
Formal Reasoning 2024
Solutions Test Blocks 1, 2 and 3: Additional Test

(09/01/25)

1. Consider the English sentence:

If it doesn’t rain, then I don’t get wet.

Which of the following formulas of propositional logic corresponds to the
meaning of this sentence? We use the dictionary:

R it rains
W I get wet

Hint: Use logical laws, or use a truth table to check the correctness of
your answer.

(a)
¬(R ∧W )

(b)
¬(R ∧ ¬W )

(c)
¬(¬R ∧W )

(c) is correct

(d)
¬(¬R ∧ ¬W )

Answer (c) is correct.

The default translation using an implication would be

¬R→ ¬W

Using logical laws we can rewrite it to one of the options:

¬R→ ¬W ≡ ¬¬R ∨ ¬W applying a→ b ≡ ¬a ∨ b
≡ ¬(¬R ∧W ) applying De Morgan

Hopefully, it is clear that the different options are not logically equivalent.
If not, then have a look at the truth table for all of these formulas:

R W ¬R ¬W ¬R→ ¬W ¬(R ∧W ) ¬(R ∧ ¬W ) ¬(¬R ∧W ) ¬(¬R ∧ ¬W )
0 0 1 1 1 1 1 1 0
0 1 1 0 0 1 1 0 1
1 0 0 1 1 1 0 1 1
1 1 0 0 1 0 1 1 1

Note that for lack of space not all intermediate columns are included. only
the columns of ¬R → ¬W and ¬(¬R ∧W ) are equal, so only these two
are equivalent.

2. Consider the interpretation I2, that maps N to the set of natural numbers
N, and L(x, y) to x ≤ y. Which of the following statements does not hold?
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(a)
((N,≤), I2) � ∀x ∈ N ∃y ∈ N L(x, y)

(b)
((N,≤), I2) � ∀x ∈ N ∃y ∈ N L(y, x)

(c)
((N,≤), I2) � ∃x ∈ N ∀y ∈ N L(x, y)

(d)
((N,≤), I2) � ∃x ∈ N ∀y ∈ N L(y, x)

(d) is correct

Answer (d) is correct.

Let us have a look at the meaning of the four statements:

� ((N,≤), I2) � ∀x ∈ N ∃y ∈ N L(x, y): For each natural number x
there is a natural number y such that x ≤ y. This is true, as we can
take y = x because x ≤ x, once x is chosen.

� ((N,≤), I2) � ∀x ∈ N ∃y ∈ N L(y, x): For each natural number x
there is a natural number y such that y ≤ x. This is true, as we can
take y = x because x ≤ x, once x is chosen.

� ((N,≤), I2) � ∃x ∈ N ∀y ∈ N L(x, y): There exists a natural number
x such that for all natural numbers y it holds that x ≤ y. This is
true as we can take x = 0 and 0 ≤ y for all natural numbers y.

� ((N,≤), I2) � ∃x ∈ N ∀y ∈ N L(y, x): There exists a natural number
x such that for all natural numbers y it holds that y ≤ x. This is
not true as it would imply that the natural numbers are bounded.
However, if x is chosen, then we can always take y = x+ 1 and then
x+ 1 ≤ x doesn’t hold.

3. Consider the language

L3 := L
(
a∗b∗

)
∩ L

(
(ab)∗

)

with alphabet Σ = {a, b}. Give one word that is in L3, give one word that

is in L
(
a∗b∗

)
but not in L

(
(ab)∗

)
, and give one word that is in L

(
(ab)∗

)

but not in L
(
a∗b∗

)
.

Make sure that the length of each of these three words is at least two and
at most four.

As L3 is the intersection of the languages L
(
a∗b∗

)
and L

(
(ab)∗

)
it means

that words in L3 should be in both of these languages. And words that
are not in L3 should not be in at least one of these languages.

� The language L
(
a∗b∗

)
consists of words that start with some number

of a’s (possibly zero) by some number of b’s (possibly zero).

� The language L
(
a∗b∗

)
consists of words that contain the substring

ba.

� The language L
(
(ab)∗

)
consists of words that have zero or more con-

secutive blocks of ab (and nothing else).
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Now, as abab contains ba and it consists of two consecutive blocks ab, it
is in both parts of the intersection and hence it is in L3.

And ba obviously contains ba, so it is in L
(
a∗b∗

)
, but it does not consist

of zero or more consecutive blocks of ab, so it is not in L
(
(ab)∗

)
.

And ab consists of one consecutive block of ab, so it is in L
(
(ab)∗

)
, but it

doesn’t contain ba so it is not in L
(
a∗b∗

)
.

Note that all these three words have a length that is at least two and at
most four.

4. Consider the following context-free grammar G4:

S → aSb | λ

The language L4 := L(G4) is context-free but not regular.

Which of the following properties is not an invariant that can be used to
show that abba 6∈ L4?

(a)
P4(w) :=

[
w = S or w = λ or w ends with b

]

(b)
P4(w) :=

[
w is of the form anubn with n ∈ N and u ∈ {S, λ}

]

(c)
P4(w) :=

[
w does not contain ba

]

(c) is correct

(d)
P4(w) :=

[
w ∈ L

(
a∗(S ∪ λ)b∗

)]

Answer (c) is correct.

It is clear that
P4(w) :=

[
w does not contain ba

]

is not an invariant, as P (Sa) holds, and Sa→ aSba, but P (aSba) clearly
does not hold.

The other three are indeed invariants.

� P4(w) :=
[
w = S or w = λ or w ends with b

]
:

(a) P4(S) clearly holds.

(b) If v and v′ are such that P (v) holds and v → v′, then v = S or
v = ub for some u.

– If v = S then v′ = aSb or v′ = λ and in both situations P (v′)
clearly holds.

– If v = ub then v′ = u′b for some u′ and hence P (v′) clearly
holds.

� P4(w) :=
[
w is of the form anubn with n ∈ N and u ∈ {S, λ}

]
:

(a) P4(S) clearly holds as S = a0Sb0 and 0 ∈ N.

(b) If v and v′ are such that P (v) holds and v → v′, then v = anSbn

for some n ∈ N. And hence v′ = an+1Sbn+1 or v′ = anbn and in
both situations P (v′) clearly holds.
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� P4(w) :=
[
w ∈ L

(
a∗(S ∪ λ)b∗

)]
:

(a) P4(S) clearly holds as S ∈ L(a∗(S ∪ λ)b∗).

(b) If v and v′ are such that P (v) holds and v → v′, then v = anSbm

for some n,m ∈ N. And hence v′ = an+1Sbm+1 or v′ = anbm

and in both situations P (v′) clearly holds.

5. Consider all deterministic finite automata with alphabet Σ = {a} and
exactly two states. How many different languages do these automata
accept?

(a) 2 or less

(b) 4 or less, but more than 2

(c) 8 or less, but more than 4(c) is correct

(d) more than 8

Answer (c) is correct.

There are three orthogonal choices:

� δ(q0, a) = q0 or δ(q0, a) = q1

� δ(q1, a) = q1 or δ(q1, a) = q0

� the finite states are ∅, {q0}, {q1}, or {q0, q1}

So there are 2 · 2 · 4 = 16 different automata. However, not all these
automata actually accept different languages. The table below provides
the four possible structures without indicating the final states and relates
the choice for the final states to the accepted language.

Finite states ∅ {q0} {q1} {q0, q1}

// q0

a

��
q1

a

��
∅ L

(
a∗
)

∅ L
(
a∗
)

// q0

a

��
q1a

oo ∅ L
(
a∗
)

∅ L
(
a∗
)

// q0
a // q1

a

��
∅ {λ} L

(
aa∗

)
L
(
a∗
)

// q0
a **

q1
a
jj ∅ L

(
(aa)∗

)
L
(
a(aa)∗

)
L
(
a∗
)

So these are the six different languages that are accepted: ∅, {λ}, L
(
(aa)∗

)
,

L
(
a(aa)∗

)
, L

(
aa∗

)
, and L

(
a∗
)
.

6. What is the number of Hamiltonian cycles in the graph Kn with n ≥ 3?

(a) 1
2n(n− 1)
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(b) (n− 1)!

(c) n!(c) is correct

(d) None of the above.

Answer (c) is correct.

Note that Kn = 〈{1, 2, . . . , n}, {{i, j} | 1 < i < j < n}〉. A Hamiltonian
cycle in Kn is a path x1 → x2 → x3 → · · · → xn → x1 where there exists a
bijective mapping between the sets {1, 2, . . . , n} and {x1, x2, . . . , xn}. We
have n options for the starting vertex x1 of the Hamiltonian cycle. For
the next vertex x2 we have n− 1 options left, because x1 is connected by
an edge to all other vertices as Kn is the complete graph with n vertices.
Likewise, for the next vertex x3 we have n − 2 options left. And so on,
till we get that for vertex xn we have only 1 option left. So the number of
different Hamiltonian cycles in Kn equals n · (n− 1) · (n− 2) · · · · · 1 = n!.

In fact, it is not difficult to understand that the number of bijective
functions between {1, 2, . . . , n} and {x1, x2, . . . , xn} is equal to the num-
ber of permutations (the number of ways we can order the elements of
{1, 2, . . . , n}) which is also known to be n!.

And note that if n ≤ 2 the graph Kn has no cycles and hence zero Hamil-
tonian cycles, which doesn’t match with the formula n!, so the n ≥ 3 is
essential.

7. We define the binomial coefficients recursively by

(i)

(
0

0

)
= 1 (iii)

(
0

k + 1

)
= 0

(ii)

(
n+ 1

0

)
= 1 (iv)

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

where in all these equations n and k range over the natural numbers. Note
that the definitions are labeled with Roman numerals for easy reference.

We want to prove from this that

(
n

1

)
= n

for all natural numbers n using induction on n.

Below we give a partial proof where we included all the administrative
steps but left open the two steps where you (presumably) have to do some
thinking.

Provide these two missing steps. Make sure to separate the two steps
clearly in your answer. And if you use one of the four definitions provided
above, make sure that you clearly reference it, preferably by its number.
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Proposition:0
(
n

1

)
= n for all n ≥ 0.

Proof by induction on n.1

We first define our predicate P as:

P (n) :=

[(
n

1

)
= n

]
2

Base Case. We show that P (0) holds, i.e. we show that3
(

0

1

)
= 0

This indeed holds, because . . .4

Induction Step. Let k be any natural number such that k ≥ 0.5

Assume that we already know that P (k) holds, i.e. we assume that6 (
k

1

)
= k (Induction Hypothesis IH)

We now show that P (k + 1) also holds, i.e. we show that7 (
k + 1

1

)
= k + 1

This indeed holds, because . . .8

Hence it follows by induction that P (n) holds for all n ≥ 0.9

This is the proof of the base case:

This indeed holds, because4
(

0

1

)
=

(
0

0 + 1

)
elementary algebra

= 0 by definition (iii) of
(

0
k+1

)
where k = 0

And this is the proof of the inductive step:

This indeed holds, because8
(
k + 1

1

)
=

(
k + 1

0 + 1

)
elementary algebra

=

(
k

0

)
+

(
k

1

)
recursive definition (iv) of

(
n+1
k+1

)

where n = k and k = 0

=

(
k

0

)
+ k applying IH

So if we can prove that
(
k
0

)
= 1 for all k ≥ 0, then it indeed follows that(

k+1
1

)
= k + 1.

Now let us prove that indeed
(
k
0

)
= 1 for all k ≥ 0. As k ≥ 0 it follows

that there are two options:

6



� k = 0 and then we get
(
k
0

)
=

(
0
0

)
= 1 by definition (i) of

(
0
0

)
, or

� k > 0, so there exists k′ ≥ 0 such that k = k′ + 1. Now it follows

that
(
k
0

)
=

(
k′+1
0

)
= 1 by definition (ii) of

(
n+1
0

)
where n = k′.

So in both cases, we get that
(
k
0

)
= 1. Hence the conclusion is that

(
k + 1

1

)
=

(
k + 1

0 + 1

)
=

(
k

0

)
+

(
k

1

)
=

(
k

0

)
+ k = 1 + k = k + 1

which is what we had to prove.

8. Consider the following Kripke model M8:

a

x0

a

x1

Does the following hold?
x0 
 �♦a

(a) Yes, x1 has no successors, which means that in that world any formula
of the form �f holds.

(b) Yes, because a holds in all worlds of the model.

(c) No, because x1 6
 �a.

(d) No, because x1 6
 ♦a.(d) is correct

Answer (d) is correct.

The statement x0 
 �♦a holds if in all accessible worlds from x0 the
formula ♦a holds. As the only accessible world from x0 is x1, this means
that x1 
 ♦a should hold. In turn, this means that x1 has an accessible
world where a holds. However, as there are no accessible worlds from x1,
there certainly isn’t one where a holds. So the fact that x1 6
 ♦a causes
that x0 6
 �♦a.

Note that x1 
 �a vacuously holds as x1 has no accessible worlds.

Of course, we can also create a satisfiability table:


 a ♦a �♦a �a
x0 1 1 0 1
x1 1 0 1 1

The last column is only added to explicitly show that x1 
 �a and hence
invalidate the other ‘No’ option. It is not relevant for determining whether
x0 
 �♦a holds or not.
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