Formal Reasoning 2025 Solutions Test Block 3: Languages

(24/11/25)

Languages

- 1. Which of the following four languages is different from the other three?
 - (a) $(\{a,b\})^*$
 - (b) $(\{a, b, a\})^*$
- (c) is correct (c) $(\{a\}^* \cup \{b\}^*)$
 - (d) $(\{a\} \cup \{b\})^*$

Answer (c) is correct.

The languages $(\{a,b\})^*$, $(\{a,b,a\})^*$, and $(\{a\} \cup \{b\})^*$ basically all state: choose either a or b and do that as often as you want. This gives all words over the alphabet $\{a,b\}$. The language $(\{a\}^* \cup \{b\}^*)$, however, states: take any number of a's or any number of b's. In particular, this last language doesn't contain words like ab that contain a's and b's.

2. Let

$$\begin{array}{rcl} \Sigma &:=& \{a,b\},\\ L_2 &:=& \{w\in \Sigma^*\mid w \text{ starts with the symbol }a\}, \text{ and }\\ L_2' &:=& \{w\in \Sigma^*\mid w \text{ starts with the symbol }b\}. \end{array}$$

In which of the alternatives are all statements correct?

- (a) $L_2 \cap L_2' \neq \emptyset$, $L_2^* = \Sigma^*$, $L_2 \cup L_2' \neq \Sigma^*$, and $L_2^* \cup L_2'^* = \Sigma^*$.
- (b) $L_2 \cap L_2' = \emptyset$, $L_2^* \neq \Sigma^*$, $L_2 \cup L_2' = \Sigma^*$, and $L_2^* \cup L_2'^* \neq \Sigma^*$.
- (c) $L_2 \cap L_2' = \emptyset$, $L_2^* \neq \Sigma^*$, $L_2 \cup L_2' \neq \Sigma^*$, and $L_2^* \cup L_2'^* = \Sigma^*$.
- (d) $L_2 \cap L_2' \neq \emptyset$, $L_2^* = \Sigma^*$, $L_2 \cup L_2' = \Sigma^*$, and $L_2^* \cup L_2'^* \neq \Sigma^*$.

Answer (c) is correct.

- $L_2 \cap L'_2 = \emptyset$. Because words in L_2 always start with an a and words in L'_2 always start with a b, the intersection $L_2 \cap L'_2$ must be empty, because there are no words that start with an a and start with a b at the same time.
- $L_2^* \neq \Sigma^*$. Note that $L_2^* = L_2 \cup \{\lambda\}$. So if $w \in L_2^*$ then it holds that $w = \lambda$ or w starts with an a. But Σ^* also contains words that start with a b and therefore Σ is strictly larger than L_2^* .
- $L_2 \cup L'_2 \neq \Sigma^*$. We know that $\lambda \in \Sigma^*$. However, λ does not start with an a and it does not start with a b. Therefore λ is not in L_2 and also not in L'_2 . Hence also not in $L_2 \cup L'_2$.
- $L_2^* \cup L_2'^* = \Sigma^*$. Because Σ^* contains all words over the alphabet $\{a,b\}$, it is clear that $L_2^* \cup L_2'^* \subseteq \Sigma^*$. In addition, we have already seen that $L_2^* = L_2 \cup \{\lambda\}$ and $L_2'^* = L_2' \cup \{\lambda\}$. So $L_2^* \cup L_2'^* = L_2 \cup L_2' \cup \{\lambda\}$. But if $w \in \Sigma^*$ then it holds that $w = \lambda$, w starts with an a, or w starts with a b. And hence it follows that $w \in L_2 \cup L_2' \cup \{\lambda\} = L_2^* \cup L_2'^*$.

(c) is correct

3. Consider the language

$$L_3 := \{ w \in \{a, b, c\}^* \mid w \text{ does not contain } ab \}$$

So aacbbacbca and bbccaaccbb are elements of L_3 , but bbcaabcacb is not. Here are two claims about this language:

- 1. $L_3 = \mathcal{L}((aa^*c \cup b \cup c)^*a^*)$
- 2. $L_3 = \mathcal{L}((b^*a^*c)^*b^*a^*)$

Now what is the case?

- (a) Both claims are incorrect.
- (b) Claim 1 is correct, but claim 2 is incorrect.
- (c) Claim 1 is incorrect, but claim 2 is correct.
- (d) is correct (d) Both claims are correct.

Hint: Try to recognize the structure of the expression(s) in the examples.

Answer (d) is correct.

Both claims are indeed correct. This is how we can explain that.

- 1. If we construct a word that doesn't contain ab from left to right, then if we write an a, it will be followed by a possibly empty series of a's, followed by a c, unless we are at the end of the word (which is the aa^*c part). And if we write a b, there are no restrictions for the next symbol (which is the b part). And if we write a c, there are no restrictions for the next symbol (which is the c part). These three parts can be repeated zero or more times (which is the $(aa^*c \cup b \cup c)^*$ part). The only thing that is not covered yet is the situation that the word ends on a series of a's (which is the a^* part). Note that words ending on a b or a c are already covered in the $(aa^*c \cup b \cup c)^*$ part. So indeed $L_3 = \mathcal{L}((aa^*c \cup b \cup c)^*a^*)$.
- 2. We can split a word that doesn't contain ab after the c's as in ac|c|c|bbac|bbbc|baaa. From this example, it is hopefully clear that each block starts with a possibly empty series of b's, followed by a possibly empty series of a's, followed by exactly one c (which is the b^*a^*c part). And there can be zero or more of these blocks (which is the $(b^*a^*c)^*$ part). The only thing missing is that after the last c, there can still be a possibly empty series of b's, followed by a possibly empty series of a's (which is the b^*a^* part). So indeed $L_3 = \mathcal{L}((b^*a^*c)^*b^*a^*)$.

4. Consider the language

$$L_4 = \mathcal{L}\left(\left(a(a \cup b) \cup b\right)\left((a \cup b)(a \cup b)\right)^*\right)$$

Which words are elements of L_4 ?

- (a) aabbaa
- (b) baaaaab
- (c) ababbaba
- (d) is correct (d) All of the above.

Answer (d) is correct.

The total expression is a concatenation of two parts. The first part $(a(a \cup b) \cup b)$ means: either take an a followed by another symbol, or take a single b. And the second part $((a \cup b)(a \cup b))^*$ means: take zero or more copies of exactly two symbols. This leads to the observation:

$$L_4 = \begin{cases} w \in \{a, b\}^* & w \text{ starts with the symbol } a \text{ and has an even} \\ \text{length or} \\ w \text{ starts with the symbol } b \text{ and has an odd} \\ \text{length} \end{cases}$$

Now note that aabbaa starts with an a and has length six, baaaaab starts with a b and has length seven, and ababbaba starts with an a and has length eight. So all words are in L_4 .

5. Consider the grammar

$$G_5 = \langle \{a, b\}, \{S, B\}, \{S \rightarrow B, S \rightarrow aB, B \rightarrow bS, B \rightarrow \lambda\} \rangle$$

What is the minimum number of steps in a production for the word *abab*?

- (a) 4 or less
- (b) 5
- (c) 6

(c) is correct

(d) 7 or more

Answer (c) is correct.

There is only one production for this word:

$$S \rightarrow aB \rightarrow abS \rightarrow abaB \rightarrow ababS \rightarrow ababB \rightarrow abab$$

It takes six steps.

6. Consider the grammar G_6 given by the following rules:

$$\begin{array}{ccc} S & \rightarrow & A \mid aA \\ A & \rightarrow & bS \mid BS \mid \lambda \\ B & \rightarrow & bB \end{array}$$

We want to prove that $baaab \notin \mathcal{L}(G_6)$. Someone claims that this can be done with the invariant

 $P_6(w) := [w \text{ does not contain } aS \text{ and } w \text{ does not contain } aa]$

Will this work? Explain your answer.

It won't work as $P_6(w)$ is not an invariant. Let v = aAa. Then $P_6(v)$ holds because aAa does not contain aS and it does not contain aa. However, because of the rule $A \to \lambda$, we have that $v \to v'$ where v' = aa and $P_6(v')$ clearly doesn't hold, since it contains aa.

7. Consider the grammar G_7 given by the following rules:

$$\begin{array}{ccc} S & \rightarrow & aA \mid aB \\ A & \rightarrow & aS \\ B & \rightarrow & BB \mid b \mid \lambda \end{array}$$

Now what is the case?

(a) Grammar G_7 is right linear and $\mathcal{L}(G_7)$ is a regular language.

(b) Grammar G_7 is not right linear and $\mathcal{L}(G_7)$ is a regular language.

(c) Grammar G_7 is right linear and $\mathcal{L}(G_7)$ is not a regular language.

(d) Grammar G_7 is not right linear and $\mathcal{L}(G_7)$ is not a regular language.

Answer (b) is correct.

(b) is correct

The rule $B \to BB$ is not a right linear rule, making the grammar not right linear. However, this rule simply produces a series of zero or more b's. Hence the rule can be replaced by the right linear rule $B \to bB$. In fact, adding this rule makes the rule $B \to b$ superfluous. So if G_7 is the grammar

$$\begin{array}{ccc} S & \rightarrow & aA \mid aB \\ A & \rightarrow & aS \\ B & \rightarrow & bB \mid \lambda \end{array}$$

then $\mathcal{L}(G_7) = \mathcal{L}(G_7')$ and hence $\mathcal{L}(G_7)$ is a regular language. In fact, $\mathcal{L}(G_7) = \mathcal{L}((aa)^*ab^*)$.

8. Consider the grammar G_8 given by the following rules:

$$\begin{array}{ccc} S & \rightarrow & AB \mid BCS \\ A & \rightarrow & aaA \mid C \\ B & \rightarrow & bB \mid bbC \\ C & \rightarrow & Cc \mid \lambda \end{array}$$

First, give the nullable nonterminals in G_8 and then give a grammar G_8' without any λ -rules such that $\mathcal{L}(G_8) = \mathcal{L}(G_8')$.

The nullable nonterminals in G_8 are A and C as $C \to \lambda$ and $A \to C \to \lambda$. Knowing that A and C are nullable, we have to add the following rules: $S \to B$, $S \to BS$, $A \to aa$, $A \to \lambda$, $B \to bb$, and $C \to c$. This leads to

We can now safely remove the λ -rules and we get G'_8 :