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Chapter 1

Propositional logic

Exercise 1.A
Form sentences in our formal language that correspond to the following English sentences:

(i) It is neither raining, nor is the sun shining.

Note that if in the exercise it is not explicitly stated that you should use the official
notation for formulas, you may omit superfluous parentheses.

Solution: ¬R∧¬S: It is not raining and the sun is not shining.
(ii) The sun shines unless it rains.

Solution: The meaning of the word ‘unless’ can be a bit unclear. Often it is read
as ‘The sun shines, but not when it is raining,’ but other interpretations can be given.
Specifically, the following interpretations are not logically equivalent (see Definition 1.13):

• R → ¬ S: When it rains, the sun does not shine. Notice that nothing is said about
the situation in which the sun does shine, but does this fit with the meaning of
‘unless’?

• ¬R → S: When it is not raining, the sun shines.

• S ↔ ¬R: The sun shines if and only if it is not raining.

• ¬S → R: If the sun doesn’t shine, it must rain.

• S → ¬R: When the sun shines, it cannot rain.

Which one of these interpretations do you think matches the original sentence the best?
(iii) Either the sun shines, or it rains. (But not both simultaneously.)

Solution: Here, too, are multiple possibilities, though in this case they are logically
equivalent. The first resembles the original English sentence more, though.

• (S∨R) ∧ ¬ (S∧R): the sun shines or it rains, and not both at the same time,

• (S∧¬R) ∨ (¬S∧R): either the sun shines and it doesn’t rain, or the sun doesn’t
shine and it rains.

Notice that the formulas S ↔ ¬R and ¬ (S ↔ R) have the same truth table as these
solutions. But because the form of these formulas doesn’t resemble the original English
sentence much, we think these formulas are less good translations.
Simply S∨R is wrong, because it doesn’t account for the ‘but not both simultaneously’
part.

(iv) There is only a rainbow if the sun is shining and it is raining.
Solution: This solution seems best: RB → (S∧R): if there is a rainbow, then the sun
must be shining and it must be raining. (Because only when the sun is shining and it is
raining, there can be a rainbow.)
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The following solution seems less good, but might be defensible: RB ↔ (S∧R): there
is a rainbow if and only if the sun shines and it is raining. In this translation, the word
‘only’ is somewhat unusually interpreted.
Furthermore, it is clear that (S∧R) → RB is not a good translation of the sentence.
Because this would correspond to ‘There is a rainbow if the sun is shining and it is
raining,’ leaving away the ‘only’ as if it meant nothing special.

(v) If I’m outside, I get wet, but only if it rains.
Solution: There are many acceptable solutions in this case. Although we know that
typically sentences like ‘A, but B’ are translated to ‘A ∧ B,’ and usually sentences like
‘A only if B’ are translated to ‘A → B’, it is quite unclear how ‘A, but only if B’ should
be translated. We could interpret ‘A, but only if B’ for instance as:

i) ‘A if (also) B’, or

ii) ‘A only if B’.

Furthermore, in the original sentence it is unclear where the implicit parentheses are
located. So this gives another two possibilities of interpreting the sentence:

I) ((If I’m outside, I get wet), but only if it rains.)

II) (If I’m outside, (I get wet, but only if it rains).)

If we combine these options, we get the following interpretations of the sentence and the
corresponding formulas:

i+I) “I get wet when I’m outside, if it (also) rains.” R → (Out → W) or “I get wet when
I’m outside and it (also) rains.” (Out∧R) → W

ii+I) “If I get wet wet when I’m outside, then it must be raining.” (Out → W) → R

Note that formulas of the form (A → B) → C usually have a more subtle
meaning than you expect and should only be used with great care.

i+II) “If I’m outside, then I get wet if it (also) rains.” Out → (R → W)

ii+II) “If I’m outside, then I get wet only if it rains.” Out → (W → R)

Note that the bi-implication (Out → W) ↔ R is not in this list although both its parts
(Out → W) → R and R → (Out → W) are. The reason we don’t consider this a really
good solution is that both directions of this bi-implication are accepted under different
interpretations!

Exercise 1.B
Can you also express f ↔ g using the other connectives? If so, show how.

Solution: The formula f ↔ g can also be expressed as (f → g)∧ (g → f) or as (f ∨ g) →
(f ∧ g). Also (f ∧ g) ∨ (¬f ∧ ¬g) is logically equivalent.

Exercise 1.C
Translate the following formal sentences into English:

(i) R ↔ S
Solution: It rains if and only if the sun shines. (Or you could say something as ‘it rains
exactly when the sun shines.’) Note that the sentence ‘If it rains then the sun shines and
if the sun shines, it rains’ is perfectly well a translation of the formula (R → S)∧(S → R),
which is in turn logically equivalent to R ↔ S, but nevertheless it is not so good of a
translation of R ↔ S.

(ii) RB → (R∧S)
Solution: If there is a rainbow, then it rains and the sun shines.
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(iii) Out → ¬ In
Solution: If I’m outside, I’m not inside.

(iv) Out∨ In
Solution: I’m outside or inside (or both).

Exercise 1.D
Draw the parse trees and give the truth tables for:

(i) a ∨ ¬a

Make sure that your truth tables are created properly:

• Always start with a column for each atomic proposition.

• Each connective in the formula should have its own column.

• Columns are separated by lines.

• Rows are also separated by lines, but if your sheet has already horizontal lines,
you may use these existing lines.

• There should be a row for each possible valuation.

• The rows should be ordered in such a way that if you take the 0’s and 1’s to
be bits in a bit string, the first row coincides with the value 0 and the last row
coincides with the value 2n−1, where n is the number of atomic propositions.

• If it is easier for you to repeat columns, this is allowed, but this is not obliga-
tory.

• Also not obligatory, but you may add parentheses to make the structure of
the formula easier to parse (read correctly).

Solution:

The parse tree:

∨

a ¬

a

And the truth table:

a ¬a a ∨ ¬a
0 1 1
1 0 1

(ii) (a → b) → a
Solution:

The parse tree:

→

→ a

a b

And the truth table:

a b a → b (a → b) → a

0 0 1 0
0 1 1 0
1 0 0 1
1 1 1 1
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(iii) a → (b → a)
Solution:

The parse tree:

→

a →

b a

And the truth table:

a b b → a a → (b → a)

0 0 1 1
0 1 0 1
1 0 1 1
1 1 1 1

(iv) a ∧ b → a
Solution:

The parse tree:

→

∧ a

a b

And the truth table:

a b (a ∧ b) (a ∧ b) → a

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 1

(v) a ∧ (b → a)
Solution:

The parse tree:

∧

a →

b a

And the truth table:

a b b → a a ∧ (b → a)

0 0 1 0
0 1 0 0
1 0 1 1
1 1 1 1

(vi) ¬a → ¬b
Solution:

The parse tree:

→

¬ ¬

a b

And the truth table:

a b ¬a ¬b ¬a → ¬b
0 0 1 1 1
0 1 1 0 0
1 0 0 1 1
1 1 0 0 1

Exercise 1.E
Which of the following propositions are logically true?

You can find out whether a proposition is true by writing out its truth table. If the
proposition’s column is filled only with 1’s, then the formula is logically true. If not, then
the formula is not logically true.

Do not only write out the truth table as your answer. Always make sure to directly
answer what was asked, by explicitly indicating which property of the truth table you have
used to derive this conclusion!

(i) a ∨ ¬a
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Solution: From the truth table of Exercise 1.D (i) you can conclude that a ∨ ¬a is
logically true, because the last column contains only 1’s.

(ii) a → (a → a)
Solution: Logically true. Note how the last column of its truth table is filled only with
1’s:
a a → a a → (a → a)

0 1 1
1 1 1

(iii) a → a
Solution: Logically true. Note how the second column of the truth table above contains
only 1’s.

(iv) (a → b) → a
Solution: From the 0’s in the corresponding truth table of Exercise 1.D (ii) you can
conclude that (a → b) → a is not logically true. Note that having only one 0 already
implies that the formula is not logically true.

(v) a → (b → a)
Solution: From the truth table of Exercise 1.D (iii) you can conclude that a → (b → a)
is logically true, because the last column contains only 1’s.

(vi) a ∧ b → a
Solution: From the truth table of Exercise 1.D (iv) you can conclude that a ∧ b → a is
logically true, because the last column contains only 1’s.

(vii) a ∨ (b → a)
Solution: Not logically true. This follows from the 0 on the second row of the last
column of its truth table:
a b b → a a ∨ (b → a)

0 0 1 1
0 1 0 0
1 0 1 1
1 1 1 1

(viii) a ∨ b → a
Solution: Not logically true. Again, this follows from the 0 on the second row of the
last column of its truth table:
a b a ∨ b (a ∨ b) → a

0 0 0 1
0 1 1 0
1 0 1 1
1 1 1 1

Exercise 1.F
Let f and g be arbitrary propositions. Find out whether the following statements hold. Explain
your answers.

Note that all these statement are of the form ‘if. . . , then. . . ’.

• If the statement holds, you should give a general explanation why. In this explanation
you may not assume anything about the structure of the arbitrary formulas f and
g. In particular you don’t know which atomic propositions are used within these
formulas, so you don’t know how many rows the corresponding truth tables have,
so you cannot write out these truth tables. But you can reason about these truth
tables!
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– A proof for an ‘if. . . , then. . . ’ statement works by first assuming the ‘if’ part,
and then showing that the ‘then’ part must necessarily hold.

• If the statement does not hold, you can simply give a counterexample by choosing
specific formulas f and g. In this case it is also possible to give a general explanation
why the statement cannot be true, but that is usually much more difficult to formulate
than giving an explanation about a specific counterexample.

– To give a counterexample, you should pick some specific f and g in such a way
that the ‘if’ part holds for these f and g, but the ‘then’ part fails to hold.

(i) If |= f and |= g, then |= f ∧ g.
Solution: True.
Assume that |= f and |= g. Which means that for every model v it holds that v (f) = 1
and v (g) = 1. Then for any such model v, you can calculate v (f ∧ g) according to
the truth table for ∧, and you will find that v (f ∧ g) = 1. So apparently, given our
assumptions, we have that for every model v, v (f ∧ g) = 1. Which then means that, by
definition, |= f ∧ g. So the statement is true.

(ii) If not |= f , then |= ¬f .
Solution: Not true.
To find a counterexample for which we have ‘not |= f ,’ we have to pick an f for which at
least one model v1 has v1 (f) = 0. For this v1 it then automatically holds that v1 (¬f) = 1.
But to be sure that ‘|= ¬f ’ does not hold, we also need a model v2 for which v2 (¬f) = 0.
This can only be the case if v2 (f) = 1. So, we can only find a counterexample if f is
true in certain models and false in others. Luckily, there are plenty such f . For example,
simply take f = a. Then we have ‘not |= a’, and yet the conclusion ‘|= ¬a’ does not
hold. So, we have found a counterexample, proving that the statement in question is not
true.

(iii) If |= f or |= g, then |= f ∨ g.
Solution: True.
Assume that |= f or |= g. So, we actually have three distinct cases, and for each of these
cases we have to prove the same conclusion, namely |= f ∨ g.

(1) |= f is true. This means that for every v we have v (f) = 1. But for each such v,
we then also have v (f ∨ g) = 1, because the truth of f is enough to cause the truth
of the composition f ∨ g. So then we have |= f ∨ g.

(2) |= g is true. This case is exactly the same as the previous case (but the other way
around).

(3) Both |= f and |= g are true. Then in particular, we have |= f , and in the case where
we prove |= f ∨ g from |= f we of course never relied on whether |= g holds or does
not hold. So we can use the same proof again.

So, in all three cases, the conclusion holds. So, the conclusion holds under the composite
assumption ‘|= f or |= g’. So, the statement holds.

(iv) If (if |= f , then |= g), then |= f → g.
Solution: Not true.
So, we need a counterexample for which ‘(if |= f , then |= g)’ holds. This sub-statement
is again of the ‘if. . . , then. . . ’ form and can thus be made true in two ways:

(1) By the falsity of |= f .

(2) By the truth of |= f as well as |= g.
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If in one of these situations we can show that |= f → g does not hold, we have found a
counterexample.
Let us take f = a and g = b. Now if we look at the models of a → b, we see that there
are four such models: v1 (a) = 0 and v1 (b) = 0, v2 (a) = 0 and v2 (b) = 1, v3 (a) = 1 and
v3 (b) = 0, v4 (a) = 1 and v4 (b) = 1.

In a truth table:

model a b a → b

v1 0 0 1
v2 0 1 1
v3 1 0 0
v4 1 1 1

But because for example v1 (a) = 0, we immediately have that |= a does not hold. So,
for this specific choice for f and g we have ‘(if |= f , then |= g)’. However, if we compute
v3 (a → b), we find v3 (a → b) = 0. Which means that |= f → g does not hold. And thus
we have indeed found a counterexample. So, the statement does not hold.

(v) If |= ¬f, then not |= f .
Solution: True.
This time over, we will give the proof without even using the word ‘model’, but by
describing what happens in the truth tables, without writing them out in full. Because
we have to the prove the statement for every f , you actually can’t even write out the
full truth table, because you don’t know what f might look like. This doesn’t matter,
however, because you can reason about the 1’s and 0’s in the tables, and that’s enough.
(If the statement holds, of course.)
Assume that |= ¬f . Then the column of ¬f contains only 1’s. So, the column for f must
show only 0’s, and thus by definition |= f does not hold. And thus, the statement holds.

(vi) If |= f ∨ g, then |= f or |= g.
Solution: Not true.
We will try to find a counterexample such that |= f ∨ g, but not |= f and also not |= g.
Take f = a and g = ¬a. Then there are only two different models: v1 with v1 (a) = 0
and v2 with v2 (a) = 1. It follows immediately that v1 (¬a) = 1 and v2 (¬a) = 0. It
follows from v1 (a) = 0 that |= a does not hold. And from v2 (¬a) = 0 it also follows
that |= ¬a does not hold. However, v1 (a ∨ ¬a) = 1 and v2 (a ∨ ¬a) = 1, so we do have
|= f ∨ g. So, this is a valid counterexample. So, the statement does not hold.

(vii) If |= f → g, then (if |= f , then |= g).
Solution: True.
Assume |= f → g. Then for every model v we have v (f → g) = 1. By looking at the
way that → works, we see that there are two ways in which v (f → g) = 1 can happen:

(1) v (f) = 0 (and it doesn’t matter what v (g) is)

(2) v (f) = 1 and v (g) = 1.

For both cases, we must show that ‘if |= f , then |= g.’

(1) Suppose that we have a model v such that v (f) = 0. Then that means immediately
that |= f cannot be true, and thus the statement ‘if |= f , then |= g’ holds.

(2) So now we only have to look at the situation in which all models give v (f) = 1.
But then, it follows from the case distinction that we made, that v (g) = 1 holds for
all models. And thus we have ‘if |= f , then |= g.’

Because in both cases, the conclusion ‘if |= f , then |= g’ holds, the original statement is
true.

(viii) If |= f ↔ g, then (|= f if and only if |= g).
Solution: True.
A proof with truth tables again.
Assume that |= f ↔ g. This means that in the truth table, in every row, the value in
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the column of f and the value in the column of g are the same. (Either they are both 0,
or both 1.) If we assume furthermore that |= f , then f has only 1’s in its column. But
then, the same holds for g because their values were the same. And thus we can conclude
that |= g. This last part works equally well the other way around: if |= g is true, then g
has all 1’s in its column, and thus f has all 1’s too, and thus |= f is true. So, the whole
statement is true.

(ix) If (|= f if and only if |= g), then |= f ↔ g.
Solution: Not true.
Take f = a and g = b. We then have four different models again, as in item (iv). In
particular, we have v1 (a) = 0 and v1 (b) = 0. So, |= a does not hold, and also |= b does
not hold. But, we do have the truth of the statement ‘|= f if and only if |= g’ ! When we
look at v3, we see that v3 (a ↔ b) = 0, and thus |= f ↔ g is false. So, we have found a
counterexample. So, the statement is false.

Exercise 1.G
For each of the following couples of propositions, show that they are logically equivalent to
each other.

Solution: To see whether two propositions are logically equivalent, we can inspect their
truth tables. The propositions are logically equivalent in the case that their columns are exactly
the same.

(i) (a ∧ b) ∧ c and a ∧ (b ∧ c)
Solution: These propositions are logically equivalent because the last two columns are
exactly the same:
a b c a ∧ b b ∧ c (a ∧ b) ∧ c a ∧ (b ∧ c)

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0
1 1 1 1 1 1 1

(ii) (a ∨ b) ∨ c and a ∨ (b ∨ c)
Solution: These propositions are logically equivalent too, because the last two columns
are exactly the same:
a b c a ∨ b b ∨ c (a ∨ b) ∨ c a ∨ (b ∨ c)

0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

Exercise 1.H
Let f and g be propositions. Is the following statement true? f ≡ g if and only if |= f ↔ g.

Solution: Let’s split the statement up in two parts:

1. First we show that ‘If f ≡ g then |= f ↔ g’ holds. If we assume that f ≡ g holds, then
f and g have identical columns. But then, the column of f ↔ g has only 1’s in it, and
so |= f ↔ g is true.
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2. Then we show that ‘If |= f ↔ g, then f ≡ g’ holds. If we assume that |= f ↔ g is true.
Then the column of f ↔ g is filled with only 1’s. But then that means that, for every
model, the truth value for f is the same as the truth value for g. And that is exactly
what f ≡ g expresses, so we have the truth of f ≡ g.

Both parts hold, and thus the original statement holds as well.

Exercise 1.I
Are the following statements true?

Solution: Like before, we can easily solve this exercise by writing out the truth tables for
the propositions involved, and then checking the definition of ‘logical entailment.’

(i) a ∧ b |= a
Solution: a ∧ b |= a is true, because in every model where a ∧ b holds, a holds as well.

(ii) a ∨ b |= a
Solution: a∨ b |= a is not true; the statement says that in every model in which a∨ b is
true, also a is true. But this is not the case, and we can find models in which a ∨ b but
not a. For example, take the model v with v (a) = 0 and v (b) = 1.

(iii) a |= a ∨ b
Solution: a |= a ∨ b is true: if a is true in a model, then a ∨ b must always also be true
in that model.

(iv) a ∧ ¬a |= b
Solution: a∧¬a |= b is true: if a∧¬a is true in a model, then b must necessarily also be
true in that model. This seems like a weird and untrue statement, for example because
a ∧ ¬a is never true in any model. However, the ‘if. . . , then. . . ’ construction makes the
statement true, exactly because of the fact that the ‘if’ part is never true. It is what is
called a ‘vacuous truth.’ You can also look at it the other way around: if the statement
a ∧ ¬a |= b would not be true, then you must be able to find a model in which b is not
true, and a ∧ ¬a is. And that, of course, would be impossible.
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Chapter 2

Predicate logic

Exercise 2.A
Give two possible translations for the following sentence.

Sharon loves Maud; a nice man loves this intelligent character.

Solution: This can be a complicated exercise, if you are willing to bend your mind around
the (somewhat forced) ambiguities in this English sentence. It isn’t entirely clear what is
meant by this intelligent character. (And also not entirely clear what is meant by a nice man
. . . .) Which is to say, you won’t be able to translate the sentence without giving your own
interpretation of its meaning. Though of course there is a difference between an acceptable
interpretation and a simply wrong one: by which we mean to say, your interpretation should
be defensible. As far as we see (or intended) it, the possible ambiguities are as follows:

• Interpreting a nice man loves . . . as either:

1. there is some nice man who loves . . . , or as

2. a nice man would love . . . (which is the same as saying any nice man would love
. . . ).

• Interpreting loves this intelligent character as either:

3. loves Maud, or

4. loves Sharon, or

5. loves Maud, who is intelligent, or

6. loves Sharon, who is intelligent, or

7. loves Maud’s intelligent character (which would translate to loves any woman who
is as intelligent as Maud), or

8. loves Sharon’s intelligent character (which would translate to loves any woman who
is as intelligent as Sharon), or

9. loves this intelligent character (which would translate to loves any woman who is
intelligent), or

. . . leading to a whole range of possible translations, of which we will here list only a few:
(i) Interpreting as per (2) and (9):

L (s,m) ∧ ∀x ∈ M [N (x) → ∀w ∈ W [I (w) → L (x,w)]]

(ii) Interpreting as per (2) and (6):

L (s,m) ∧ ∀x ∈ M [N (x) → (L (x, s) ∧ I (s))]
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(iii) Interpreting as per (1) and (5):

L (s,m) ∧ ∃x ∈ M [N (x) ∧ (L (x,m) ∧ I (m))]

(iv) Interpreting as per (1) and (9):

L (s,m) ∧ ∃x ∈ M [N (x) ∧ ∀w ∈ W [I (w) → L (x,w)]]

(v) Interpreting as per (2) and (8):

L (s,m) ∧ ∀x ∈ M [N (x) → ∀w ∈ W [(I (w) ↔ I (s)) → L (x,w)]]

Note that this indeed does not say anything about the intelligence of Sharon, but just
that any man would love any woman as intelligent as Sharon. (Which would be up to
the nice man’s opinion, probably.)

(vi) Interpreting as per (1) and (3):

L (s,m) ∧ ∃x ∈ M [N (x) ∧ L (x,m)]

Exercise 2.B
Translate the following sentences to English.

Solution: This kind of translation exercises are best done in two steps. First, you quite
literally translate the sentence to English, but then the English sentence will probably be a
bit ugly. So then secondly, you play around with the English connectives to make the sentence
more readable. But do make sure that this second English sentence still means the same as
the original one!

(i) ∃x ∈ M
[
T (x) ∧ ∃w ∈ W [B (w) ∧ I (w) ∧ L (x,w)]

]
Solution:

• There is a tall man and there is a beautiful intelligent woman, and this man loves
this woman.

• There is a tall man and there is a beautiful intelligent woman, whom is loved by
this man.

• There is a tall man who loves this beautiful and intelligent woman. (Note the use of
“this” to specify that this is a specific woman we are talking about, and not any/every
beautiful and intelligent woman.)

(ii) ∃x ∈ M
[
T (x) ∧ ∃w ∈ W [B (w) ∧ ¬I (w) ∧ L (x,w)] ∧ ∃w′ ∈ W [I (w′) ∧ L (w′, x)]

]
Solution:

• There is a tall man, and there is a beautiful but not intelligent woman whom he
loves, and there is another woman who is intelligent and loves him.

• There is a tall man who loves this beautiful but unintelligent woman, and who is
loved back by another woman, who is intelligent.
Note that only saying ∃w ∈ W and ∃w′ ∈ W doesn’t exclude the possibility that w
and w′ are actually the very same person. However, we know that they are distinct
people, because one of them is said to be intelligent, and the other not.

Exercise 2.C
Formalize the following sentence.

Sharon is beautiful; there is a guy who feels good about himself whom she loves.

Here, we will treat feeling good about oneself as being in love with oneself.
Solution: Using the dictionary (see page 13 and page 14) this can be formalized as:

B (s) ∧ ∃x ∈ M [L (x, x) ∧ L (s, x)]
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Exercise 2.D
Formalize the following sentences:

(i) For every two persons we have: the first one loves the second one only if the first one
feels good about him- or herself.

Solution: Note that we have chosen x to represent ‘the first one’ and y to represent
‘the second one’ within this exercise. We could have used different variables, but this
choice seems more reasonable than taking, for instance, w for ‘the first one’ and v for
‘the second one’. Note also that ‘only if’ doesn’t mean the same thing as ‘if and only if’.
So, ∀x, y ∈ W ∪M [L (x, y) → L (x, x)] is correct, but ∀x, y ∈ W ∪M [L (x, y) ↔ L (x, x)]
is not. (If you want to stress that it is really about ‘two distinct’ persons, you should add
this requirement, for instance like this: ∀x, y ∈ W ∪M [¬ (x = y) ∧ L (x, y) → L (x, x)].
But this construction with equalities will only be explained in Section 2.4, so don’t worry
about it now.)

(ii) For every two persons we have: the first one loves the second one if this second person
feels good about him- or herself.

Solution: ∀x, y ∈ W ∪M [L (y, y) → L (x, y)]
(iii) For every two persons we have: the first one loves the second one exactly in the case that

the second one feels good about him- or herself.

Solution: ∀x, y ∈ W ∪ M [L (x, y) ↔ L (y, y)] or ∀x, y ∈ W ∪ M [L (y, y) ↔ L (x, y)],
but because of the matching word order in the sentence and the first option, we consider
that one slightly better.

(iv) There is somebody who loves everyone.

Solution: ∃x ∈ W ∪M [∀y ∈ W ∪M [L (x, y)]]

Exercise 2.E
(i) Verify that F2 does not hold in M1 under the interpretation I1. But does F1 hold?

Solution: Recall the definitions of F1 and F2:

F1 := ∀x ∈ D∃y ∈ D K (x, y)

F2 := ∃x ∈ D∀y ∈ D K (x, y)

So, independent of the structure and interpretation used, F1 says that for every object
x in the structure, there is some object y such that the relation K (x, y) holds. And F2

says that there is some object x in the structure, such that the relation K (x, y) holds
for every y in the structure. And remember: y may also be the same object as x.
So now let’s first turn to the truth of F2 within the structure M1 and under the inter-
pretation of I1:

D all students in the lecture hall
K (x, y) x has a student number lower than y

We have been told already that F2 will not hold. So, we need to prove that F2 does
indeed not hold. Because F2 is of the form ∃x ∈ D[f ], such a proof amounts to showing
that for every x, the statement f is not true. And because f has the form ∀y ∈ D[g],
proving that f is not true amounts to demonstrating that there is some y such that g is
not true. Putting these two together, we have to prove that for all x, there is at least
one y, such that K (x, y) is not true.
Because there are but a finite number of students in the lecture hall (let’s say n students),
we can sort them by their unique student numbers and give them an index ranging from
1 to n. So let’s name the students s1, s2 up to sn, where the student s1 has the lowest
student number, and the student sn has the highest.
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To turn things around, let’s see if we can prove F2. If F2 were to be true, you’d be able
to pick out some student who has the lowest student number of anyone in the lecture
hall. Obviously, the only contestant would be s1, right? So, we take x = s1 in our first
step to proving F2 true. And now it remains to be proved that

∀y ∈ D K (s1, y) .

Of course this indeed holds for many students y, but it does not hold for all students in
the lecture hall, because specifically s1 is also one of these students, and he/she doesn’t
have a lower student number than him/herself.
Because s1 is our only real possibility, but we don’t have K (s1, s1), we have proved that
F2 is not true (in M1 under I1).
What a long proof! Can’t we write this down shorter? Yes, we can, for example:

Sort the students by their unique student number in ascending order: s1 to up
sn. (So, sn has the highest student number and s1 the lowest.) Suppose that
F2 is true. Then there are two possible cases for x:

• If x = si, for i ∈ {2, . . . n}, then K (si, s1) does not hold, so certainly not
∀y ∈ D K (x, y). And so F2 does not hold for x = si.

• If x = s1, then K (s1, s1) does not hold, so indeed ∀y ∈ D K (x, y) does
not hold either, because s1 ∈ D too. And so F2 does not hold for x = s1.

We have seen that F2 does not hold for any x, so F2 does not hold in this
structure.

Now the question whether F1 holds in this structure. In other words: is it true that
for every student x we can find some student y with a higher student number? Well,
obviously not. Because F1 is of the shape ∀x ∈ D [∃y ∈ D K (x, y)], we are satisfied with
proving the formula as soon as we can pick out some x such that no y exists for which
K (x, y).
So we pick x = sn, the student with the highest student number, and indeed there is no
y with a higher student number than x. Thus, we have completed the proof, that F1

indeed does not hold in structure M1 under the interpretation I1.
(ii) Verify that F1 holds in M1 under the interpretation I2. Does F2 hold as well?

Solution: Recall interpretation I2:

D all students in the lecture hall
K (x, y) x isn’t older than y

We have to demonstrate the truth of F1 in the interpretation I2. This means, that for
every x, we must show that we can find a y, such that K (x, y). In other words: we must
give a method, or algorithm, by which, for any x, we can choose a y in such a way that
K (x, y) holds.
Which is in this case surprisingly simple: choose y to be y = x itself. Then indeed
K (x, y), because one is never older than oneself. So indeed, F1 holds under interpretation
I2.
In a similar way we can show that F2 holds in structure M1 under the interpretation
I2. To do that, we must pick a suitable x. Before, we have ordered students according
to their student number. Now, let’s order the students according to their age. But
note that, unlike student numbers, the ages of students need not be unique. (Even if
you’d measure age in seconds or an even smaller timescale, instead of years.) So, we are
not able to speak of the oldest or the youngest student, because there may be multiple
such students with exactly the same age. But even though we may not have a youngest
student, we do have a subset of youngest students, and that’s enough for our current
purposes. Let’s take x to be any of these youngest students (if there are multiple, or else
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just the single youngest person). Then indeed for all students y, it holds that K (x, y),
or, x is not older than y. So we have proved F2 in M1 under I2.

(iii) Check whether F1 in M1 is true under the interpretation of I3, by looking around in
class. And check whether F2 is true or not, as well.
Solution: Recall I3:

D all students in the lecture hall
K (x, y) x is sitting next to y

At the time of writing this document, it can’t be stated whether F1 is true or not, because
it depends on the specific situation in the lecture hall. If someone is sitting alone from
the rest, he/she would be a counterexample, proving the falsity of F1. Though if everyone
is sitting next to someone else, then you have a method by which for every x you can
pick a y such that K (x, y) holds. Namely, pick one of his/her neighbors.
However, F2 is never true in M1 under interpretation I3. Because it is never the case
that some student is sitting next to all others. Even if you’d arrange the chairs in such a
way that all other students sit next to the person in question, this person would not be
sitting next to him- or herself. So, F2 is definitely false under interpretation I3.

Exercise 2.F
Verify that G2 is indeed true in structure M4 under the interpretation I8, but not in structure
M3 under the interpretation I7. Stated differently: verify that ((Q, <) , I8) |= G2 and verify
that ((N, <) , I7) ̸|= G2.

Solution:
(i) Interpretation I7 gives G2 the meaning that for every x ∈ N there is a y ∈ N such that

y < x. But this is not true. Counterexample: take x = 0, and then there will be no y
such y < 0.

(ii) Interpretation I8 gives G2 the meaning that for every x ∈ Q there is a y ∈ Q such that
y < x. This time the statement is true, because one can always take for example y = x−1
in Q.

Exercise 2.G
Define the interpretation I9 as:

D N
K (x, y) x = 2 · y

Are the formulas G1 and/or G2 true under this interpretation?
Solution:

(i) Under interpretation I9 the formulas G1 states that for every x ∈ N there is a y ∈ N such
that x = 2 · y. Not true: take for example x = 3, and then there will be no such y.

(ii) Under interpretation I9 the formulas G2 states that for every x ∈ N there is a y ∈ N such
that y = 2 · x. True: for any x we can take y = 2 · x.

Exercise 2.H
Define the interpretation I10 as:

D Q
K (x, y) x = 2 · y

Are the formulas G1 and/or G2 true under this interpretation?
Solution:

(i) Under the interpretation I10 the formula G1 states that for every x ∈ Q there is a y ∈ Q
such that x = 2 · y. True: for any x we can take y = x

2 .
(ii) Under the interpretation I10 the formula G2 states that for every x ∈ Q there is a y ∈ Q

such that y = 2 · x. True: for any x we can take y = 2 · x.
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Exercise 2.I
We take as structure the countries of Europe, and the following interpretation I11:

E the set of countries of Europe
n The Netherlands
g Germany
i Ireland
B (x, y) x borders y
T (x, y, z) x, y, and z share a tripoint (where the borders of all three countries meet)
(i) Formalize the sentence “The Netherlands and Germany share a tripoint.”

Solution: This would be any of the equivalent formulas ∃x ∈ E [T (n, g, x)], or ∃x ∈
E [T (n, g, x)], or ∃x ∈ E [T (x, g, n)], or ∃y ∈ E [T (y, n, g)], etc.

(ii) Which of the following formulas are true in this structure and under this interpretation?
(1) G3 := ∀x ∈ E ∃y ∈ E [B (x, y)]

Solution: G3 states that every country x borders at least some country y. But
this is not true, for example for island countries such as Iceland and Malta.

(2) G4 := ∀x, y ∈ E [(∃z ∈ E T (x, y, z)) → B (x, y)]
Solution: G4 states that for every two countries x and y, if they share a tripoint
with some country z, then x and y border each other as well. True, if they share a
tripoint, then in particular they indeed share a border.

(3) G5 := ∀x ∈ E [B (i, x) → ∃y ∈ E [T (i, x, y)]].
Solution: G5 states that if a country borders Ireland, then it shares a tripoint
with Ireland as well. Not true: take the United Kingdom, which borders Ireland
(via Northern-Ireland), but does not share a tripoint with Ireland. (However, if i
would have been interpreted to mean Iceland, the G5 would have been vacuously
true, because B (i, x) is never true for any x, and therefore the implication is true.)

Exercise 2.J
Find a structure M5 and an interpretation I12 such that this formula holds:

(M5, I12) |= ∀x ∈ D ∃y ∈ E [R (x, y) ∧ ¬R (y, x) ∧ ¬R (y, y)]

Solution: Two possible solutions for M5 and I12 are:

• The structure (N, <) with interpretation I12

D N
E N
R (x, y) x < y

(Verify that the formula holds by taking y to be x+ 1.)

• The structure
Domain(s) all people
Relation(s) being a father of

with interpretation I12

D all people
E all people
R (x, y) y is the father of x

Verify that this would not work if R (x, y) would be interpreted as x being y’s father.

Note that the domains D and E must be related. We will not further discuss this in this
course, but in the course “Logic and Applications” it will be explained that every relation has a
type, for example N → Q → {0, 1}, meaning that x must be an element of N and y an element
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of Q, and that the relation R (x, y) then results in a 0 or a 1 depending on the interpretation.
In this exercise, however, we write R (x, y) as well as R (y, x), meaning that then we must have
x ∈ D, x ∈ E, y ∈ D, as well as y ∈ E! So, defining a structure in which D is the set of cars,
E is the set of bicycles, and defining R (x, y) to mean that ‘x is faster than y’ would be a bit
weird because cars are not bicycles and neither the other way around. Though of course we
could define the superset V to be the set of vehicles and let R be of type V → V → {0, 1},
and things would work correctly again. If you don’t understand this remark, don’t worry, it
will be treated in full in the course “Logic and Applications.”

Exercise 2.K
Consider the interpretation I14:

H domain of all human beings
F (x) x is female
P (x, y) x is parent of y
M (x, y) x is married to y

Formalize the following sentences into formulas of predicate logic with equality:
(i) Everyone has exactly one mother.

Solution:

∀x ∈ H [ ∃y ∈ H [ F (y) ∧ P (y, x)
]

∧
∀y, z ∈ H [ (F (y) ∧ P (y, x) ∧ F (z) ∧ P (z, x)) → y = z

]
]

In this formula, x is the “everyone”, and y and z play the role of mother. The first y
is used to state that indeed x has at least one mother, (namely y), and the second y,
together with z, is used to state that x has at most one mother, by stating that for any
two people who would both be x’s mother, these people are the same person. Note: there
is no obligation to use the same variable for the second y as we did for the first y; we
could equally well have called this second y for example w. Also note the scope of x: in
the second part (at most 1 mother) we must be able to refer back to x.
This alternative solution would have worked as well:

∀x ∈ H [ ∃y ∈ H [ F (y) ∧ P (y, x)
∧
∀z ∈ H[(F (z) ∧ P (z, x)) → y = z]

]
]

Here, the y is bound only once, slightly more elegantly stating that this is the only mother
that x has. (And directly stating that any mother z of x is indeed the same mother.)

(ii) Everybody has exactly two grandmothers.
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Solution:

∀x ∈ H [ ∃y, z ∈ H [ y ̸= z ∧
∃u ∈ H[F (y) ∧ P (y, u) ∧ P (u, x)] ∧
∃u ∈ H[F (z) ∧ P (z, u) ∧ P (u, x)]

]
∧

∀y, z, v ∈ H [ (
y ̸= z ∧
∃u ∈ H[F (y) ∧ P (y, u) ∧ P (u, x)] ∧
∃u ∈ H[F (z) ∧ P (z, u) ∧ P (u, x)] ∧
∃u ∈ H[F (v) ∧ P (v, u) ∧ P (u, x)]

)
→

(v = y ∨ v = z)
]

]

Here again, x plays the role of “everybody”, and now y and z play the role of the two dis-
tinct grandmothers, and u plays the role of the father and/or mother of x, simultaneously
being the child of y, resp. z.

(iii) Every married man has exactly one spouse.

Solution: Note that a spouse can be both the husband or the wife. So in the given
solution x must be a man, but y, z1 and z2 may be both male or female.

∀x ∈ H [ ¬F (x) ∧ ∃y ∈ H [M (x, y)]
→
(∀z1, z2 ∈ H [M (x, z1) ∧M (x, z2) → z1 = z2])

]

Exercise 2.L
Use the interpretation I14 of Exercise 2.K to formalize the following properties.

(i) C (x, y): x and y have had a child together.
Solution: Define

C (x, y) := x ̸= y ∧ ∃z ∈ H[P (x, z) ∧ P (y, z)]

Then, x and y are indeed two distinct people, and there is a child z who has parents x
and y. (If we don’t include the x ̸= y the sentence is not an exact translation.)

(ii) B (x, y): x is a brother of y (take care: refer also to the next item).
Solution: Define

B (x, y) := ¬F (x) ∧ x ̸= y ∧ ∃q, r ∈ H[q ̸= r ∧ P (q, x) ∧ P (q, y) ∧ P (r, x) ∧ P (r, y)]

So, x is a brother of y if x is male, and not the same person as y, and there are two
distinct parents who are the parents of x as well as of y.

(iii) S (x, y): x is a step-sister to y.
Solution: A first try:

S (x, y) := F (x) ∧ x ̸= y ∧
∃o1, o2, o3 ∈ H[o1 ̸= o2 ∧ o2 ̸= o3 ∧ o3 ̸= o1 ∧
P (o1, x) ∧ ¬P (o1, y) ∧ P (o2, x) ∧ P (o2, y) ∧ ¬P (o3, x) ∧ P (o3, y)]
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So, x is a step-sister to y if x is female, and there are three distinct parents o1, o2, o3, the
first two of which are the parents of x, and the last two of which are the parents of y (so
x and y share exactly one parent o2.)
Unfortunately this is not a step-sister, but a half-sister! A step-sister is

A daughter of one’s step-parent by a marriage other than with one’s own
parent.

And a step-parent is defined as

A person who is married to one’s parent, but is not one’s parent.

If we combine these two definitions we get the following formalization for x is a step-sister
of y:

S (x, y) := F (x) ∧
∃o1 ∈ H[P (o1, y) ∧ ¬P (o1, x) ∧ ∃o2 ∈ H[P (o2, x) ∧ ¬P (o2, y) ∧M (o2, o1)]]

This formula expresses that x is a step-sister of y if

• x is female,

• o1 is a parent of y, but is not a parent of x,

• o2 is a parent of x, but is not a parent of y,

• and o2 is married to o1.

Note that we didn’t specify that x ̸= y, but that follows automatically from P (o1, y) ∧
¬P (o1, x). And from M (o2, o1) it follows that o2 ̸= o1, because you cannot be married
to your self. Similarly it follows that x, y, o1 and o2 are all different persons.

Translate the following formulas back to English.
(iv) ∃x∈H∀y∈H P (x, y). And is this true?

Solution: “There is a person who is everyone’s parent.” This is obviously not true.
(v)

∀z1 ∈ H∀z2 ∈ H [ ∃x∈H∃y1∈H∃y2∈H [
P (x, y1)

∧
P (y1, z1)

∧
P (x, y2)

∧
P (y2, z2)

]
→

¬ (∃w∈H [P (z1, w) ∧ P (z2, w)])
]

And is this true?
Solution: “Every two people who share a common grandparent, do not share a child.”
This is also not true. Note that these two people z1 and z2 can be the same person!
Furthermore, it is also not unlikely that there are cousins within a family who do share
a child.

Exercise 2.M
Given the interpretation I15:

D N
A (x, y, z) x+ y = z
M (x, y, z) x · y = z
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Formalize the following:
Solution: In this exercise we will need formulas that formalize the numbers x = 0 and

x = 1, so let’s first solve these.

• We can capture the character of x being 0 neatly by stating that a · x = x for all a. So,
define

x = 0 := ∀a ∈ D[M (a, x, x)]

and x ̸= 0 := ¬ (x = 0).

• Similarly, for x = 1 we have the defining property that x ·a = a holds for all a. So, define

x = 1 := ∀a ∈ D[M (x, a, a)]

and x ̸= 1 := ¬ (x = 1).

(i) x < y.
Solution: x < y holds precisely in the case that x+ r = y and r ̸= 0.
So, define:

x < y := ∃r ∈ D[A (x, r, y) ∧ ¬ (r = 0)]

(ii) x | y (x divides y).
Solution: x|y (x divides y) whenever there is some number z such that x · z = y. So,
define:

x|y := ∃z ∈ D[M (x, z, y)]

(iii) x is a prime number.
Solution: x is a prime number when x is not 1, and has no other factors other than 1
and itself. So, define:

x is a prime number := x ̸= 1 ∧ ¬∃y, z ∈ D[M (y, z, x) ∧ y ̸= x ∧ z ̸= x ∧ y ̸= 1 ∧ z ̸= 1]

We could also simply use the x|y which we already defined above.

x is a prime number := x ̸= 1 ∧ ∀y ∈ D[(y|x) → (y = 1 ∨ y = x)]
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