
Formal Reasoning 2024
Solutions Test Block 2: Languages and Automata

(07/11/24)

Languages

1. Does the equation (L1L2)R = LR
1 L

R
2 hold for all languages L1 and L2?

(a) Yes, in both cases there is a combination of reversing and concate-
nating the languages.

(b) Yes, when constructing these languages, it does not matter in which
order you concatenate two words and reverse them.

(c) No, but (L1L2)R = LR
2 L

R
1 does hold, as (uv)R = vRuR for all words

u and v.(c) is correct

(d) No, (L1L2)R is not determined by LR
1 and LR

2 .

Answer (c) is correct.

Let us prove that the sets (L1L2)R and LR
2 L

R
1 are equal:

(L1L2)R = by definition of concatenation{
(uv)R | u ∈ L1 and v ∈ L2

}
= by definition of reverse{

vRuR | u ∈ L1 and v ∈ L2

}
= by definition of concatenation{

vR | v ∈ L2

}{
uR | u ∈ L1

}
= by definition of complement

LR
2 L

R
1

So (L1L2)R and LR
2 L

R
1 are indeed equal, but that doesn’t prove that

(L1L2)R and LR
1 L

R
2 are indeed not equal. However, the latter can easily

be shown using L1 = {a} and L2 = {b}. Obviously, LR
1 = {a} and

LR
2 = {b}. And now we have that

ba = (ab)R ∈ (L1L2)R

but
ba 6∈ LR

1 L
R
2 = {ab}

2. Which language is equal to L(a∗b∗) over the alphabet {a, b}?

(a) L
(
(a ∪ b)∗ba(a ∪ b)∗

)
(a) is correct

(b) L(b∗a∗)

(c) L
(
a∗b∗

)
(d) none of the above

Answer (a) is correct.

Recall that L(a∗b∗) is the language of words consisting of zero or more a’s
followed by zero or more b’s. So all a’s must be in front of all b’s.

And hence the complement of this language is about words for which it
is not the case that all a’s are in front of all b’s. Now this implies that

1

there must be at least one b that is in front of an a. And this implies
that there must be at least one sequence of ba inside the word. And it
doesn’t matter what happens before or after this ba. So this property
is described by the regular expression (a ∪ b)∗ba(a ∪ b)∗ and hence the
language L

(
(a ∪ b)∗ba(a ∪ b)∗

)
is equal to L(a∗b∗).

Note that the other options are indeed not equal to L(a∗b∗):

� L(b∗a∗): this language doesn’t contain the word aba which is an
element of L(a∗b∗).

� L
(
a∗b∗

)
: this language is not well defined, as we can’t take the com-

plement of the regular expression a∗b∗.

3. Consider the context-free grammar G3:

S → x | y | z | S + S | SS

This defines a language L(G3) with alphabet Σ = {x, y, z,+}.
How many parse trees does the word

xy + z

have?

(a) 1

(b) 2(b) is correct

(c) 8

(d) 16

Answer (b) is correct.

Note that the question is about the number of different parse trees and
not about the number of different productions! So the only choice we have
is whether we first do the + and then the concatenation of x and y, or
first the concatenation of x and y + z and then the +. So we get:

S

S + S

S S z

x y

S

S S

x S + S

y z

4. Consider the context-free grammar G4:

S → aS | Sb | λ

2

and the property

P (w) :=
[
w does not contain ba

]
Is this property an invariant for G4? Explain your answer.

No, this property is not an invariant. Take the word bS. Then certainly
P (bS) holds as it clearly doesn’t contain ba. However, bS → baS by
applying the rule S → aS. But P (baS) does not hold, as baS does contain
ba.

Automata

5. Consider the deterministic finite automaton M5:

// q0
a **

b

q1
a
jj

b

q2

a **

b

JJ

q3
a
jj

b

JJ

We write |w|a for the number of a’s in w, and likewise |w|b for the number
of b’s.

Which language is accepted by M5?

(a) {w ∈ {a, b}∗ | |w|a + |w|b is even}
(b) {w ∈ {a, b}∗ | |w|a + |w|b is odd}
(c) {w ∈ {a, b}∗ | |w|a × |w|b is even}(c) is correct

(d) {w ∈ {a, b}∗ | |w|a × |w|b is odd}

Answer (c) is correct.

Note that q0 represents the state where |w|a and |w|b are both even, q1
represents the state where |w|a is odd and |w|b is even, q2 represents the
state where |w|a is even and |w|b is odd, and q3 represents the state where
|w|a and |w|b are both odd. Only q3 is not a final state, so the situation
that both |w|a and |w|b are odd is not accepted. Which means that at
least one of |w|a and |w|b values must be even. Which is the same as
stating that |w|a × |w|b must be even.

Let us also explain why the other options are wrong:

� {w ∈ {a, b}∗ | |w|a + |w|b is even}: this language doesn’t contain a,
but a is accepted in final state q1.

� {w ∈ {a, b}∗ | |w|a + |w|b is odd}: this language doesn’t contain λ,
but λ is accepted in final state q0.

� {w ∈ {a, b}∗ | |w|a × |w|b is odd}: this language contains ab, but ab
ends up in the non-final state q3.

6. Consider the context-free grammar G6:

S → aS | Sb | λ

Is there a deterministic finite automaton that accepts L(G6)?

3

(a) Yes, because this language is regular.(a) is correct

(b) Yes, all context-free languages are accepted by a deterministic finite
automaton.

(c) No, the grammar is not right linear.

(d) No, a deterministic finite automaton for this language needs more
than one state, and there is only one non-terminal in the grammar.

Answer (a) is correct.

Note that L(G6) = L(a∗b∗). So it is indeed regular.

Let us also explain why the other options are wrong:

� Yes, all context-free languages are accepted by a deterministic finite
automaton. This is not true as the language {anbn | n ∈ N} is context
free because it is generated by the grammar

S → aSb | λ

but it is not regular, so there doesn’t exist a DFA that accepts it.

� No, the grammar is not right linear. It is true that this grammar is
not right linear, but there does exist a grammar that generates the
same language which is right linear:

S → aS | B
B → bB | λ

Obviously, since the answer is ‘yes’, the simple fact that this option
states that the answer is ‘no’ already implies that it can’t be a correct
answer.

� No, a deterministic finite automaton for this language needs more
than one state, and there is only one non-terminal in the grammar.
It is true that a DFA for this language needs more than one state and
it is true that this grammar has only one non-terminal, but there is
no rule that the number of states should be equal to the number of
non-terminals.

And again, since the answer is ‘yes’, the simple fact that this option
states that the answer is ‘no’ already implies that it can’t be a correct
answer.

7. Give a deterministic finite automaton M7 = 〈Σ, Q, q0, F, δ〉 such that

L(M7) = L(a∗ba∗)

The definition of M7 can be written in Ans as

M7 = <Sigma,Q,q0,F,delta>

followed by the definitions of all components of the tuple.

Write the states as q0, q1, etc., and give the function δ as a list of equations
of the form delta(q0,a) = . . .

This is a DFA that accepts L(a∗ba∗).

4

// q0

a

II
b // q1

a

II
b // q2 a,b

ss

As a tuple it is defined as: M7 = <Sigma,Q,q0,F,delta> where

Sigma = {a,b}

Q = {q0,q1,q2}

F = {q1}

delta(q0,a) = q0 delta(q0,b) = q1

delta(q1,a) = q1 delta(q1,b) = q2

delta(q2,a) = q2 delta(q2,b) = q2

8. What is the type of the transition function δ of a non-deterministic finite
automaton? (This type describes its input/output behavior.)

(a) δ : Q× Σ→ Q

(b) δ : Q× Σ→ P(Q)

(c) δ : Q× (Σ ∪ {λ})→ Q

(d) δ : Q× (Σ ∪ {λ})→ P(Q)(d) is correct

Answer (d) is correct.

As the transition function δ must also handle λ-transitions, it is clear that
the solution must be δ : Q× (Σ∪ {λ})→ Q or δ : Q× (Σ∪ {λ})→ P(Q).
However, the first of these two options states that the result is a single
state, but, as in an NFA there may be more than one outgoing arrow
with the same symbol, the result should not be a single state, but a set
of states. And to be precise, a subset of the set of states Q, which is
by definition an element of the power set of Q, so the correct type is
δ : Q× (Σ ∪ {λ})→ P(Q).

5

