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Chapter 1

Propositional logic

In this chapter we discuss propositional logic, often also called propositional calculus.

1.1 Formal languages and natural languages

Natural languages, such as Dutch, English, German, etc., are not always as exact as one would
hope. Take a look at the following examples:

• Socrates is a human being. Human beings are mortal. So, Socrates is mortal.

• I am someone. Someone painted the Mona Lisa. So, I painted the Mona Lisa.

The first statement is correct, but the second is not. Even though they share the same form.
And what about the sentence,

This sentence is not true.

Is it true, or not?
To avoid these kinds of problems, we use formal languages. Formal languages are basically

laboratory-sized versions, or models, of natural languages. But we will see that these artificial
languages, even though they are relatively simple, can be used to express statements and
argumentations in a very exact and unambiguous manner. And this is very important for
many applications, such as describing the semantics of a program. Such specifications should
obviously not lead to misunderstandings.

To start, we will show how we make the transition from the English language to a formal
language. In reasoning, we often combine small statements to form bigger ones, as in for
instance: ‘If it rains and I’m outside, then I get wet.’ In this example, the small statements
are ‘it rains’, ‘I’m outside’, and ‘I get wet.’

1.2 Dictionary

We can also formalize this situation with a small dictionary.

R it rains
S the sun shines
RB there is a rainbow
W I get wet
D I stay dry
Out I’m outside
In I’m inside

So then, the sentence we introduced above becomes ‘if R and Out, then W.’ Similarly, we
could form statements as: ‘if RB, then S’, ‘S and RB’, or ‘if R and In, then D.’
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1.3 Connectives

We can also translate the connectives, which we will do like this:

Formal language English
f ∧ g f and g

f ∨ g f or g, or both
f → g if f , then g

f ↔ g f if and only if g1

¬f not f

Now, the sentences we formed above become ‘RB → S’, ‘S∧RB’, and ‘(R∧ In) → D.’

English Semi-formal Formal
If it rains and I’m outside, then I get wet. If R and Out, then W. (R∧Out) → W

If there is a rainbow, then the sun shines. If RB, then S. RB → S

I’m inside or outside, or both. In or Out, or both. In∨Out

Exercise 1.A
Form sentences in our formal language that correspond to the following English sentences:

(i) It is neither raining, nor is the sun shining.
(ii) The sun shines unless it rains.
(iii) Either the sun shines, or it rains. (But not both simultaneously.)
(iv) There is only a rainbow if the sun is shining and it is raining.
(v) If I’m outside, I get wet, but only if it rains.

So far, we have modeled our symbols (like ∨ and ∧) to be very much like the English
connectives. One of these English connectives is the word ‘or,’ which combines smaller state-
ments into larger, new statements. However, the meaning of the English word ‘or’ can be a
bit ambiguous. Take the following proposition: ‘1 + 1 = 2 or 2 + 3 = 5.’ Is it true, or not?
It turns out that people sometimes differ in opinion on this, and when you think about it a
bit, there are two distinct meanings that ‘or’ can have in the English language. Students of
Information Science and Artificial Intelligence obviously don’t like these ambiguities, so we will
simply choose the meaning of ∨ to be one of the two usual meanings of ‘or’: we will agree that
‘A or B’ is also true in the case that both A and B are true themselves. Definition 1.6 will
formalize this agreement.

Exercise 1.B
Can you also express f ↔ g using the other connectives? If so, show how.

Exercise 1.C
Translate the following formal sentences into English:

(i) R ↔ S
(ii) RB → (R∧S)
(iii) Out → ¬ In
(iv) Out∨ In

Definition 1.1
The language of propositional logic is defined to be as follows. Let A be an infinite collection
of atomic propositions (also sometimes called propositional variables or letters):

A := {a, b, c, d, a1, a2, a3, . . .}
1Mathematicians will often simply write “iff” instead of the lengthier “if and only if.”
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Let V be the set of connectives:

V := {¬,∧,∨,→,↔}

Let H be the set of parentheses:
H := {(, )}

Then, let the alphabet be the set Σ := A ∪ V ∪H, where ‘∪’ stands for the union of two sets.
If you are not familiar with set theory like this, please read Appendix A. For this chapter, it is
probably not needed to study this, but for Chapters 2 and 4 it is essential that you understand
these concepts.

Now, we can form the words of our language:

1. Any atomic proposition is a word.

2. If f and g are words, then so too are (f ∧ g), (f ∨ g), (f → g), (f ↔ g) , and¬f .

3. All words are made in this way. (No additional words exist.)

We call the words of this language propositions.

Convention 1.2
Usually, we omit the outermost parentheses of a formula, thus for example writing a∧b instead
of (a∧b). Of course we cannot always do the same with the inner parentheses, take for example
the logically inequivalent (R∧S) → RB and R∧(S → RB). What we can do, is agree upon a
notation in which we are allowed to omit some of the parentheses. We do this by defining a
priority for each connective:

• ¬ binds stronger than ∧

• ∧ binds stronger than ∨

• ∨ binds stronger than →

• → binds stronger than ↔

This means that we must interpret the formula In∨RB → Out ↔ ¬ S∧R as the formula
((In∨RB) → Out) ↔ (¬S∧R).

Only using these priorities is not enough though: it only describes where the implicit
parentheses are in the case of different connectives. When statements are built up by repeated
use of the same connective, it is not clear yet where these parentheses should be read.

For example, should we parse Out → R → W as expressing (Out → R) → W or as
expressing Out → (R → W)? This is formalized by defining the associativity of the operators.

Convention 1.3
The connectives ∧, ∨, →, and ↔ are right associative. This means that, if v ∈ {∧,∨,→,↔},
then we must read

A v B v C

as expressing
A v (B v C)

Note, though, that this is a choice that is sometimes made differently, outside of this course.
So sometimes, in other readers and books on logic, an other choice might be made.
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Remark 1.4
We can also express the structure of the formula in parse trees where the atomic propositions
are the leaves, and the logical operators the nodes. In addition, unary operators have a single
arrow downwards and binary operators have two arrows downwards, reflecting the left and the
right operand of the operator. The formulas RB → (R∧S) and Out → ¬ In are represented
respectively as:

→

RB ∧

R S

→

Out ¬

In

Note that parentheses are not shown in the tree, because the structure is already provided
by the tree itself. And also note that the parentheses in RB → (R∧S) were not needed by
Convention 1.2 anyway!

Remark 1.5
(This remark may only have meaning to you after reading Chapter 4, “Languages and au-
tomata”; so after reading that chapter, you might want to reread this remark.) The for-
mal definition of our language, with the help of a context-free grammar , is as follows: Let
Σ = A ∪ V ∪ H, that is to say Σ = {a, b, c, . . . ,¬,∧,∨,→,↔,¬, (, )}. Then the language is
defined by the grammar

S → a | b | c | . . . | ¬S | (S ∧ S) | (S ∨ S) | (S → S) | (S ↔ S)

Obviously, in stead of the dots all other symbols of the alphabet A should be listed.

1.4 Meaning and truth tables

The sentence ‘if a and b, then a’ is true, whatever you substitute for a and b. So, we’d like to
be able to say: the sentence ‘a ∧ b → a’ is true2. But we can’t, because we haven’t formally
defined what that means yet. As of yet, ‘a ∧ b → a’ is only one of the words of our formal
language. Which is why we will now turn to defining the meaning of a word (or statement) of
language, specifically speaking, when such a statement of logic would be true.

For the atomic propositions, we can think of any number of simple statements, such as
‘2 = 3,’ or ‘Jolly Jumper is a horse,’ or ‘it rains.’ In classical logic, which is our focus in
this course, we simply assume that these atomic propositions may be true, or false. We don’t
further concern ourselves with the specific truth or falsity of particular statements like ‘on
January the 1st of 2050 it will rain in Nijmegen.’

The truth of atomic propositions will be defined solely by their interpretation in a model .
For example, ‘2 = 3’ is not true in the model of natural numbers. And ‘Jolly Jumper is a
horse’ is true in the model that is a comic of Lucky Luke. And the sentence ‘it rains’ was not
true in Nijmegen, on the 17th of September of 2002.

Now let’s take a look at the composite sentence ‘a∧ b.’ We would want this sentence to be
true in a model, exactly in the case that both a and b are true in that model. If we then just
enumerate the possible truth values of a and of b, we can define the truth of a ∧ b in terms of
these.

In Computing Science, we often simply write 1 for true, and 0 for false. Logical operations,
then, are the elementary operations on bits.

So, we get the following truth table:
2Note: a ∧ b → a should be read as (a ∧ b) → a
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x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

And what of the ‘if. . . , then. . . ’ construction to combine statements into larger ones? Here,
too, natural language is somewhat ambiguous at times. For example, what if A is false, but B
is true. Is the sentence ‘if A, then B’ true? Examples are:

‘if 1 + 1 = 3, then 2 + 2 = 6’
‘if I jump off the Erasmus building, I’ll turn into a bird’
‘if I understand this stuff, my name is Alpje’

We will put an end to all this vagueness by simply agreeing upon the truth tables for the
connectives (and writing ‘A → B’ instead of ‘if A, then B’), in this next definition.

Definition 1.6
The truth tables for the logical connectives are defined to be:

x ¬x
0 1
1 0

x y x ∧ y

0 0 0
0 1 0
1 0 0
1 1 1

x y x ∨ y

0 0 0
0 1 1
1 0 1
1 1 1

x y x → y

0 0 1
0 1 1
1 0 0
1 1 1

x y x ↔ y

0 0 1
0 1 0
1 0 0
1 1 1

Using our truth tables, we can determine the truth value of complex propositions from
the truth values of the individual atomic propositions. We do this by writing out larger truth
tables for these complex propositions.

Example 1.7
This is the truth table for the formula a ∨ b → a:

a b a ∨ b a a ∨ b → a

0 0 0 0 1
0 1 1 0 0
1 0 1 1 1
1 1 1 1 1

Exercise 1.D
Draw the parse trees and give the truth tables for:

(i) a ∨ ¬a
(ii) (a → b) → a
(iii) a → (b → a)

(iv) a ∧ b → a
(v) a ∧ (b → a)
(vi) ¬a → ¬b
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1.5 Models and truth

In the introduction, we spoke of models and truth in models. In the truth tables, we have
seen that the ‘truth’ of a proposition is fully determined by the values that we assign to the
atomic propositions. A model of propositional logic is therefore simply some assignment of
values ({0, 1}) to the atomic propositions.

Definition 1.8
A model of propositional logic is an assignment , or valuation, of the atomic propositions: a
function v : A → {0, 1}.

To determine the truth value of a proposition f , we don’t really need to know the value of
all atomic propositions, but only of those of which f is comprised. Therefore, we will actually
just equate a model to a finite assignment of values.

Example 1.9
In the model v that has v(a) = 0 and v(b) = 1, the proposition a ∨ b → a has the value 0.

Convention 1.10
If v is a model, we will also simply write v(f) for the value that f is determined to have under
that model. We say that f is true in a model v in the case that v(f) = 1. We also use the
phrase v is a model of f to indicate that v(f) = 1.

So a ∨ b → a is not true, or false, in v when v(a) = 0 and v(b) = 1. However, a → (b → a)
is true in such a model.

Definition 1.11
If a proposition f is true in every conceivable model (which is to say that in its truth table,
there are only 1’s in its column), then we call that proposition logically true, logically valid or
just valid . The notation for this is: |= f . A logically true statement is also called a tautology .

If a proposition f is not logically true, that can be denoted by writing ̸|= f .

Exercise 1.E
Which of the following propositions are logically true?

(i) a ∨ ¬a
(ii) a → (a → a)
(iii) a → a
(iv) (a → b) → a

(v) a → (b → a)
(vi) a ∧ b → a
(vii) a ∨ (b → a)
(viii) a ∨ b → a

Exercise 1.F
Let f and g be arbitrary propositions. Find out whether the following statements hold. Explain
your answers.

(i) If |= f and |= g, then |= f ∧ g.
(ii) If not |= f , then |= ¬f .
(iii) If |= f or |= g, then |= f ∨ g.
(iv) If (if |= f , then |= g), then |= f → g.
(v) If |= ¬f, then not |= f .
(vi) If |= f ∨ g, then |= f or |= g.
(vii) If |= f → g, then (if |= f , then |= g).
(viii) If |= f ↔ g, then (|= f if and only if |= g).
(ix) If (|= f if and only if |= g), then |= f ↔ g.
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Remark 1.12
Basically, we can distinguish three types of truth:

1. A formula f is true in a given model, so v(f) = 1. Typically, this is related to the idea
of ‘formula f is true, right here, right now’.

2. A formula f is true given a specific dictionary for the symbols. For instance, the formula
In ↔ ¬Out is true in the dictionary in Section 1.2 as (in general) ‘being inside’ has the
same meaning as ‘not being outside’. However, if we would use a different dictionary like

Out I have a blackout
In I’m inside

then the formula In ↔ ¬Out is no longer true, as ‘being inside’ has nothing to do with
‘not having a blackout’.

3. A formula f is true in all models. for instance, the formula In → ¬¬ In is true in all
models, independent of the dictionary being used. In particular, this is the logically true
from Definition 1.11.

The first and the third are technical things in logic. The second does not mean anything in
logic. For instance, what if someone is in the doorway? Is this person inside, outside, both, or
neither?

1.6 Logical equivalence

Definition 1.13
Two propositions f and g are said to be logically equivalent in the case that f is true in a
model if and only if g is true in that same model.

To formulate this more precisely: f and g are logically equivalent if for every model v it
holds that v(f) = 1 if and only if v(g) = 1. This boils down to saying that f and g have the
same truth tables.

To denote that f and g are logically equivalent, we write f ≡ g.

Often, a proposition can be replaced by a simpler, equivalent proposition. For example,
a ∧ a is logically equivalent to a. So, a ∧ a ≡ a.

Exercise 1.G
For each of the following couples of propositions, show that they are logically equivalent to
each other.

(i) (a ∧ b) ∧ c and a ∧ (b ∧ c) (ii) (a ∨ b) ∨ c and a ∨ (b ∨ c)

In this case, apparently, the placement of parentheses doesn’t really matter. For this reason,
in some cases we simply omit such superfluous parentheses. In Convention 1.3 we agreed that
all binary connectives would be right associative. But here, we see that this choice, at least for
∧ and ∨, is arbitrary: had we agreed that ∧ and ∨ associate to the left, then that would have
had no consequence for the truth value of the composite propositions.3 In Exercise 1.D we
have seen that for the connective →, it actually does matter in which direction it associates!

3The reason that we chose for the right associativity of ∧ and ∨ is to be consistent with the proof system
Coq that will be used in the course “Logic and Applications”.

9



Remark 1.14
The propositions a ∧ b and b ∧ a are mathematically speaking logically equivalent. In English
though, the sentence ‘they married and had a baby’ often means something entirely different
compared to ‘they had a baby and married.’

Here are a number of logical equivalences that demonstrate the distributivity of the operators
¬, ∧, and ∨ over parentheses. These equivalences are called logical laws.

¬(f ∧ g) ≡ ¬f ∨ ¬g Laws of De Morgan
¬(f ∨ g) ≡ ¬f ∧ ¬g
f ∧ (g ∨ h) ≡ f ∧ g ∨ f ∧ h4 Laws of distributivity
f ∨ g ∧ h ≡ (f ∨ g) ∧ (f ∨ h)

¬¬f ≡ f Double negation elimination (DNE)
f → g ≡ ¬g → ¬f Law of contraposition
f → g ≡ ¬f ∨ g Material implication

Exercise 1.H
Let f and g be propositions. Is the following statement true? f ≡ g if and only if |= f ↔ g.

1.7 Logical consequence

In English, the statement that ‘the sun is shining’ follows logically from the statement that ‘it
is raining and the sun is shining.’ Now, we want to define this same logical consequence for
our formal language: that a is a logical consequence of a ∧ b.

Definition 1.15
A proposition g is a logical consequence, also sometimes called a logical entailment , of the
proposition f , if g is true in every model for which f is true. Said differently: a proposition
g is a logical consequence of f if, in every place in the truth table of f in which there is a 1,
the truth table of g also has a 1. Notation: f |= g. Yet another way of phrasing this is stating
that g is true in all models of f .

If g is not a logical consequence of f , that can be denoted by f ̸|= g.

Exercise 1.I
Are the following statements true?

(i) a ∧ b |= a
(ii) a ∨ b |= a

(iii) a |= a ∨ b
(iv) a ∧ ¬a |= b

Theorem 1.16
Let f and g be propositions. Then the following holds:

|= f → g if and only if f |= g.

You should now be able to find a proof for this proposition. [Hint: Take a look at Exercises 1.F
and 1.I.]

Remark 1.17
Note that the symbols |= and ≡ were not included in the definition of the propositions of
our formal language. These symbols are not a part of the language, but are merely used
to speak mathematically about the language. Specifically, this means that constructions as
‘(f ≡ g) → (|= g)’ and ‘¬ |= f ’ are simply meaningless, and we should try to avoid writing
down such invalid constructions.
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Remark 1.18
For more on logic, you can have a look at books like [4] and [2].
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1.8 Important concepts
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Chapter 2

Predicate logic

“A woman is happy if she loves someone,
and a man is happy if he is loved by someone.”

Instead of discussing the truth of this sentence, we are going to find out how to write it in a
formal way. Hopefully, this will then help us analyze the truth of such sentences. To jump
right in, we will give a formal account of the sentence after defining the dictionary:

W set of (all) women
M set of (all) men
L(x, y) x loves y
H(x) x is happy

Now the formal translation becomes:

∀w ∈ W
[ (

∃x∈(M ∪W ) L(w, x)
)
→ H(w)

]
∧

∀m ∈ M
[ (

∃x∈(M ∪W ) L(x,m)
)
→ H(m)

] (2.1)

The ‘∀’ symbol stands for “for all”, and the ‘∃’ symbol stands for “there exists”. The ‘∈’ symbol
denotes the membership of an element in a set, and ‘∪’, which we have encountered before,
stands for the union1 of two sets. If we translate the formal sentence back to English, in a very
literal way, we get:

For every woman it holds that, if there is a person that she loves, she is happy, and
for every man it holds that, if there is person that loves him, he is happy.

You should now check whether this is indeed the same as the sentence that we started with,
and whether you can see how this is indeed represented in the formal translation above. Note
our use of the square parentheses [_] (also called brackets.) This is only for readability though,
so that you can easily see which parenthesis belongs to which.
Because it enables us to translate a sentence, we will also call our dictionary an interpretation.

1Note that there are three main binary operators on sets: A ∪ B, the union of A and B is the set where
each element is in A, B, or in both; A ∩B, the intersection of A and B, is the set where each element is both
in A and B; A \B, the set difference of A and B, is the set where each element is in A but not in B. Note that
whereas A∪B = B ∪A and A∩B = B ∩A, in general A \B ̸= B \A. For instance, let A = {0, 2, 4, 6} and let
B = {0, 3, 6}, then A ∪ B = {0, 2, 3, 4, 6}, A ∩ B = {0, 6}, A \ B = {2, 4}, and B \ A = {3}. See Appendix A
for more background information about sets.

13



2.1 Predicates, relations, and constants

Previously, we saw how propositional logic allowed us to translate the English sentence

If Sharon is happy, Koos is not.

as
SH → ¬KH

by choosing the dictionary:

SH Sharon is happy
KH Koos is happy

But suppose we add more people to our statements, like Joris, and Maud. We will easily
end up with an inconveniently lengthy dictionary soon, because we have to add an atomic
proposition for every new person (JH, MH, . . . ).

This is why we now take a better look at the form of the statement that

Sharon is happy

and find out that it is of the shape of a predicate H( ) applied to a subject s (Sharon). Let’s
write that as H(s). The immediate benefit is that we can now also write the very similar

H(k), H(j), and H(m)

for the subjects k, j, and m. Instead of subjects, we will often speak of constants.
Also for our list of subjects, we will use our dictionary to formally denote which subject

belongs to which name. Moreover, we will indicate to which domain each of our subjects
belongs.

s Sharon ∈ “women”
k Koos ∈ “men”
j Joris ∈ “men”
m Maud ∈ “women”

Maybe the real benefit of our new system is not yet entirely clear. (Now that we have one
predicate H added to four subjects s, k, j,m, making a total of five symbols, which is more
than the four we started out with: SH, KH, JH, MH. . . ) But suppose now that our subjects
would gain a number of other qualities, such as:

T (x) x is tall
B(x) x is beautiful
N(x) x is nice
I(x) x is intelligent

Moreover, besides our predicates (qualities), we also have (binary) relations, like the one we
used above:

L(x, y) : x loves y.

Now we can take the following sentence

Sharon is an intelligent beautiful woman;
and there is a nice tall guy who loves this character.

14



and formalize it with the formula

I(s) ∧ B(s)

∧ ∃x ∈ M
[
N(x) ∧ T (x) ∧ ∃y ∈ W [L(x, y) ∧B(y) ∧ I(y)]

]
.

. . . or did we mean to say,

I(s) ∧ B(s)

∧ ∃x ∈ M [N(x) ∧ T (x) ∧ L(x, s)]?

Notice that we take these two statements in the sentence above, and join them together to a
single formula with the ‘∧’ symbol. And that, although the formula doesn’t state that Sharon
is a woman, that it doesn’t need to, because we already defined that s ∈ “women” in the
dictionary. (So we don’t need to add something like for example “s ∈ W ” in the formula.)

The difference between the first and the second formal translation lies in what what referred
to as “this character.” (This might refer to “Sharon,” or it might refer to “intelligent and
beautiful woman.”) It is not logic that decides such questions, but logic does make it explicit
that this choice has to be made. Said differently: it makes explicit the ambiguities that often
occur in the English (or any other natural) language.

Exercise 2.A
Give two possible translations for the following sentence.

Sharon loves Maud; a nice man loves this intelligent character.

Now let’s translate the other way around, and decode a formula.

Exercise 2.B
Translate the following sentences to English.

(i) ∃x ∈ M
[
T (x) ∧ ∃w ∈ W [B (w) ∧ I (w) ∧ L (x,w)]

]
(ii) ∃x ∈ M

[
T (x) ∧ ∃w ∈ W [B (w) ∧ ¬I (w) ∧ L (x,w)] ∧ ∃w′ ∈ W [I (w′) ∧ L (w′, x)]

]
2.2 The language of predicate logic

We will now define formally what the language of predicate logic looks like.

Definition 2.1
The language of predicate logic is built up from the following ingredients:

1. Variables, usually written x, y, z, x0, x1, . . ., or sometimes v, w, . . .

2. Individual constants, also called ‘names’, usually a, b, c, . . .,

3. Domains, such as M,W,E, . . .,

4. Relation symbols, each with a fixed “arity”, that we sometimes explicitly annotate them
with, as in P 1, R2, T 3, . . . So this means that P 1 takes a single argument, R2 takes two
arguments, etc.

5. The atoms, or atomic formulas, are P 1(t), R2(t1, t2), T 3(t1, t2, t3) etc., in which t, t1, t2,
t3, etc. are either variables or individual constants.

6. The formulas are built up as follows:

15



• Every atomic formula is a formula.

• If f and g are formulas, then so are (f ∧ g), (f ∨ g), (f → g), (f ↔ g), and ¬f .

• If f is a formula, and x is a variable, and D is a domain, then (∀x ∈ D f) and
(∃x ∈ D f) are also formulas, made with the quantifiers ‘∀’ and ‘∃’.

• All formulas are made in this way. (No others exist.)

Convention 2.2
Just as in propositional logic, we usually omit the outermost parentheses. And to be able to
omit excessive parentheses within formulas, we expand upon our previous Convention 1.2 for
propositional logic, adding the following:

• ∀ and ∃ bind stronger than all other connectives.

Somewhat opposing what we said earlier, in the case of ∀ and ∃, we add brackets for readability.
So instead of (∀x ∈ D f), as in the definition, we write ∀x ∈ D [f ]. And if we have a consecutive
series of the same quantifiers over the same domain, we may group these quantifications:
∀x ∈ D [∀y ∈ D [f ]] may be abbreviated to ∀x, y ∈ D [f ]. Note that you are not allowed to
combine existential and universal quantifications in such an abbreviation.

Remark 2.3
Just like we did in propositional logic, we can also express the structure of the formulas of
predicate logic as parse trees, where the atoms are the leaves, and the logical operators the
nodes. Formula (2.1) is represented by this tree:

∧

∀w ∈ W ∀m ∈ M

→ →

∃x ∈ (M ∪W ) H(w) ∃x ∈ (M ∪W ) H(m)

L(w, x) L(x,m)

And again, all parentheses and/or brackets that were used to show the structure of the formula
are removed, because this structure is already provided by the tree itself. Obviously, paren-
theses that are used to indicate the arguments of relation symbols like H and L should not be
removed.

Note that, if you look back at formula (2.1) in this chapter, you can see that it actually quite
inconsistently uses parentheses and brackets. If we write it out as per the official definition, it
would read:((

∀w ∈ W
(
(∃x∈(M ∪W ) L(w, x)) → H(w)

))
∧
(
∀m ∈ M

(
(∃x∈(M ∪W ) L(x,m)) → H(m)

)))
You can see why we prefer to somewhat liberally use parentheses and brackets for read-

ability. Let us take a look at the meaning of all the parentheses in this official version of the
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formula:


∀w ∈ W


∃x∈ (M ∪W )︸ ︷︷ ︸

1

L (w, x)︸ ︷︷ ︸
2


︸ ︷︷ ︸

3

→ H (w)︸︷︷︸
2


︸ ︷︷ ︸

4


︸ ︷︷ ︸

5

∧


∀m ∈ M


∃x∈ (M ∪W )︸ ︷︷ ︸

1

L (x,m)︸ ︷︷ ︸
2


︸ ︷︷ ︸

3

→ H (m)︸︷︷︸
2


︸ ︷︷ ︸

4


︸ ︷︷ ︸

5


︸ ︷︷ ︸

6

1. These parentheses are used for the readability of the domain, which is the union of the
sets M and W in this case. (The parentheses are not required by Definition 2.1 and
hence they could have been left out in the parse tree in Remark 2.3 as well.)

2. These parentheses are needed because L(w, x), H(w), L(x,m), and H(m) are atomic
formulas, so the parentheses are required.

3. These parentheses are needed because the ∃ quantifier needs them.

4. These parentheses are needed because the → requires them.

5. These parentheses are needed because the ∀ quantifier needs them.

6. These parentheses are needed because the conjunction with ∧ requires them.

If we use square brackets as noted above, consistently writing ∀x ∈ D [f ] instead of (∀x ∈ D f),
and furthermore omit all unnecessary parentheses according to our convention, we end up with
the formula:

∀w ∈ W
[
∃x∈(M ∪W ) [L(w, x)] → H(w)

]
∧ ∀m ∈ M

[
∃x∈(M ∪W ) [L(x,m)] → H(m)

]
.

Remark 2.4
Grammar of predicate logic.

Just as with propositional logic we can define the language of predicate logic as a formal
language, with a grammar. This is done as follows. (You should reread this after having met
grammars in Chapter 4 about languages.)

Individual := Variable | Name
Variable := x, y, z, x1, y1, z1, . . .
Name := a, b, c, d, e, . . .
Domain := D,E, . . .
Atom := P 1(Individual) | R2(Individual,Individual)

| T 3(Individual,Individual,Individual) | . . .
Formula := Atom

| ¬ Formula
| (Formula → Formula) | (Formula ∧ Formula)
| (Formula ∨ Formula) | (Formula ↔ Formula)
| (∀ Variable ∈ Domain Formula)
| (∃ Variable ∈ Domain Formula)

Exercise 2.C
Formalize the following sentence.
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Sharon is beautiful; there is a guy who feels good about himself whom she loves.

Here, we will treat feeling good about oneself as being in love with oneself.

Exercise 2.D
Formalize the following sentences:

(i) For every two persons we have: the first one loves the second one only if the first one
feels good about him- or herself.

(ii) For every two persons we have: the first one loves the second one if this second person
feels good about him- or herself.

(iii) For every two persons we have: the first one loves the second one exactly in the case that
the second one feels good about him- or herself.

(iv) There is somebody who loves everyone.

2.3 Truth determination

Take a look at the following two formulas

F1 = ∀x∈D∃y∈D [K(x, y)]

F2 = ∃x∈D∀y∈D [K(x, y)]

(Note how we cut back on parentheses.) When is a formula true? Truth is relative and depends
upon an interpretation and a structure .

Definition 2.5
A structure is that piece of the ‘real’ world in which formulas gain meaning by means of an
interpretation.2 A model is a pair (M, I) where M is a structure and I an interpretation.

Because we haven’t yet explained what an interpretation is, this definition isn’t really con-
clusive. But before we introduce the concept of an interpretation, let us first explain with a
few examples what we mean with ‘a piece of the real world.’ Central here is the choice of the
domains that we choose, or how we restrict ourselves to a certain part of them, and which
predicates, relations, and constants are known within those domains.

1. Structure M1

Domain(s) all students in the lecture hall
Predicate(s) is female

is more than 20 years old
Relation(s) has a student number lower than

is not older than
is sitting next to

Constant(s) . . .

2. Structure M2

2Note that in previous editions of this course a ‘structure’ was called a ‘model’ and what is called a ‘model’
this year, had no specific name in previous years. And ‘interpretations’ are still the same things as before.
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Domain(s) people
animals

Predicate(s) is female
is human
is canine

Relation(s) owns
is older than

Constant(s) Maud
Sharon
Joris
Koos
Sif
Beatrice

In the case of the students in the lecture hall, we can determine which are female and not. And
if Sharon and Maud would happen to be present, which we could indicate by including their
names as constants in the structure, it could be determined whether they are sitting next to
each other. In the other case, there are biologists who can determine for any animal (like the
cats Sif and Beatrice) whether it is a dog or not, and furthermore it is usually easy to establish
whether someone is the owner of a certain animal. In which way this is done, should actually
still be formally agreed upon, if we wish to have an exact structure.

The important aspect is that, if we wish to use a certain part of the world as a domain
for predicate logic, we should have a conclusive and consistent way of determining the truth
of statements about predicates over subjects and relations between subjects of the domain.

Now we can define the notion of an interpretation.

Definition 2.6
An interpretation is given by a dictionary, which states:

1. Which sets are referred to by the domain symbols,

2. which subjects are referred to by the names (and to which domain sets these belong),

3. and which predicates and relations are referred to by the predicate and relation symbols.

In particular, then, the interpretation establishes a clear connection between the symbols
in formulas and the structure that we are looking at. In the literature, the interpretation is
therefore often done via an interpretation function. See for example [4].

Definition 2.7
A formula f is called true in a structure under a given interpretation if the translation given
by the interpretation is actually true in the structure.

Example 2.8
In the running example of Sharon, Koos, Joris, and Maud, the interpretation has been given
in the dictionary we introduced: we know exactly what is meant with the formulas L(s, k) and
∃x ∈ M L(x, s). The structure is the factual situation involving these people, in which we
can indeed determine whether L(s, k) happens to be true (whether Sharon loves Koos), and
whether ∃x ∈ M L(x, s) happens to be true (whether there is some guy who loves Sharon).

Whether the formulas F1 and F2 are true within M1, can thus only be determined if we also
define an interpretation which gives meaning to the symbols. Here are three different possible
interpretations:
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1. Interpretation I1

D all students in the lecture hall
K(x, y) x has a student number that is lower than that of y

2. Interpretation I2

D all students in the lecture hall
K(x, y) x is not older than y

3. Interpretation I3

D all students in the lecture hall
K(x, y) x is sitting next to y

We can assess the truth of the formulas F1 resp. F2, in these structures and under the given
interpretations, by checking whether the propositions hold that these formulas express, within
the structures, and under the interpretations.

Exercise 2.E
(i) Verify that F2 does not hold in M1 under the interpretation I1. But does F1 hold?
(ii) Verify that F1 holds in M1 under the interpretation I2. Does F2 hold as well?
(iii) Check whether F1 in M1 is true under the interpretation of I3, by looking around in

class. And check whether F2 is true or not, as well.

Because structure M1 only mentions a single domain, it would seem as if every interpreta-
tion would have to speak of the same domain. But this is not the case, as we can see in the
following interpretations for structure M2:

1. Interpretation I4

D people
K(x, y) x isn’t older than y

2. Interpretation I5

D people as well as animals
K(x, y) x owns y

Note that in the case of I5, that if x is an animal and y is a person, the statement K(x, y)
is automatically false, because animals don’t own people.

3. Interpretation I6

D animals
K(x, y) y is older than x

Let’s now take a look at the formulas G1 and G2, and two structures in which we will
interpret them. (Note their difference to F1 and F2.)

G1 = ∀x∈D∃y∈D [K(x, y)]

G2 = ∀x∈D∃y∈D [K(y, x)]

Example 2.9
We define the structures M3

Domain(s) Natural numbers, N = {0, 1, 2, 3, . . .}
Relation(s) smaller than (<)

and M4
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Domain(s) Rational numbers (fractions), Q, (for example −1
2 , 3(=

3
1), 0,. . . )

Relation(s) smaller than (<)
And two self-evident accompanying interpretations, namely interpretation I7

D N
K(x, y) x < y

and interpretation I8

D Q
K(x, y) x < y

In structure M3 under interpretation I7 the formula G1 is true. Indeed, for every number
x ∈ N we can easily find a number y ∈ N, for example y = x+1, such that x < y. In structure
M4 under interpretation I8 the formula G1 is true as well. Again, we can take y = x+ 1 and
x < y holds. Whenever we have such a method in which we can state precisely how to obtain
a y for any x, we speak of having an algorithm or recipe.

Convention 2.10
If a formula f is true in a structure M under the interpretation I, we denote this by

(M, I) |= f

Using the pair notation, we have seen that:

(M3, I7) |= G1

(M4, I8) |= G1

If we hadn’t given the structures M3 and M4 a name, we could also have simply written this
as follows:

((N, <), I7) |= G1

((Q, <), I8) |= G1

Here, the tuple (. . . ) is a shorthand notation simply listing the domains, the predicates, the
relations, and the constants without explicitly stating what is what. It is typically only used
for structures with numerical domains.

Because the (important part of the) structure is often already expressed in the given inter-
pretation, we will often omit an exact definition of the structure.

Exercise 2.F
Verify that G2 is indeed true in structure M4 under the interpretation I8, but not in structure
M3 under the interpretation I7. Stated differently: verify that ((Q, <) , I8) |= G2 and verify
that ((N, <) , I7) ̸|= G2.

Exercise 2.G
Define the interpretation I9 as:

D N
K (x, y) x = 2 · y

Are the formulas G1 and/or G2 true under this interpretation?

Exercise 2.H
Define the interpretation I10 as:

D Q
K (x, y) x = 2 · y

Are the formulas G1 and/or G2 true under this interpretation?
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Exercise 2.I
We take as structure the countries of Europe, and the following interpretation I11:

E the set of countries of Europe
n The Netherlands
g Germany
i Ireland
B (x, y) x borders y
T (x, y, z) x, y, and z share a tripoint (where the borders of all three countries meet)
(i) Formalize the sentence “The Netherlands and Germany share a tripoint.”
(ii) Which of the following formulas are true in this structure and under this interpretation?

(1) G3 := ∀x ∈ E ∃y ∈ E [B (x, y)]
(2) G4 := ∀x, y ∈ E [(∃z ∈ E T (x, y, z)) → B (x, y)]
(3) G5 := ∀x ∈ E [B (i, x) → ∃y ∈ E [T (i, x, y)]].

Exercise 2.J
Find a structure M5 and an interpretation I12 such that this formula holds:

(M5, I12) |= ∀x ∈ D ∃y ∈ E [R (x, y) ∧ ¬R (y, x) ∧ ¬R (y, y)]

In Convention 2.10 we have seen that we write (M, I) |= f in the case that the formula f
of predicate logic (with or without equality, which will be discussed in Section 2.4) is true in a
structure M under the translation given by an interpretation (or, dictionary) I. Now, we will
expand a bit upon this definition.

Definition 2.11
A formula f of predicate logic f is said to be logically true, or logically valid, which we then
denote |= f , when for any structure and any interpretation, the translation holds in that
structure.

We often omit the logically part, simply writing that f is true or f is valid instead of writing
that f is logically true or logically valid .

Example 2.12
Consider the following statements:

(i) |= ∀x∈D [P (x) → P (x)].
(ii) |= (∃x∈D∀y∈D [P (x, y)]) → (∀y∈D∃x∈D [P (x, y)]).
(iii) ̸|= (∀y∈D∃x∈D [P (x, y)]) → (∃x∈D∀y∈D [P (x, y)]).

The formula within statement (iii) is not true, which can be seen by taking the interpretation
D := N and P (x, y) := x>y. Under this interpretation, ∀y∈D∃x∈D [P (x, y)] is true, because
for every y ∈ N we can indeed find a larger x ∈ N, but ∃x∈D∀y∈D [P (x, y)] is not true,
because there is no biggest number x ∈ N. So the implication is false.

Definition 2.13
Suppose f and g are two formulas of predicate logic. We say that g follows from f , denoted
as f |= g, when |= f → g. Which means that in every situation in which f is true, g is true as
well.

Statement (ii) above tells us that ∀y∈D∃x∈D [P (x, y)] follows from ∃x∈D∀y∈D [P (x, y)].

Definition 2.14
We say that formulas f and g are logically equivalent if the formula f ↔ g is logically true.
Using mathematical notation that would be: f ≡ g when |= f ↔ g.
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Example 2.15
Just like we had laws of De Morgan in propositional logic, we also have those in predicate
logic. Now they define how to distribute negations over quantifiers. Let D be a non-empty
domain and let P be a relation symbol with arity one. Then the following statements hold:

(i) ¬∀x ∈ D P (x) ≡ ∃x ∈ D ¬P (x)
(ii) ¬∃x ∈ D P (x) ≡ ∀x ∈ D ¬P (x)

So in fact, using these laws, we could have simply defined ∃x ∈ D f as an abbreviation of
the formula ¬(∀x ∈ D ¬f), instead of having it as a separate construction in the language of
predicate logic as we did in Definition 2.1.

2.4 The language of predicate logic with equality

One might want to formalize the sentence:

Sharon is intelligent; there is a man who pays attention to nobody else.

To be able to formalize this, we require an equality relation. Then, we can write:

I(s) ∧ ∃x∈M [A(x, s) ∧ ∀w∈W [A(x,w) → w = s]] (2.2)

For this to be regarded a correct formula of predicate logic, we have to add the equality
sign to the formal definition of the language of predicate logic.

Definition 2.16
The language of predicate logic with equality is defined by adding to the standard predicate
logic the binary relation “=”. The interpretation of this relation is always taken to be “is equal
to”. We then also have to add the following rule to the Definition 2.1 which states which
formulas exist:

• If x and y are variables, and a and b are constants, then (x = y), (x = a), (a = x), and
(a = b) are formulas as well.

Note that this equality binds stronger than the quantifiers and the logical operators. And as
these formulas are formulas in predicate logic, there is no need to add a binary relation “ ̸=”
with the interpretation of “is not equal to” to our formal language definition. For this we
simply use the fact that we already have a negation operator and hence we can simply write
something like ¬(x = y). However, for convenience, just like the square brackets are introduced
for convenience, informally we allow x ̸= y as an abbreviation for ¬(x = y). So in general, in
your formulas you are allowed to use this x ̸= y, but, if you have to write a formula according
to the official grammar, you have to use the long form ¬(x = y).

Remark 2.17
The language of predicate logic with equality is very well suited to make statements about the
number of objects having certain properties, such as there being exactly one such object, or at
least two, or at most three, different, etc.

Example 2.18
Consider the sentence

Only Sharon is nice.

There are several ways to express this in predicate logic with equality, using the interpretation
I13 (we leave the structure implicit):

H domain of all human beings
N(x) x is nice
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1. N(s) ∧ ∀x ∈ H [N(x) → x = s]
This is the default pattern. It translates back into ‘Sharon is nice and each human being
that is nice, has to be Sharon’.

2. N(s) ∧ ∀x ∈ H [¬(x = s) → ¬N(x)]
This formula states ‘Sharon is nice and all human beings that are not Sharon, are not
nice’.

3. There are actually two versions of the next pattern:

(a) ∀x ∈ H [N(x) ↔ x = s]
This is a slightly shorter pattern, but it may be more difficult to understand. It
basically states ‘Being nice is being Sharon’. It may seem that this formula actually
doesn’t state that Sharon is nice, but it does. As Sharon is an element of all people,
one of the x’s that need to be checked will be s, and then, obviously x = s is true,
which leads to the conclusion that N(s) is also true because of the equivalence.

(b) ∀x ∈ H [x = s ↔ N(x)]
The same idea, but in the opposite order.

4. N(s) ∧ ¬∃x ∈ H [N(x) ∧ ¬(x = s)]
A pattern with an existential quantifier. It states that ‘Sharon is nice and no one else is
nice’.

Exercise 2.K
Consider the interpretation I14:

H domain of all human beings
F (x) x is female
P (x, y) x is parent of y
M (x, y) x is married to y

Formalize the following sentences into formulas of predicate logic with equality:
(i) Everyone has exactly one mother.

(ii) Everybody has exactly two grandmothers.

(iii) Every married man has exactly one spouse.

Exercise 2.L
Use the interpretation I14 of Exercise 2.K to formalize the following properties.

(i) C (x, y): x and y have had a child together.
(ii) B (x, y): x is a brother of y (take care: refer also to the next item).
(iii) S (x, y): x is a step-sister to y.

Translate the following formulas back to English.
(iv) ∃x∈H∀y∈H P (x, y). And is this true?
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(v)
∀z1 ∈ H∀z2 ∈ H [ ∃x∈H∃y1∈H∃y2∈H [

P (x, y1)
∧

P (y1, z1)
∧

P (x, y2)
∧

P (y2, z2)
]

→
¬ (∃w∈H [P (z1, w) ∧ P (z2, w)])

]

And is this true?

Exercise 2.M
Given the interpretation I15:

D N
A (x, y, z) x+ y = z
M (x, y, z) x · y = z

Formalize the following:
(i) x < y.
(ii) x | y (x divides y).
(iii) x is a prime number.
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2.5 Important concepts

arity, 15
at least

at least two, 23
at most

at most three, 23
atom, 15
atomic formula, 15

constant, 14, 15

De Morgan, 23
different, 23
domain, 14

element of
∈, 13

equals
=, 23

exactly
exactly one, 23

exists
∃, 13

follows from
f |= g, 22

for all
∀, 13

formula, 15
fractions

Q, 21

interpretation, 19
interpretation function, 19
intersection, 13

∩, 13

logically equivalent, 22
f ≡ g, 22

model, 18

natural numbers
N, 20

not equals
̸=, 23

predicate, 14
predicate logic, 15

predicate logic with equality, 23

quality, 14

rational numbers
Q, 21

relation, 14
relation symbol, 15

set difference, 13
\, 13

structure, 18
subject, 14

true
logically true, 22
|= f , 22

true in a structure under a given inter-
pretation, 19

truth
true in a structure under an interpreta-

tion
(M, I) |= f , 21

union, 13
∪, 13

valid
logically valid, 22

variable, 15
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Chapter 3

Discrete mathematics

This chapter deals with a number of small subjects that we have collected under the title of
discrete mathematics. Notable about all these subjects, and the reason we have grouped them
under this title, is that they all deal with natural numbers: the number of vertices in a graph,
the number of steps in a recursive computation, the number of ways to traverse a grid from
one point to another, etc. We never have to deal with problems of continuity, with an infinite
number of points between two objects.

For more information, take a look at the introductory texts [1] or [5].

3.1 Graphs

This first section will give a short introduction to graph theory. Graphs are often encountered
when studying things like languages, networks, data structures, electrical circuits, transport
problems, flow diagrams, and so on.

Intuitively, a graph consists of a set V of vertices and a set E of edges between vertices.

Example 3.1
Two examples are:

1

3

2

4

a

b

c

d
G1 G2

All uncertainties you might have with this informal description, such as the questions: ‘When
are two graphs the same?’, ‘Must the vertices lie on a flat surface?’, or ‘May the edges intersect
each other?’, are resolved with a formal definition:

Definition 3.2
A graph is a tuple ⟨V,E⟩, of which V is a set of names, and E a set of 2-element subsets of V .
The elements of V are called vertices (singular: vertex ), or sometimes nodes, and the elements
of E are called edges. We denote the edges not as usual sets, {v, w}, but instead as (v, w). So
keep in mind that (v, w) and (w, v) denote the same edge.

Example 3.3
The graph G1 from Example 3.1 is then ⟨V,E⟩, with V = {1, 2, 3, 4} and E = {(1, 4), (2, 3),
(2, 4)}. And G2 = ⟨V,E⟩, with V = {a, b, c, d} and E = {(a, c), (a, d), (c, d)}.
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Remark 3.4
Notable in our Definition 3.2, is that V is allowed to be the empty set. Also, the edges don’t
have a direction: they are lines instead of arrows. Technically then, we are dealing with
undirected graphs, where the automata of Chapter 5 are so-called directed graphs, with arrow
edges.

Another remark is that it is technically impossible for an edge to connect a vertex to itself,
because such an edge, connecting say v to itself, would be (v, v) = {v, v} = {v}, but that
is a 1-element subset of V , and thus excluded by definition. Also impossible are two edges
connecting the same two vertices. Of course, all these impossibilities could be resolved by
changing the definition, but as it happens, this definition is elegantly simple, and already leads
to enough mathematical expressivity and contemplation.

Definition 3.5
Let G = ⟨V,E⟩ be a graph, and v, w ∈ V .

• A neighbor of v is any vertex x for which (v, x) ∈ E.

• The degree (or: valency) of v is the number of neighbors v has.

• A path from v to w is a sequence of distinct edges (x0, x1), (x1, x2), . . . , (xn−1, xn), with
n > 0, x0 = v, and xn = w. We will also denote such a path as: x0 → x1 → x2 → · · · →
xn.

• With the statement ‘G is connected ’ we mean to say that every pair of vertices has a
path connecting the two.

• A graph ⟨V,E⟩ is a sub-graph of ⟨V ′, E′⟩ if V ⊆ V ′ and E ⊆ E′.

• A component is an as large as possible connected sub-graph of G.

• A cycle, also sometimes called a circuit, is a path from a vertex to itself.

• With the statement ‘G is planar ’, we mean to say that G can be drawn upon the plane,
i.e. a flat surface, such that no edges intersect each other. (You are allowed to bend the
edges if that is necessary.)

• With the statement ‘G is a tree’ we mean that G is connected and doesn’t contain any
cycles. (Which means, you can indeed picture it as a tree.)

To give an example of how real-world problems can be stated in terms of graph theory: the
question whether a graph is planar is relevant to whether we can burn an electrical circuit onto
a single layer chip.

Exercise 3.A
Prove that in a tree, between any two points v and w, there is exactly one path that connects
the two.

Exercise 3.B
A bridge in a graph G is an edge e for which: if you remove e from G, then the number of
components of G increases. Prove that in a tree, every edge is a bridge.

Example 3.6
Let’s take a look at some ‘real-world’ graphs.
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(i) The ‘country graph’ is ⟨V,E⟩, in which V is the set of all countries of the world, and
E is the relation ‘borders’ (on the ground). The neighbors of the Netherlands are Ger-
many and Belgium, and thus the degree of the Netherlands is 2. A path from the
Netherlands to Spain would be, for example: the Netherlands → Germany → France →
Spain. The country graph is not connected. {England, Scotland,Wales} is a component.
The Netherlands → Germany → Belgium → the Netherlands is a cycle. The country
graph is planar.

(ii) K4 = ⟨{1, 2, 3, 4} , {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}⟩ (the complete graph with
four points). Generally: Kn is the graph ⟨{1, . . . , n} , {(v, w) | 1 ≤ v < w ≤ n}⟩. The
graph K4 is planar. To understand this, note how instead of intuitively drawing it as the
left picture, we can also draw it as in the right picture:

1

3

2

4

1

3

2

4

(iii) The Petersen graph is ⟨V,E⟩ where{
V = {ab, ac, ad, ae, bc, bd, be, cd, ce, de}
E = {(v, w) | v and w have no letters in common}

ae

ab

de
ce

cd

ac be

ad bd

bc ae
It can be shown that the Petersen graph is not planar. We will get back to that in
Example 3.24.

(iv) If a language is given by an inductive definition, we can make a corresponding graph.
Take for example the language produced as follows:

axiom λ

rule x → xa
y → yb

We can then create the corresponding graph by:

• first, writing down all words that are included in the language, merely by an axiom
(these are then the initial vertices in the graph),

• then, step-wise adding words (vertices) to the graph on the grounds of the languages’
production rules, whereby we connect any new word to the word it was built up
from (with its producing rule) with an edge.
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For the above language, we then get this (unfinished, infinite) graph:

aaa aab aba abb baa bab bba bbb

aa ab ba bb

a b

λ

The graph is indeed a tree.
(v) For a word that is produced by a context-free grammar, you can create a parse tree,

that demonstrates how the word is produced from the grammar. We have already seen
such an example in Remark 4.17, but here we give a different one. Take the context-free
grammar from Exercise 4.H:

S → aSb | A | λ
A → aAbb | abb

The word aaabbbbb is produced by this grammar, in the following way: S → aSb →
aAb → aaAbbb → aaabbbbb. Below is the parse tree corresponding to this production.

S

a S b

A

a A bb

abb

In the parse tree, a leaf corresponds to a word, and a non-leaf vertex corresponds to
a nonterminal that produces the word parts depicted by the vertices drawn below it.
So, following the production rules S → aSb, we draw a vertex with label S, and three
subvertices: a leaf with label a, a non-leaf with label S, and a leaf with label b. The next
production step, A → aAbb, continues the graph generation, until we have ended up with
the above. Reading the leaves, beginning at the top left, counter-clockwise around the
graph, we get the produced word: aaabbbbb.

Remark 3.7
Information scientists almost always draw trees ‘upside down’: with the ‘trunk’ at the top and
the branches pointing down, whereas mathematicians often draw trees with the right side up
(see previous example).

Exercise 3.C
Prove that for all n ≥ 1, it holds that Kn has exactly 1

2n (n− 1) edges.
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3.2 Isomorphic graphs

Definition 3.8
A function f from a set A to a set B is called a bijection if every element in B has exactly one
original. Formally: for every b ∈ B, there exists some a ∈ A such that f(a) = b and for every
a′ ∈ A it holds that if f(a′) = b, then a = a′.

Definition 3.9
We say that two graphs ⟨V,E⟩ and ⟨V ′, E′⟩ are isomorphic if there is a bijection φ : V → V ′

such that for all v, w ∈ V , we have (v, w) ∈ E if and only if (φ(v), φ(w)) ∈ E′. Put differently:
two graphs are called isomorphic if, disregarding the labels of the vertices, they are the same.
A ‘property preserving’ bijection φ like the above is called an isomorphism.

Example 3.10
Consider the following two graphs.

G3

1 2

4 3

G4

3

6

9

5

The graphs G3 and G4 are isomorphic, because we have an isomorphism φ:

1 7→ 6

2 7→ 9

3 7→ 3

4 7→ 5

Isomorphic graphs are ‘the same’ if we are only interested in the graph-theoretic properties.
For example: If G and G′ are isomorphic and G is connected, then so is G′.

Exercise 3.D
Check which of the graphs below are isomorphic to each other:

3 4 7 8 c d

1 2 5 6 a b
G1 G2 G3

If two graphs are isomorphic, give an isomorphism between the two. If they are not, then
explain why such an isomorphism cannot exist.

3.3 Euler and Hamilton
Definition 3.11
An Eulerian path, in a graph ⟨V,E⟩, is a path in which every edge from E is included exactly
once. An Eulerian circuit , or Eulerian cycle, is an Eulerian path that is a cycle as well.

Example 3.12
Consider the graph:
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1 2

4 3

5

The path 1 → 4 → 5 → 3 → 1 → 2 → 4 → 3 → 2 is an Eulerian path. Because vertex 1 has
degree 3, this graph has no Eulerian circuit. This can be seen by examining the times that
such a cycle would traverse vertex 1: if it does so only once, then one of its three edges cannot
have been traversed, and if the cycle would traverse vertex 1 twice (or more), then at least one
of its edges must have been used multiple times. So apparently, the graph doesn’t admit an
Eulerian cycle.

If we write out this argument in general, we have proved the following simple proposition:

Theorem 3.13 (Euler)
In a connected graph with at least two vertices:

1. An Eulerian circuit exists if and only if every vertex has an even degree.

2. An Eulerian path exists if and only if there are at most two vertices of odd degree.

Eulerian circuits are of importance to for example newspaper deliverers, or to neighbor-
hood police officers that want to efficiently pass through their neighborhood, ideally visiting
each street exactly once and ending up where they started. A whole different problem is of
importance to the ‘traveling salesman’, who wants to visit each of his customers (or cities)
exactly once, returning home afterwards. He would be interested in a so-called ‘Hamiltonian
circuit’:

Definition 3.14
A Hamiltonian cycle, or a Hamiltonian circuit , in a graph ⟨V,E⟩, is a cycle in which each
vertex of V is traversed exactly once. A Hamiltonian path, in a graph ⟨V,E⟩, is a path in
which each vertex of V is traversed exactly once, which is not also a cycle.

Remark 3.15
Whereas each Eulerian cycle is also an Eulerian path, this doesn’t hold for Hamiltonian cycles,
as Hamiltonian paths are by definition not cycles.1 However, each Hamiltonian cycle can be
reduced to a Hamiltonian path by removing a single, arbitrary, edge.

Exercise 3.E
Given here is a city map G of a village, on which streets are indicated by edges. There are
pubs located on every vertex. The pubs are indicated by vertices, numbered 1 through 12:

1 2 3 4 5 6 7

8 9 10

11 12

Formulate the following questions in terms of Hamiltonian and Eulerian circuits and paths,
and answer them as well:

1This is a somewhat arbitrary decision within this course. There are also text books that do regard Hamil-
tonian cycles as Hamiltonian paths.

32



(i) Is it possible to make a walk in such a way that every street is traversed only once? If
so, give an example, and if not, explain why.

(ii) Is it possible to make a walk, passing every street exactly once, and starting and ending
in pub 3? If so, give an example, and if not, explain why.

(iii) Can a pub crawl be organized such that every pub is visited exactly once? If so, give an
example, and if not, explain why.

Exercise 3.F
Below, two floor plans of houses are given, in which the rooms and the garden have been given
names.

a b c

d e f

g

a b

c d

e

(i) For both floor plans, draw a corresponding graph, where the rooms, including the garden,
become vertices, and the doors connecting rooms become edges connecting vertices.

(ii) For both houses, check whether it is possible to make a stroll through the house in such a
way that every door is used exactly once, and you end up in the room where you started
out. Explain your answer, and if you argue that such a stroll is possible, give an explicit
example.

(iii) For both houses, check whether a stroll exists that passes through each room, as well as
the garden, exactly once, returning to the original room afterwards. Explain your answer
and give concrete examples if these strolls indeed exist.

Exercise 3.G
Which of the following graphs has a Hamiltonian circuit? Provide such a circuit or explain
why a Hamiltonian circuit cannot exist.

g

d

a

h

e

b

i

f

c

g

d

a

h

e

b

i

f

c

Exercise 3.H
Let Q3 = ⟨V,E⟩ be the three dimensional hypercube graph, where V are the eight corners of
a cube and E are the twelve edges connecting each vertex with three other vertices.

(i) Is Q3 planar?
(ii) Does Q3 have a Hamiltonian circuit?
(iii) Does Q3 have an Eulerian circuit?

Don’t forget to explain your answers!

Exercise 3.I
Show that the Petersen graph does contain a Hamiltonian path, but doesn’t contain a Hamil-
tonian cycle.
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3.4 Colorings

Definition 3.16
A graph ⟨V,E⟩ is called bipartite if V can be written as V1 ∪ V2 where V1 and V2 are disjoint,
in such a way that every edge leaving from a vertex of V1, leads to a vertex of V2, and the
other way around. Put differently: you can color the vertices red and blue in such a way that
no edge connects two vertices of the same color.

Example 3.17
Two examples of bipartite graphs:

b1 r1

r2 b2

Example 3.18
The complete bipartite graph with m red and n blue vertices, where every red vertex is connected
to every blue vertex and the other way around, is denoted by Km,n.

K2,3 K3,3

Definition 3.19
A vertex coloring of a graph ⟨V,E⟩ is a function f : V → {1, . . . , n}, such that for every edge
(v, w), we have f(v) ̸= f(w). So: each vertex is assigned one of n colors, and neighboring
vertices never share the same color.
The chromatic number of a graph is the least number n for which such a coloring is possible.

Example 3.20
Bipartite graphs are then graphs whose chromatic number is either 1 or 2.

Exercise 3.J
Find the chromatic number for the following two graphs. Explain your answer.

Exercise 3.K
Show that if a bipartite graph has a Hamiltonian path, the number of red vertices and blue
vertices differs at most one.
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Exercise 3.L
At a certain university quite a lot of language courses are being offered: Arabic, Bengali,
Catalan, Danish, Estonian, Filipino and Greek. When creating the schedule for these courses
the schedule maker has to take these requirements into account:

• All languages are being taught each day.

• Each lesson takes 105 minutes.

• The slots for the lessons are 08.45–10.30, 10.45–12.30, 13.45–15.30, 15.45–17.30 and
18.45–20.30.

• The building with five lecture rooms can only be rented as a whole, so the more courses
are being taught in parallel, the cheaper it will be for the university.

• Some students have registered for more than one course and hence these courses should
not be given in parallel. In the table below the places marked with ∗ indicate that there is
at least one student that has registered for both the language in this row as the language
in this column.

A B C D E F G
A * * * *
B * * * * *
C * * * *
D * * * *
E *
F * * *
G * * *

Give a schedule for the daily lessons that complies with the given requirements. Use graph
theory to prove that your schedule is optimal.

We end our discussion about graphs with a few interesting theorems about planar graphs
ans colorings. The proofs are typically too complicated for this course.

Theorem 3.21 (Fáry’s theorem)
Every planar graph can be drawn with straight lines.

This theorem is known as Fáry’s theorem, but it was actually already proven by Wagner in
1936, whereas Fáry proved it in 1948.

Example 3.22
In Example 3.6 we defined K4 and we showed that it was a planar graph, by drawing it like
this:

1

3

2

4

However, according to Theorem 3.21 we should be able to draw it without crossings using only
straight lines. It is not difficult to see that this is indeed possible:
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1

3

2
4

There are two important theorems that can be used to check whether a graph is planar or
not.

Theorem 3.23 (Kuratowski’s theorem)
A graph is planar if and only if it contains no sub-graph homeomorphic to K5 or K3,3.

Here, two graphs G1 and G2 are homeomorphic if both can be obtained from the same graph
G by adding new vertices of degree 2 in G by splitting existing edges.

Example 3.24
Using Kuratowski’s theorem we can show that the Petersen graph defined in Example 3.6 is
not planar, as it has a sub-graph that is homeomorphic to K3,3. (Even though the Petersen
graph looks more like K5, it doesn’t have a sub-graph that is homeomorphic to K5 as that
would require vertices of degree 4, which the Petersen graph doesn’t have.) So let us start
with a graph G1 which is clearly isomorphic to the graph K3,3 as shown in Example 3.18, as
the only difference is the name of the labels:

ad ab bd

de ce cd

We will now create a graph G2 which is homeomorphic to the graph G1, by splitting the edges
(ad,de), (ad,cd), (bc,de), and (bc,cd) and adding new vertices bc, be, ac, and ae respectively:

ad

bc

be
ab bd

de ce

ac

cd

ae

Now we can draw this same graph G2 in a Petersen style and we get the following graph:

ab

de
ce

cd

ac be

ad bd

bc ae

Now if we add the edges (bc,ae) and (ac,be) we get exactly the Petersen graph.
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ab

de
ce

cd

ac be

ad bd

bc ae

Hence we have shown that the Petersen graph has a sub-graph G2, which is homeomorphic to
G1 which is isomorphic to K3.3. So according to Kuratowski’s theorem, the Petersen graph is
not planar.

Remark 3.25
Note that the coloring of the vertices in the Petersen graph in Example 3.24 is not a coloring
according Definition 3.19, as the adjacent vertices bc and ae are both green.

In Theorem 3.13 we have seen that Euler provided a simple numerical check for having
Eulerian paths and circuits. He also has a simple check for showing that a graph is not planar:

Theorem 3.26 (Euler’s formula)
Let G be a connected planar graph with n vertices and m edges, such that n ≥ 3. Then the
following statements hold:

• m ≤ 3n− 6

• if G does not have K3 as a sub-graph, then m ≤ 2n− 4.

Note that not having K3 as a sub-graph is a difficult way of saying that the graph contains no
triangles.

Example 3.27
The Petersen graph has ten vertices and fifteen edges. So if we check the first criterion we get
15 ≤ 3 ·10−6 = 24, which holds. Now as the Petersen graph does not contain triangles, we can
also check the second criterion, leading to 15 ≤ 2 · 10− 4 = 16 which also holds. Hence as we
already know that the Petersen graph is not planar, this example shows that Euler’s formula
provides necessary conditions for being planar, but that these conditions are not sufficient.

An interesting theorem by Appel and Haken, the proof of which was only found in 1975
and which is unfortunately too complicated to be included in this course, is the following:

Theorem 3.28 (Four color theorem)
The chromatic number of any planar graph is at most 4. Put differently: every map (of
countries or cities, for example) can be colored using at most four colors, such that no adjacent
territories share the same color.

3.5 Tower of Hanoi

The puzzle of the ‘Tower of Hanoi’ consists of three rods, on which a number of discs of different
sizes are slid. The aim of the puzzle is to reconfigure the discs so that they all reside on one of
the other rods, by subsequently moving a single disc from the top of one rod to another, but
where it is not allowed to place a larger disc above a smaller disc.
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Figure 3.1: The tower of Hanoi with five discs. Can you solve the puzzle?

After some puzzling, you might succeed in solving the puzzle in Figure 3.1. But often,
the strategy by which you did, is forgotten afterwards; moreover, we would like to solve the
problem in general, for say 7 discs, or 8 discs, as well.

The important concept here is generalizing the problem: can we solve the puzzle for any
number of discs? Note that the problem is very similar if we would only have four discs, and
that the four disc problem, in turn, is very similar to the three disc problem.

Suppose we have already figured out how to solve the problem for four discs. Then, disre-
garding a fifth disc below all others on the initial rod, we can first transfer the four top discs
to the second rod. Now, the fifth, large, disc, is cleared free on the first rod, and thus we move
it to the third rod. Finally, we transfer the four discs unto it on the third rod, which we were
able to do by assumption, resulting in all five discs now residing in order on the third rod, and
we have solved the problem for five discs.

So, as you see, we can subsequently solve the problem for an extra disc, if we have already
solved it for some number of discs.

Remark 3.29
This means that if we can solve the problem for a single disc, we can solve it for any number
of discs, including the case of five discs, but also, say, ten or fifteen. And of course, the single
disc problem is trivial: you can just move the disc freely.

Definition 3.30
The method we just demonstrated of solving a mathematical problem, is the method of recur-
sion. Using recursion, one tackles a problem by dividing it into simpler problems, which are
basically the same, ensuring that the solution of the larger problem then follows from those
of the smaller problems. And of course, you should not forget to manually solve the smallest
problem as well.

Remark 3.31
In general, the simple problem in recursion refers to the ‘case 0’ and the complex problem
refers to the ‘case k+1’, where the k can be any natural number and the plus one ensures that
k + 1 is never zero. So the cases are really distinct.

In Remark 3.29, we stated that if we can solve the single disc problem, we can solve it for
any number. However, in this case, we can actually go to an even simpler case: the case with
zero discs! If we can solve this, then we can solve the problem for any number of discs using
the strategy described above. And note that the problem is really trivial for zero discs, as
nothing has to be done. In Figure 3.2 a Python implementation of our strategy is provided.
Clearly, the ‘if’ branch refers to the ‘case 0’ and the ‘else’ branch to the ‘case k + 1’.
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import sys

def hanoi (n , From , To , Via ) :
i f n==0:

return
else :

hanoi (n−1,From , Via ,To)
print ( "move␣ d i sk " ,n , " from" ,From , " to " , To)
hanoi (n−1,Via ,To , From)

hanoi ( int ( sys . argv [ 1 ] ) , " l e f t " , " r i gh t " , "middle " )

Figure 3.2: Tower of Hanoi solution in Python

Now consider this question: given our strategy to solving the puzzle of Hanoi as described
above, how many individual steps are needed? Call this number an, if we are dealing with the
version with n discs. Of course, a0 = 0. And it is also easy to see that a1 = 1 and a2 = 3. But
what about a5? It can be hard to see this at once. But again, recursion comes to the aid: in
order to solve Hanoi with five discs, we would first solve it for four discs, then move the largest
one to the third rod, and then use the four disc solution once more. In a formula, that would
translate to: a5 = a4 + 1 + a4 = 2a4 + 1. Of course, this recursive formula is not specific for
a5, it holds in general: an+1 = 2an + 1, for the numbers of discs n ≥ 0. So, we can compute
a3 = 2 · a2 + 1 = 2 · 3 + 1 = 7, and a4 = 2a3 + 1 = 15, and a5 = 2a4 + 1 = 31, etc. . . This gives
us a neat sequence: 1, 3, 7, 15, 31, 63, 127, . . .

Exercise 3.M
The sequence an is recursively defined by:

a0 = 3

an+1 = a2n − 2an for n ≥ 0

Use this definition to compute the value of a5.

Exercise 3.N
The sequence bn is recursively defined by:

b0 = 4

bn+1 = b2n − 2bn for n ≥ 0

Use this definition to compute the value of b5.

Exercise 3.O
Consider the sequence cn for n ≥ 0, given by the values:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, . . .

Give a recursive definition for cn.

3.6 Programming by recursion

Recursion is not only useful for doing mathematics, it is also an invaluable programming
technique.

Suppose you have a little library in your programming language, that has an addition op-
eration, however, it doesn’t yet support multiplication. How would you define multiplication?
With recursion, separating the ‘case 0’ and the ‘case k + 1’ again, that is easy:

m ∗ 0 := m

m ∗ (k + 1) := m ∗ k +m
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And once we have multiplication, we can also define exponentiation:

m0 := 1

m(k+1) := mk ∗m
Both cases display how recursion allows you to define the operation (or, solve the problem)

in terms of smaller cases, which are combined to form the new case.

Example 3.32
Although we talk of programming, the formulas above might not resemble actual computer
code enough to bring home the point. Therefore, we added the following piece of Python
code in Figure 3.3 for illustration purposes—and of course most other languages would allow
a similar definition.

import sys ;

def mult (m, n ) :
"""This i s a recursive function to compute

the product of m and n"""

i f n == 0 :
return 0

else :
return mult (m, n−1) + m

def power (m, n ) :
"""This i s a recursive function to compute

the value of m to the power n"""

i f n == 0 :
return 1

else :
return mult ( power (m, n−1) , m)

m = int ( sys . argv [ 1 ] )
n = int ( sys . argv [ 2 ] )
print ( "The␣product ␣ o f ␣" + str (m) + "␣and␣" + str (n) +

"␣ i s ␣" + str (mult (m, n ) ) + " . " )
print ( "The␣ value ␣ o f ␣" + str (m) + "␣ to ␣ the ␣power␣" + str (n) +

"␣ i s ␣" + str ( power (m, n ) ) + " . " )

Figure 3.3: Recursive Python procedures

Exercise 3.P
The Python program in Example 3.32 is not very robust. If we provide for n a negative integer,
then Python will give the error RecursionError: maximum recursion depth exceeded as the base
case is never reached. Now modify the program in such a way that if both m and n are integers,
such that |m| ≤ 100 and |n| ≤ 100, Python gives the correct result.

Remark 3.33
In exercises and exams, we will sometimes ask for you to give a program using recursion. If
we do so, so-called pseudocode will suffice: you need not actually know or adhere to a specific
programming language. All is fine, as long as it is clear how the program works.

3.7 Binary trees

We come by another kind of recursive programming when studying what are called binary
trees. Some examples of such a tree can be seen in Figure 3.4.

Although these trees might seem daunting, they were drawn with only a simple recursive
procedure. The main insight here, is that any larger binary tree is composed of a stem, out of
which two smaller binary trees grow: one going left, and one going right, both drawn slightly
smaller, and of course at an angle.

So, a recursive recipe (or recursive function, or recursive procedure, or recursive program)
is easily provided:
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Figure 3.4: Binary trees

1. draw a stem

2. draw the left (sub)tree

3. draw the right (sub)tree

More precisely:

f(n, x, y, α, ℓ) =


do nothing if n = 0
1. draw stem(position ⟨x, y⟩, angle α, length ℓ)
2. f(n− 1, ⟨x′, y′⟩, α− 65, ℓ/1.6) if n > 0
3. f(n− 1, ⟨x′, y′⟩, α+ 65, ℓ/1.6)

As input to the program are given: the height of the tree n, the starting position from
which the tree should grow ⟨x, y⟩, the angle at which it should be drawn α, and the length its
stem should have ℓ. The coordinates ⟨x′, y′⟩ then denote the endpoint of its stem, and can be
calculated from α and ℓ.

The height of the tree, n, is the most important input to this recursive procedure, for
our purposes of explaining recursion. So in the list below we will omit the program’s other
variables.

The task of drawing a tree of height n is reduced to the task of drawing two trees of height
n − 1, and hence this program indeed uses recursion. This can be clearly seen when taking a
look at the steps that the computer will consecutively take to execute this program:

[1] draw tree: f(3)
[1.1] draw stem
[1.2] draw left tree: f(2)
[1.2.1] draw stem
[1.2.2] draw left tree: f(1)
[1.2.2.1] draw stem
[1.2.2.2] draw left tree: f(0)
[1.2.2.2.1] do nothing
[1.2.2.3] draw right tree: f(0)
[1.2.2.3.1] do nothing
[1.2.3] draw right tree: f(1)
[1.2.3.1] draw stem
[1.2.3.2] draw left tree: f(0)
[1.2.3.2.1] do nothing
[1.2.3.3] draw right tree: f(0)
[1.2.3.3.1] do nothing
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[1.3] draw right tree: f(2)
[1.3.1] draw stem
[1.3.2] draw left tree: f(1)
[1.3.2.1] draw stem
[1.3.2.2] draw left tree: f(0)
[1.3.2.2.1] do nothing
[1.3.2.3] draw right tree: f(0)
[1.3.2.3.1] do nothing
[1.3.3] draw right tree: f(1)
[1.3.3.1] draw stem
[1.3.3.2] draw left tree: f(0)
[1.3.3.2.1] do nothing
[1.3.3.3] draw right tree: f(0)
[1.3.3.3.1] do nothing

The trees in Figure 3.4 are drawn with n = 3, n = 7, and n = 15.
Note how a recursive definition is often very simple, though the execution of a recursive

function can be quite complicated: quite a lot of book-keeping can be required to keep track
of which sub-problem is being solved at any given point in time. Typical work for computers!

3.8 Induction

It may also help if you understand how falling dominoes work. Under the assumption that
they are close enough to each other, if the first one falls, then all dominoes fall. Again there
is a ‘case 0’ and a ‘case k + 1’ domino. In ‘case 0’, the first domino falls because it is being
pushed over. In ‘case k + 1’, each other domino falls because it is hit by the previous domino
falling over. Let’s return back to the sequence we encountered earlier, the sequence of the
number of steps needed to solve the puzzle of Hanoi with n discs. This sequence was given
by the recursive formula an+1 = 2an + 1, where an stands for the number of steps needed. Of
course computing an for a high n, for example a38, can now be a bit tedious, because we have
to first compute all previous an’s. It would be more convenient if we had a direct formula to
compute a38.

Taking another look at the sequence: 1, 3, 7, 15, 31, 63, 127, . . . , one might notice that it
looks very much like the sequence of powers of two: 2, 4, 8, 16, 32, 64, 128, . . . The numbers of
the first sequence seem to always be one less than those of the powers of two. But how do
we know this for sure? Couldn’t it be just a coincidence of the first part of the sequences?
Suppose for now that a37 = 237 − 1 would be indeed the case. Then we also have:

a38 = 2 · a37 + 1 = 2 ·
(
237 − 1

)
+ 1 = 238 − 2 + 1 = 238 − 1.

So, if it holds for the 37th element, then also for the 38th, and so on. Of course there is
nothing specific about it being exactly the 37th going on above, so we have the general truth
that if ak = 2k − 1 for some k, then also ak+1 = 2k+1 − 1 for the same k. Furthermore, we
already know that a0 = 20 − 1 = 0. So then indeed, it holds for a1, and then also for a2, and
for a3, and so on, and in particular also for a38. We have now proved that indeed for all n, we
have an = 2n − 1, and this is what we call a direct formula for an, because it doesn’t depend
on any previous values. Note that we used the distinction between the ‘case 0’ and the ‘case
k + 1’ again!

The method of proof demonstrated above is what we call induction. As stated before,
induction, as a proof technique, is very similar to recursion, a way to define recursive formulas.

Definition 3.34
Induction can be used to prove that a certain predicate P (n) holds for all natural numbers
(0, 1, 2, 3, . . . ). Such a proof by induction is given by:
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1. A proof of P (0). (The base case.)

2. A proof that: if P (k) holds for some k ∈ N, where k is greater than or equal to the base
case, then also P (k + 1). (The induction step.)

Giving these two is then enough to show that P (n) holds for all n. When proving P (k + 1),
(in 2.), the assumption that P (k) holds already is called the induction hypothesis (IH).

To see how, for example, P (37) then follows from such a proof by induction, note first that
P (0) holds, and thus (by 2.) also P (1), and thus (again by 2.) also P (2), etc, until we arrive
at the truth of P (37).

In our example above, the predicate P (n) was the statement that an = 2n − 1.

Remark 3.35
A recurring question is whether one should start with P (0) or with P (1). The answer to
this question depends on the situation. If you want to prove something about all natural
numbers, then you should of course start with P (0). But if you only want to prove something
about all natural numbers greater than, say, 7, then of course you may start with P (8). It
may sometimes even be necessary to prove the first number of cases separately, because the
regularity only arises after that. Your induction step proof might then be for, say, k ≥ 5.

Remark 3.36
In a way, induction can be seen as the opposite of recursion. The emphasis of induction lies
on consecutively proving larger cases, while recursion is used to break a problem down into
smaller cases: the opposite of the first.

Example 3.37
How much does 1 + 2 + 3 + · · · + 99 add up to? You could calculate this manually, or use a
calculator, but in both cases you would be sure to be busy for a while. Unless you are smart
of course, and use recursion and induction. Suppose you define s(n) := 1 + 2 + · · · + n, for
n ≥ 1. Then a recursive program for computing s(n) would be s(n+ 1) = s(n) + n+ 1.

After looking at the first number of results s(1), s(2), s(3), . . . , you might start to suspect
that generally s(n) is given by s(n) = n2+n

2 . To prove this direct formula for the value of s(n),
we use induction. In this example our induction predicate is defined by

P (n) :=

[
s(n) =

n2 + n

2

]
and we are going to prove that it holds for all n ≥ 1.

Base Case Does P (1) hold? Yes, because s(1) = 1 = 12+1
2 .

Induction Step Now suppose that we already know that P (k) holds for some k ∈ N with
k ≥ 1, that is, s(k) = k2+k

2 (IH). Do we have that P (k+1) holds as well? More precisely,
do we have that s(k + 1) = (k+1)2+(k+1)

2 ? Let’s see what we can say about s(k + 1):

s(k + 1) = s(k) + k + 1 (by definition of s(k + 1))

=
k2 + k

2
+ k + 1 (IH)

=
k2 + k + 2k + 2

2
(algebra)

=
(k2 + 2k + 1) + (k + 1)

2
(algebra)

=
(k + 1)2 + (k + 1)

2
(algebra)

So P (k + 1) indeed holds.
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So indeed, it follows by induction that s(n) = n2+n
2 holds generally for n ≥ 1.

The mathematician Gauss, by the way, was able to solve this problem in an easy way,
without using induction. See Exercise 3.U.

Example 3.38
In how many ways can we order the numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9? It is cumbersome
to write down all possibilities. But luckily, we don’t need to. Let an denote the number of
orderings of n elements. So, the question is what the value of a9 is. At least we know where
to start: a1 is simply 1. Furthermore, an+1 = (n + 1) · an, because we would first choose an
element to put at the front of the list, for which we have n+ 1 options, and then we order the
remaining n elements, for which there are an possibilities by definition.

So how, then, do we calculate a9? Well, the definition we gave above is exactly that of the
factorial: an = n!. Which means, we can use any standard scientific calculator.

Example 3.39
What is the value of the sum

1 + a+ a2 + a3 + · · ·+ an

given some n ∈ N and an arbitrary a? Let’s first test it out on some small values:

n = 0 n = 1 n = 2 n = 3 n = 4 n = 10 n = 42

a = 0 1 1 1 1 1 1 1

a = 1 1 2 3 4 5 11 43

a = 3 1 4 13 40 121 88573 164128483697268538813

a = 2
3 1 5

3
19
9

65
27

211
81

175099
59049

328256958598444055419
109418989131512359209

a = −1 1 0 1 0 1 1 1

a = −2 1 −1 3 −5 11 683 2932031007403

An attentive student might remember the formula for calculating the sum of a geometric
sequence:

1 + a+ a2 + a3 + · · ·+ an =

{
n+ 1 if a = 1
an+1−1
a−1 if a ̸= 1

We will prove by induction that the case where a ̸= 1 holds. We start off by defining precisely
what our predicate P (n) is:

P (n) :=

[
1 + a+ a2 + a3 + · · ·+ an =

an+1 − 1

a− 1

]
Base Case We want to prove the statement for all n ∈ N, so we start with the base case of

P (0), which means that we have to prove that:

1 =
a0+1 − 1

a− 1

Indeed this is the case, because a0+1 − 1 = a1 − 1 = a − 1. So the numerator and the
denominator of the fraction are equal, which implies that the fraction is indeed equal to
1. Recall that we have a ̸= 1 by assumption, so we don’t have to worry about dividing
by zero.
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Induction Step We may assume the induction hypothesis, P (k) for some k ∈ N such that
k ≥ 0, and must now prove that P (k + 1) holds as well, that is:

1 + a+ a2 + a3 + · · ·+ ak + ak+1 =
a(k+1)+1 − 1

a− 1

We do this by rewriting the left hand side of the equation until we see how our assumption
P (k) fits into it, then use the induction hypothesis, and then rewrite a bit more until we
have the right hand side of the equation.

1 + a+ a2 + a3 + · · ·+ ak + ak+1

= (1 + a+ a2 + a3 + · · ·+ ak) + ak+1 (reveal left hand side of P (k))

=
ak+1 − 1

a− 1
+ ak+1 (apply IH)

=
ak+1 − 1

a− 1
+ ak+1 · a− 1

a− 1
(making the denominators equal)

=
ak+1 − 1

a− 1
+

ak+2 − ak+1

a− 1
(multiplying of fractions)

=
ak+1 − 1 + ak+2 − ak+1

a− 1
(adding fractions)

=
ak+2 − 1

a− 1
(canceling terms in numerator)

=
a(k+1)+1 − 1

a− 1
(making it look exactly as in P (k + 1))

And now we have ended up with the right hand side of the equation of P (k + 1).

So now it follows by induction that P (n) holds for all n ∈ N and a ̸= 1.

Example 3.40
So far we have only concerned ourselves with theorems of which the proofs are based on, and
rely upon skills of, algebra. This example demonstrates that other options are possible as well.
Consider this 8 × 8 board, of which one of its squares has been removed. Can the rest of the
board be tiled completely with only tiles of the particular shape pictured next to the board?

A bit of puzzling might convince you that this is indeed possible. But the question is pressing,
whether this is coincidental to the particular square removed from the board, or whether it
may be tiled whichever square is removed. The latter turns out to generally be the case, for
which we will now give an inductive proof.

First, we define our predicate P (n):

P (n) :=

 A 2n×2n board of which a single square has been removed, can always be
tiled (with tiles of the shape pictured above), regardless of which square
was removed.


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Now we can make the theorem clear:

Theorem The predicate P (n) holds for all n ≥ 1.

Proof by induction on n.

Base Case The base case is P (1), because the theorem explicitly tells us that n ≥ 1. Which
means, we must prove that a 2 × 2 board can be tiled, if any single square has been
removed. This is of course easily seen to be true. Whichever square is removed doesn’t
matter, because we can simply rotate the tile. The picture below illustrates the base case
tiling.

Induction Step Let k ∈ N and k ≥ 1. We may now assume that P (k) holds (our induction
hypothesis), which means that any 2k × 2k board with one square removed can be tiled
with the special tile. And we now have to prove that P (k + 1) holds, which means that
any 2k+1 × 2k+1 board with one square removed can be tiled. Now let us consider an
arbitrary 2k+1 × 2k+1 board, of which one square has been removed. Note that such a
board can always be subdivided into four 2k×2k board, of which one of them has a square
removed. By rotating our initial board, we can state without loss of generality, that the
square will have been removed in the lower right sub-board. The leftmost illustration
depicts this situation.

Now, crucially, we place the first tile in the center of our board, as depicted in the middle
illustration. Note that now each sub-board can be regarded as having ‘removed’ a single
square, except for the lower right board—but it already had a square removed. Now, we
can simply apply our induction hypothesis to all four sub-boards, thereby immediately
yielding a tiling of the full board as well. And so we have proved that P (k + 1) holds.

So with induction it follows that P (n) holds for all n ≥ 1.

Note that in this proof, we have not only proved that P (n) holds generally, but we have actually
specified a definite method for tiling. The rightmost illustration depicts the result of this tiling
method for a 16× 16 board.

Exercise 3.Q
Consider the sequence an defined by:

a0 = 0
an+1 = an + 2n+ 1 for n ≥ 0

Prove by induction that for all n ∈ N, an = n2.
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Exercise 3.R
The inventor of the chessboard was told by the king of Persia, that he would be rewarded
any object of choice. The inventor chose the following: 1 grain of rice on the first field of the
chessboard, 2 grains of rice on the second, 4 on the third, and so on, doubling the number of
grains for each successive field. The king thought the inventor to be very humble. Now the
question is: how many grains of rice did the inventor’s choice amount to? Let’s formulate it
formally: he asked for

1 + 2 + 22 + 23 + 24 + · · ·+ 263

grains of rice. Can you find a direct formula for the result of this sum for a generalized board
with n fields? And can you then prove this formula by induction? [Hint: This is what you
could do here: Give a recursive definition for sn, the number of rice grains on the first n fields.
Make a table with three columns: one column for n, one for the expression 1 + 2 + · · ·+ 2n−1

and one for sn. Use this table to guess a direct formula f (n) for sn. Prove by induction that
f (n) = sn for all n ≥ 1. Use the direct formula to compute s64.]

Exercise 3.S
In Exercise 3.C, we proved that for all n ≥ 1 the complete graph Kn has exactly 1

2n (n− 1)
edges. Now, try to prove this by induction on n.

Exercise 3.T
Prove by induction, that for all n ∈ N, 2n ≥ n.

Exercise 3.U
So we have seen the formula for the sum of the following sequence:

1 + 2 + 3 + 4 + 5 + · · ·+ n =
(n+ 1)n

2
.

What is the connection with this picture?

• • • • •
• • • • ◦
• • • ◦ ◦
• • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

Exercise 3.V
How many distinct sequences of length n can we make, filled with the numbers 1 through 5?
This too, can be solved easily with recursion. Let an denote the number of distinct sequences
of length n. The simplest sequence, of length one, can of course be made in five ways, so
a1 = 5. A sequence of length n + 1 can be made by first taking a sequence of length n, and
then appending a new element after it, for which we have five options. So, an+1 := 5 ·an. Now,
recall the definition of raising to a power. Prove by induction, that for all n ≥ 1, an = 5n.

Exercise 3.W
Prove, by induction, that 1+3+5+7+ · · ·+(2n− 1) = n2 for n ≥ 1. What is the connection
with the picture below?

◦ • ◦ • ◦
• • ◦ • ◦
◦ ◦ ◦ • ◦
• • • • ◦
◦ ◦ ◦ ◦ ◦
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3.9 Pascal’s Triangle

Before we discuss Pascal’s Triangle, we repeat some combinatorics by an example.

Example 3.41
We will be taking a look at the Dutch Lotto2. In this game of chance, there is a ‘vase’, filled
with 45 sequentially numbered balls (1 up to 45). A notary then pulls six balls from this vase,
at random (and without putting them back afterwards). The numbers on these six balls are
then compared to the numbers that the players have chosen beforehand. The more numbers
coincide, the higher the rewards are. But how many distinct outcomes are there to such a
draw? Well, for the first ball to be drawn, there are of course 45 possibilities. And for the
second, 44, and for the third, 43, etc. So that would lead us to the conclusion that there are

45 · 44 · 43 · 42 · 41 · 40 =
45 · 44 · 43 · 42 · 41 · 40 · 39 · 38 · · · · · 1

39 · 38 · · · · · 1 =
45!

39!
=

45!

(45− 6)!

ways to draw six consecutive balls. But note that the ordering of these balls, after they have
been drawn, doesn’t make a difference. So for example, the draw (5, 10, 2, 29, 6) is equal, with
respect to this game, to the draw (10, 2, 5, 29, 6), but these two have both been counted once
in the calculation above. So we have to compensate for all draws that we counted ‘double’.
Each ordering of six of these balls leads to the same outcome. We know that the number of
orderings of six of these balls is 6!, as we have seen earlier, so to counter this problem, we must
divide the result of our calculation above by 6!, giving:

45!

6! (45− 6)!
= 8145060

This is then the actual number of possible draws.

Definition 3.42
Let n and k be natural numbers, with k ≤ n. We then define the binomial

(
n
k

)
as the number

of ways in which k objects can be drawn from a set of n elements (as above). This number
can be computed using this formula: (

n

k

)
=

n!

k! (n− k)!

It is pronounced as ‘n choose k’.

We now continue by looking at the grid coordinates (n, k) of a grid that is skewed in such
a way that we have (0, 0) at the top:

(0, 0)

(1, 0) (1, 1)

(2, 0) (2, 1) (2, 2)

(3, 0) (3, 1) (3, 2) (3, 3)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

(5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(6, 0) (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

(7, 0) (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7)

We will now assign values to these coordinates in different ways, and see how these different
assignments relate.

2Although we will disregard ‘Superzaterdag’ and the ‘Jackpot’ for convenience.
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Definition 3.43
Assign ones to the left and right borders of the triangle, and then fill in the rest of the triangle
by consecutively adding up the two values directly above a new one. Put more precisely: all
coordinates (n, 0) and (n, n) get the value 1, and then each (n, k) is given by adding up the
values of (n− 1, k) and (n− 1, k − 1). The first version of Pascal’s Triangle (P△1) is thus as
follows3:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Definition 3.44
Assign to each coordinate (n, k), the value

(
n
k

)
as defined in Definition 3.42. This then gives

us the second version of Pascal’s Triangle (P△2).

The numbers on the outer edge of P△2 all have coordinates either (n, 0) or (n, n). By
definition of P△2, that means that the assigned number is either

(
n
0

)
or

(
n
n

)
, respectively, both

of which compute to 1, whatever n is. So all numbers on the outer edge of P△2 are 1.
In addition, we claim, for k < n, that

(
n+1
k+1

)
=

(
n

k+1

)
+
(
n
k

)
. If we draw a subset A containing

k+1 elements from the set 1, 2, 3, 4, . . . n+ 1, then there are two possibilities: either n+1 ∈ A,
or n + 1 /∈ A. In the first case, A \ {n + 1} is a subset containing k elements, drawn from
{1, 2, 3, 4, . . . , n}. In the second case, A is a subset containing k + 1 elements, drawn from
{1, 2, 3, 4, . . . , n}. So indeed

(
n+1
k+1

)
=

(
n

k+1

)
+

(
n
k

)
. Or, put differently: P△2 also follows the

principle that the value of each coordinate can be found by adding the values of the two
coordinates that lie above it. The result of which is that the two triangles P△1 and P△2 are
exactly the same.

In Definition 3.42 we have defined the binomial coefficient in a combinatorial way and
by giving a direct formula. However, as we have seen that the binomial coefficients are the
elements in the triangle of Pascal, we can also give a recursive definition:

Definition 3.45
Let n and k be natural numbers. The binomial coefficients

(
n
k

)
are defined by these four

equations:

1.

(
0

0

)
= 1 2.

(
0

k + 1

)
= 0

3.

(
n+ 1

0

)
= 1 4.

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
This definition is slightly different from what you can find in other sources like Wikipedia4,
where there usually is a specific definition for

(
n
n

)
= 1. In particular, this definition works for

all natural numbers n and k, even if k > n. This is due to the
(

0
k+1

)
= 0 equation, which

3Of course this triangle carries on infinitely, we just abbreviated it to the first eight rows.
4https://en.wikipedia.org/wiki/Binomial_coefficient
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explicitly states that to the right of the
(
0
0

)
at the top of Pascal’s triangle there is an infinite

series of zeros, which are not shown in the triangle itself. This row of zeros allows for the
computation of

(
n+1
k+1

)
=

(
n
k

)
+

(
n

k+1

)
for any n and k. For instance, if we want to compute(

3
3

)
(which is on the border of the triangle) and

(
3
4

)
(which is just outside the triangle), the

computations go like this:

1 0 0 0 0

1 1

×1 ×1

0

×1 ×1

0

×1 ×1

0

×1 ×1

1 2

×1 ×1

1

×1 ×1

0

×1 ×1

0

×1 ×1

1 3

×1 ×1

3

×1 ×1

1

×1 ×1

0

×1 ×1

1 4

×1 ×1

6

×1 ×1

4

×1 ×1

1

×1 ×1

(
3
3

)
=

(
2+1
2+1

)
algebra

=
(
2
2

)
+
(

2
2+1

)
eq. 4

=
(
1+1
1+1

)
+
(
1+1
2+1

)
algebra

=
(
1
1

)
+
(

1
1+1

)
+
(
1
2

)
+
(

1
2+1

)
2× eq. 4,

=
(
0+1
0+1

)
+
(
0+1
1+1

)
+
(
0+1
1+1

)
+
(
0+1
2+1

)
algebra

=
(
0
0

)
+
(

0
0+1

)
+
(
0
1

)
+
(

0
1+1

)
+

(
0
1

)
+
(

0
1+1

)
+
(
0
2

)
+
(

0
2+1

)
4× eq. 4

= 1 + 0 +
(

0
0+1

)
+ 0 +

(
0

0+1

)
+ 0 +

(
0

1+1

)
+ 0 algebra, eq. 1, 4× eq. 2

= 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 3× eq. 2

= 1 algebra

(
3
4

)
=

(
2+1
3+1

)
algebra

=
(
2
3

)
+
(

2
3+1

)
eq. 4

=
(
1+1
2+1

)
+
(
1+1
3+1

)
algebra

=
(
1
2

)
+
(

1
2+1

)
+
(
1
3

)
+
(

1
3+1

)
2× eq. 4

=
(
0+1
1+1

)
+
(
0+1
2+1

)
+
(
0+1
2+1

)
+
(
0+1
3+1

)
algebra

=
(
0
1

)
+

(
0

1+1

)
+
(
0
2

)
+
(

0
2+1

)
+

(
0
2

)
+
(

0
2+1

)
+
(
0
3

)
+
(

0
3+1

)
4× eq. 4

=
(

0
0+1

)
+ 0 +

(
0

1+1

)
+ 0 +

(
0

1+1

)
+ 0 +

(
0

2+1

)
+ 0 algebra, 4× eq. 2

= 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 4× eq. 2

= 0 algebra
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Note that we did a lot of explicit rewriting like
(
3
4

)
=

(
2+1
3+1

)
. This is needed, because

(
3
4

)
does not match any of the four definitions, where

(
2+1
3+1

)
does match with

(
n+1
k+1

)
for n = 2 and

k = 3.

Exercise 3.X
We have seen above that

(
3
3

)
= 1 and

(
3
4

)
= 0. Now use Definition 3.45 to prove the following

propositions by induction on n:
(i)

for all l such that l > n it holds that
(
n
l

)
= 0 for all n ≥ 0

(We use l as k is already needed in the induction scheme.)
(ii) (

n
n

)
= 1 for all n ≥ 0

[Hint: You may need the result of the previous proposition.]

Definition 3.46
Assign to each coordinate (n, k), the number that denotes the number of possible roads leading
from (0, 0) to (n, k), where each subsequent step should be one step down, either diagonally
to the left, or to the right. This gives us the third version of Pascal’s Triangle (P△3).

One can then observe that:

• The border of P△3 is filled with ones.

• The triangle P△3 also follows the ‘principle of adding’ described above for the other two
versions of Pascal’s Triangle.

Result: P△3 is yet again exactly the same triangle as P△1 and P△2.

Definition 3.47
Assign to each coordinate (n, k), the coefficient that xk takes on in the polynomial (1 + x)n.
Example: the coordinate (6, 2) gets the value 15, because (1 + x)6 = 1 + 6x + 15x2 + 20x3 +
15x4+6x5+x6 and thus we see that the coefficient of x2 is 15. This gives us the fourth version
of Pascal’s Triangle (P△4).

Exercise 3.Y
Show that P△4, too, is equal to P△1.

We have seen that the four ways of presenting Pascal’s Triangle all lead to the same triangle
of numbers. Because we have seen that all versions coincide, we may speak of the Triangle of
Pascal, without having to refer to any one of its specific instantiations.

Exercise 3.Z
Demonstrate how the triangle of Pascal can be used to figure out how many distinct ways there
are, to pick four objects out of a collection of six. What is the notation for the corresponding
binomial?

Theorem 3.48 (Newton’s Binomial Theorem)
Let x ∈ R and n ∈ N. Then

(1 + x)n =

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

n− 1

)
xn−1 +

(
n

n

)
xn
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Relating this theorem to what we have seen above, it actually simply is the statement ‘P△2 is
equal to P△4’.

Remark 3.49
There is also a more general version of Theorem 3.48 for y, z ∈ R and x ∈ N:

(y + z)n =

(
n

0

)
yn +

(
n

1

)
yn−1z +

(
n

2

)
yn−2z2 + · · ·+

(
n

n− 1

)
yzn−1 +

(
n

n

)
zn

It follows simply from the fact that if y ̸= 0

(y + z)n

= yn
(
1 +

(
z
y

))n

= yn
((

n

0

)
+

(
n

1

)(
z
y

)
+

(
n

2

)(
z
y

)2
+ · · ·+

(
n

n− 1

)(
z
y

)n−1
+

(
n

n

)(
z
y

)n
)

=

(
n

0

)
yn +

(
n

1

)
yn

(
z
y

)
+

(
n

2

)
yn

(
z
y

)2
+ · · ·+

(
n

n− 1

)
yn

(
z
y

)n−1
+

(
n

n

)
yn

(
z
y

)n

=

(
n

0

)
yn +

(
n

1

)
yn−1z +

(
n

2

)
yn−2z2 + · · ·+

(
n

n− 1

)
y1zn−1 +

(
n

n

)
y0zn

=

(
n

0

)
yn +

(
n

1

)
yn−1z +

(
n

2

)
yn−2z2 + · · ·+

(
n

n− 1

)
y1zn−1 +

(
n

n

)
zn

when y ̸= 0. The case in which y = 0 is trivial as it comes down to

(0 + z)n = zn

= 0 + 0 + 0 + · · ·+ 0 + 1 · zdn

=

(
n

0

)
0n +

(
n

1

)
0n−1z +

(
n

2

)
0n−2z2 + · · ·+

(
n

n− 1

)
01zn−1 +

(
n

n

)
zn

We end this section about Pascal’s triangles by adding up all elements on a row.

1 = 1
1 + 1 = 2

1 + 2 + 1 = 4
1 + 3 + 3 + 1 = 8

1 + 4 + 6 + 4 + 1 = 16
1 + 5 + 10 + 10 + 5 + 1 = 32

1 + 6 + 15 + 20 + 15 + 6 + 1 = 64
1 + 7 + 21 + 35 + 35 + 21 + 7 + 1 = 128

We hope you recognized the values 20, 21, 22, and so on.

3.10 Choosing k objects out of n objects

The binomial coefficient
(
n
k

)
is pronounced as ‘n choose k’, hence it probably won’t be a surprise

that binomial coefficients play an important role in counting in how many ways one can choose
k elements out of a set of n elements. However, this last sentence is not precise enough as
there are two independent choices that play a role here:

• Are duplicates allowed or can we choose a specific element only once?

• Does the order in which the elements are chosen matter or not?
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These two independent choices lead to four cases:

Theorem 3.50
The number of ways one can choose k elements out of n elements is given by this table:

duplicates are not allowed duplicates are allowed

the order does not matter
(
n

k

) (
n+ k − 1

k

)

the order does matter
n!

(n− k)!
nk

Let us explain the situations by looking at the ways to take two elements out of the set
{1, 2, 3, 4, 5}.

• Duplicates are allowed and the order does matter. So the series 1, 2 and 2, 1 are not the
same and series like 3, 3 are allowed. How do we create such a series? For the first item
we choose one out of five elements. For the second item we also choose one out of five
elements. So we get 52 different series. In the general case, this extends to nk series.

• Duplicates are not allowed and the order does matter. So the series 1, 2 and 2, 1 are
not the same and series like 3, 3 are not allowed. How do we create such a series? For
the first item we can choose out of five elements, so there are five ways to pick the first
element. For the second element, there are four options left as duplicates are not allowed.
So we get 5 · 4 = 20 different series. For general n and k, the method of constructing a
series works the same way: first we choose one out of n elements, then one out of n− 1
elements, and so on. So there are n · (n − 1) · (n − 2) · · · (n − k + 1) ways to choose k
elements. However, there is a shorter way to represent the same formula:

n · (n− 1) · (n− 2) · · · (n− k + 1)

k!

= n · (n− 1) · (n− 2) · · · (n− k + 1) · (n− k) · · · 2 · 1
(n− k) · · · 2 · 1

=
n · (n− 1) · (n− 2) · · · (n− k + 1) · (n− k) · · · 2 · 1

(n− k) · · · 2 · 1

=
n!

(n− k)!

• Duplicates are not allowed and the order does not matter. So the series 1, 2 and 2, 1 are
now considered the same and series like 3, 3 are still not allowed. How do we create such
a series? Basically, in the same way as in the previous way, however, to compensate for
the fact that the same series 1, 2 and 2, 1 are now actually counted twice, we divide by
the number of ways that we can write down essentially the same series. That means, we
have to divide by 2!. So we get 5·4

2! = 20
2 = 10. And the general case is also the previous

general case, but now divided by k!, so we get:

n!

(n− k)!

k!
=

n!

n! · (n− k)!
=

(
n

k

)
• Duplicates are allowed and the order does not matter. So the series 1, 2 and 2, 1 are the

same and series like 3, 3 are allowed. How to create such a series? This is a difficult
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one! As the order does not matter, the essential information is how often each element
appears in the series. So we should count how often we put a specific element in the
series. But this is essentially a matter of putting balls in boxes! Let us explain this. We
have five elements 1, 2, 3, 4, 5 and for each element we create a box. For ease of use, we
simplify the boxes a bit. This is what it looks like for the series 1, 2 (and 2, 1 as well!)
and for the series 3, 3:

◦ ◦ ◦◦

The space in the empty boxes are not important for the characterization of the series, but
the balls and the bars distinguishing the boxes are! So there are actually six important
positions, and two of them are the balls and four of them are the bars. Hence in order to
create a series, the only thing we have to do is picking the two positions of the two balls.
(Or picking the four positions of the four bars!) However, this is a problem that we have
seen before: it is an instance of picking two out of six elements (the possible positions
for the balls), without duplicates and where the order is not important. So this can be
done in

(
6
2

)
= 15 ways. The general case for picking k elements out of n elements leads

to the formula
(
n+k−1

k

)
. The n+ k− 1 is actually (n− 1)+ k as there are n− 1 bars and

k balls.

3.11 Counting partitions

The binomial coefficients
(
n
k

)
are used everywhere in mathematics. However, there are other

famous families of numbers. An example of this are the Stirling numbers.
Actually there are two kinds of Stirling numbers: the Stirling numbers of the first kind or

Stirling cycle numbers
[
n
k

]
, and the Stirling numbers of the second kind or Stirling set numbers{

n
k

}
. The second kind are the more useful, and are the main subject of this section. When we

write Stirling numbers without mentioning a kind, in these course notes, we mean the Stirling
numbers of the second kind or Stirling set numbers.

Both kinds of Stirling numbers share many features with the binomial coefficients. For in-
stance, for each kind there is also a triangle of numbers produced according to some recurrence
relation. Both kinds have a combinatorial interpretation. The numbers of the first kind count
permutations with a specific number of permutation cycles, but we will not discuss this com-
binatorial aspect any further in this course. The numbers of the second kind count partitions,
which turns out to be the same as the number of ways to separate objects in separate piles.
And for both kinds there is also a formula similar to the Binomial Theorem.

Now before we go to the formal recursive definitions and the triangles, let us start with counting
arrangements of objects.

How many ways are there to put four objects into non-empty boxes? The objects will be
distinct, let us call them {1, 2, 3, 4}, but the boxes will be indistinguishable.

• There are
{
4
0

}
= 0 ways to put the four objects in zero boxes.

• There is
{
4
1

}
= 1 way to put everything in one box:

{1, 2, 3, 4}

• There are
{
4
2

}
= 7 ways to put the objects in two boxes:

{1, 2, 3}, {4}
{1, 2, 4}, {3}
{1, 3, 4}, {2}
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{1, 2}, {3, 4}
{1, 3}, {2, 4}
{1, 4}, {2, 3}
{1}, {2, 3, 4}

• There are
{
4
3

}
= 6 ways to put the objects in three boxes:

{1, 2}, {3}, {4}
{1, 3}, {2}, {4}
{1, 4}, {2}, {3}
{1}, {2, 3}, {4}
{1}, {2, 4}, {3}
{1}, {2}, {3, 4}

• There is
{
4
4

}
= 1 way to distribute everything over four boxes:

{1}, {2}, {3}, {4}

These numbers are on the fifth row of the following triangle:

1
0 1

0 1 1
0 1 3 1

0 1 7 6 1
0 1 15 25 10 1

0 1 31 90 65 15 1
0 1 63 301 350 140 21 1

Except for the left boundary with a single one at the top and zeros in all other rows, it looks
pretty similar to Pascal’s triangle. This left boundary is a bit weird and in many textbooks
it is just omitted. However, as we will see later on when we give the recursive definition, it
also has some benefits. And because this left boundary is not that interesting, it is sometimes
referred to as the ‘zeroth diagonal’, just to be able to call the diagonal with all the ones the
‘first diagonal’, which happens to be practical as we will see.

This triangle can be computed in a way very similar to Pascal’s triangle. The only difference
is that the number on the right first has to be multiplied by the ‘number of the diagonal’ before
being added to the number on the left. For example we have

301 = 31 + 3 · 90

because the 90 is on the third diagonal (where the direction of the diagonal is from the bottom-
left to the top-right). Similarly we have

350 = 90 + 4 · 65

because the 65 is on the fourth diagonal.

55



This triangle is the triangle of the Stirling numbers of the second kind :{
0
0

}
{
1
0

} {
1
1

}
{
2
0

} {
2
1

} {
2
2

}
{
3
0

} {
3
1

} {
3
2

} {
3
3

}
{
4
0

} {
4
1

} {
4
2

} {
4
3

} {
4
4

}
{
5
0

} {
5
1

} {
5
2

} {
5
3

} {
5
4

} {
5
5

}
{
6
0

} {
6
1

} {
6
2

} {
6
3

} {
6
4

} {
6
5

} {
6
6

}
{
7
0

} {
7
1

} {
7
2

} {
7
3

} {
7
4

} {
7
5

} {
7
6

} {
7
7

}
From this triangle you can read that there are

{
7
3

}
= 301 ways to put seven objects in three

non-empty boxes. Recall that this also holds for the strange zeroth diagonal: there is exactly
one way to put nothing in zero non-empty boxes and there are zero ways of putting something
in zero non-empty boxes.

The values in this triangle can be computed with the following recursive definitions:

Definition 3.51
Let n and k be natural numbers. The Stirling numbers of the second kind, Stirling set numbers,{
n
k

}
are defined by these four equations:

1.

{
0

0

}
= 1 2.

{
0

k + 1

}
= 0

3.

{
n+ 1

0

}
= 0 4.

{
n+ 1

k + 1

}
=

{
n

k

}
+ (k + 1) ·

{
n

k + 1

}
Do you see the similarity with Definition 3.45 where we recursively defined the binomial coef-
ficients?

We have already briefly explained how the values can be computed in the triangle, but now
that we have given the formal recursive definition, we can look more clearly how the triangle
is constructed.

1 0 0 0 0 0

0 1

×1 ×1

0

×1 ×2

0

×1 ×3

0

×1 ×4

0

×1 ×5

0 1

×1 ×1

1

×1 ×2

0

×1 ×3

0

×1 ×4

0

×1 ×5

0 1

×1 ×1

3

×1 ×2

1

×1 ×3

0

×1 ×4

0

×1 ×5

0 1

×1 ×1

7

×1 ×2

6

×1 ×3

1

×1 ×4

0

×1 ×5

0 1

×1 ×1

15

×1 ×2

25

×1 ×3

10

×1 ×4

1

×1 ×5

Values that are computed recursively have a line to two values on the row above, where the
label refers to the multiplication factor. To the left, this factor is always one, but to the right
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it increases by one every next diagonal. As the values on the zeroth diagonal are taken directly
from equations 1 or 3 from Definition 3.51, they don’t have lines connecting them to other
values. And on the right, you can see which ‘gray’ zeros coming from equations 2 and 4 are
needed to construct the ‘real’ triangle.

Although we already indicated that the Stirling numbers of the second kind are the more
interesting numbers, we do want to give you the recursive definition for the Stirling numbers
of the first kind as well.

Definition 3.52
Let n and k be natural numbers. The Stirling numbers of the first kind, Stirling cycle numbers,[
n
k

]
are defined by these four equations:

1.

[
0

0

]
= 1 2.

[
0

k + 1

]
= 0

3.

[
n+ 1

0

]
= 0 4.

[
n+ 1

k + 1

]
=

[
n

k

]
+ n ·

[
n

k + 1

]
The triangle for the Stirling cycle numbers is constructed in almost the same way as for the
Stirling set numbers, however, this time the diagonal does not determine the multiplication
factor, but the row.

1 0 0 0 0 0

0 1

×1 ×0

0

×1 ×0

0

×1 ×0

0

×1 ×0

0

×1 ×0

0 1

×1 ×1

1

×1 ×1

0

×1 ×1

0

×1 ×1

0

×1 ×1

0 2

×1 ×2

3

×1 ×2

1

×1 ×2

0

×1 ×2

0

×1 ×2

0 6

×1 ×3

11

×1 ×3

6

×1 ×3

1

×1 ×3

0

×1 ×3

0 24

×1 ×4

50

×1 ×4

35

×1 ×4

10

×1 ×4

1

×1 ×4

Let us compare the recursive definitions of the three kinds of numbers that we are talking
about here: (

n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
[
n+ 1

k + 1

]
=

[
n

k

]
+ n ·

[
n

k + 1

]
{
n+ 1

k + 1

}
=

{
n

k

}
+ (k + 1) ·

{
n

k + 1

}
These are the relations for the binomial coefficients, and for the Stirling numbers of the first
and second kind.

If we add all ways to separate four objects into boxes (regardless of the number of boxes),
so we put all four kinds of possible splits that we showed before together, we get that there are

B4 = 0 + 1 + 7 + 6 + 1 = 15

ways to do this. This motivates the following definition:
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Definition 3.53
The Bell numbers are defined for n ≥ 0 by:

Bn :=

{
n

0

}
+

{
n

1

}
+

{
n

2

}
+ · · ·+

{
n

n

}
Here are the first few Bell numbers:

1 = 1
0 + 1 = 1

0 + 1 + 1 = 2
0 + 1 + 3 + 1 = 5

0 + 1 + 7 + 6 + 1 = 15
0 + 1 + 15 + 25 + 10 + 1 = 52

0 + 1 + 31 + 90 + 65 + 15 + 1 = 203
0 + 1 + 63 + 301 + 350 + 140 + 21 + 1 = 877

This is sequence A000110 in the On-Line Encyclopedia of Integer Sequences (OEIS), a huge
database of sequences of numbers on the internet.

Definition 3.54
A partition of a set X is a set of nonempty subsets of X such that every element x ∈ X is in
exactly one of these subsets.

If we interpret each nonempty subset as a box, it is not difficult to see that all partitions of the
set {1, 2, 3, 4} are exactly the distributions over boxes that we have seen before, except that
we put extra curly braces around them to make them a set:

{ {1, 2, 3, 4} } { {1, 2, 3}, {4} }
{ {1, 2, 4}, {3} }
{ {1, 3, 4}, {2} }
{ {1, 2}, {3, 4} }
{ {1, 3}, {2, 4} }
{ {1, 4}, {2, 3} }
{ {1}, {2, 3, 4} }

{ {1, 2}, {3}, {4} }
{ {1, 3}, {2}, {4} }
{ {1, 4}, {2}, {3} }
{ {1}, {2, 3}, {4} }
{ {1}, {2, 4}, {3} }
{ {1}, {2}, {3, 4} }

{ {1}, {2}, {3}, {4} }

Remark 3.55
As the official notation of these partitions requires a lot of curly braces, whereas the essential
thing is actually to show which elements are grouped together, sometimes a different notation
is used, where a ‘|’ simply separates the groups of elements. So the partition { {1, 2, 3, 4} }
becomes 1 2 3 4, { {1, 3, 4}, {2} } becomes 1 3 4 | 2, and { {1}, {2}, {3, 4} } becomes 1 | 2 | 3 4.

Remark 3.56
The Bell number Bn represents exactly the number of partitions of a set with n objects.

So there are B4 = 15 partitions of the set {1, 2, 3, 4} as can be checked above.

Exercise 3.AA
Assume we have one bill of each of the following types: $1, $2, $5, $10, $20, $50, and $100. In
how many ways can we divide all these bills over three identical purses if there is at most one
empty purse?

Exercise 3.AB
Assume we have seven marbles. In how many ways can we distribute all these marbles over
three bags (where bags may be empty) if
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(i) both the marbles and the bags are distinguishable?
(ii) both the marbles and the bags are indistinguishable?
(iii) the marbles are indistinguishable and the bags are distinguishable? [Hint: What do you

think that ◦ ◦ ◦ ◦◦ ◦◦ represents? ]
(iv) the marbles are distinguishable and the bags are indistinguishable?
(v) the marbles are distinguishable and the bags are indistinguishable, but none of the bags

may be empty?

Exercise 3.AC
(i) Explain by using a combinatorial argument that

{
n
2

}
= 2n−1 − 1 for n ≥ 2.

(ii) Prove by induction that
{
n
2

}
= 2n−1 − 1 for n ≥ 2.

Exercise 3.AD
Explain by using a combinatorial argument that

{
n

n−1

}
=

(
n
2

)
for n ≥ 2.

Exercise 3.AE
Which of the following sets are partitions of the natural numbers? If it is not a partition,
explain why not.

(i) {N}
(ii) {{37} , {42} ,N \ {37, 42}}
(iii) {{x ∈ N | x is prime (x)} , {x ∈ N | x is not prime}}
(iv) {{1} , {2} , {3} , . . .}
(v) {{0, 1} , {1, 2} , {2, 3} , . . .}
(vi) {{x ∈ N | x is a multiple of 2} , {x ∈ N | x is a multiple of 3} ,

{x ∈ N | x is not a multiple of 2 and x is not a multiple of 3}}

Exercise 3.AF
(i) The triangle of the Stirling numbers of the first kind has as its top:

1
0 1

0 1 1
0 2 3 1

0 6 11 6 1
0 24 50 35 10 1

Calculate two more rows in this triangle.
(ii) Calculate the sum of the numbers in each row of the triangle you just calculated. Can

you guess a formula for these sums?

Exercise 3.AG
Expand the polynomials

(1 + x) (1 + 2x) · · · (1 + nx)

for n ∈ {0, 1, 2, 3, 4}. Do you see a relationship with the triangle from the previous exercise?

Exercise 3.AH
There are nice relations between the Stirling numbers of the first and second kind.

(i) Given numbers a1, a2, a3, a4, we define:

b1 := a1

b2 := a1 + a2

b3 := 2a1 + 3a2 + a3

b4 := 6a1 + 11a2 + 6a3 + a4
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so with coefficients from the triangle of Stirling numbers of the first kind. Now from
these numbers bi we define:

c1 := b1

c2 := −b1 + b2

c3 := b1 − 3b2 + b3

c4 := −b1 + 7b2 − 6b3 + b4

with coefficients from the triangle of Stirling numbers of the second kind, but with the
sign alternating between plus and minus.
Express the numbers ci in terms of the ai. What do you find?

(ii) Now we reverse the two kinds of Stirling numbers in this relation. If from the numbers
ci from the previous exercise we go on, and define:

d1 := c1

d2 := c1 + c2

d3 := 2c1 + 3c2 + c3

d4 := 6c1 + 11c2 + 6c3 + c4

and then express di in terms of bi, what do we find then?
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3.12 Important concepts

Fáry’s theorem, 35

Bell numbers, 58
Bn, 58

bijection, 31
binomial, 48(

n
k

)
, 48

coefficient, 51
coloring

chromatic number, 34
vertex coloring, 34

discrete mathematics, 27

Euler
circuit, 31
cycle, 31
path, 31

Euler’s formula, 37

four color theorem, 37

graph, 27
bipartite, 34
circuit, 28
complete bipartite graph, 34
Km,n, 34

complete graph, 29
Kn, 29

component, 28
connected, 28
cycle, 28
degree, 28

valency, 28
directed, 28
edge, 27
(v, w), 27

hypercube graph, 33
neighbor, 28
node, 27
path, 28
Petersen graph, 29
planar, 28
sub-graph, 28
tree, 28
tuple
⟨V,E⟩, 27

undirected, 28
vertex, 27

vertices, 27
grid coordinate

(n, k), 48

Hamilton
circuit, 32
cycle, 32
path, 32

induction, 42
base case, 43
hypothesis, 43
induction step, 43
proof by, 42

isomorphic, 31
isomorphism
φ, 31

Kuratowski’s theorem, 36

Newton’s Binomial Theorem, 51

parse tree, 30
partition, 58
Pascal’s Triangle, 49, 51

P△1, 49
P△2, 49
P△3, 51
P△4, 51

Pascal’sTriangle, 49
predicate, 42
pseudocode, 40

recursion, 38, 43
direct formula, 42
recursive definition, 42
recursive formula, 39
recursive function, 40
recursive procedure, 40
recursive program, 40
recursive recipe, 40

Stirling cycle numbers, 54, 57[
n
k

]
, 54

Stirling numbers of the first kind, 54,
57

Stirling numbers, 54
Stirling set numbers, 56{

n
k

}
, 54
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Stirling numbers of the second kind, 54,
56

Tower of Hanoi, 37

62



Chapter 4

Languages

Generating and describing languages is an important application of computers. In principle,
a computer can only deal well with languages that are given an exact “formal” definition, for
example, programming languages. Though one can of course learn a computer to recognize a
natural language, as well, provided you give precise enough rules for it. But for now, we will
deal with formally defined languages. We take a language to be a set of words. And a word is
simply a sequence of symbols taken from a specified alphabet .

With these informal definitions we can already ask ourselves a number of interesting ques-
tions about languages and their words, like:

Question 4.1
• Does L contain the word w?

• Are the languages L and L′ the same?

Many problems in computer science that seem on first sight unrelated to languages, can be
reformulated, or, translated, into corresponding questions about (formal) languages.

Remark 4.2
As languages are sets, it is essential that you know how sets are represented in mathematical
notation. So if you are not familiar with this, please read Appendix A.

4.1 Alphabet, word, language

Definition 4.3
1. An alphabet is a finite set Σ of symbols.1

2. A word over Σ is a finite number of symbols, strung together to a sequence.

3. λ is the word that is made up of 0 symbols, that is, no symbols at all, which is called the
empty word.

4. Σ∗ is the set of all words over Σ.

5. A language L over Σ is a subset of Σ∗.

Note that for words the order of the symbols matters, so ab ̸= ba. In addition, duplication
of symbols matters, so a ̸= aa. And words cannot be infinite. Variables for words are u, v, w,
. . . .

1Although the alphabet may of course contain symbols such as ‘,’ and ‘*’, we will often call all symbols
‘letters’ for simplicity. And typically, a, b, c, . . . are used as concrete symbols, whereas x, y, z, . . . are variables
used to indicate symbols.
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However, for languages it is different. As languages are sets, the order of the words in
the language doesn’t matter. And also because languages are sets, duplication of words also
doesn’t matter. And languages can be infinite. Variables for languages are L, L′, L1, . . . .

Example 4.4
(i) Σ = {a, b} is an alphabet.
(ii) abba is in Σ∗ (notation: abba ∈ Σ∗).
(iii) abracadabra /∈ Σ∗.
(iv) abracadabra ∈ Σ∗

0, with Σ0 = {a, b, c, d, r}.
(v) The empty word λ is in Σ∗, whatever Σ may be.

We can describe languages in several ways. A couple of important ways, which we will
treat in this course, are regular expressions (see Section 4.2), grammars (see Section 4.3), and
finite automata (see Section 5.1). But remember that of course, languages are also simply the
sets of words they contain.

Definition 4.5
We will introduce some useful notation.

1. We write an for a . . . a where we have n times a in a sequence. More precisely put:
a0 = λ, and an+1 = ana.

2. The length of a word w is denoted |w|.

3. If w is a word, then wR is the reversed version of the same word, so for example we have
that (abaabb)R = bbaaba.

Example 4.6
(i) L1 := {w ∈ {a, b}∗ | w contains an even number of a’s}.
(ii) L2 := {anbn | n ∈ N}.
(iii) L3 := {wcv ∈ {a, b, c}∗ | w does not contain any b, v does not contain any a, and |w| =

|v|}.
(iv) L4 := {w ∈ {a, b, c}∗ | w = wR}.

Try, for every two of the above languages, to think of a word that is in the one, but not in the
other.

If we have two languages L and L′, we can define new languages with the usual set opera-
tions. (Though the complement might be new to you.)

Definition 4.7
Let L and L′ be languages over the alphabet Σ.

1. Language L is a subset of language L′ if each word in L is also a word in L′, notation
L ⊆ L′.

2. Language L is a strict subset of language L′ if L ⊆ L′ and in addition there is at least
one word in L′ which is not in L, notation L ⊂ L′.

3. Language L is the complement of L: the language comprised of all words w that are not
in L. (So: the w ∈ Σ∗ such that w /∈ L.)

4. Language L ∩ L′ is the intersection of L and L′: the language comprised of all words w
that are both in L as well as in L′.

5. Language L ∪ L′ is the union of L and L′: the language comprised of all words w that
are either in L or in L′ (or in both).
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Exercise 4.A
In Example 4.6 we have seen some examples of language descriptions. Now try describing these
languages yourself using formal set notation:

(i) Describe L1 ∩ L2.
(ii) Describe L2 ∩ L4.
(iii) Describe L3 ∩ L4.

Besides these general operations on sets there are some operations that only work for languages,
which we will now define:

Definition 4.8
Let L and L′ be two languages of the alphabet Σ.

1. LL′ is the concatenation of L and L′: the language that contains all words of the shape
wv, where w ∈ L and v ∈ L′.

2. LR is the language that contains all reversed words of L, that is, all wR for w ∈ L.

3. L∗ is the language comprised of all finite concatenations of words taken from L; so that
it contains all words of the shape w1w2 . . . wk, where k ≥ 0 and w1, w2, . . . , wk ∈ L.

The language L∗ is called the Kleene closure of L. The language L∗ contains all concatena-
tions of zero or more words of L, so it is always the case that λ ∈ L∗. Furthermore, we always
have L ⊆ L∗ for any language L. Try to find out yourself what the language L∗ is for L = ∅
and for L = {λ}.

Exercise 4.B
Use the definitions of Example 4.6.

(i) Prove that L1 = L1
∗

(ii) Does L2L2 = L2 hold? Give a proof, or else a counterexample.
(iii) Does L1 = L1

∗ hold? Give a proof, or else a counterexample.
(iv) For which languages of Example 4.6 do we have L = LR? (You need only answer, a proof

is not necessary.)

4.2 Regular languages

A very popular way of describing languages is by the means of regular expressions. A language
that can be described by such an expression, is called a regular language. In computer science,
regular languages are seen as (relatively) simple languages: if L is such a language, it is not
hard to build a little program that checks whether a given word w is contained in L. Such
a program is then called a parser , and answering the question whether “w ∈ L” is called
parsing. Parsers for regular languages are easy to make, and there are many programs that
will even generate such parsers for you (when given as an input, a regular expression defining
that language). The parsers generated by these “parser generators” are especially efficient :
they decide very quickly whether w is or is not in L. This course will not further deal with
the concept of parsing, but we will delve further into the notions of a regular language and a
regular expression.

Definition 4.9
Let Σ be an alphabet. The regular expressions over Σ are defined as follows:

1. ∅ is a regular expression,

2. λ is a regular expression,
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3. x is a regular expression, given any x ∈ Σ,

4. if r1 and r2 are regular expressions, then so too are the union (r1 ∪ r2) and the concate-
nation (r1 r2),

5. if r is a regular expression, then the Kleene star r∗ is a regular expression too.

In order to be able to reduce the amount of parentheses, we provide the relative binding strength
of the operators: Kleene star binds more strongly than concatenation, and concatenation binds
more strongly than union. So a ∪ bc∗ is the same expression as (a ∪ (b(c∗))), whereas it is
(a ∪ (bc∗)) according to the formal grammar above.

Example 4.10
Some examples of regular expressions are: aba, ab∗(a∪λ), (a∪ b)∗, (a∪∅)b∗, and (ab∗∪ b∗a)∗.

Remark 4.11
Let r and r′ be regular expressions. And let n be a natural number. From Definition 4.9 it
follows that the following series of symbols are not regular expressions: {r}, r, r ∩ r′, rR, rn,
and r, r′.

Now let’s formalize the relation between regular expressions and (regular) languages.

Definition 4.12
For every regular expression r, we define the language of r, denoted L(r), as follows:

1. L(∅) := ∅,

2. L(λ) := {λ},

3. L(x) := {x} for every x ∈ Σ,

4. L(r1 ∪ r2) := L(r1) ∪ L(r2),

5. L(r1 r2) := L(r1)L(r2),

6. L(r∗) := L(r)∗.

To exemplify this definition, take a look at the languages of the regular expressions from
Example 4.10 above:

• L(aba) = {aba},

• L(ab∗(a ∪ λ)) = {a}{b}∗{a, λ}, so that is the language of words that start with an a,
then an arbitrary amount of b’s, and ending either with an a, or just ending at that,

• L((a ∪ b)∗) = {a, b}∗, or, all possible words over the alphabet {a, b},

• L((a∪∅)b∗) = {a}{b}∗, which is the same language as the one of the regular expression
of ab∗,

• L((ab∗ ∪ b∗a)∗) = ({a}{b}∗ ∪ {b}∗{a})∗. This language is somewhat less easily described
in natural language.

Sometimes regular expressions are also written using the + operator: the expression a+

then stands for “1 or more times a.” Technically speaking, this operator isn’t needed, because
instead of a+, one can also simply write aa∗. (Check this.)
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Exercise 4.C
(i) Demonstrate that the operator ?, for which a? stands for either 0 or 1 times a, doesn’t

have to be added to the regular expressions, as it can be defined using the existing
operators.

(ii) What is L (∅ab∗)?
(iii) We define the language L5 := {w ∈ {a, b}∗ | w contains at least one a}. Give a regular

expression that describes this language.
(iv) Give a regular expression that describes the language L1 from Example 4.6.
(v) Show that L (ab (ab)∗) = L (a (ba)∗ b).

We see that the regular expression ∅ isn’t very useful. For any expression r, we can simply
replace r ∪∅ with r, so that the only reason to use ∅ is when we want to describe the empty
language L(∅). Apart from this use, you won’t see the expression ∅ any more.2

Definition 4.13
Let Σ be an alphabet. We call a language L over Σ regular if some regular expression exists
that describes it. More precisely put: a language L over Σ is regular if and only if there is a
regular expression r for which L = L(r).

The language L1 from Example 4.6 is regular, as we have seen in Exercise 4.C. However,
the languages L2, L3, and L4 from Example 4.6 are not. We won’t be able to prove this with
the material of this course, though.

Exercise 4.D
Show that the following languages are regular.

(i) L6 := {w ∈ {a, b}∗ | every a in w is directly followed by a b},
(ii) L7 := the language of all well-formed natural numbers. These words (numbers) are made

up of the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, but they never start with a 0, except for the word
0 of course.

(iii) L8 := the language of all well-formed integers These words (integers) are made up of the
natural numbers (for which you defined a regular expression in the previous question),
possibly preceded by a + or − sign. [Hint: If you named the expression in the previous
question, you may reuse it here.]

(iv) L9 := the language of all well-formed arithmetical expressions without parentheses.
These contain all natural numbers, possibly interspersed with the operators +, −, and
×, as in for example 7 + 3× 29− 78.

If a language L is regular, then the language LR is also regular, because if L is described
by some regular expression e (so L = L(e)), then LR is described by the regular expression eR,
because LR = L(eR). (Though, strictly speaking, we are not allowed to write eR at all, as we
have only defined the operation . . .R on words and languages, and not on regular expressions.
Try to figure out what a definition of reversed regular expressions would look like.)

Regular languages have more nice properties: if L and L′ are regular, then so too are LL′,
L ∪ L′, L, and also L ∩ L′. This is easily seen in the case of LL′ and L ∪ L′, but the other
two are more complicated. Try to figure out yourself why L ∩ L′ and L are regular too. Oh,
and note that if we did not have that ∅ is a regular expression and hence L(∅) not a regular
language, then it would not be true that r is regular for all regular expressions. Can you think
of a counterexample?

Convention 4.14
Sometimes, people identify a regular language with one of its describing regular expressions,
and speak, say, of “the language b∗(aab)∗,” although what is actually meant is the language

2Because L(∅) = ∅, we can succinctly use the same symbol to denote both the expression, as its language.
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L(b∗(aab)∗). In this course, we try not to do this, but we try to make the difference between
the regular expression and the corresponding language explicitly clear.

Exercise 4.E
Which of the following regular expressions describe the same language? For any two expres-
sions, either show that they describe the same language, or else give a word that exemplifies
that this is not the case.

(i) b∗ (aab)∗.
(ii) b∗ (baa)∗ b.
(iii) bb∗ (aab)∗.

Example 4.15
So far, we have used quite a lot of symbols in this chapter and some of these symbols can be
used in different situations. Can you complete the following table?

symbol word language reg. exp
a × × ×
ab
{a}
a∗

{a}∗
λ
∅

a ∪ b
{a, b}

4.3 Context-free grammars

Let us now turn to another often used way of defining languages. Instead of attempting to
describe a language directly, we give a method of giving a set of rules that describe how
the words of the language are generated (or, produced). Such a set of rules is then called a
“grammar.”

Example 4.16
Let Σ = {a, b}. The language L10 ⊆ Σ∗ is defined by the productions starting with S using
these production rules:

S → aAb

A → aAb

A → λ

The method of generating words is then as follows. We start with S, called the start symbol.
Both S and A are nonterminals. We follow an arrow of S, of which there is only one in this
example (though there could have been more in general). If we still have nonterminals in our
new word, we follow one of its arrows, and so on, until there are no nonterminals left, and we
have successfully produced a word. Some example productions are:

S → aAb → aaAbb → aabb
S → aAb → aaAbb → aaaAbbb → aaabbb

This way to represent a language is called a grammar. Let us give it the name G1 so we
can refer to it later on. The grammar above may also be written, more succinctly, as:

S → aAb

A → aAb | λ
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By which we mean that, from A, two production rules are possible, namely A → aAb and
A → λ.
This grammar generates the language L10, where L10 =

{
ab, aabb, aaabbb, a4b4, . . . , anbn, . . .

}
.

Or, written more clearly:
L10 = {anbn | n ∈ N and n > 0}

Remark 4.17
We have already seen parse trees for propositional logic and for predicate logic. But we can
also use parse trees to represent productions. We have seen above that aaabbb can be produced
by the given grammar. This is the corresponding tree.

S

a A b

a A b

a A b

λ

In the parse tree, a leaf corresponds to a word, and a non-leaf vertex corresponds to a nonter-
minal that produces the word parts depicted by the vertices drawn below it. So, following the
production rules S → aAb, we draw a vertex with label S, and three subvertices: a leaf with
label a, a non-leaf with label A, and a leaf with label b. The next production step, A → aAb,
adds another level of subvertices with a leaf with label a, a non-leaf with label A, and a leaf
with label b. This continues until all nonterminals are gone and we end up with the tree above.
Reading the leaves, beginning at the top left, counter-clockwise around the graph, we get the
produced word: aaabbb. Note that the empty word λ is not written when concatenated to
non-empty words.

Definition 4.18
A context-free grammar G is a triple ⟨Σ, V,R⟩ consisting of:

1. An alphabet Σ.

2. A set of nonterminals V , such that Σ∩V = ∅, and containing at least the special symbol
S: the start symbol.

3. A set of production rules R of the form

X → w

where X is a nonterminal and w a word made up of letters from the alphabet as well as
nonterminals. (Put succinctly: w ∈ (Σ ∪ V )∗.)

Convention 4.19
We will denote nonterminals by capital letters (S, A, B, etc), reserving lowercase for the
alphabet letters (a, b, c, etc), which are also called terminals. Hence automatically Σ∩V = ∅
as required by the definition.

Example 4.20
(i) The language L10 from Example 4.16 is produced by a context-free grammar.

69



(ii) The language L11 is generated by the context-free grammar ⟨Σ, V,R⟩ having Σ = {a},
V = {S}, and R = {S → aaS, S → a}. This grammar generates all words containing an
odd number of a’s.

(iii) The language L12 is generated by the context-free grammar ⟨Σ, V,R⟩ with Σ = {a, b},
V = {S,A,B}, and R = {S → AB,A → Aa,A → λ,B → Bb,B → λ}. The language
L12 consists of all words that start with a sequence of zero or more a’s and is followed
by a sequence of zero or more b’s.

Definition 4.21
Languages generated by context-free grammars are called context-free languages. We denote
the language generated by G as L(G).

Remark 4.22
Context-free languages are systematically studied in the course ‘Languages and Automata’ in
the computing science curriculum.

Example 4.23
The language of well-formed arithmetical expressions, including parentheses, is context-free.
(And not regular!) A possible grammar for this language is:

S → LS OS R | G
L → (

R → )

O → + | × | −
G → DC

D → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
C → 0C | 1C | 2C | 3C | 4C | 5C | 6C | 7C | 8C | 9C | λ

Can you find productions for the expressions (33 + (20 ∗ 5)) and ((33 + 20) ∗ 5)?

Exercise 4.F
The best way to show that a language is context-free is by giving a context-free grammar.

(i) Show that the language of balanced parentheses expressions is context-free. By this,
we mean the expressions over {(, )} where every opening parenthesis is closed with a
parenthesis as well, so for example (( )(( ))) and (( ))( ) are balanced, but (( )( ))) is not.

(ii) Show that the language L1 from Example 4.6 is context-free.
(iii) Show that the language L2 from Example 4.6 is context-free. (Check Example 4.16.)
(iv) Show that the language L3 from Example 4.6 is context-free.
(v) Show that the language L4 from Example 4.6 is context-free.

Exercise 4.G
Consider the grammar G2:

S → AS | Sb | λ
A → aA | λ

(i) Write G2 as a triple ⟨Σ, V,R⟩.
(ii) Give a production demonstrating that aabb ∈ L (G2).
(iii) Can you give a production demonstrating that bbaa ∈ L (G2) within three minutes?
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Exercise 4.H
Consider the following grammar G3 for the language L13.

S → aSb | A | λ
A → aAbb | abb

The nonterminals are S and A, and Σ = {a, b}.
(i) Give productions of abb and aabb.
(ii) Which words does L13 contain?

With some exercise, it is not so hard to see which words are contained in L13. However,
it is not as easy to actually prove that it contains no other words. Usually, this is possible,
depending on the complexity of the grammar, but for our current purposes, this is too hard.
A simpler question is the following:

Question 4.24
The word aab is not contained in L13. How does one go about showing this?

To show that a word is produced by a grammar, one only has to find a generating pro-
duction, in which one then usually succeeds. But how to show that a grammar is not able of
producing a word?

In computing science, the notion of an invariant was introduced to deal with this kind of
proof.

Definition 4.25
An invariant of G is a property P that holds for all words that are generated by G.

To prove that P indeed holds for all w ∈ L(G) one needs to demonstrate that:
(i) P holds for S; and
(ii) that P is invariant under the production rules, meaning that, if P holds for some word

v and v′ can be produced from v, then P also holds for v′.

Remark 4.26
Note that invariants are defined in relation to grammars and not in relation to the corresponding
languages. Hence stating something like P is an invariant of a language, makes no sense at all.

The definition of an invariant given above is a purely mathematical description. However,
there exists also a graphical interpretation. Imagine that there is a rectangle that contains all
words over (Σ∪ V )∗. For each of these words w, either P (w) holds or P (w) does not hold. So
we can divide the rectangle into two parts: on the left we have the area where all the words
that have the property reside and on the right the words reside that do not have the property,
and these areas are divided by a border in the middle. And we can show production steps by
drawing arrows between words v and v′ exactly if there is a production v → v′ according to
the grammar. So some words will be connected to other words and some words will not be
connected. If we rewrite the two properties for being an invariant in terms of this drawing, it
comes down to checking that:

(i) The word S is in the left area.
(ii) If we take an arbitrary word v that is in the left area, and we apply one of the production

steps, then the resulting word will also be on the left side. In other words, we have to
check that there are no arrows crossing the border from the left to the right.

Note that it doesn’t matter whether there are arrows crossing the border from the right to the
left.
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Example 4.27
Now let us draw such a diagram for our grammar G1, for which we have seen in Example 4.16
that it produces the language

L10 = {anbn | n ∈ N and n > 0}

and two properties of words P1 and P2, where

P1(w) := [w contains the same number of a’s and b’s. ]

and
P2(w) := [ all a’s in w occur before all b’s. ]

Let us place some random words in the rectangle and visualize some production steps by arrows
in a diagram.

All words in (Σ ∪ V )∗

P1(w) holds P1(w) does not hold

S

λ
a

b

aAb

aaAbb

aaaAbbb

aSb
aabb

aaabbb

Sa

aS
Sba

ab

aaAAbb Sb

bS

aaAb

aaAaAbbb

aaaaAbbbb

bSa baAba
baba

abAaba

AS AaS

ababa

aAbb

baAb

bab

Some observations about this diagram:

• The diagram is not complete! Not all (infinitely many) words in (Σ ∪ V )∗ are in the
diagram.

• The diagram contains both words over (Σ ∪ V )∗ that can be created with the grammar
like aaaAbbb, but also words that cannot be created with the grammar like AS.

• All words over (Σ ∪ V )∗ in this diagram that can be created by the grammar, can be
found by following a series of red arrows starting in S.

• For some words, not all possible production steps are visualized by an outgoing arrow.
This is only because the resulting word is not explicitly indicated in the diagram. For
instance, on the left, AS → S, AS → aAbS, and AS → AaAb are valid productions, but
only the first can be found, as the words aAbS and AaAb are not in the diagram.

• It is possible to talk about production steps from words that cannot be created with the
grammar. See for instance the black production starting in bSa on the left.

• The word S is on the left.

• There are no arrows crossing the border from left to right!
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The last two statements suggest that property P1 is an invariant for this grammar. However,
as we didn’t put all possible words in the diagram, it could just be bad luck that we didn’t
put in that particular word on the left that has an outgoing arrow (black or red) to a word on
the right. Therefore, this diagram method can not be used as a proof that some property is
an invariant. Although P1 is indeed an invariant for this grammar.

Now let us look at property P2 and create a similar diagram with the same words as input.
We get:

All words in (Σ ∪ V )∗

P2(w) holds P2(w) does not hold

S

λ

a

b

aAb

aaAbb

aaaAbbb

aSb
aabb

aaabbb

Sa

aS

Sbaab

aaAAbb

Sb

bS

aaAb

aaAaAbbb

aaaaAbbbb bSa

baAba

baba

abAaba

AS

AaS

ababa
aAbb

baAb bab

Now note that:

• Some words have moved from the left to the right: Sba, bSa, baAba, and baba.

• Some words have moved from the right to the left: a, b, Sa, Sb, aAbb, AaS, aS, aaAb,
and bS.

• The starting symbol S is on the left, so P2 could still be an invariant for this grammar.

• However, there is a black production bS → baAb that crosses the border from
left to right!

So even though it is not a red arrow crossing the border, but a black one, the conclusion is
that P2 is not an invariant.

Remark 4.28
Note that in the second property of an invariant, one must prove the invariance for all words
v of (Σ ∪ V )∗, not only the words that are contained in the grammar’s language! In terms of
the diagram: one should not only check that there are no red arrows crossing the border from
left to right, but also that there are no black arrows. Given a word w and a property P , it is
easy to check whether P (w) holds or not, so it is easy to determine whether w should be to
the left of the border or to the right. However, in general it is difficult to find out for a random
word in (Σ ∪ V )∗ whether it is reachable with red arrows or not. Therefore, the only way to
be sure that a word that does not have property P is not reachable by red arrows from S is
by knowing that there are no red arrows and no black arrows crossing the border.

To summarize, to prove that some word w is not in a grammar’s language, using invariants,
you do the following:

• Determine some “good” property P (called the invariant).

• Show that P holds for S.
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• Show that P is invariant under the production rules.

• Show that w does not satisfy P .

Now let’s get back to our problem.

Example 4.29
We want to show that aab /∈ L13, which is produced by grammar G3. What would be a good
invariant for the grammar G3? We take

P (w) := [ the number of b’s in w ≥ the number of a’s in w ]

This is indeed an invariant, because:

• P (S) holds.

• If P (v) holds and v −→ v′, then P (v′) holds as well. (Check this for every production
rule: either both an a and a b are added, or an a and two b’s, or neither an a nor a b; in
all three cases, the number of b’s stays greater or equal to the number of a’s.)

Note that, although Definition 4.25 talks of all words that are ‘produced’, it is only
necessary to check all single step productions. (Try to convince yourself to find out why
this is the case.)

So now we have proved that P (w) holds for all words w produced by grammar G3, so for
all words w ∈ L13. But because P (aab) is obviously not true, we can then conclude that
aab /∈ L13.

Exercise 4.I
We take another look at the grammar G2 from Exercise 4.G. It was then already noted that
bbaa ̸∈ L (G2). But can we prove that using an invariant? Let us give it a try with the
predicate

P (w) := [w does not contain ba as sub-word ]

At first this may seem like an invariant, but it isn’t. Note that P (bA) holds, because bA does
not contain ba as sub-word. And note that applying the rule A → aA we get the production
bA → baA and it is clear that P (baA) does not hold. So P is not an invariant. But maybe we
can try to fix this by putting more requirements in our predicate P . . .

(i) Is
P (w) := [w does neither contain ba, nor bA, nor Sa as sub-word ]

an invariant for G2 that proves that bbaa ̸∈ L (G2)?
(ii) Is

P (w) := [w does neither contain ba, nor bA, nor Sa, nor bS as sub-word ]

an invariant for G2 that proves that bbaa ̸∈ L (G2)?

Exercise 4.J
Use invariants to prove that:

(i) bba ̸∈ L13.
(ii) aabbb is not produced by the grammar of L3 that you constructed in Exercise 4.F.
(iii) aabbb is not produced by the grammar for L4 that you constructed in Exercise 4.F.

Remark 4.30
Context-free grammars are called context-free, because the items on the left hand side of
production rules are only allowed to be single nonterminals. So for example, the rule Sa →
Sab is not allowed. And therefore, one never needs to take into account the context of the
nonterminal (the symbols that may surround it in an intermediate step of production).
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4.4 Right linear grammars

A well-known restricted form of context-free grammars are the right linear grammars.

Definition 4.31
A right linear grammar is a context-free grammar in which the production rules are always of
the form

X → wY

X → w

where X and Y are nonterminals and w ∈ Σ∗. Such a rule is called a right linear rule.

That is, in a right linear grammar, nonterminals are only allowed at the end of a rewrite, on
the right hand side of a production rule.

Example 4.32
(i) In Example 4.20, only the grammar L11 is right linear.
(ii) Sometimes, for a context-free grammar that is not right linear, one can find an equivalent

right linear grammar. For example, the following grammar (over Σ = {a, b}) is right
linear and generates L12 from Example 4.20:

S → aS | B
B → bB | λ

There is a mathematical theorem that states that the class of languages that can be pro-
duced by right linear grammars is exactly the class of regular languages.

Theorem 4.33
A language L is regular if and only if there is a right linear grammar that describes it.

Corollary 4.34
A regular language is always context-free.

We will not prove this theorem. To prove it, you have to show how to create a right linear
grammar for every regular expression such that their languages are the same, and the other way
around, creating a regular expression for each right linear grammar, such that their languages
are the same. We will illustrate this by giving an example.

Example 4.35
Consider the regular expression

ab∗(ab ∪ λ)(a ∪ bb)∗

A right linear grammar producing the same language as that of the expression, is:

S → aA

A → bA | B
B → abC | C
C → aC | bbC | λ

Sometimes, right linear grammars are depicted with so-called syntax diagrams. We will
just show an example of what such a diagram can look like. Figure 4.1 displays the syntax
diagram corresponding to the grammar from Example 4.35.
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S a A

A b

B

B a b C

C a

b b

Figure 4.1: Syntax diagram for Example 4.35

Example 4.36
Recall the regular expression from Example 4.35:

ab∗(ab ∪ λ)(a ∪ bb)∗

A non-right linear grammar producing the same language as that of the expression, is:

S → aABC

A → Ab | λ
B → ab | λ
C → aC | bbC | λ

But how can that be? The language is regular and it is produced by a non-right linear
grammar? Isn’t that contradicting Theorem 4.33? No, it is not. The theorem only states that
if the language is regular, then there exists at least one right linear grammar that produces
the language and we have seen such a right linear grammar already in Example 4.35. The
theorem does not state that all grammars that produce a regular language have to be right
linear! In particular, being right linear (or not) is a property of a specific grammar and not of
the language produced by this grammar.

Example 4.37
A direct result of Theorem 4.33 is that over the alphabet {a, b}, the following two languages
are regular (see Example 4.20):

• L11 = {an | n is odd} and

• L12 = {wv | w contains only a’s and v contains only b’s}.
Try to construct regular expressions for these languages.

Example 4.38
Another consequence of Theorem 4.33 is that the language L14 of all words over {a, b} that
don’t contain the word aa can be described in four ways:
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• With natural language: as above.

• With a mathematical set notation: {uaav | u, v ∈ {a, b}∗}.

• With a regular expression: (b ∪ ab)∗(a ∪ λ).

• With a context-free right linear grammar:

S → bS | abS | a | λ

Exercise 4.K
(i) Consider the following grammar over the alphabet {a, b, c}:

S → A | B
A → abS | λ
B → bcS | λ

Check whether you can produce these words with the grammar: abab, bcabbc, abba. If
you can, provide a production. If not, provide an invariant which you could use to prove
that the word can not be produced.

(ii) Describe the regular language L15 that this grammar generates, with a regular expression.
(iii) Construct a right linear grammar for the language L16 consisting of all words of the

shape ab . . . aba (that is, words with alternating a’s and b’s, starting and ending with an
a; make sure to also include the word a).

Exercise 4.L
Give right linear grammars for the languages of Exercise 4.D:

(i) L6 := {w ∈ {a, b}∗ | every a in w is directly followed by a b},
(ii) L8 := the language of well-formed integer expressions. These consist of the symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, but never start with a 0, except for the word 0 itself, and may be
preceded by a + or a − sign.

(iii) L9 := the language of well-formed arithmetical expressions without parentheses. These
consist of natural numbers, interspersed with the operators +, −, and ×, as in for example
7 + 3× 29− 78.

Exercise 4.M
Here we give a grammar for a small part of the English language.

S = ⟨sentence⟩ → ⟨subjectpart⟩⟨verbpart⟩.
⟨sentence⟩ → ⟨subjectpart⟩⟨verbpart⟩⟨objectpart⟩.

⟨subjectpart⟩ → ⟨name⟩ | ⟨article⟩⟨noun⟩
⟨name⟩ → John | Jill
⟨noun⟩ → bicycle | mango

⟨article⟩ → a | the
⟨verbpart⟩ → ⟨verb⟩ | ⟨adverb⟩⟨verb⟩

⟨verb⟩ → eats | rides
⟨adverb⟩ → slowly | frequently

⟨adjectives⟩ → ⟨adjective⟩⟨adjectives⟩ | λ
⟨adjective⟩ → big | juicy | yellow

⟨objectpart⟩ → ⟨adjectives⟩⟨name⟩
⟨objectpart⟩ → ⟨article⟩⟨adjectives⟩⟨noun⟩

(i) Is this grammar right linear?
(ii) Show how you produce the following sentence: Jill frequently eats a big juicy yellow

mango.
(iii) Make some more sentences.
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4.5 Grammar transformations

In this section we discuss three transformations. Each of these transformations, makes the
grammar cleaner in some sense. This section is based on [3, Sections 4.2, 4.3, and 4.4], but
adjusted to the definitions used in this course.

Example 4.39
In Example 4.16 we introduced language L10 produced by grammar G1:

S → aAb

A → aAb | λ

We also listed two productions:

S → aAb → aaAbb → aabb
S → aAb → aaAbb → aaaAbbb → aaabbb

Within these productions, we see that in the intermediate words over (Σ ∪ V )∗ in these pro-
ductions, there are some non-terminals A that do not produce any terminal symbols. This is
due to the production step A → λ. In a certain sense, this feels like a useless step. Therefore,
the first transformation that we will discuss is about removing rules of the form X → λ for
some non-terminal X. These rules are known as λ-rules.

In this situation it is not difficult to see that we can define grammar G1
′ by:

S → aAb | ab
A → aAb | ab

and we get that L(G1
′) = L10 and we have no λ-rule anymore. Our productions are indeed

shorter now:
S → aAb → aabb
S → aAb → aaAbb → aaabbb

However, this comes at the cost of having more rules in the grammar. Note that it is not
sufficient to simply replace A → λ by A → ab, as this would mean that there is no longer a
production for the word ab, as S → aAb → aabb would be the shortest production to a word.

Can we apply this transformation to all grammars to make sure that there are no λ-rules
left anymore? No! There is an exception. If the language that is generated by a grammar
contains the word λ, then somewhere there should be a way to produce this λ. So the best
thing we can get is:

Theorem 4.40
Let G = ⟨Σ, V,R⟩ be a context-free grammar. Then there exists a grammar G′ = ⟨Σ, V,R′⟩
such that:

• L(G) = L(G′),

• if λ ̸∈ L(G) then G′ has no λ-rules at all, and

• if λ ∈ L(G) then G′ has no λ-rules besides S → λ.

We will not give a proof, but we do give a construction of R′. In order to do this, we first
introduce the concept of nullable non-terminals.

Definition 4.41
A non-terminal X is called nullable if it can produce the empty word λ. In other words, a
non-terminal X is nullable if there exists a production X → w1 → w2 → . . . wn → λ where
each word wi ∈ V ∗.
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Note that only non-terminals are allowed in the words wi, because as soon as one of them
contains a terminal, this terminal cannot be removed anymore, so the result can never be the
empty word.

Example 4.42
From the definition it follows that being nullable is not just a matter of going in a single step
from X to λ. For instance, let us consider grammar G4:

S → ACC | bB
A → aA | bB | C
B → Bb | b
C → Cc | λ

Then C, A, and S are nullable, since we have the following productions:

C → λ
A → C → λ
S → ACC → CCC → CC → C → λ

The reason why we wrote the unusual order C, A, and S, is because this is the order in which
you can find them: first look for the non-terminals that are nullable in one step, then for the
non-terminals that are nullable in two steps, and so on. So it is a recursive procedure to find
the nullable non-terminals.

Now that we know what nullable non-terminals are, we can describe our change from R to
R′. We start by taking R′ := R. Then we find all nullable non-terminals. And then, for each
rule in R of the form X → w where

w = w1X1w2X2w3 . . . wnXnwn+1

where all non-terminals Xi are nullable, we add a new rule

X → w1w2w3 . . . wnwn+1

to R′. Once that is done for all rules and all possible combinations of wi and Xi, we remove
the λ-rules from R′, except for S → λ, if it is there.

Remark 4.43
The ‘all possible combinations of wi and Xi’ may seem weird. But the problem is that it is
not good enough to simply remove all nullable non-terminals in one go. Let us consider the
rule A → aBAB where B is nullable. If we create a table for the wi (where we allow wi = λ
only for w1 and wn+1) and Xi we get:

w1 X1 w2 X2 w3 new rule
a B A B A → aA
a B AB A → aAB

aBA B A → aBA

In other words, it is allowed to have nullable non-terminals inside wi. Hence, instead of just
adding A → aA we also need to add A → aAB and A → aBA.

Example 4.44
If we apply this strategy on G1 in Example 4.39, we see that A is nullable, but S is not. There
are two rules that have nullable non-terminals on the right: S → aAb and A → aAb. So we
need to add both S → ab and A → ab to R′. After adding these rules, the only λ-rule that we
have in R′ is A → λ. And after removing this we end up with G1

′ that we already showed in
Example 4.39.
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Exercise 4.N
Consider the grammar G5:

S → AB | BCS

A → aA | C
B → bbB | b
C → cC | λ

(i) Give all the words of L(G5) that have a length not exceeding three.
(ii) What are the nullable non-terminals in G5?
(iii) Provide an equivalent grammar G5

′ that has no λ-rules.

The second transformation that we are going to discuss is the elimination of so-called chain
rules.

Definition 4.45
A rule of the form X → Y where both X and Y are non-terminals is called a chain rule. And
a production

X1 → X2 → · · · → Xn

where each rule Xi → Xi+1 is a chain rule, is called a chain. And the set chain of X is defined
as the set of all non-terminals that are reachable via a chain of length at least zero.

These rules look ‘suspicious’ as they don’t add anything, but only ‘rename’ a non-terminal. So
the idea is that we are going to replace a chain rule X → Y by all rules X → w for all rules
Y → w. So we are substituting the result of Y directly into the rule for X.

However, the naive way of doing this, may introduce a new chain rule X → Z if there was
a chain rule Y → Z. So we are going to use the concept of chains, to prevent this.

Again, there is a theorem that explains that we can reduce these chain rules and end up
with an equivalent grammar.

Theorem 4.46
Let G = ⟨Σ, V,R⟩ be a context-free grammar, without λ-rules, except for S → λ. Then there
exists a grammar G′ = ⟨Σ, V,R′⟩ such that:

• L(G) = L(G′) and

• G′ has no chain rules.

As usual, we will not give a proof, but we do give a construction of R′.
So how does it work? We first determine all chains of all non-terminals. Then, for all

non-terminals X we add a rule X → w if there is a non-terminal Y and a string w such that:

• Y is in the chain of X,

• the rule Y → w is in R, and

• w ̸∈ V .

And after that, we remove the chain rules.

Example 4.47
Let us consider the grammar G4 again from Example 4.42:

S → ACC | bB
A → aA | bB | C
B → Bb | b
C → Cc | λ
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This grammar has a λ-rule that is not S → λ, so we first have to eliminate the λ-rules. If we
do that, we end up with grammar G4

′:

S → ACC | bB | CC | AC | C | A | λ
A → aA | bB | C
B → Bb | b
C → Cc | c

Now if we compute the chains, we get that the chain of S = {S,A,C}, the chain of A = {A,C},
the chain of B = {B}, and the chain of C = {C}. If we follow the algorithm, it is clear that
for B and C we don’t have to add anything, as their chains are trivial. For A we have to add
the rules A → Cc and A → c, as these can be derived in one step from C. For S we have to
add the rules S → aA and S → bB as these can be derived in one step from A, and we have to
add the rules S → Cc and S → c, as these can be derived in one step from C. And we remove
the rules S → C, S → A, and A → C. So we end up with grammar G4

′′:

S → ACC | bB | CC | AC | Cc | c | aA | bB | λ
A → aA | bB | Cc | c
B → Bb | b
C → Cc | c

Exercise 4.O
Consider the grammar G6:

S → AS | A
A → aA | bB | C
B → bB | b
C → cC | B

(i) Give productions for the words b, ab, bb, acb, bab, cab, or explain why such a production
doesn’t exist.

(ii) Provide an equivalent grammar G6
′ that has no chain rules.

(iii) Check for the words in (i) that they have a production with grammar G6 if and only if
they have a production with grammar G6

′.

The last transformation that we will discuss is the elimination of useless symbols. So we
start by defining which symbols are useful and/or useless.

Definition 4.48
Let G = ⟨Σ, V,R⟩ be a context-free grammar. A symbol x ∈ Σ ∪ V is useful if there is a
production

S → · · · → uxv → · · · → w

where u, v ∈ (Σ∪V )∗ and w ∈ Σ∗. A symbol x is useless if it is not useful. And a word w ∈ Σ∗

is called a terminal string .

As with the previous reductions there is a theorem that states that it is possible to eliminate
the useless symbols from Σ and V .

Theorem 4.49
Let G = ⟨Σ, V,R⟩ be a context-free grammar. Then there exists a grammar G′ = ⟨Σ′, V ′, R′⟩
such that:
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• L(G) = L(G′) and

• G′ has no useless symbols.

As usual, we will not give a proof, but we do give a construction of Σ′, V ′, and R′.
The first step is to determine the non-terminals that lead to terminal strings. This coincides

with the
uxv → · · · → w

part of the definition of useful symbols. We call these non-terminals potentially useful. This is
done in a similar way as in the algorithm that finds the nullable variables. We start with listing
the non-terminals that go to a terminal string in one step, as these are clearly potentially useful.
Next, we determine the non-terminals that go to strings containing only symbols in Σ and/or
non-terminals that are already known to be potentially useful. This process is repeated until
no new non-terminals are added. Non-terminals that are not potentially useful, are certainly
not useful symbols and can be removed from V and R in the grammar.

The next step is to see which of these potentially useful non-terminals can actually be
reached from S, so it deals with the

S → · · · → uxv

part of the definition of useful symbols. This is done in a similar way that we found the chains
of S. We start with S and add all non-terminals that appear in the right hand sides of S. In
the next round, we add all non-terminals that appear in the right hand sides of these newly
added non-terminal. We continue until there is nothing more to add. Non-terminals that are
not reachable from S will not add anything to the language, so they are useless and can be
removed from V and R.

So far, we only looked at the reduction of V and R. However, if the alphabet Σ contains
symbols that are never used in R, then we can also remove these from Σ. Now let us see how
this works in practice.

Example 4.50
Consider the context-free grammar G7 = ⟨{a, b, c, d}, {S,A,B,C,D}, R⟩ where R is given by:

S → AA | CD | bD
A → aA | a
B → bB | bC
C → cB

D → dD | d

We start by finding the potentially useful non-terminals. The non-terminals A and D clearly
lead to terminal strings a and d respectively in one step, so A and D are potentially useful.
As S → AA, S leads to a string that only consists of potentially useful non-terminals, so it is
potentially useful itself. The non-terminals B and C do not lead to strings that only contain
A’s, D’s, or elements of Σ, so these are not potentially useful yet. In the next round, we only
have to check whether the remaining non-potentially useful non-terminals, can lead to strings
that only contain A’s, D’s, S’s, or elements of Σ, but that is also not the case. So in this round
we didn’t add any new potentially useful non-terminals. Hence B and C can be removed from
V and R. This leads to the following grammar G7

′ = ⟨{a, b, c, d}, V ′, R′⟩ where V ′ = {S,A,D}
and where R′ is:

S → AA | bD
A → aA | a
D → dD | d
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We now have to check whether all non-terminals are reachable from S and that is the case.
So we don’t have to remove anything from V ′ and R′ anymore, but we do need to check
for possible useless symbols in {a, b, c, d}. As only a, b, and d occur in R′, we get that the
grammar G7

′′ = ⟨{a, b, d}, V ′, R′⟩ is a grammar that produces the same language as G7, but
has no useless symbols.

Exercise 4.P
Consider the grammar G8 = ⟨{a, b}, {S,A,B,C,D,E, F,G}, R⟩ where R is given by:

S → aA | BD

A → aA | aAB | aD
B → aB | aC | BF

C → Bb | aAC | E
D → bD | bC | b
E → aB | bC
F → aF | aG | a
G → a | b

(i) Give all six words of L(G8) that have a length not exceeding five.
(ii) List the potentially useful non-terminals of G8.
(iii) Which of the potentially useful non-terminals are not reachable from S?
(iv) Provide an equivalent grammar G8

′ that has no useless symbols. Make sure to write the
full triple!

(v) Can you now prove that L(G8) is a regular language?

To end this chapter about languages, let’s get back to a question asked earlier:

Example 4.51
Did you manage to fill out the table in Example 4.15? Here is the solution:

symbol word language reg. exp
a × × ×
ab × ×
{a} ×
a∗ ×
{a}∗ ×
λ × ×
∅ × ×

a ∪ b ×
{a, b} ×

83



4.6 Important concepts

λ-rules, 78

alphabet, 63, 69
Σ, 63

chain, 80
chain of X, 80
chain rule, 80

grammar
context, 74
context-free, 69
nonterminal, 69
right linear, 75
start symbol, 69
triple, 69
⟨Σ, V,R⟩, 69

invariant, 71

language, 63
complement, 64
L, 64

concatenation
LL′, 65

context-free language, 70
L(G), 70

describe, 68
empty language, 67
L(∅), 67
∅, 67

generate, 68
intersection, 64
L ∩ L′, 64

Kleene closure, 65
L∗, 65

produce, 68
regular language, 65–67
L(r), 66

reverse
LR, 65

strict subset, 64
L ⊂ L′, 64

subset, 64
L ⊆ L′, 64

union, 64
L ∪ L′, 64

non-terminal
nullable, 78

non-terminals
potentially useful, 82

nonterminal, 75

parser, 65
production, 68
production rule, 69, 75

regular expression
∅, 65
λ, 65
concatenation, 66
r1 r2, 66

Kleene star, 66
r∗, 66

union, 66
r1 ∪ r2, 66

regular expressions, 65

set
empty set
∅, 65

symbol, 63
concatenation
an, 64

useful, 81
useless, 81

syntax diagram, 75

terminal string, 81
terminals, 69

word
concatenation
wv, 65

empty word, 63
λ, 63

length, 64
|w|, 64

reverse, 64
wR, 64
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Chapter 5

Automata

Recall the main question we discussed in Chapter 4:

Question 5.1
• Does L contain the word w?

• Are the languages L and L′ the same?

From the topic of languages, it is just a small step to the topic of automata. Automata are
yet again formal mathematical objects, and the key question that we often ask about them, is
which language they accept (or, define). This question relates the two, and is the reason why
we treat automata directly after languages.

5.1 Automata

At the start of this chapter, we stated that languages can also be formalized using automata.
To explain this connection, we first define what an automaton is.

In computer science, there is the study of machines. For example by looking at computers
themselves, but also at a higher, conceptual level, computer scientists study idealized, abstract
machines. An advantage of studying such an idealized and abstract machine model is that
it is easier to study the important properties they have. A prolific class of these abstract
machines are the finite automata. These finite automata have many more applications than
just modeling simple calculations (as machines usually do). Finite automata, and simple
extensions, can model processes as well, for example. Let us first take a look at what a finite
automaton is, and how one ‘calculates’ with it. Here is an example:

M1 : // q0
a //

b
��

q1

a

��

bkk

q3a 33

b

II
q2a

oo bkk

(5.1)

An automaton is a so-called directed graph, in which the lines are arrows and have labels.
(See Section 3.1 for a formal account of graphs.) The nodes of the graph are referred to as the
states of the automaton, here: q0, q1, q2, and q3. The states are commonly drawn as circles
with their name written inside. There are two distinguished types of states that have a special
role:

1. The initial state, distinguished by an incoming arrow that doesn’t depart from any other
state. Every automaton has exactly one initial state, often named q0 as in the example
above.
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2. The final states, distinguished by drawing their circle with a double border. The example
above has exactly one, namely q2. (It is allowed to have the initial state simultaneously
be a final state.)

We can regard an automaton as a (very) simple computer that can compute things for
us. This computation happens in the following way: you give it a word (in the example, this
would be a word over the alphabet {a, b}), then the automaton computes according to the
word, following the appropriate arrow for each subsequent letter of the given word, and then
after a number of steps halts, either in a final state, or in a non-final state. In the first case,
we say the automaton accepts the word, in the second, it rejects the word.

Example 5.2
The automaton M1 accepts the word aa: it starts in state q0, and then reads the first letter a.
This brings it to the state q1, and it then reads the second letter, another a. This then brings
it to state q2. There is no input any more, and the automaton has halted. Because it halted in
a final state, aa is accepted by the automaton. We depict this computation with the notation:

q0
a→ q1

a→ q2

So, the notation shows how each subsequent letter is consumed, but does not depict whether
the word has been accepted or not, which means you have to add this conclusion in writing.
In this case, the computation ends in the final state q2, and thus aa is accepted. Check that
the words abbba and ababb are accepted as well, though ababab and bab are not.

Before continuing, we give a formal definition of the notion of a deterministic finite au-
tomaton.

Definition 5.3
A deterministic finite automaton is a quintuple M := ⟨Σ, Q, q0, F, δ⟩:

1. A finite set Σ, the input alphabet, or set of atomic actions,

2. A finite set Q of states,

3. A distinguished state q0 ∈ Q called the initial state,

4. A set of distinguished states F ⊆ Q, the final states,

5. A transition function δ, that maps every tuple of a state q and an action a to a state q′.
(These are the labeled arrows in (5.1).)

A deterministic finite automaton is also called a DFA. Later on we will also introduce non-
deterministic finite automata.

Note that the name ‘final state’ is a bit misleading, as it sort of suggests that the automaton
stops in such a state. But it doesn’t stop in these states if there is more input available! In
that case it will simply apply the transition function δ on the next input and move to a
(possibly different) state, which doesn’t have to be a final state. Hence the name ‘accepting
state’ probably describes more clearly what is going on, but as these states are everywhere in
literature called final states, we also use that terminology.

Example 5.4
This means that the automaton M1 depicted in (5.1) is actually the quintuple ⟨Σ, Q, q0, F, δ⟩,
where Σ = {a, b}, Q = {q0, q1, q2, q3}, F = {q2}, and the transition function δ is defined by:

δ(q0, a) = q1 δ(q0, b) = q3
δ(q1, a) = q2 δ(q1, b) = q1
δ(q2, a) = q3 δ(q2, b) = q2
δ(q3, a) = q3 δ(q3, b) = q3
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Specifically, note how the deterministic behavior is captured by the fact that for every combi-
nation of state and symbol of the alphabet, exactly one transition is defined.

Instead of writing such a mathematical definition out in full, we usually simply draw a
diagram as in the example on page 85.

Exercise 5.A
Consider the deterministic finite automaton M2.

M2 : // q0
a //

b

&&

q1

a

��

b

xx
q3

a

OO

b
;;
q2a

oo bkk

Here, Q = {q0, q1, q2, q3}, F = {q3}, and Σ = {a, b}.
(i) Check whether these words are accepted or not: abaab, aaaba, bab, λ, and aabbab.
(ii) Are these statements true? Give a proof or counterexample.

(1) If w is accepted, then so is wabba.
(2) If w is accepted, then wab is not accepted.
(3) If w is not accepted, then waa will not be accepted either.
(4) If w is not accepted, then neither is wbb.

Exercise 5.B
Give all words of length three that are accepted by the following deterministic finite automaton
M3:

// q0

b

��
a // q1

b

��

a~~
q2

b

UU

a

``

Explain why these words are accepted.

5.2 Languages and automata

We can think of Σ as the set of “atomic actions” that lead us from one state to another, but
also as the set of symbols of an alphabet, as we have done already above. If we think of Σ as
representing the alphabet, the automaton can be seen as a language recognizer . In this way,
for each automaton, there is a corresponding language, namely the language recognized by the
automaton.

Definition 5.5
For a deterministic finite automaton M := ⟨Σ, Q, q0, F, δ⟩, we define the language of M , to be
L(M):

L(M) := {w ∈ Σ∗ | w is accepted by M}.
So: w ∈ L(M) if and only if the automaton M halts in a final state after consuming all of w.

Let us take a look at our initial automaton M1, from page 85. It accepts the following
words:

• aa is accepted,
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• awa is accepted, with w an arbitrarily long sequence of b’s,

• awav is accepted, with w and v both arbitrarily long sequences of b’s.

If we go “past” state q2, we can never get back to a final state, and so the above description
lists all words that the automaton accepts. Summarized:

L(M1) = {abnabm | n,m ≥ 0}

Because we learned regular languages and expressions previously, we see that this language
indeed is described by a regular expression, namely:

L(M1) = L(ab∗ab∗).

Trying to find a similar corresponding regular expression for M2, turns out to be a bit harder:

• ab is accepted,

• ba is accepted,

• aaa is accepted,

• aabka is accepted, with k ≥ 0,

• bbka is accepted, with k ≥ 0,

• aabka(ba)l is accepted, with k ≥ 0, l ≥ 0,

• bbka(ba)l is accepted, with k ≥ 0, l ≥ 0,

. . . and this is not all, because if we go “past” state q2, we can in fact loop back to q2 again.
How can we then systematically analyze the language of an automaton? A method for doing so
is constructing a corresponding grammar , that generates the same language as the automaton
recognizes. This is done in this way:

1. For every state qi, introduce a nonterminal Xi, and distinguish the starting nonterminal
S for the initial state q0.

2. For every transition qi
a→ qj in the automaton, add the production rule Xi → aXj .

3. For every final state qi ∈ F , add the production rule Xi → λ.

Constructing the grammar G9 (with Σ = {a, b}) for the automaton M2, we then get:

S → bB | aA
A → aB | bC
B → bB | aC
C → bB | aS | λ

Note that this grammar is right linear, and so the language L(M2) is indeed regular .
This new description of the language L(M2), using a grammar, is interesting, if only because

it is a new description that we haven’t seen before. But what happens if we try to ‘optimize’
this grammar by substituting symbols? First, inline the rule A → aB | bC into the rule
S → bB | aA to get S → bB | aaB | abC. Then, do the same for the C rule. This gives us a
new grammar yet again, G10, still generating the same language, and still right linear as well:

S → bB | aaB | abbB | abaS | ab
B → bB | abB | aaS | a
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Exercise 5.C
Conclude from the grammar G10 that

(i) (aba)k ab ∈ L (G10) for all k ≥ 0,
(ii) aabka ∈ L (G10) for all k ≥ 0,
(iii) if w ∈ L (G10), then also abaw ∈ L (G10),
(iv) if w ∈ L (G10), then also aaaaw ∈ L (G10),

Exercise 5.D
Consider the deterministic finite automaton M4:

// q0

b

II
a // q1 a,bkk

Which of the following regular expressions does not describe the language of this automaton?
Choose one of the options and provide an explanation.

(i) b∗a (a ∪ b)∗

(ii) (a ∪ b)∗ a (a ∪ b)∗

(iii) (a∗b∗)∗ ab∗

(iv) All of the above describe the language of the automaton.

Exercise 5.E
Give a deterministic finite automaton M5 such that

L (M5) = L (ab∗a)

Write the automaton by giving the tuple M5 = ⟨Q,Σ, q0, F, δ⟩.

It is general knowledge that any deterministic finite automaton can be translated into a
right linear grammar, as we have seen and done for M2.

Theorem 5.6
For every deterministic finite automaton M , a right linear grammar G can be constructed such
that L(G) = L(M).
(The language that G generates is the same as the language that M accepts.) A direct result
is that the language L(M) of a deterministic finite automaton M is always regular.

Exercise 5.F
Construct a right linear grammar for the deterministic finite automaton M1, similarly as one
was constructed for M2 above. After that, optimize the grammar by removing useless symbols
as explained in Section 4.5.

Theorem 5.6 can be very useful as sometimes it is easier to create a deterministic finite
automaton for a language and then derive the corresponding right linear context-free grammar,
then derive a context-free grammar directly.

Example 5.7
Let us consider the language

L17 := {w ∈ {a, b}∗ | w contains an even number of a’s and an even number of b’s}
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Creating a context-free grammar for L17 can be considered somewhat difficult, but creating an
automaton that accepts the language is easy:

// q0
a ++

b




q1
a
kk

b




q2
a ++

b

JJ

q3
a
kk

b

JJ

Here, q0 represents the state that the number of a’s and b’s are both even, q1 the state that
the number of a’s is odd and the number of b’s is even, q2 the state that the number of a’s is
even and the number of b’s is odd, and q3 the state that the number of a’s and b’s are both
odd. Now this automaton can easily be transformed into a right linear context-free grammar,
which is of course by definition a context-free grammar.

S → aA | bB | λ
A → aS | bC
B → aC | bS
C → aB | bA

We can also translate the other way around: constructing a finite automaton for a given
right linear grammar. Take a look at the right linear grammar G11:

S → aaS | bbB | λ
B → bbB | λ

First, we introduce a state for every nonterminal, and make transitions labeled with letter
sequences instead of just letters. Each nonterminal that leads to λ becomes a final state, and
S becomes the initial state.

// q0
bb //

aa

II
q1 bbkk

Then, we expand the letter sequences into single letter transitions by adding intermediate
states, and get:

// q0
b //

a





q3
b // q1

b




q2

a

JJ

q4

b

JJ

And now we are almost done. The remaining problems lies in the fact that, in a full
automaton, every state and letter must have an outgoing transition leading to a state, which
is not the case as of yet, as q1, q3, and q4 do not have an a-transition, and q2 does not have
a b-transition. To solve this, we add a so-called “sink” that catches all additional useless
transitions, and that any computation cannot escape from into a final state any more. This
gives us our final automaton, where q5 is the newly added sink:

M6 : // q0
b //

a





q3
b //

a

��

q1

b




a
��

q2

a

JJ

b // q5

a,b

II
q4

b

JJ

a
oo
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Remark 5.8
Here, we conveniently drew a single arrow, from q5 to itself, with two labels, that actually
stands for two arrows with the respective labels, because else the drawing would become a bit
of a mess. Instead of adding all these arrows, we could have agreed upon omitting them, as
well as the “sink.” We don’t do so, however, because a word such as bba should clearly be not
accepted by M6, which is definitely the case in the final automaton, but without the added
arrows and sink as in the earlier version, it would halt in the final state q1 (with remaining
input), which is a bit unclear . . .

This procedure of constructing automata for right linear grammars works well in general,
but not in the case of production rules of the shape S → B, where the right hand side doesn’t
contain any letters in front of the nonterminal. Then, the word in front of the nonterminal is
λ, as in the case of grammar G12:

S → aaS | B
B → bbB | λ

Performing the first step of constructing a corresponding automaton, we get:

// q0
λ //

aa

II
q1 bbkk

And we end up with a transition labeled λ, the empty word, which evidently leads to a
problem in the next step. The general solution is to first create an equivalent right linear
grammar without any productions of this shape. This is always possible, but we won’t show
how to do this in general. For the grammar G12, this initial step would lead to G11 which we
have seen before, so that the automaton M6 indeed accepts the language generated by G12.
(And G11 and G12 generate the same language: check this yourself!)

The procedure of constructing automata for right linear grammars can also fail for another
reason. Take for instance the grammar G13 defined by

S → aS | aaA | B
A → aA | B | λ
B → bB | λ

If we apply the standard algorithm and fix the aa-transition by adding an intermediate state,
we would get an initial state q0 that has two outgoing a-transitions, which is not allowed in a
deterministic automaton. Again, one way to solve this problem is by trying to find an equivalent
grammar that doesn’t lead to multiple a-transitions from a single state. Another way to solve
it would be to transform the given grammar G13 into a non-deterministic automaton, which
will be defined in Section 5.3 and then apply the algorithm from Section 5.4.1 to transform it
into a deterministic automaton.

However, although it may not always be easy, it is always possible to find a deterministic
finite automaton that matches the right linear context-free grammar:

Theorem 5.9
For every right linear grammar G, a finite automaton M can be constructed such that L(M) =
L(G).
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Example 5.10
A direct consequence of Theorem 5.9 is that we can extend the four ways of describing the
language L14 of all words over {a, b}∗ that don’t contain aa that we have seen in Example 4.38
with a fifth way. Besides describing L14 with natural language, with set notation, with a regular
expression and with a context-free right linear grammar, we can also describe this language
with a deterministic finite automaton:

// q0
a ++

b

II
q1

a //

b

kk q2

a,b

II

Exercise 5.G
Construct a deterministic finite automaton that recognizes the language of the following gram-
mar G14:

S → abS | aA | bB
A → aA | λ
B → bB | λ

Exercise 5.H
Consider the deterministic finite automaton M7:

M7 : // q0
a

++

b

��
q1

a

��

b

kk

q2
b

bb

akk

Construct a right linear grammar that generates L (M7).

Exercise 5.I
Consider the deterministic finite automaton M8:

M8 : // q0
a

++

b

��
q1

b

kk akk

(i) Construct a right linear grammar that generates L (M8).
(ii) Provide a description of L (M8). Try to make it as simple as possible.
(iii) If all states are made into final states, which language does M8 recognize?
(iv) If we swap the final states with non-final states (every final state becomes a non-final

state and the other way around), which language would M8 recognize?

Exercise 5.J
Define L18 := {(ab)k (aba)l | k, l ≥ 0} over the alphabet Σ = {a, b}. Construct a deterministic
finite automaton that recognizes this language.

Exercise 5.K
Define L19 := {(ab)k x (ab)l | x ∈ {a, b}, k, l ≥ 0} over the alphabet Σ = {a, b}. Construct a
deterministic finite automaton that recognizes this language.

Exercise 5.L
In this exercise we consider the class of deterministic finite automata M9

i over alphabet Σ =
{a, b}, where i is a natural number representing an index, such that
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• M9
i has at most two states,

• λ ̸∈ L
(
M9

i
)
, and

• L
(
M9

i
)
̸= ∅

(i) How many different deterministic finite automata exist with these properties?
(ii) Draw all these automata.
(iii) For each of these automata M9

i, provide a regular expression that generates the same
language L

(
M9

i
)
.

(iv) How many different languages do these automata generate?

5.3 Non-deterministic automata

In the definition of an automaton we had a special restriction:

For each state q and each symbol a from the alphabet, there is exactly one arrow
from q with label a.

We can weaken this restriction in the following way:

• From each state q there are finitely many arrows with label a for each a ∈ Σ (i.e., 0, 1
or more).

• From each state q there are finitely many arrows with label λ (i.e., 0, 1 or more).

We call an automaton in which we allow this a non-deterministic finite automaton or NFA.

Example 5.11
Consider the following automaton

M10 : // q0
a //

a,b

II
q1

a // q2
a // q3 a,bkk

(i) If we take the word baaa as input, there are four possible computations depending on
which arrow we choose for the a’s:

q0
b→ q0

a→ q0
a→ q0

a→ q0

q0
b→ q0

a→ q0
a→ q0

a→ q1

q0
b→ q0

a→ q0
a→ q1

a→ q2

q0
b→ q0

a→ q1
a→ q2

a→ q3

So we can end in q0, q1, q2 or in q3. The last is a final state, the others are not. This
phenomenon we call non-determinism: the automaton executes non-deterministically (in
a way that can not be determined beforehand) one of the possible computations.

(ii) If we take the word bbb as input, only one computation is possible, which ends in q0.

q0
b→ q0

b→ q0
b→ q0

(iii) With input baa three computations are possible, that all end in a non-final state.

q0
b→ q0

a→ q0
a→ q0

q0
b→ q0

a→ q0
a→ q1

q0
b→ q0

a→ q1
a→ q2
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(iv) With input aba three computations are possible.

q0
a→ q0

b→ q0
a→ q0

q0
a→ q0

b→ q0
a→ q1

q0
a→ q1

The first one ends in q0, the second one ends in q1 and the third one ‘ends’ in q1 without
having processed the full word yet (only the letter a has been read). This situation we
call deadlock : the computation cannot continue, despite the fact that not all input has
been read.

When does a non-deterministic finite automaton accept a word w?

Definition 5.12
The non-deterministic automaton M accepts the word w when with input w there exists a
computation that ends in a final state with the whole word having been read.

A computation that “consumes” the whole input and ends in a final state, we also call
a successful or accepting computation. So: if a computation stops in a deadlock it is not a
successful computation.

Let us also make precise what is a non-deterministic finite automaton, and what is the
language that such an automaton accepts.

Definition 5.13
A non-deterministic finite automaton consists of the following five components

1. A finite set Σ, the input alphabet, or set of atomic actions,

2. A finite set Q of states,

3. A distinguished state q0 ∈ Q called the initial state,

4. A set of distinguished states F ⊆ Q, the final states,

5. A transition function δ, that for each state q and d ∈ Σ∪{λ} gives a set of states δ(q, d).
(If q′ ∈ δ(q, d), then there is an arrow q

d→ q′, so these are the labeled arrows in the
diagram of the automaton).

Non-deterministic finite automata are often written as a quintuple M := ⟨Σ, Q, q0, F, δ⟩. The
language of M , L(M), is defined as follows:

L(M) := {w ∈ Σ∗ | w is accepted by M}.

So: w ∈ L(M) if and only if there is a computation of the automaton M with input w that
stops in a final state after having read all symbols in w.

Remark 5.14
If we look at the mathematical definitions of a deterministic finite automaton, we see that
the type of the transition function δ is different from the type of the transition function δ′

of a non-deterministic finite automaton. So technically, a deterministic automaton does not
comply with the mathematical definition of a non-deterministic automaton. However, if one
draws a deterministic finite automaton, it really looks like a simple form of a non-deterministic
finite automaton that doesn’t have λ-transitions and that has multiple outgoing arrows for
the symbols in the alphabet. Fortunately, we can mathematically embed the deterministic
automata easily into the set of non-deterministic automata, by adapting the transition function
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in a trivial way. For a deterministic automaton the type of the transition function is δ :
Q × Σ → Q. For a non-deterministic automaton the type of the transition function is δ′ :
Q× (Σ∪{λ}) → P (Q)1 So given our deterministic transition function δ we can trivially define
a non-deterministic transition function δ′ of the proper type without changing the accepted
language by defining:

δ′(q, s) = {δ(q, s)}
δ′(q, λ) = ∅

So although, technically, a deterministic finite automaton is not a non-deterministic automaton,
by this construction we can justify that we say that in practice it is one!

Exercise 5.M
(i) Investigate in the non-deterministic finite automaton M10 that we defined before which

computations exist with input abaaa, ababa, ab and baaab.
(ii) Which of these words are accepted?
(iii) Describe the language that M10 accepts.
(iv) Adapt M10 in such a way that it accepts {w | w ends with aaa}.

Exercise 5.N
Consider the non-deterministic finite automaton M11.

M11 : // q0
λ //

λ
��

q1 a,bkk

q2

a,c

II

(i) Which computations are possible with input aba, cac, abc and λ?
(ii) Which of these words are accepted?
(iii) Describe the language that M11 accepts.

Exercise 5.O
(i) Construct a non-deterministic automaton with at most five states that accepts the lan-

guage L18 from Exercise 5.J.
(ii) Construct a non-deterministic automaton with at most four states that accepts the lan-

guage L19 from Exercise 5.K.

Can we do more using non-deterministic automata than with deterministic automata? Yes,
we can model non-deterministic computations. But can we also accept languages that we could
not accept before? In other words:

Does there exist a language L for which we do have a non-deterministic automaton
M that accepts L (L = L(M)), but for which there is no deterministic automaton
M ′ that accepts L (L = L(M ′))?

The answer is no:

Theorem 5.15
For each non-deterministic automaton M we can make a deterministic automaton M ′ such
that L(M) = L(M ′).

1The definition of P (Q), the power set of Q is given in Section 5.4.1.
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The construction is not terribly difficult, but we will not give it here.2 We illustrate it
using two examples and then we immediately see why non-deterministic automata are some-
times useful (because they are much smaller). Consider therefore the two deterministic finite
automata M12 and M13 that correspond to the non-deterministic M10 and M11 respectively.
Check for yourself that these automata indeed accept identical languages.

M12 : // q0
a ++

b

II
q1

a //

b

kk q2
a //

b

__
q3 a,bkk

M13 : // q0
b //

c

��
a

TT
q1 a,bkk

c

��
q2

a,c

II
b // q3 a,b,ckk

Exercise 5.P
(i) Construct a non-deterministic finite automaton for the language

L = {w ∈ {a, b, c}∗ | w ends with aab or w ends with ccb}

(ii) Construct a non-deterministic finite automaton for the language

L′ = {w ∈ {a, b, c}∗ | w = vu and v contains aa and u contains bb}

Exercise 5.Q
(i) Describe the language that automaton M14 accepts.

M14 : // q0
λ //

λ
��

q1 akk

bxx
q2

a

II

c
88

(ii) Construct a deterministic finite automaton that accepts the language of M14.
(iii) Describe the language that M15 accepts.

M15 : // q0
a //

a,b

II
q1

a ++

λ

33 q2
a ++

λ

33 q3 a,bkk

(iv) Construct a deterministic finite automaton that accepts the language of M15.

Exercise 5.R
(i) Suppose M1 is a finite automaton that accepts L1 and that M2 is a finite automaton

that accepts L2. Construct a non-deterministic finite automaton that accepts L1 ∪ L2.
[Hint: Look at example M11 above.]

(ii) Prove that the class of regular languages is closed under ∪, i.e., if L1 and L2 are regular,
then L1 ∪ L2 is also regular.

2We’ll present it later on in Section 5.4.1.

96



(iii) Suppose M1 is a finite automaton that accepts L1 and M2 is a finite automaton that
accepts L2. Define a non-deterministic finite automaton that accepts L1L2. Remember
that L1L2 is the language that consists of first a word from L1 and then a word from L2,
so L1L2 = {vw | v ∈ L1, w ∈ L2}.

(iv) Prove that the class of regular languages is closed under concatenation, i.e., if L1 and L2

are regular, then L1L2 is also regular.

Remark 5.16
In the last two chapters we have introduced five formalisms:

1. regular expressions

2. context-free grammars

3. right linear context-free grammars

4. deterministic finite automata

5. non-deterministic finite automata

If we look at the languages that can be described or generated by these formalisms, we see that
four of these five formalisms actually describe the same set of languages, namely the regular
languages. Only the class of context-free languages is really larger. See Figure 5.1 for the
relations. Each arrow implies ‘inclusion’. So the set of languages in the box at the start of an
arrow is included in the set of languages in the box at the end of the arrow by means of the
given label.

languages
described by
context-free
grammars

languages
described by
right linear
context-free
grammars

languages
described by
deterministic

finite
automata

languages
described
by non-

deterministic
finite

automata

languages
described
by regular
expressions

Definition 4.31

Theorem 4.33

Theorem 4.33

Theorem 5.9

Theorem 5.6

Remark 5.14

Theorem 5.15

Figure 5.1: Five formalisms

Note that the set of languages described by context-free grammars is strictly larger than
the set of languages described by right linear context-free grammars. As an example we can
take language L2 that we defined in Chapter 4:

L2 = {anbn | n ∈ N}

This is the default example of a non-regular language, so there doesn’t exists a right linear
context-free grammar that describes it, but there does exist a quite trivial general context-free
grammar that describes it:

S → aSb | λ
Note that it is not right linear as the S in S → aSb is not at the far right. The proof3 that
L2 is not regular goes beyond the scope of this course. It uses the pumping lemma for regular
languages.

3See https://en.wikipedia.org/wiki/Pumping_lemma_for_regular_languages.
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Remark 5.17
Besides the five (or two!) classes of languages in Figure 5.1, there exist more classes. One
of them is the class of languages that cannot be described by a context-free grammar. The
classical example for such a language is pretty similar to L2:

L20 := {anbncn | n ∈ N}

The proof4 that L20 is not context-free uses the pumping lemma for context-free languages.

5.4 Two algorithms that you don’t have to know by heart for
the exam

In this section we describe two algorithms that are not really part of the course objectives, but
that are usually discussed in one of the lectures anyway. For reasons of completeness we added
these algorithms in this section. You don’t have to know the details of how these algorithms
work, but you should know that they exist and what they do.

5.4.1 Converting an NFA to a DFA

Directly after Theorem 5.15 we stated that the conversion from an NFA to a DFA is not
‘terribly difficult’. Here we will show you how it works by means of an example.

Note that this algorithm is usually called the powerset construction. So let us first introduce
the concept of a powerset. In short: the powerset of a given set A, denoted as P(A), is a set
containing all subsets of set A.

Example 5.18
Let A be the set {Freek,Engelbert}. Then A has four subsets:

• none of the two elements are included in the subset,

• only Freek is included in the subset,

• only Engelbert is included in the subset, or

• both elements Freek and Engelbert are included in the subset.

Hence we get

P(A) = { ∅, {Freek} , {Engelbert} , {Freek,Engelbert} }

Remark 5.19
For all sets A we have that ∅ ∈ P(A) and A ∈ P(A). Note that we wrote ‘∈’ and not ‘⊆’ !

Example 5.20
Let us consider the following NFA.

M16 : // q0
λ //

a
  

q1

a

��
a // q2

q3
b // q4

4See https://en.wikipedia.org/wiki/Pumping_lemma_for_context-free_languages.
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We can describe this automaton by this quintuple:

⟨Σ, Q, q0, F, δ⟩

where Σ = {a, b}, Q = {q0, q1, q2, q3, q4}, F = {q2, q4}, and the transition function δ of type
Q× (Σ ∪ {λ}) → P(Q) is defined by:

δ(q0, a) = {q3} δ(q0, b) = ∅ δ(q0, λ) = {q1}
δ(q1, a) = {q1, q2} δ(q1, b) = ∅ δ(q1, λ) = ∅
δ(q2, a) = ∅ δ(q2, b) = ∅ δ(q2, λ) = ∅
δ(q3, a) = ∅ δ(q3, b) = {q4} δ(q3, λ) = ∅
δ(q4, a) = ∅ δ(q4, b) = ∅ δ(q4, λ) = ∅

Clearly, this automaton accepts the language {ab, a, aa, aaa, aaaa, aaaaa, . . .}. Creating a DFA
from scratch for this language requires some thinking, but it is not that difficult:

M16
′ : // q0

a //

b

::

q1
a //

b
��

q2

b
��

a

��

q3
a ++

b

33 q4 a,bkk

However, for more difficult languages like the one in Exercise 5.J it can be convenient to use
an algorithm that automatically derives the corresponding DFA given an NFA.

As said before, the construction is called the powerset construction. This is because the
states in the final DFA are in fact subsets of the set of all states in the original NFA. Given the
fact that M16 has five states {q0, q1, q2, q3, q4}, we know that the constructed corresponding
DFA has at most 25 = 32 states, each labeled with a subset:

P({q0, q1, q2, q3, q4})
= { ∅,

{q0} , {q1} , {q2} , {q3} , {q4} ,
{q0, q1} , {q0, q2} , {q0, q3} , {q0, q4} ,
{q1, q2} , {q1, q3} , {q1, q4} ,
. . .

{q0, q1, q2, q3} , {q0, q1, q2, q4} , {q0, q1, q3, q4} , {q0, q2, q3, q4} , {q1, q2, q3, q4} ,
{q0, q1, q2, q3, q4} }

Fortunately, we don’t need all these states. The algorithm only creates the states that are
really needed.

The main idea is that the states in our derived DFA are subsets of the original set of states,
in such a way that they are closed under λ-transitions. This last thing means that if there is
a state q in the subset identifying a state, and in the original NFA there is a λ-transition to a
state q′, then also q′ must be in this same subset identifying the state.

This is the algorithm:

• Determine the initial state of our new DFA. It is the subset containing q0 and all other
states that you can reach from q0 by using λ-transitions in M16. So in this case we get
as initial state the state labeled {q0, q1}.
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• Next, for each symbol of the alphabet Σ, we collect all the states we can get to from each
of the states in the subset.

• So from the initial state {q0, q1} reading an a we get to the state {q1, q2, q3}, because the
transition function δ gives δ(q0, a) = {q3} and δ(q1, a) = {q1, q2}.

• And from the initial state {q0, q1} reading a b we get to the state ∅, since the δ indicates
that there are no b-transitions from q0 and q1.

• We repeat this for all new states. From {q1, q2, q3} reading an a we get to {q1, q2}.

• And from {q1, q2, q3} reading a b we get to {q4}.

• From ∅ we cannot get anywhere reading an a or a b, so this state is a natural sink!

• From {q1, q2} reading an a we get to {q1, q2}.

• From {q1, q2} reading a b we get to ∅.

• From {q4} reading an a we get to ∅.

• From {q4} reading a b we get to ∅.

• Since we didn’t create any new states anymore, we have all our states.

• Now all that is left to do is to determine the final states. Final states are the states
identified by subsets that contain at least one of the original final states of our NFA M16.

• Hence the states labeled {q1, q2, q3} (because of q2), {q1, q2} (because of q2), and {q4}
(because of q4) must be final states in our new DFA.

Now that we have all information for our DFA we can draw it:

M16
′′ : // {q0, q1} a //

b

88

{q1, q2, q3} a //

b
��

{q1, q2}

b

��

a

��

{q4, q4}
a

,,

b

22 ∅ a,bjj

Apart from the names of the states, we see that we get exactly the automaton M16
′.

Now let us apply this algorithm on a more difficult automaton:

Example 5.21

M17
// q0

λ
��

a ++
q1

b

kk

q2
a // q3

b // q4

a

ff

Applying the algorithm gives:

• The initial state will be {q0, q2}.
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• From {q0, q2} reading an a we go to {q1, q3}.

• From {q0, q2} reading a b we go to ∅.

• From {q1, q3} reading an a we go to ∅.

• From {q1, q3} reading a b we go to {q0, q2, q4}.

• From {q0, q2, q4} reading an a we go to {q1, q2, q3}.

• From {q0, q2, q4} reading a b we go to ∅.

• From {q1, q2, q3} reading an a we go to {q3}.

• From {q1, q2, q3} reading a b we go to {q0, q2, q4}.

• From {q3} reading an a we go to ∅.

• From {q3} reading a b we go to {q4}.

• From {q4} reading an a we go to {q2}.

• From {q4} reading a b we go to ∅.

• From {q2} reading an a we go to {q3}.

• From {q2} reading a b we go to ∅.

• From ∅ reading an a we go to ∅.

• From ∅ reading a b we go to ∅.

• The final states are: {q0, q2}, {q0, q2, q4}, {q1, q2, q3}, and {q2}.

This gives the DFA

// {q0, q2} a //

b

))

{q1, q3}

a

��

b // {q0, q2, q4}

a

��

b

tt∅

a,b

TT

{q2}

a

55

b

55

{q4}a
oo

b

::

{q3}
b

oo

a

dd

{q1, q2, q3}a
oo

b

RR

Now go and compare this automaton with your solution to Exercise 5.J!

5.4.2 Converting an NFA to a regular expression

In Theorem 5.6 we have seen that for every DFA M a right linear grammar G can be constructed
such that L(G) = L(M). And in particular it followed that the language L(M) is always
regular. Hence there must exist a regular expression r such that L(r) = L(M).

Here we will present an algorithm that actually derives this expression.
Although Theorem 5.6 is only about deterministic finite automata, it also holds for non-

deterministic automata, since we have just seen how we can convert an NFA into a DFA
accepting the same language. Therefore, our algorithm actually computes a regular expression
given an NFA. Since any DFA is also an NFA, this is no restriction whatsoever.
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The main idea in this algorithm is that we no longer use symbols from the alphabet as
labels in our diagrams (we call them ‘diagrams’ and not ‘automata’, because they are neither
NFAs or DFAs), but regular expressions. And there will just be one arrow in the same direction
between two states. So if our original automaton contains

qi
a **

b

44 qj

that will become
qi

a∪b // qj

in our diagram.
In addition, our diagrams will only have exactly one final state. Note that this can easily

be achieved by adding λ-transitions from all existing final states in the automaton (which then
no long will be final) to a new single final state. So something like

qi

qj

becomes
qi

λ // qk

qj

λ

>>

And once we have a diagram with one initial state and one final state, the reduction process
starts. The idea is that in every step we remove a single state which is not the initial state and
not the final state, by combining regular expressions, until we only have the initial state and
the final state left, which can actually be the same. So in the end we have at most two states.

Assume we have the following situation in our diagram:

qi

r1

  

r4 // qk

qj

r2

�� r3

>>

r7

  
ql

r5

>>

qm

qn

r6

FF

where all the ri are regular expressions. Now we want to remove the state qj . So we want to
end up with a diagram that has a single arrow from qi to qk, representing all possibilities to
get from qi to qk with or without going through qj .

Likewise we want to get single arrows from qi to qm, ql to qk, ql to qm, qn to qk and qn to
qm. Basically, for every combination of states that are connected via qj we have to have an
arrow in the next diagram.

Note that we can get from qi to qk by expression r4 directly, so this must be part of the
new label for the arrow from qi to qk. But we can also go via qj , which implies we first have
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regular expression r1, then zero or many times r2 and then once r3. So the label for the arrow
from qi to qk should be

r1r
∗
2r3 ∪ r4

Doing the same thing for the other states involved, our diagram can be reduced to

qi
r1r∗2r3∪r4 //

r1r∗2r7

  

qk

ql

r5r∗2r3

&&

r5r∗2r7 // qm

qn

r6r∗2r3

XX

r6r∗2r7

88

If we continue removing states until only the initial and final state are left, we typically
end up with a diagram that looks like this:

// q0
r2

++

r1

II
qf

r3

JJr4

kk

The corresponding regular expression can now be derived easily from the diagram:

r∗1r2(r3 ∪ r4r
∗
1r2)

∗

Example 5.22
Recall our automaton

M16 : // q0
λ //

a
  

q1

a

��
a // q2

q3
b // q4

First we have to fix the amount of final states. This gives us:

// q0
λ //

a
  

q1

a

��
a // q2

λ

  
q3

b // q4
λ // q5

Now we have to replace our symbols by the corresponding regular expressions. Which gives us
exactly the same diagram! (So we won’t draw it again.)

Removing q3 gives the following diagram:

// q0
λ //

ab
''

q1

a

��
a // q2

λ

  
q4

λ // q5
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And removing q4 gives:

// q0
λ //

ab
**

q1

a

��
a // q2

λ

  
q5

Removing q2 gives:

// q0
λ //

ab
))

q1

a

��

a

&&
q5

And finally removing q1 gives:

// q0

a∗a∪ab
)) q5

So L(M16) = L(a∗a ∪ ab).

Example 5.23
Now let us see what would have happened if we started with our DFA for the same language:

M16
′ : // q0

a //

b

::

q1
a //

b
��

q2

b
��

a

��

q3
a ++

b

33 q4 a,bkk

Let us first make sure that there is only one final state and that we have regular expressions
as labels. This gives the diagram:

// q0
a //

b

77

q1
a //

b

��

λ

  

q2

b

��

a

��

λ
~~

q5

q3
a

,,

b

22

λ

>>

q4 a∪bkk

Now let us remove q4. We see that it has several incoming arrows, but the only outgoing arrow
goes back to q4 again. So if we remove q4, we don’t have to add any new arrows! We can
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simply remove it, because it has no affect on accepting words. Which is of course what can be
expected from a sink! So we get:

// q0
a // q1

a //

b

��

λ

  

q2

a

��

λ
~~

q5

q3

λ

>>

Now if we remove q3 we get:

// q0
a // q1

a //

λ∪b

  

q2

a

��

λ
~~

q5

And if we remove q2 from this diagram we get:

// q0
a // q1

(λ∪b)∪aa∗

  
q5

Finally removing q1 gives:
// q0

a
(
(λ∪b)∪aa∗

)
&&
q5

So we get L(M16
′) = L

(
a
(
(λ ∪ b) ∪ aa∗

))
= L(aa∗ ∪ ab). Note that the order of reduction is

relevant for the actual expression. Can you find an order of reduction that leads to the regular
expression a ∪ aaa∗ ∪ ab?
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5.5 Important concepts

alphabet
atomic actions, 86, 94

automata
accepts a word, 86
rejects a word, 86

automaton
DFA, 86
final state, 86
finite, 86
initial state, 85
language of
L(M), 87, 94

quintuple
⟨Σ, Q, q0, F, δ⟩, 86, 94

sink, 90
state, 86, 94
transition function, 86, 94

computation
accepting, 94
successful, 94

deadlock, 94

final state
accepting state, 86

language recognizer, 87

non-determinism, 93
non-deterministic finite automaton, 94

accepts a word, 94
NFA, 93
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Chapter 6

Modal logic

Although propositional logic and predicate logic are the most well-known, there are many other
‘logics’. Different logics vary in their ability to represent nuances of statements. They differ
in which operators are used to write down formulas, and sometimes they differ in the way
interpretations are given to those operators as well.

Some examples are: Floyd-Hoare logic (in which you can describe accurately, the behavior
of programs), intuitionistic logic (which expresses exactly those things that can be computed
by computers), and paraconsistent logic (in which it is possible to retract the truth statements
as new information becomes available).

A special class of logics are the so-called modal logics, which are used to describe to which
extent we should believe certain statements to be true. Modal logics are the subject matter of
this chapter.

Within the class of modal logics, there is the important sub-class of temporal logics. These
logics are able to express at which points in time statements are true. At the end of this
chapter, we present a temporal logic in more detail. This chapter is partially based on [2,
Chapter 5], so that book is a good source for further reading about modal logic. In addition,
we recommend the book [4].

6.1 Necessity and possibility

Traditionally, modal logics express the notion of necessity . Take the following sentence:

It is raining.

This sentence could be true or not true, but it is not necessarily true. It does not always rain,
and even when it does, the reason is not simply that it must be raining: if the weather was
different it may not have rained. The following sentence however, is necessarily true:

If it rains, water falls from the sky.

The necessity of the truth of this sentence follows from the meaning of the word ‘raining’,
which is exactly, that water falls from the sky.

This difference of necessity does not find expression in propositional logic. If we use the
following dictionary:

R it is raining
W water is falling from the sky

then the formalizations of the sentences are:

R
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and
R → W

in which the necessity is not clearly expressed. To this purpose, modal logic introduces a new
operator □, that should be read as meaning ‘necessarily.’ The sentence:

It is necessarily true that raining implies that water falls from the sky.

is then written formally as:
□(R → W )

You might think the reverse is true as well, that water falling from the sky implies that it
is raining, but this is not true. For instance, turning on a garden hose, or standing under a
waterfall, are situations in which water does fall from the sky, without it raining. Therefore,
we have:

It is not necessarily true that water falling from the sky implies that it is raining.

which, written as a formula in modal logic, is:

¬□(W → R)

Of course it is still possible for
W → R

to hold in certain situations. For example, if it is raining, then the right-hand side of the
implication is true, and hence (as we can see in the truth table for implication) the whole
formula is true.

Besides necessity, modal logic also has a notation for possibility . This is written as: ♢. The
true sentence:

It is possible that it is raining.

is then expressed in modal logic by the formula:

♢R

If you think about it a bit, you will find that the above statement means the same as:

It it not necessary for it not to be raining.

Which is in turn expressed as:
¬□¬R

Remark 6.1
This phenomenon is called conjugation and it appears in many variations. In modal logic we
have ♢f ≡ ¬□¬f , ¬♢f ≡ □¬f , □f ≡ ¬♢¬f , and ¬□f ≡ ♢¬f . And the De Morgan laws,
both in propositional logic and in predicate logic, are also examples of conjugation.

Exercise 6.A
So we see that the formula ♢R means the same as ¬□¬R. Try to find a formula without the
symbol ‘□’ that means the same as □R. Then, translate both □R and the formula you found
to ordinary English.

Definition 6.2
Any statement U will either be:
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• necessary

• impossible

• contingent

A statement is said to be contingent when it is not necessarily true, nor impossibly true. That
is, its truth is somewhere between necessarily true and necessarily false.

Exercise 6.B
In modal logic the statement ‘U is necessarily true’ is symbolically represented as □U , and
‘U is impossible’ as □¬U , or alternatively, ¬♢U . Give two different formulas in modal logic
which express the statement that ‘U is contingent.‘

Exercise 6.C
Use the following dictionary

M I have money
B I am buying something

to translate these English sentences to formulas of modal logic:
(i) It is possible for me to buy something without having money.
(ii) It is necessarily true, if I am buying something, for me to have money.
(iii) It is possible that if I buy something I don’t have any money.

Which of these sentences seem true? Explain why.

6.2 Syntax

We will now give a context-free grammar of the formulas of modal logic. (Modal predicate logic
also exists, but we will not treat it here.) This grammar is exactly the same as the one we have
given for propositional logic before (see Remark 1.5), except that the two modal operators are
added:

S → a | ¬S | (S ∧ S) | (S ∨ S) | (S → S) | (S ↔ S) | □S | ♢S

Convention 6.3
Just as with propositional logic, we allow ourselves to leave out unnecessary parentheses.
In doing this, we stick to the convention that the modal operators have the same operator
precedence as negation ‘¬’, which means that they bind stronger than the binary operators.

This means that the formula
♢a ∧ b → ♢(□a ∨ ¬c)

should be read as
(((♢a) ∧ b) → (♢((□a) ∨ (¬c))))

Because the grammar does not add parentheses to the unary operators, the following formula
is the ‘official’ form of the ones above:

((♢a ∧ b) → ♢(□a ∨ ¬c))

The first two should be seen as different (and possibly clearer) ways to represent this 17-
symbol-long formula.
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Also for modal logic we can express the structure of the formula in a parse tree:

→

∧ ♢

♢ b ∨

a □ ¬

a c

As usual, in the tree the atomic propositions are the leaves and the logical operators the nodes.

Exercise 6.D
For each of the formulas below, give the ‘official’ form according to the grammar of modal
logic, and also draw a tree according to its structure.

(i) □ (□a)
(ii) □a → a
(iii) (□a) → a
(iv) □ (a → a)
(v) ¬a → ¬□a
(vi) ♢a → □♢a
(vii) □a → ♢a
(viii) ♢a ∧ b → ♢□a ∨ ¬c

6.3 Modalities

Up until now the operator □ has had the fixed meaning of ‘necessity‘ and the operator ♢ that of
‘possibility’. This is the traditional reading, but only one of a variety of possible interpretations
of these symbols. Depending on what we interpret the symbols to mean, we get different modal
logics:

logic modality f □f ♢f
modal logic

necessity
f is true f is necessarily true; f is possibly true;

f is true in all
possible worlds

f is true in some possible
worlds

epistemic logic
knowledge

f is true I know that f f doesn’t contradict my
knowledge;
I don’t know that f is false

doxastic logic
belief

f is true I believe that f f doesn’t contradict my
beliefs;
I don’t believe that f is
false

temporal logic
time

f is now
true

f is always true f is sometimes true

deontic logic
obligation

I do f f ought to be done; f is permissible;

I must do f I may do f

dynamic logic (non-
deterministic)
programs

f holds after any execution
of p, f holds

after some execution of p,
f holds
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Note that for dynamic logic there is a p in the description. That is because it is important to
know about which program one is reasoning. Therefore, often one writes □pf and ♢pf .

Example 6.4
Consider the dictionary

S it is Sunday
C I go to church

and the sentence

On Sunday I always go to church

There are two ways to translate it into a formula:

1. S → □C, which means: If it is Sunday now, then I always go to church. So in particular,
also on next Wednesday.

2. □(S → C), which means: It is always the case that if it is Sunday now, then I go to
church.

Which formula do you think is more appropriate?

If not specified otherwise, ‘modal logic’ often refers to the traditional reading of ‘necessity’. At
the same time, it is also used to refer to the whole class of modal logics.

Exercise 6.E
Use the following dictionary:

R I am ready
H I am going home

For each of the logics listed in the table above (except program-logic), give an English trans-
lation of the formula:

¬R → ¬♢H

Each of the logics enumerated in the table, have yet again their own variations. For instance,
just as there are a whole set of modal logics, so too, are there many different temporal logics.
The meaning ‘true at all times’ can be changed to ‘always true from this point on’ or maybe
‘always true after this point in time.’ Or else, it could take into account that it is not yet clear
what is going to happen. (This is called ‘branching time’.)

6.4 Axioms

Depending on what the modal operators are meant to describe, you might want them to have
different properties. For instance, whether the formula

□f → f

should always be true. (Note: this should be read as ‘(□f) → f ’ and not as ‘□(f → f)‘,
because the □ binds stronger than the →.) In the traditional interpretation of modal logic
this indeed always holds, because it translates to:

If f is necessarily true, then f holds.

And of course, necessary truth implies truth. But you wouldn’t want it to hold in doxastic
logic, because then it would be an encoding of the following English sentence:
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If I believe f to be true, then f holds.

Although we all know that belief does not imply truth, because a belief may be mistaken. If
we turn to the logic of knowledge, epistemic logic, we want it to be true again:

If I know that f holds, then f holds.

Because knowing something to be true implies in particular that it must indeed be true (in
addition to the fact that it is known). Hence, we see that the truth of a particular property
depends on the chosen interpretation of □. Do you think it holds in deontic or temporal logic?

In modal logic, there are many such principles (properties), called axiom schemes of modal
logic. Some of the most important ones are listed below:

name axiom scheme property
K □(f → g) → (□f → □g) distributive
T □f → f reflexive
B f → □♢f symmetric
4 □f → □□f transitive
5 ♢f → □♢f Euclidean
D □f → ♢f serial

The first column presents the letter or number usually used to denote the axiom scheme, and
the third column the property that is associated with the axiom scheme.

Exercise 6.F
Construct a matrix that indicates which axiom schemes holds in which logic. Let the rows
denote the logics listed on page 110, and the columns the axiom schemes. The matrix will then
have a total of 36 cells. Then write a ‘+‘ or ‘−‘ in each cell, according to whether you think
the axiom scheme is always true in the logic, or you think that it need not always hold.

It is ultimately the choice of axiom schemes to be included that distinct a particular modal
logic. Regardless of which interpretation is given to the operators □ and ♢, the choice of
axiom schemes determines how the symbols may be reasoned with (which, in turn, determines
whether a particular interpretation is sensible.)

In this perspective, the most important axiomatic systems of modal logic are:

axiomatic system axioms included
K K
D K + D
T K + D + T
S4 K + D + T + 4
S5 K + D + T + 4 + 5 + B

As you can see, the K-axiom is included in all of these logics. The scheme forms a basis on
which all others are built, and therefore the modal logic K is the weakest of the modal logics.
In literature the list of axioms included for a specific axiom system is usually shorter than the
list we presented above. System S4 is typically characterized by the axioms K, T and 4. And
system S5 is typically characterized by the axioms K, T , 4 and 5. This is due to the fact
that some axioms are automatically included if a certain set of other axioms is included. For
instance, if axiom T (reflexive) is included, automatically axiom D (serial) holds as well. And
if axiom 5 (Euclidian) is included, automatically axiom B (symmetry) holds as well.
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6.5 Possible worlds and Kripke semantics

In Section 6.1 we decided whether certain statements were true or not, by intuition. Now, we
will formalize this. When we say that ‘it is raining’ is not necessarily true, we do so because
we can imagine a world in which it is not raining. Such a world is called a possible world. If
in all possible worlds, it is raining, then we must conclude that it is necessarily true for it to
rain. This way of deciding the truth of formulas of modal logic, is called the possible world
semantics. (In logic, syntax defines the rules by which well-formed formulas are constructed,
while semantics describe the meaning of formulas. Thus, syntax is about shape, and semantics
about meaning and truth.)

You may think that in the possible world semantics, the formula □f describes the situation
that the formula f holds in all worlds, and the formula ♢f the situation that the formula f
holds in at least one world. But this has undesired consequences. For instance, the formula

□f → f

would then always be true (because if it holds in all worlds, it also holds in our current actual
world), whereas we saw in the previous section that this formula is not supposed to hold in
general (remember the modal logic of beliefs). So, we have to construct something a bit more
complicated.

The necessary additional ingredient, is that we should specify which worlds are ‘visible’ from
within any given world. This means that for every world, we will specify a set of accessible
worlds, which are ‘visible from its vantage point.’ The meaning of □f will then be that it is
true in a world x, exactly in the case that f is true in all accessible worlds of x. Similarly, ♢f
is true in a world x if and only if there is at least one world, accessible to x, in which f is true.
This is formalized in Definition 6.8, later on.

To understand why this notion of accessibility is actually quite reasonable, it is useful to
consider the case of temporal logic. In a possible world semantics for temporal logic, the worlds
accessible to a certain world x would be that world x itself, in addition to all subsequent worlds
(in time). Which means that the definition given above of □f translates to: ‘f is true from
this point on.’

A collection of worlds, together with a relation of accessibility, is called a Kripke model ,
named after the American philosopher and logician Saul Kripke. We will now give a clean
mathematical definition of these models.

Definition 6.5
A Kripke model M = ⟨W,R, V ⟩ consists of:

• a non-empty set W of worlds

• a function R such that for each world x ∈ W , the set R(x) ⊆ W is the set of accessible
worlds of x. The set R(x) is also called the successor of world x. The function R can
also be seen as a relation, which is then called the accessibility relation.

• a function V such that for each world x ∈ W , the set V (x) is the set of atomic propositions
that are true in world x.

We will draw Kripke models as directed graphs, where nodes denote worlds, and arrows between
worlds denote accessibility. In the nodes, we write which atomic propositions hold in the
corresponding world.

Example 6.6
Here is an example of a Kripke model, which we will name M1:
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M1 :

a b c

x0

a

x1

x2

a c

x3

In this model there are four worlds W = {x0, x1, x2, x3}. The accessibility relation of this
Kripke model is given by:

R(x0) = {x1}
R(x1) = {x0, x1}
R(x2) = {x0}
R(x3) = ∅

and the worlds make the following atomic propositions true:

V (x0) = {a, b, c}
V (x1) = {a}
V (x2) = ∅
V (x3) = {a, c}

E.g., the propositions a, b, and c are true in world x0, but the proposition d is not true in
world x0.

We now formalize when formulas are to be held true in a given model M and world x.
First, some notation:

Definition 6.7
The statement “the formula f of modal logic is true in a world x of a Kripke model M” is
denoted by

M, x ⊩ f

When the model is clear from the context, this is sometimes shortened to:

x ⊩ f

Typically, x ⊩ f is pronounced as ‘world x satisfies formula f ’. Or simply as ‘x satisfies f ’.
And when x ⊩ f does not hold, we write x ̸⊩ f , with ⊩ struck out, and pronounce it as ‘x
does not satisfy f ’.

The truth of a formula is usually tied to a specific world, in which case it corresponds
exactly to the truth definition of propositional logic as we have seen before. The only formulas
in which more than one world is taken into consideration are those formed with the modal
operators. This observation naturally leads to the following definition of the truth of a given
formula f :

Definition 6.8
Consider a Kripke model M = ⟨W,R, V ⟩. Let x ∈ W , p be a propositional atom, and f and
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g formulas of modal logic. Then we define:

x ⊩ p iff p ∈ V (x)

x ⊩ ¬f iff x ̸⊩ f

x ⊩ f ∧ g iff x ⊩ f and x ⊩ g

x ⊩ f ∨ g iff x ⊩ f or x ⊩ g

x ⊩ f → g iff if x ⊩ f then x ⊩ g

x ⊩ f ↔ g iff (x ⊩ f iff x ⊩ g)

x ⊩ □f iff for all y ∈ R(x), it holds that y ⊩ f

x ⊩ ♢f iff at least one y ∈ R(x) exists, for which y ⊩ f

Remark 6.9
The modal character of course lies in the last two lines of this definition. The rest are exactly
the same as for propositional logic.

Let us now check whether □a → ♢b is true in world x0 of the Kripke model M1 we defined
above. This formula has the structure:

→

□ ♢

a b

Hence, we first ask ourselves whether □a and ♢b are true in x0. For the first, we have to check
all successors of x0, which in this case is just x1. And indeed, a is true in x1, that is, x1 ⊩ a,
and so □a is true in x0, or, x0 ⊩ □a. For ♢b to be true in x0, we must find a successor of x0
in which b is true. But x1 is the only successor of x0, and in fact x1 ̸⊩ b, so that x0 ̸⊩ ♢b.

Now we turn to the truth table of implication. We know that □a is true in x0, and ♢b is
not true in x0. And thus, □a → ♢b is not true in x0. That is:

x0 ̸⊩ □a → ♢b

Check for yourself in which worlds of M1 the formula □a holds. If you do this correctly, you
will find that the formula in fact holds in all worlds of M1. We denote this by M1 |= □a

Definition 6.10
A formula f is said to be true in a Kripke model M if for all worlds x of M we have M, x ⊩ f .
This is denoted by:

M |= f

It is pronounced as ‘Kripke model M satisfies formula f ’, or ‘M satisfies f ’ in short.
Note the distinct meanings of the symbols ‘⊨’ and ‘⊩’ !

Remark 6.11
Note that in our example, in the world x2, the formula a is not true, that is, x2 ̸⊩ a. At the
same time, we have seen the truth of M1 ⊨ □a. Hence we see how in a Kripke model, the truth
of □f does not imply that f is true in all worlds!

Exercise 6.G
For each formula f listed below, check in which worlds x of our Kripke model in Example 6.6
it holds, that is, for which x we have x ⊩ f . In addition, check whether f holds in the model,
that is, check whether M1 |= f .
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(i) a
(ii) □a

(iii) ♢a
(iv) □a → a

(v) □a → □□a
(vi) a → □♢a

Exercise 6.H
(i) Can you find a Kripke model M2 for which M2 |= a and at the same time M2 ̸|= □a? If

so, provide such a model; otherwise, explain why such a model cannot exist.
(ii) Provide a Kripke model M3 for which M3 |= a although M3 ̸|= ♢a. Or, if no such model

can exist, explain why.

Definition 6.12
Within Kripke semantics, a formula f is said to be logically true if for all Kripke models M
we have M ⊨ f . This is denoted by:

|= f

You might want to place restrictions on the structure of Kripke models. A number of such
restrictions correspond to the axiom schemes we saw in the previous section. For instance, you
might want to impose every world x to have an arrow from and to itself, that is, x ∈ R(x).
A Kripke model that obeys this restriction is called reflexive. And the set of reflexive Kripke
models indeed corresponds with the axiom scheme T , that is, □f → f . Or, you might want to
impose that every world has at least one outgoing arrow. This is then called a serial Kripke
model, and these models correspond to the scheme D, that is, □f → ♢f . Note how our model
M1 is neither reflexive nor serial. (Why?)

Of the presented axiom schemes, one is always true in any Kripke model. This is the axiom
scheme K:

□(f → g) → (□f → □g)

Exercise 6.I
(i) Does a Kripke model M4 exist that is serial but not reflexive? If so, provide an example,

and otherwise, explain why this is not possible.
(ii) Does a Kripke model M5 exist that is reflexive but not serial? If yes, provide an example,

and otherwise, explain why this is not possible.

Using these restrictions we can extend Definition 6.12 to:

Definition 6.13
We introduce three new concepts:

• We define ‘|=K f ’ as ‘|= f ’, so as ‘f holds in all Kripke models’.

• We define ‘|=T f ’ as ‘|= f holds for all reflexive Kripke models’.

• We define ‘|=D f ’ as ‘|= f holds for all serial Kripke models’.

Example 6.14
Which (if any) of |=K □a → a, |=T □a → a, or |=D □a → a hold(s)? As □a → a is an
instance of the reflexivity axiom T , |=T □a → a does hold, as this axiom holds in all reflexive
models. However, |=D □a → a does not hold. Take for instance this model:

M6 :
x0

a

x1

As each world has at least one outgoing arrow, it is indeed a serial model. However, x0 ⊩ □a
holds, but x0 ⊩ a does not hold. Therefore, x0 ⊩ □a → a also does not hold and hence
M6 ⊨ □a → a does not hold. And hence |=D □a → a does not hold. By the way, does this
model resembles your model M4 in Exercise 6.I a bit?

And obviously, if |=D □a → a does not hold, then |=K □a → a also does not hold as we
can simply take the same counter example M6 again.
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6.6 Temporal logic

We will now take a more detailed look at a specific temporal logic: LTL, which stands for
Linear Time Logic. This is the logic that the SPIN model checker uses.1 A model checker is
a computer program that analyzes pieces of software. In order to use a model checker, one
first has to provide a finite automaton that describes the behavior of the software in question.
Then, that automaton is fed into the checker, together with a formula of the temporal logic
employed by the checker that expresses the property one wants to check of the software. The
model checker then analyzes the automaton and verifies whether the property expressed by
the formula holds or not.

An example of a property one may want to give to a model checker would be:

The automaton always eventually returns back to the state q42.

(A property of this form is called a ‘liveness’ property, because it describes how the automaton
always remains ‘active’ enough to be able to return back to a certain state.) A temporal logic
formula that expresses this property would be:

□♢q42

This should be read as:

From now on it will always hold that, there will be a point in time at which, we are back in
state q42.

You might be tempted to think the model checker’s task is not very complex, and thus actually
quite simple. The complication however, is that, even with automata of a relatively small
number of states, the number of situations (worlds) that need to be checked grows very (very)
fast. This, then, is the key task of a model checker: controlling what is called state space
explosion.

Definition 6.15
In LTL, we don’t denote the modal operators by □ and ♢, but by the calligraphic capitals G
and F . So we have:

modal LTL shorthand meaning
□f G f Globally from now on (including now) f will always hold
♢f F f Future2 eventually f will hold (or it holds already)

In fact, LTL has even more operators:

LTL shorthand meaning
X f neX t after exactly one step, f will hold
f U g Until f holds until g holds, and indeed eventually g will hold
f W g Weak until f holds until g holds, or else f will hold forever
f R g Release g holds until f holds, at which point g is still the case,

or else g will hold forever

As you can see, LTL has binary modal operators as well.
1SPIN stands for ‘Simple Promela INterpreter’ and Promela in turn stands for ‘PRocess MEta LAnguage’,

which allows the description of finite automata. SPIN is one of the most well-known model checkers, and was
developed by the Dutch Gerard Holzmann at Bell Laboratories in America.

2Note that there are also textbooks that state that F stands for ‘Finally’ instead of ‘Future’. However, as
this chapter is based on the book [2] we follow its definition and refer to ‘Future’.
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This is a grammar for LTL, where a represents any propositional variable.

S → a | ¬S | (S ∧ S) | (S ∨ S) | (S → S) | (S ↔ S) |
G S | F S | X S | (f U g) | (f W g) | (f R g)

As always, the unary operators bind the strongest. For the binary LTL operators, we do not
define a specific binding strength, which means that we have to write parentheses as in the
grammar to parse formulas in a unique way. And note that within literature the operator X
is sometimes also denoted with a small circle as ◦, but not in this course, so don’t use it!

Exercise 6.J
Express the following sentences in LTL. You may use all operators of LTL in your answers.

(i) There exists a moment after which the formula a will always be true.
(ii) The statements a and b are alternatingly true.
(iii) Every time a holds, b holds after a while as well.

Some of the operators of LTL can in fact be expressed in terms of the others. For instance,
we have:

f U g is equivalent to (f W g) ∧ F g

f W g is equivalent to (f U g) ∨ G f

f R g is equivalent to ¬(¬f U ¬g)

Remark 6.16
This last example is again an example of a conjugation. But there are more conjugations in
LTL, for instance ¬G f ≡ F ¬f , ¬F f ≡ G ¬f , ¬(f U g) ≡ ¬f R ¬g, ¬(f R g) ≡ ¬f U ¬g,
and ¬X f ≡ X ¬f . So X is self-conjugated.

Exercise 6.K
Define the operator U in terms of R.

Exercise 6.L
Define the operators G and F in terms of U and R. You may use the propositions ⊤ and ⊥,
which are always true, respectively always false.

Exercise 6.M
Show that all LTL operators (except X ) can be defined in terms of the W operator. Again,
you may use the propositions ⊤ and ⊥.

The worlds in Kripke models of LTL corresponds to the ticking of a clock. Another way to
putting it, is that each world can be uniquely identified with a natural number. So, the set of
worlds is:

W = {xi | i ∈ N}
Furthermore, the worlds accessible to a given world xi are exactly all subsequent worlds xj ,
for which i ≤ j. The only difference then, between different Kripke models of LTL, is which
atomic propositions hold in its worlds. Here is a picture illustrating what a Kripke model of
LTL looks like:
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x0 x1 x2 x3 x4

. . . . . .

Note that this diagram shows that the accessibility relation in the model is transitive, but it
is not Euclidean.

This formulation of worlds in terms of the ticking of a clock allows us to describe the
meaning of the operators of LTL of Definition 6.15 in an even more mathematically precise
way:

Definition 6.17
Given a Kripke model ⟨W,R, V ⟩ with W and R as described above. Then:

xi ⊩ G f for all j ≥ i we have xj ⊩ f
xi ⊩ F f there is a j ≥ i such that xj ⊩ f
xi ⊩ X f xi+1 ⊩ f
xi ⊩ f U g there is a j ≥ i such that xj ⊩ g and for all k ∈ {i, i+ 1, . . . , j − 1}

we have xk ⊩ f
xi ⊩ f W g either there is a j ≥ i such that xj ⊩ g and for all k ∈ {i, i+ 1, . . . , j − 1}

we have xk ⊩ f , or for all l ≥ i we have xl ⊩ f
xi ⊩ f R g either there is a j ≥ i such that xj ⊩ f and for all k ∈ {i, i+ 1, . . . , j − 1, j}

we have xk ⊩ g, or for all l ≥ i we have xl ⊩ g

With this formalization, we could prove the above-mentioned equivalences between LTL oper-
ators.

Exercise 6.N
Consider the LTL Kripke model M7 = ⟨W,R, V ⟩. So we know that W = {xi | i ∈ N} and
xj ∈ R (xi) if i ≤ j. Now define V as follows:

a ∈ V (xi) iff i is a multiple of two
b ∈ V (xi) iff i is a multiple of three

Check whether the following properties hold:
(i) x0 ⊩ F (a ∧ b)
(ii) x6 ⊩ G (a ∨ b)
(iii) M7 ⊨ GF (a U b)

Exercise 6.O
Which of the axiom schemes in the table on page 112 hold in LTL?
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6.7 Important concepts

accessibility relation, 113
atomic proposition, 110, 113
axiom scheme

distributive, 112
Euclidean, 112
reflexive, 112
serial, 112
symmetric, 112
transitive, 112

conjugation, 108

deontic logic, 110
is permissible, 110
♢, 110

obligation, 110
ought to be, 110
□, 110

doxastic logic, 110
belief, 110
□, 110

not contradictory with beliefs, 110
♢, 110

dynamic logic, 110
holds after any execution of p, 110
□, 110

holds after some execution
♢, 110

holds after some execution of p, 110

epistemic logic, 110
knowledge, 110
known, 110
□, 110

not contradictory with knowledge, 110
♢, 110

false
always false
⊥, 118

Floyd-Hoare logic, 107

intuitionistic logic, 107

Kripke model, 113

liveness, 117
LTL, 117

future
F f , 117

globally
G f , 117

Linear Time Logic, 117
next
X f , 117

release
f R g, 117

until
f U g, 117

weak until
f W g, 117

modal logic, 108
contingent, 109
impossible, 109
necessarily, 107
□, 108

necessity, 110
possible, 108
♢, 108

model checker, 117

necessity, 107

paraconsistent logic, 107
property, 111

satisfies, 114

temporal logic, 110
always true, 110
□, 110

sometimes true, 110
♢, 110

time, 110
true

always true
⊤, 118

logically true, 116
|=D f , 116
|=K f , 116
|=T f , 116
|= f , 116

true in a Kripke model, 115
M |= f , 115

true in a world, 114
x ⊩ f , 114
M, x ⊩ f , 114

world
possible world, 113
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Appendix A

Preliminaries on set notations

This appendix contains information about sets that we hope you have already seen before. If
not, please read this section on your own and ask questions about it during the tutorial. The
contents will probably not be explained during the plenary lectures.

In Chapter 2 we already talked a lot about sets (the set of all women, the set of the integers,
et cetera), but we didn’t really explain how sets are typically represented.

Basically, a set is just a collection of unordered objects.

• If the amount of objects is finite, we say that the set is finite, and the typical way
to represent such a finite set is by enumerating all elements between curly braces and
separated by commas:

{a, b, c, d, e, f, g, h, i, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}

Although technically feasible, for very large (but still finite) sets, this is a lot of work
and it is very easy to forget elements (like the j above).

• But for infinite sets this obviously doesn’t work at all, because we are never able to
enumerate a complete infinite list of objects. If the structure of the sets is really clear,
we may use some ‘ellipses’ or ‘. . . ’ to visualize that we left out some elements, but that
you should be able to determine anyway whether a given object is indeed a member of
the set.

– For instance {a, b, c, . . . , z} should indicate that this set contains all lower case letters
from the English alphabet, including the j. But if we specifically want to leave out
this j, we could have written something like {a, b, c, . . . , h, i, k, l, . . . , z}.

– And the infinite set of natural numbers that are greater than or equal to seven can
be represented as {7, 8, 9, . . .}.

– And the infinite set of the integers can be represented using two ellipses as in
{. . . ,−2,−1, 0, 1, 2, . . .}, but also using only one, as in {0,−1, 1,−2, 2,−3, 3, . . .},
because the pattern is obvious.

• However, there is a very powerful representation system called set-builder notation or set
comprehension, which is the main method being used to represent sets.

• Its basic form is
{x | P (x)}

where the x before the vertical bar is a variable, the bar itself is just a separator, and
the P (x) behind the bar is a predicate on x. Or, slightly shorter, this is the set of all x
such that P (x) holds.
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• It should be read as: this set contains all elements x for which the predicate P (x) holds.

• Very often the variable x is restricted to a certain domain D, which can be represented
in two ways:

{x ∈ D | P (x)} or {x | x ∈ D and P (x)}
Both are representations of the set that contains all elements x from domain D for which
predicate P (x) holds.

• Often when it is clear about which domain we are talking, this explicit domain is omitted.

• So if we would like to represent the set of all positive real numbers, we could do so by first
stating that P (x) is true if x is a positive real number, and then giving this definition:
{x ∈ R | P (x)}. However, for this kind of simple mathematical predicates we usually use
the existing mathematical notation for it, so we would get

{x ∈ R | x > 0}

• Note that it is not obligatory to express this predicate in mathematical symbols. It can
also be expressed using natural language:

{w ∈ {a, b}∗ | w contains an even number of a’s}

• More examples:

– {x ∈ Q | x ≤ 0} is the set of all rational numbers that are not positive.

– {x ∈ Z | |x| = 1} is simply the finite set {−1, 1}.
– {z | ∃k ∈ Z [z = 2k]} is the set of all even integers.

• So far we have only seen sets where there is only a single variable (possibly with a limiting
domain) before the vertical bar, but if we want to give more structure to the elements of
the set, we may put a term at that position that contains more than one variable.

• More examples:

– {2z | z ∈ Z} is another representation for the set of all even integers.

– {(n+ 1, 2n+ 1) ∈ N× N | n ∈ N} is the set that contains ordered tuples of natu-
ral numbers where the first number is some kind of index and the second num-
ber is the corresponding odd natural number. In other words we get the set
{(1, 1), (2, 3), (3, 5), (4, 7), . . .}.

–
{
anb2n ∈ {a, b}∗ | n ∈ N

}
is the set of words over the alphabet {a, b} where each

word starts with a certain amount of a’s and is followed by exactly the double
amount of b’s.

• Note that in the last two examples before the bar an explicit domain is given. How-
ever, because this domain directly follows from the fact that n ∈ N as is given be-
hind the bar, we may omit the explicit domains without any problems and we get
{(n+ 1, 2n+ 1) | n ∈ N} and

{
anb2n | n ∈ N

}
.
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λ-rules, 78
v is a model of f , 8
Fáry’s theorem, 35
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|=T f , 116
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̸=, 23
L, 64
\, 13
□, 108, 110{
n
k
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, 54[

n
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, 54

⊤, 118
φ, 31
an, 64
f R g, 117
f U g, 117
f W g, 117
f ≡ g, 9, 22
f ∧ g, 4
f ↔ g, 4
f ∨ g, 4
f → g, 4
f |= g, 10, 22
r∗, 66
r1 ∪ r2, 66
r1 r2, 66
wR, 64
wv, 65
x ⊩ f , 114
M |= f , 115
M, x ⊩ f , 114
L(G), 70
L(r), 66
base case, 43

accepting, 94
accepting state, 86
accepts, 89
accepts a word, 86, 94
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accessibility relation, 113, 114
accessible, 113, 118
accessible world, 113
algorithm, 21
alphabet, 5, 63–65, 69, 86, 94

Σ, 63
atomic actions, 86, 94

always true, 110
and

f ∧ g, 4
arity, 15
arrow, 85
assignment, 8

finite assignment, 8
associativity, 5

right associative, 5, 9
at least

at least two, 23
at least two, 23
at most

at most three, 23
at most three, 23
atom, 15, 16
atom proposition, 7
atomic actions, 86, 94
atomic formula, 15
atomic proposition, 4–6, 8, 110, 113, 114
automata

accepts a word, 86
rejects a word, 86
sink, 91

automaton, 85, 87
DFA, 86
final state, 86, 90, 94
finite, 85, 86, 89, 91, 117
finite automaton, 64
initial state, 85, 86, 90, 94
language of, 87, 94
L(M), 87, 94

quintuple
⟨Σ, Q, q0, F, δ⟩, 86, 94

sink, 90
state, 86, 90, 94
transition function, 86, 94

axiom scheme, 112, 116
distributive, 112
Euclidean, 112
reflexive, 112, 116
serial, 112
symmetric, 112
transitive, 112

belief, 110
Bell numbers, 58

Bn, 58
bijection, 31
binomial, 48, 49(

n
k

)
, 48, 49

bipartite, 34
bracket, 13

chain, 80
chain of X, 80
chain rule, 80
chromatic number, 34, 37
circuit, 28, 31, 32
coefficient, 51
coloring

chromatic number, 34, 37
vertex coloring, 34

complement, 64
complete bipartite graph, 34
complete graph, 29
component, 28, 29
computation, 86

accepting, 94
successful, 94

concatenation, 65, 66
conjugation, 108
connected, 28
connective, 4, 5, 7
constant, 14, 15, 18, 23
context, 74
context-free, 6, 69, 74, 75, 109
context-free language, 70, 75, 97
contingent, 109
Coq, 9
country graph, 29
cycle, 28, 29, 31, 32

De Morgan, 10, 23
deadlock, 94
degree, 28, 32
deontic logic, 110

is permissible, 110
♢, 110

obligation, 110
ought to be, 110
□, 110

describe, 68
DFA, 86
dictionary, 3, 13, 22
different, 23
direct formula, 42

125



directed, 28, 85, 113
discrete mathematics, 27
distributive, 112
domain, 14–16, 18
doxastic logic, 110, 111

belief, 110
□, 110

not contradictory with beliefs, 110
♢, 110

dynamic logic, 110
holds after any execution of p, 110
□, 110

holds after some execution
♢, 110

holds after some execution of p, 110

edge, 27, 29
element of

∈, 13
empty language, 67
empty word, 63, 64, 91
epistemic logic, 110, 112

knowledge, 110
known, 110
□, 110

not contradictory with knowledge, 110
♢, 110

equality relation, 23
equals

=, 23
Euclidean, 112
Euler

circuit, 31, 32
cycle, 31
path, 31, 32

Euler’s formula, 37
exactly

exactly one, 23
exactly one, 23
exists

∃, 13

false, 6
0, 6
always false
⊥, 118

final state, 86, 90, 94
accepting state, 86

finite, 85, 86, 89, 91, 117
finite assignment, 8
finite automaton, 64
Floyd-Hoare logic, 107

follows from
f |= g, 22

for all
∀, 13

formula, 15
four color theorem, 37
fractions

Q, 21

generate, 68, 88
generates, 89
grammar, 17, 64, 68, 71, 88

context, 74
context-free, 6, 69, 74, 75, 109
nonterminal, 68, 69, 90, 91
right linear, 75, 88, 89, 91
start symbol, 68, 69
S, 68

triple, 69
⟨Σ, V,R⟩, 69

graph, 27, 85
bipartite, 34
circuit, 28
complete bipartite graph, 34
Km,n, 34

complete graph, 29
Kn, 29

component, 28, 29
connected, 28
country graph, 29
cycle, 28, 29
degree, 28, 32

valency, 28
directed, 28, 85, 113
edge, 27, 29
(v, w), 27

hypercube graph, 33
neighbor, 28
node, 27
path, 28
Petersen graph, 29
planar, 28, 29
sub-graph, 28
tree, 28, 30
tuple
⟨V,E⟩, 27

undirected, 28
vertex, 27, 29, 32

vertices, 27
grid coordinate

(n, k), 48

Hamilton
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circuit, 32
cycle, 32
path, 32

holds after any execution of p, 110
holds after some execution of p, 110
hypercube graph, 33
hypothesis, 43

if and only if
f ↔ g, 4
iff, 4

if, then
f → g, 4

iff, 4
impossible, 109
individual constant

constant, 23
induction, 42, 43

base case, 43
hypothesis, 43
induction step, 43
proof by, 42

induction step, 43
initial state, 85, 86, 90, 94
interpretation, 13, 18, 19, 22, 112
interpretation function, 19
intersection, 13, 64

∩, 13
intuitionistic logic, 107
invariant, 71
is equal to, 23
is not equal to, 23
is permissible, 110
isomorphic, 31

isomorphism, 31
φ, 31

isomorphism, 31

Kleene closure, 65
Kleene star, 66
knowledge, 110
known, 110
Kripke model, 113, 114

⟨W,R, V ⟩, 113
Kuratowski’s theorem, 36

label, 85
language, 63, 67

complement, 64
L, 64

concatenation
LL′, 65

context-free language, 70, 75

L(G), 70
describe, 68
empty language, 67
L(∅), 67
∅, 67

generate, 68, 88
intersection, 64
L ∩ L′, 64

Kleene closure, 65
L∗, 65

produce, 68
regular language, 65–67, 75, 88
L(r), 66

reverse
LR, 65

strict subset, 64
L ⊂ L′, 64

subset, 64
L ⊆ L′, 64

union, 64
L ∪ L′, 64

language of, 87, 94
language recognizer, 87
length, 64
Linear Time Logic, 117
liveness, 117
logical consequence, 10

f |= g, 10
logical entailment, 10
logical laws, 10
logically equivalent, 9, 10, 22

f ≡ g, 9, 22
logically true, 8, 22, 116

|= f , 8
tautology, 8

logically valid, 8, 22
valid, 8

LTL, 117, 118
future
F f , 117

globally
G f , 117

Linear Time Logic, 117
next
X f , 117

release
f R g, 117

until
f U g, 117

weak until
f W g, 117
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machine, 85
machine model, 85
modal logic, 107, 108, 110

contingent, 109
impossible, 109
interpretation, 112
necessarily, 107, 108
□, 108

necessary, 109
necessity, 110
possibility, 110
possible, 108
♢, 108

model, 6, 8, 18
v is a model of f , 8

model checker, 117
state space explosion, 117

natural numbers
N, 20

necessarily, 107, 108
necessary, 109
necessity, 107, 110
neighbor, 28
Newton’s Binomial Theorem, 51
NFA, 93
node, 27, 85
non-determinism, 93
non-deterministic automaton, 91
non-deterministic finite automaton, 93, 94

accepts a word, 94
NFA, 93

non-terminal
nullable, 78

non-terminals
potentially useful, 82

nonterminal, 68, 69, 74, 75, 90, 91
not

¬f , 4
not contradictory with beliefs, 110
not contradictory with knowledge, 110
not equals

̸=, 23
nullable, 78

obligation, 110
operator, 6, 16, 108, 110
or

f ∨ g, 4
ought to be, 110

paraconsistent logic, 107
parenthesis, 5

parse tree, 6, 16, 30, 110
parser, 65

parsing, 65
parsing, 65
partition, 58
Pascal’s Triangle, 49, 51

P△1, 49
P△2, 49
P△3, 51
P△4, 51

Pascal’sTriangle, 49
path, 28, 31, 32

degree, 32
Petersen graph, 29
planar, 28, 29
possibility, 110
possible, 108
possible world, 113
potentially useful, 82
predicate, 14, 18, 42
predicate logic, 15, 17, 22, 23, 107

predicate logic with equality, 23
predicate logic with equality, 23
priority, 5
produce, 68
production, 68
production rule, 68, 69, 71, 75
proof by, 42
property, 71, 111
proposition, 5, 7, 9, 10
propositional calculus, 3
propositional letter, 4
propositional logic, 3, 4, 8, 16, 17, 107, 114
propositional variable, 4
pseudocode, 40

quality, 14
quantifier, 16

rational numbers
Q, 21

recipe, 21
recursion, 38, 43

direct formula, 42
recursive definition, 42
recursive formula, 39
recursive function, 40, 42
recursive procedure, 40
recursive program, 40
recursive recipe, 40

recursive definition, 42
recursive formula, 39
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recursive function, 40, 42
recursive procedure, 40
recursive program, 40
recursive recipe, 40
reflexive, 112, 116
regular expression, 64, 65

∅, 65
λ, 65
concatenation, 66
r1 r2, 66

Kleene star, 66
r∗, 66

union, 66
r1 ∪ r2, 66

regular expressions, 65
regular language, 65–67, 75, 88, 97
rejects a word, 86
relation, 14, 18

relation symbol, 15
relation symbol, 15
reverse, 64, 65
right associative, 5, 9
right linear, 75, 88, 89, 91

satisfies, 114
semantics, 113
serial, 112, 116
set, 63, 64

empty set
∅, 65

set difference, 13
\, 13

set operation, 64
sink, 90, 91
sometimes true, 110
square parenthesis, 13
start symbol, 68, 69
state, 85, 86, 90, 94
state space explosion, 117
Stirling cycle numbers, 54, 57[

n
k

]
, 54

Stirling numbers of the first kind, 54,
57

Stirling numbers, 54
Stirling numbers of the first kind, 54, 57
Stirling numbers of the second kind, 54, 56
Stirling set numbers, 54, 56{

n
k

}
, 54

Stirling numbers of the second kind, 54,
56

strict subset, 64
structure, 18

sub-graph, 28
subject, 14
subset, 64
successful, 94
successor, 113
symbol, 63

concatenation
an, 64

useful, 81
useless, 81

symmetric, 112
syntax, 113
syntax diagram, 75

tautology, 8
temporal logic, 107, 110, 113, 117

always true, 110
□, 110

sometimes true, 110
♢, 110

time, 110
terminal string, 81
terminals, 69
time, 110
Tower of Hanoi, 37
transition function, 86, 94
transitive, 112
tree, 28, 30
triple, 69
true, 6, 18, 22

1, 6
always true
⊤, 118

logically true, 22, 116
|=D f , 116
|=K f , 116
|=T f , 116
|= f , 22, 116

true in a structure under a given inter-
pretation, 19

true in a Kripke model, 115
M |= f , 115

true in a model, 8
true in a world, 114
x ⊩ f , 114
M, x ⊩ f , 114

true in a structure under a given interpre-
tation, 19

true in a Kripke model, 115
true in a model, 8
true in a world, 114
truth, 8
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true in a structure under an interpreta-
tion

(M, I) |= f , 21
truth table, 6, 7
truth tables, 9

undirected, 28
union, 5, 13, 64, 66

∪, 5, 13
useful, 81
useless, 81

valency, 28
valid, 8, 22

logically valid, 22
valuation, 8
variable, 15, 16, 23
vertex, 27, 29, 32
vertex coloring, 34
vertices, 27

word, 5, 63, 86
concatenation
wv, 65

empty word, 63, 91
λ, 63

length, 64
|w|, 64

reverse, 64, 65
wR, 64

world, 113
accessible, 113, 118
accessible world, 113
possible world, 113
successor, 113
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