Formal Reasoning 2025
Solutions Test Block 4: Automata and Modal Logic
(18/12/25)

Automata

1. Which deterministic finite automaton accepts the language

Ly :=={w € {a,b}" | w does not contain aa}

g D@D
b

a
g (@)

(d) is correct (d) “ @ a,b
b

b

Answer (d) is correct.

This automaton accepts aa.

b
g
a

a

This is not a DFA as ¢; has two outgoing a transitions.

U om0 O

b

This is the correct one. Note that it is the complement of the one
that accepts words that have aa in it.

2. Consider the context-free grammar

Go: S —aalShS

Give a deterministic finite automaton My such that L£(Ms) = L(G2).
Provide the automaton by copying the list below and completing it by
typing your answers in ASCII:

Set of states:
Initial state:
Set of final states:
delta(q0, a):
delta(q0, b):

Take for instance:

M2 = <{a7 b}7 {q07 q1,42, q.?)}, qo0, {q2}a 5>
with

d(qo,a) =q1 0(qi,a) =q2 (g2,a) =q3 6(g3,a) = g3
0(qo,b) =gz (q1,b) =q3 6(q2,0) =q0 (g3, b) = g3

This automaton has three states, including one final state.

Represented as a diagram, this gives:

3. How many different deterministic finite automata Mj3 over the alphabet
Y := {a, b} exist, such that

e M3 has at most two states,
o)\ g ﬁ(]\[(g) and
o abe L(M;).

(c) is correct (c

Answer (c) is correct.

The first claim is that from the last two requirements, it follows that the
automaton should have ezxactly two states. Because if it has only one state
which is not a final state, then ab ¢ £ (M3), which is not allowed. And if
the only state is a final state, then A € £ (M3), which is also not allowed.
Let us call the initial state gg and the second state g;.

The second claim is that gy is not a final state, that there is at least one
transition from gg to ¢1 and ¢ is a final state. We have already seen that
go cannot be a final state. And if no states are final, then ab ¢ L (M3)
which is not allowed. So ¢; must be a final state. And if there is no
transition from ¢g to ¢1, then again ab & £ (Ms) which is not allowed.

For the transition(s) from go to g1 there are three mutually exclusive
options.

e There is a single transition labeled with a. So §(go,a) = ¢1 and
0(q0,b) = qo. As ab must end in final state ¢; this implies that
0(q1,b) = q1. So the only thing we can actually choose in this case
is whether §(q1,a) = qo or §(q1,a) = q1, as both will do. This gives
two different automata.

e There is a single transition labeled with b. So d(go,a) = ¢o and
8(go,b) = ¢1. This automatically implies that ab ends in final state
g1. So it doesn’t matter what 6(¢q1,a) and §(g1,b) are. This gives
four different automata.

a*b(aUba*b

e There are two transitions labeled with a and b. So 6(go,a) = ¢1
and §(go,b) = g1. As ab must end in final state ¢; this implies that
0(q1,b) = q1. Again, the only thing we can choose in this case is
whether §(¢1,a) = qo or 6(q1,a) = ¢1, as both will do. This gives two
different automata.

So in total, eight different automata comply with these requirements.

4. Consider the following non-deterministic finite automaton My:

What is £(M;)?

(a) L((ab)*(aUb)(aba)*)

(b) L((ab)*(AUa)(aUb)(aba)*)
(¢) is correct (¢) L((ab)*(aUaa Ub)(aba)*)

(d) None of the above.

Answer (c) is correct.

Note that the sink doesn’t add anything, as an NFA typically stops in a
deadlock instead. The loop between the states qg and ¢; accepts all strings
(ab)¥ for k > 0. The loop between the states gs, gs, and g7 accepts all
strings (aba)! for I > 0. And there are only three ways to get from gy to

qs:
A a
® go—q2—Gs
A a a
® go—>q3s > q2—>Gs
A b
® do—~qs —~Gs
So this leads to the language
Ly = {(ab)*z(aba)' | x € {a,aa,b}}
And using regular expressions, this is

Ly := L ((ab)*(aUaa Ub)(aba)*)

Modal logic
5. Consider the sentence
Always when it rains, I get wet.

If we translate this sentence to a formula using the modality of ‘time’ and
the dictionary

R it rains

W1 get wet

which formula is the best option?

(a) is correct (a) OR— W)

(b) is correct

(b) OR — W
(¢) R—0OW
(d) OR —»OW

Answer (a) is correct.

If we translate the formulas back into English, while stressing the difference
between [Jf and f as in ‘now and ever after f’ respectively ‘now f’, we
get:

(a) O(R — W) It is now and ever after the case that if it rains at that
moment, I get wet at that moment.

(b) OR — W If it now and ever after rains, then I get wet now.

(¢) R — OW If it rains now, then I get wet now and ever after.

(d) OR — OW If it now and ever after rains, then I get wet now and
ever after.

Clearly, the first option makes the most sense.

. In the logic T, the axiom schemes LJf — f and Of — Of both hold for

all formulas f. Is this logic appropriate for deontic logic?
(a) No, because it is possible to require something that is not forbidden.
(b) No, because it is possible not to do things that are obligatory.

(c
(d

) Yes, because it is not possible not to do things that are obligatory.
) Yes, because it is not possible to require something that is forbidden.

Answer (b) is correct.

Deontic logic is about obligation. So the first axiom, named 7', means If
f ought to be done, then f is done, which is certainly not the case due to
the reason explained in the second option.

In particular, this also implies that the third option can’t be correct.

The second axiom, named D, means If f ought to be done, then f is
permissible, which typically holds in deontic logic. This is actually what
the fourth option states, however, as that option also states ‘yes’; it clearly
can’t be correct.

And the first option has no relation to the axioms mentioned, and therefore
it makes no sense.

. Provide a Kripke model M7 with at most three worlds {xg, 1, x2}, which

is serial, not reflexive, and such that the formula Ca <+ Qa holds, or more
precisely, such that

M7 EOa < OQa

Provide your answer by filling in the following table, which combines the
definition of the model with a proof of correctness that your model satisfies
the claim M+ E Oa < Qa.

Do not forget to add a conclusion about what the table actually shows.

worlds || R I v [Il=a | Il-Oa | [Il-<>a | [1l- [Ja<-><>a

As Ans doesn’t like ‘verbatim’ text, the table is given as a Python code
block, but don’t worry about the syntax highlighting, just type your an-
swers in ASCII.

Please keep the bars to separate the columns, as that way we can still
parse the table if its alignment is not perfect. Note that if your model has
fewer than three worlds, you can just leave out the worlds that you don’t
need. And if it has more than three worlds, add rows, even though your
model is not allowed to have more than three worlds.

Hint: Below you can find an example of a Kripke model and what such a

table should look like.
xo /_* 3

worlds H R ‘ \%4 ‘ IFa ‘ -0 ‘ IFe ‘ IFOa ‘ IEbVe ‘ I=O(bVe) ‘ IF0Oa + O(bVe)
{x1} {a,b,e} | 1 1 1 1 1 0 0
1

Zo
1
0
1

T
T3

{zo, 21} {a} 0 0 0 1
{zo} {} 0 0 0 1
{a,c}

1
1
{} 0|1 1 1 0

A Kripke model that is serial, needs to have an outgoing arrow for each
world. A Kripke model that is not reflexive, is not allowed to have loops
on the worlds. This means that it is impossible to have such a model with
only one state, as the ‘obligatory outgoing arrow’ needs to go to a different
world.

The simplest Kripke frame that meets this requirement looks like this:

o T
OO
<

Now let’s turn this frame into a model by adding a valuation,

o X1
O
<

and see whether the claim holds or not by completing the table.

worlds || R|V||l—a||l—Da||l—<}a|H—Da<—><>a

To T | a 1 0 0 1
T1 xo 0 1 1 1
T2

(b) is correct

As each world in the model has a 1 in the final column, it follows that
indeed
My EOa < Qa

If we look at the formula and think a little bit about it, that is not a
surprise. The formula a < Qa compares a [with a {, or in other
words, it compares a ‘for all accessible worlds’ with a ‘there exists an
accessible world’. In general, these properties are different. But as we
have a model where each world has exactly one outgoing transition, both
mean the same! So no matter which valuation is chosen for this frame,
the formula will always hold in the whole model!

. Consider the sentence

Some day after tomorrow it will always be true that it never
rains for three consecutive days.

Which LTL formula represents this sentence best, assuming that the time
between z; and x;4 is a day? Use as a dictionary
R it rains
) FXG((RANXR) — ~XXR)
) XFXG((RAXR) — XX-R)
c) GXF((RNXR) — XX-R)
(d) GXXF((-RAN-XR)V-XXR)

a

(
(1
(

Answer (b) is correct.

In order to specify ‘some day after tomorrow’, we need to have two times
X and one time F, the order is not important. The second X is needed
as otherwise the event could already take place tomorrow, instead of after
tomorrow.

And in order to specify ‘there is never a series of three consecutive days
of rain’ we use the G to indicate the ‘never’ and RA X R as a check that it
rains two consecutive days, and then the third day in the series, it should
not rain, so X X-R.

Two of the options are lacking one X, so these are clearly wrong.

And in one of the two options with the proper number of X’s, the implica-

tion in (R A XR) — - XXR is replaced by the equivalent (= (RA XR))V

- XXR, but in the last step, De Morgan has been applied incorrectly as

this formula is equivalent to (-R V =X R)V-X X R, which is not the same
s ("RA-XR)V-XXR.

