one gets by converting
this automaton to a grammar using the method which is explained in the
course. Use for the non-terminals the set V = {S,A,B,C,D}.
You do not need to give/describe the automaton, and you should not
optimize the grammar.

Such an automaton will look like this, but obviously, the names of the
states can be different.

// q0
a //

b





q1
a //

b





q4 a,b

ss

q2 a
//

b

JJ

q3

a

>>

b

JJ

Now if we identify the state q0 with S, q1 with A, q2 with B, q3 with C,
and q4 with D, and apply the default algorithm, we get this right linear
context-free grammar:

S → aA | bB
A → aD | bC
B → aC | bS
C → aD | bA | λ
D → aD | bD

12. What is the minimum number of states in a deterministic finite automaton
for the language:

L12 = {w ∈ {a, b}∗ | w contains aa}

(a) 1

(b) 2

(c) 3(c) is correct
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(d) 4 or more

Answer (c) is correct.

Such a DFA needs to keep track of the current number of consecutive a’s
being read. So it needs to distinguish the situations where currently zero,
one, and two consecutive a’s have been read. So three states are needed.
Note that there indeed exists an automaton with three states that accepts
this language:

// q0

b

II

a **
q1

b

jj
a // q2 a,b

ss

13. What is the minimum number of states in a non-deterministic finite au-
tomaton for the language:

L13 = {w ∈ {a, b}∗ | w does not contain aa}

(a) 1

(b) 2(b) is correct

(c) 3

(d) 4 or more

Answer (b) is correct.

This is an NFA with two states that accepts L13:

// q0

b

II

a **
q1

b

jj

Now if we assume that there is also an NFA with only a single state q0
that accepts L13, we get a contradiction. As we need to accept the word
a, this single state needs to be a final state and we need to have at least
some a-transition from q0. However, as we only have one state, it must
go from q0 to q0. But then we cannot prevent that the word aa is also
accepted. So it can’t be done with a single state and hence two is the
minimum.

Discrete mathematics

14. How many non-isomorphic trees are there with exactly four vertices?

(a) 1 or less

(b) 2(b) is correct

(c) 3

(d) 4 or more
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Answer (b) is correct.

Note that a tree is a connected graph that has no cycles.

We try to create as many trees, based on the vertices with the highest
degree.

� If there was a tree with four vertices and the highest degree of the
vertices was 1, then this graph would not be connected and hence it
cannot be a tree.

� A tree where the highest degree of the vertices is 2 does exist. As it
should be connected, it follows that all vertices should be in a single
line, as junctions would imply a degree 3 or higher. There is only one
way to do this. See G1 below.

� A tree where the highest degree of the vertices is 3 also exists. In
order to create such a tree, we start by taking a single vertex and
then connect three other vertices to it. Note that it is not possible
to connect some of these three vertices directly with each other, as
that would create loops and loops are not allowed in trees. So there
is only one way to create such a tree with four vertices where the
highest degree is 2. See G2 below.

� It is not possible to create a tree with four vertices where the highest
degree is 4 (or more), as this would require that one vertex is con-
nected to at least four other vertices, which would require at least
five vertices, but there are only four vertices.

And this is what these trees look like:

G1

a b c d

G2

a b c

d

Note that these two trees are indeed non-isomorphic as isomorphic graphs
should have the same degrees.

15. How many non-isomorphic graphs are there that have exactly three ver-
tices and contain an Eulerian path?

(a) 1 or less

(b) 2

(c) 3(c) is correct

(d) 4 or more

Answer (c) is correct.

There are four non-isomorphic graphs that have exactly three vertices:
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G1

a b c

G2

a b c

G3

a b c

G4

a b c

Note that according to the definition in the course notes, an Eulerian path,
in a graph 〈V,E〉, is a path in which every edge from E is included exactly
once. An Eulerian circuit, or Eulerian cycle, is an Eulerian path that is a
cycle as well.

As G1 does not have any path at all, it certainly has no path in which
every edge from E is included exactly once, even though there are no
edges! The reason is that a path needs to consist of at least one edge. So
G1 does not have an Eulerian path.

Note that G2 does have an Eulerian path, namely a → b. The fact that
vertex c is not visited doesn’t matter.

As G3 and G4 are connected graphs, we can apply Euler’s theorem and
get that G3 has an Eulerian path (for instance a → b → c) and that G4

even has an Eulerian cycle, which by definition is also an Eulerian path
(for instance a→ b→ c→ a).

So there are three non-isomorphic graphs with three vertices that have an
Eulerian path. In addition, for G3 we have that a→ b→ c is an Eulerian
path.

16. We define a sequence an for n ≥ 0 using the recursion equations:

a0 = 1

an+1 = an + 2n+ 3 for all n ≥ 0

Give the value of a44.

Hint: Compute the first elements of this sequence, and note the pattern.
In your answer you may give those first elements and the pattern if you
worry about computation errors in your final answer.

Do not use induction to prove that this pattern holds. Just giving the
value (if correct) is sufficient for full points.

Let us follow up on the hint and compute some values of an:

a0 = 1
a1 = a0+1 = a0 + 2 · 0 + 3 = 1 + 0 + 3 = 4
a2 = a1+1 = a1 + 2 · 1 + 3 = 4 + 2 + 3 = 9
a3 = a2+1 = a2 + 2 · 2 + 3 = 9 + 4 + 3 = 16
a4 = a3+1 = a3 + 2 · 3 + 3 = 16 + 6 + 3 = 25

So it seems that the pattern is

an = (n+ 1)2
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And hence, a44 = (44 + 1)2 = 452 = 2025. Knowing Freek, the answer
was predictable, but it is also easy to compute without a calculator.

4 5
4 5

2 2 5
1 8 0
2 0 2 5

×

17. When proving a statement using induction, we need to show that P (n)
holds for all n starting at the start value. But in the induction step we
already assume that P (k) is true (the induction hypothesis), starting at
this same value. Why do we need to prove anything then?

(a) The variables n and k are different, which means that knowing P (k)
for all k does not give us P (n) for all n.

(b) The induction step starts one position later than the start value of
the proposition, which means that we still need to prove the base
case.

(c) We only may use P (k) to prove P (k + 1), which means that we
may not use the induction hypothesis outside of the context of the
induction step.(c) is correct

(d) It is not the case that we may use that the induction hypothesis is
already true when proving the induction step.

Answer (c) is correct.

The IH states that we assume that P (k) holds for some k such that k is
larger or equal than the start value. In particular, we do not assume that
P (k) holds for all k larger or equal than the start value, as in that case
we would be done with the proof. So within the context of the induction
step, we are actually only looking at a single k, whereas in the end we
need to prove it for all n larger or equal to the start value in general.

The first option is not correct. If we would know that P (k) holds for all
k larger or equal than the start value, then we would also know that for
all n larger or equal than the start value.

The second option is not correct. The induction step does not start one
position later than the start value. It starts at the same start value! The
conclusion of the induction step is one position later.

The fourth option is not correct. We certainly may assume that the IH
holds within the induction step.

18. How can we see the following equality?(
n

k

)
=

(
n

n− k

)
(a) We can note that choosing k objects corresponds to selecting the

n− k objects that are not chosen.

(b) We can compare the coefficients of (x + y)n and (y + x)n, and use
that x+ y = y + x.
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(c) We may use the formula(
n

k

)
=

n!

k! (n− k)!

twice, and note that n− (n− k) = k.

(d) All of the above.(d) is correct

Answer (d) is correct.

The combinatorial interpretation of
(
n
k

)
is indeed the number of ways we

can choose k elements out of a set of n different elements and write them
on the left of the blackboard, and write all the remaining n− k elements
on the right of the blackboard. Obviously, if we would take n − k out of
the same set but now write the elements on the right of the blackboard
and write the remaining k elements on the left of the blackboard, we end
up with exactly the same possibilities. However, the last method would
compute

(
n

n−k
)
. So these are equal.

The general version of the binomial theorem states that

(x+y)n =

(
n

0

)
xn+

(
n

1

)
xn−1y+

(
n

2

)
xn−2y2+· · ·+

(
n

n− 1

)
xyn−1+

(
n

n

)
yn

Now if we use that (x+ y)n = (y+x)n (which indeed holds!), then we get

(y+x)n =

(
n

0

)
yn+

(
n

1

)
yn−1x+

(
n

2

)
yn−2x2+· · ·+

(
n

n− 1

)
yxn−1+

(
n

n

)
xn

By comparing the coefficients of the monomials xn−kyn and ynxn−k, then
for the first one we get

(
n
k

)
and for the second one

(
n

n−k
)
. However, as

multiplication is commutative, the monomials xn−kyk and ykxn−k are the
same, so their coefficients should also be the same. So

(
n
k

)
=

(
n

n−k
)
.

We can also use the formula to show that these binomial coefficients are
the same.(
n

k

)
=

n!

k! · (n− k)!
=

n!

(n− k)! · k!
=

n!

(n− k)! · (n− (n− k))!
=

(
n

n− k

)
So all methods work.

19. In how many ways can one divide a collection of six distinguishable objects
into three non-distinguishable non-empty groups?

Give the name of the numbers that are used for counting this, give the kind
of brackets that are used for writing these numbers, and give a relevant
part of the corresponding triangle which you used to compute your answer.

This is the classical interpretation of Stirling numbers of the second kind.
Hence the number of ways to divide six distinguishable objects into three
non-distinguishable non-empty groups is

{
6
3

}
.

The top of the triangle looks like this:

1
1 1

1 3 1
1 7 6 1

1 15 25 10 1

1 31 90 65 15 1
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The value
{
6
3

}
is marked and it turns out to be 90.

Modal logic

20. Does the axiom scheme T , which is �f → f , hold in doxastic logic?

(a) Yes, as you can believe true statements.

(b) Yes, as you can believe false statements.

(c) No, as you can believe true statements.

(d) No, as you can believe false statements.(d) is correct

Answer (d) is correct.

Doxastic logic is the classical example where the axiom scheme T , �f →
f does not hold. It means that if I believe that f holds, then f holds.
However, this is not true, exactly for the reason that is explained in the
last option.

21. Give a serial Kripke model M21 such that:

M21 6� a→ �♦a

Write your answer as a tuple 〈W,R, V 〉.
(If you do not know how to write a Kripke model as a tuple, you may
describe your model in some other way for partial points.)

As this formula is an instance of the symmetry scheme B, it means that
our counter example should have a non-symmetric accessibility relation.
In addition, it does need to be serial, so each world must have at least one
outgoing arrow.

So take for instance the model M21 given by

a

x0 x1

Note that it is not symmetric (as there is no arrow from x1 to x0), but it
is serial.

This model is mathematically described by the tuple 〈W,R, V 〉 where

W = {x0, x1}
R(x0) = {x1}
R(x1) = {x1}
V (x0) = {a}
V (x1) = ∅

This is the corresponding 
-table:

a ♦a �♦a a→ �♦a
x0 1 0 0 0
x1 0 0 0 0

Hence x0 6
 a→ �♦a and hence M21 6� a→ �♦a. In fact, also x1 6
 a→
�♦a, but that is not important anymore.
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22. Is there an LTL Kripke model M22 such that the following holds?

M22, x0 
 G(¬a ∧ Xa)

(a) Yes. It is very well possible that ¬a is true in x0, with a being true
in x1.

(b) Yes. The truth of a in xi is unrelated to the truth of a in xi+1, this
holds for any i ≥ 0.

(c) No there is no such model: if ¬a is true at all moments, it is not
possible that a is true in any world of the model either, which means
that Xa then cannot be true.(c) is correct

(d) No, one cannot use the symbol 
 in this way.

Answer (c) is correct.

As the G operator distributes over conjunctions, it follows that

M22, x0 
 G(¬a) ∧ G(Xa)

should hold. However, this means that bothM22, x0 
 G(¬a) andM22, x0 

G(Xa) should hold. The first claim implies that a 6∈ V (xi) for all i ≥ 0.
The second claim implies that a ∈ V (xi) for all i ≥ 1. So there is a con-
tradiction in x1 where both ¬a and a should hold, which cannot be the
case. Hence such a model does not exist.

Note that the other ‘No’ answer is incorrect: it is allowed to write

M22, x0 
 G(¬a ∧ Xa)

and
x0 
 G(¬a ∧ Xa)

and these mean the same thing under the assumption that somehow it is
known that we are talking about model M22.
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