3 Methoa

Proof assistants
May 16, 2017

Lucas Franceschino

What is B method?

B-method goal

«= | Specifications Qﬂm“a'
i =| program

B-method goal

«= | Specifications Qﬂm“a'
i =| program

B
= Machine

B-method goal

*— L Actual
* Specifications é \ Drogram
Ei

B ___—— Refinement 1
" Machine

B-method goal

«= | Specifications <_l>j Actua
i =| program
B

B ___—— Refinement 1
= Machine
&
B

Refinement 2

B-method goal

*— L Actual
Specifications é \ Drogram
Ei

B ___—— Refinement 1
= Machine
&
B

Refinement 2

[E

7 Refinement 3

B-method goal

- L Actual

— </>

+— | Specifications é_\ Drogram

B
B __—> Refinement 1
" Machine 7
& =
& C/ ada

Refinement 2

Cos ranons =

7 Refinement 3

B-method goal

*— L Actual
Specifications é \ Drogram

B
= Machine
&
_Lions C/ada
e N

[E

7 Refinement 3

B-method goal

«— | Specifications <[> Actual
o =| program

No gap between specification and
actual program

® The initiator of B method

Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

B4free, Bart, ABTools...
Jean-Raymond
Abrial

G. Laffitte,
F. Mejia,
|. Mc Neal

® The initiator of B method

Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

Jean-Raymond
Abrial

G. Laffitte,
F. Mejia,
|. Mc Neal

® The initiator of B method

Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

(el Published “The B Book”
Atelier B B4free, Bart, ABTools...

Jean-Raymond
Abrial

G. Laffitte,
F. Mejia,
|. Mc Neal

® The initiator of B method

Jean-Raymond
Abrial

Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

(el Published “The B Book”
Atelier B B4free, Bart, ABTools...

o6l Published "Modeling in Event-B : system and software engineering”
Rodin platform

G. Laffitte,
F. Mejia,
|. Mc Neal

® The initiator of B method

Jean-Raymond
Abrial

> Wasinthe development team of Ada

Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

(el Published “The B Book”
Atelier B B4free, Bart, ABTools...

o6l Published "Modeling in Event-B : system and software engineering”
Rodin platform

G. Laffitte,
F. Mejia,
|. Mc Neal

Use cases

© Train related B projects around the worlo

f 7
1/
CLEARSY

BYSTEME ENBINEERING

ALSTOM

Braking system, platform screen doors...

& Use case: Meteor in Paris (line 14)

110 000 lines of B </»

29 000 lemmas s
87 000 lines of Ada </>

& Use case: Meteor in Paris (line 14)

110 000 lines of B </»

29 000 lemmas s
87 000 lines of Ada </>

Driverless trains 4=

Extension in 2003 £
80 million passengers in 2009 &

& Use case: Meteor in Paris (line 14)

110 000 lines of B </>
29 000 lemmas s
| 87 000 lines of Ada </>

9.2 km &
October 1998 ™

Driverless trains «»

| ' 80 million passengers in 2009 &

& Use case: Meteor in Paris (line 14)

110 000 lines of B </>

| 29 000 lemmas ufs
87 000 lines of Ada </>

9.2 km &

October 1998 ™

No bugs discovered yet! ¥

Still in version 1.0 %

Driverless trains 4=

Extension in 2003 £
80 million passengers in 2009 &

Other use cases

« Peugeot cars: formalization of sub systems (lights system,

airbags, motor) to help building diagnostic tools

« Modeling of tasks scheduling from the software controlling the

stage separations of Ariane rocket

* Protocol study

e JavaCard runtime formalization

Java runtime for smartcard
Provide safe: authentication, data storage, application processing

Developing in

B method development

% @@ Validation
«— I /
Specification Integration tests
Conception Unit tests
Code

10

B method development

- - Validation
Specification Integration tests
Conception Unit tests

AT

PVOOF k Code

10

B method development

- - Validation

Specification Integration tests

P« OOV& Conception Unit tests
AT
Pr OOF k Code

10

B method development

o Validation
— /

Specification Integration tests

P« OOV& Conception Unit tests
AT
Pr OOF k Code

10

B method development

R Validation
— /

Specification Integration tests

P(af Conception U;QS
AT
Pr OOF k Code

10

B method development

R Validation
— /

Specification Integfation\tests

P(af Conception U;QS
AT
Pr OOF k Code

10

How does method B works

[Module: modelling of a sub system

O Component

11

How does method B works

[Module: modelling of a sub system Static part |
Definition of: Variables, constants, sets

List of invariants

Dynamic part
O Component Initialize variables
Define operations on variables
Proof
Static part coherence
Initializing preserve invariants
Operations preserve invariants

11

How does method B works

[Module: modelling of a sub system Static part |
Definition of: Variables, constants, sets

List of invariants
Abstract machine Dynamic part

O Component Initialize variables
Define operations on variables

Proof
Static part coherence
Initializing preserve invariants
Operations preserve invariants

11

How does method B works

[Module: modelling of a sub system Static part |
Definition of: Variables, constants, sets

List of invariants

Abstract machine Dynamic part
~ Refinements O Component Initialize variables |
Define operations on variables
Proof

Static part coherence
Initializing preserve invariants
Operations preserve invariants

11

How does method B works

[Module: modelling of a sub system Static part |
Definition of: Variables, constants, sets

List of invariants

Abstract machine Dynamic part
 Refinements O Component Initialize variables

_ Define operations on variables
1 Implementation Proof

Static part coherence
Initializing preserve invariants
Operations preserve invariants

11

How does method B works

[Module: modelling of a sub system Static part |
Definition of: Variables, constants, sets

List of invariants

Abstract machine Dynamic part
 Refinements O Component Initialize variables

_ Define operations on variables
1 Implementation Proof

Static part coherence
Initializing preserve invariants
Operations preserve invariants

We refine a previous
component: we make it
more precise and specific

11

Machine, refinement, implementation

Abstract machine
 Refinements
1 Implementation

Substitutions >

Machine, refinement, implementation

Abstract machine

~ Refinements

1 Implementation

Substitutions >

Machine, refinement, implementation

Become such that Simultaneous operations While loop

Abstract machine

~ Refinements

1 Implementation

Substitutions

Machine, refinement, implementation

Predicated-based IF \

Become such that Simultaneous operations While loop

Abstract machine

~ Refinements

1 Implementation

Substitutions

Machine, refinement, implementation

X X ES

}

Become such that Simultaneous operations While loop

Predicated-based IF \

Abstract machine

~ Refinements

1 Implementation

Substitutions

Machine, refinement, implementation

X X ES

Predicated-based IF a=1:b:=1

Become such that Simultaneous operations While loop

Abstract machine

~ Refinements

1 Implementation

Substitutions

Machine, refinement, implementation

Predicated-based IF \ . XES a=1:b:=1

}

Become such that Simultaneous operations While loop

X:(X€eINT A x<20

Abstract machine

~ Refinements

1 Implementation

Substitutions

Machine, refinement, implementation

Predicated-based IF \

Become such that Simultaneous operations While loop

X:(X€eINT A x<20

Abstract machine

~ Refinements

1 Implementation

Substitutions

Machine, refinement, implementation

X XES a:=1]|b:=1 a=1:b:=1
\ 11]a=1 v/

Become such that Simultaneous operations While loop

N X X €EINT A x<20

Precondition Let bindings Sequencing
Become such that Simultaneous operations While loop

Predicated-based IF \

Abstract machine

~ Refinements

1 Implementation

Substitutions

Machine, refinement, implementation

Predicated-based IF \

Simultaneous operations While loop

N X X €EINT A x<20

Choice

I</

Precondition

11| b:=1 41 b
v/b 1]]a:=1 v/ ’

Abstract machine
Become such that

Precondition Choice Let bindings Sequencing

~ Refinements

Become such that Simultaneous operations While loop

Simultaneous operations While loop

Substitutions

Precondition Choice

1 Implementation
Become such that

12

Machine, refinement, implementation

Predicated-based IF \

Simultaneous operations While loop

N X X €EINT A x<20

Choice

I</

Precondition

11| b:=1 41 b
v/b 1]]a:=1 v/ ’

Abstract machine
Become such that

Precondition Choice Let bindings Sequencing

~ Refinements

Become such that Simultaneous operations While loop

Simultaneous operations While loop

Substitutions

Precondition Choice

1 Implementation
Become such that

12

More substitutions

Machine Refinement Implementation
Block Y Y Y
ldentical Y Y Y
Becomes Equal Y Y Y
Precondition Y Y N
Assertion Y Y Y
Bounded choice Y Y N
IF conditional Y Y Y
Conditional Bounded choice Y Y N
Case Conditional Y Y Y
Unbounded choice Y Y N
Local Definition Y Y N
Becomes Element of Y Y N
Becomes such that Y Y N
Local Variable N Y Y
Seqguencing N Y Y
Operation Call Y Y Y
While Loop N N Y
Simultaneous Y Y N

B language

14

B language

+— ubstitution ™,
State oriented k) @9

14

B language

+— ubstitution ™,
State oriented k) @9

Hoare logic {P}C {0}

14

B language

SubStltUtIOn §
State oriented k) §2> {true} 3 {y=3)
ruey y := y =

Hoare logic {P}C{Q3 {x >2} x := x*x {x >4}

14

B language

SubStltUtIOn §
State oriented k) §2> {true} 3 {y=3)
ruey y := y =

Hoare logic {P}C{Q3 {x >2} x := x*x {x >4}

ASSIGNMENT

(PIE/x]} x =E (P}

14

B language

O
State oriented > {true} y i= 3 {y=3)
Hoare logic {P}C{Q3 {x >2} x := x*x {x >4}

ASSIGNMENT {P}S{Q}, {Q}T{R}
(PI[E/x]} x =E {P} By ST (R

COMPOSITION

14

B language

State oriented

Hoare logic

ASSIGNMENT

(PIE/x]} x =E (P}

@DW@D

{true} y := 3 {y =3}
{P}C{Q} {x >2} x := x*x {x >4}

(Pystey, (TR} .. BAPYS{Q}, (=BAPIT{Q}

{P} S;T {R} {P} if BthenSelse T end {Q}

14

B language

State oriented

Hoare logic

ASSIGNMENT

(PIE/x]} x =E (P}

@DW@D

{true} y := 3 {y =3}
{P}C{Q} {x >2} x := x*x {x >4}

(Pystey, (TR} .. BAPYS{Q}, (=BAPIT{Q}

{P} S;T {R} {P} if BthenSelse T end {Q}

{INB}S {I}

WHILE
{1} while B do S done {=B A I}

14

B language

State oriented

Hoare logic

ASSIGNMENT

(PIE/x]} x =E (P}

@DW@D

{true} y := 3 {y =3}
{P}C{Q} {x >2} x := x*x {x >4}

(Pystey, (TR} .. BAPYS{Q}, (=BAPIT{Q}

{P} S;T {R} {P} if BthenSelse T end {Q}

P —-P, {P}S{Q'}, Q' = Q UAB}S {1}

P} S {0}

CONSEQUENCE _ WHILE
{I} while B do S done {—B A I}

14

B language

15

B language

Arithmetic

15

B language

Arithmetic + — - XY x<>< >

15

B language

Arithmetic + — - XY Xx<>< > 7. N

15

B language

Arithmetic + —+ Y X <>< 2> Z N 1>

15

B language

Arithmetic + — - Y X <>< > Z N 1>

Functions and relations

15

B language

Arithmetic + — - Y X <>< > Z N 1>

Partial / total functions, surjections, lambda,

Functions and relations
domain/range manipulations, closure, inversions...

15

B language

Arithmetic + — - Y X <>< > Z N 1>

— A 4 = R OB

Partial / total functions, surjections, lambda,

Functions and relations
domain/range manipulations, closure, inversions...

+H+ g < »» RYT B

1
- & @ =

15

B language

Arithmetic + — - Y X <>< > Z N 1>

— A 4 = R OB

Partial / total functions, surjections, lambda,

Functions and relations
domain/range manipulations, closure, inversions...

+H+ g < »» RYT B

1
- & @ =

Sets

15

B language

Arithmetic + — - Y X <>< > Z N 1>

— A 4 = R OB

Partial / total functions, surjections, lambda,

Functions and relations
domain/range manipulations, closure, inversions...

++ a2 9 =» RT b

1
- & @ =

Sets Set comprehension, generalized union & intersections

15

B language

Arithmetic + — - Y X <>< > Z N 1>

— A 4 = R OB

Partial / total functions, surjections, lambda,

Functions and relations
domain/range manipulations, closure, inversions...

++ a2 9 =» RT b

1
- & @ =

Sets Set comprehension, generalized union & intersections

Records

15

B language

Arithmetic + — - Y X <>< > Z N 1>

— A 4 = R OB

Partial / total functions, surjections, lambda,

Functions and relations
domain/range manipulations, closure, inversions...

++ a2 9 =» RT b

1
- & @ =

Sets Set comprehension, generalized union & intersections

Records Trees

15

B language

Arithmetic + — - Y X <>< > Z N 1>

— A 4 = R OB

Partial / total functions, surjections, lambda,

Functions and relations
domain/range manipulations, closure, inversions...

+H+ g < »» RYT B

1
- & @ =

Sets Set comprehension, generalized union & intersections

Records Trees Sequences

15

B language

Arithmetic + — - Y X <>< > Z N 1>

— A 4 = R OB

Partial / total functions, surjections, lambda,

Functions and relations
domain/range manipulations, closure, inversions...

+H+ g < »» RYT B

1
- & @ =

Sets Set comprehension, generalized union & intersections

Records Trees Sequences No algebraic data types

15

Proofs with

How does B method handles proofs?

Abstract machine
Component ™ Refinements
1 Implementation

17

How does B method handles proofs?

MACHINE
Name(inputl, input2, ...)

Abstract machine
Component ™ Refinements
1 Implementation

17

How does B method handles proofs?

MACHINE
Abstract machine Name(inputl, input2, ...)

Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A inputZ € INT ...

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)
Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A inputZ € INT ...
CONSTANTS

cstl, cst2,

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)
Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...
CONSTANTS
cstl, cst2,
VARIABLES
varl, var2,

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)

Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...

CONSTANTS
cstl, cst2,

VARIABLES
varl, var2,

INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)
Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...
CONSTANTS
cstl, cst2,
VARIABLES
varl, var2,
INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...
ASSERTIONS
predicatel A predicate2 A ...

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)
Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...
CONSTANTS
cstl, cst2,
VARIABLES
varl, var2,
INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...

ASSERTIONS ecmmas
redicatel @i}%i;?ﬁ?%;y\...

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)

Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...

CONSTANTS
cstl, cst2,

VARIABLES
varl, var2,

INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...

ASSERT S
. emmas
Prove all predicates { @?EE\ @/\ “en

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)

Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...

CONSTANTS
cstl, cst2,

VARIABLES
varl, var2,

INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...

ASSERT S
. emmas
Prove all predicates { @?EE\ @/\ “en

INITIALISATION
varl := expr || var2 := expr

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)
Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...
CONSTANTS
cstl, cst2,
VARIABLES
varl, var2,
INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...

ASSERT
emmas
Prove all predicates { @_ﬂy@\ @/\

For each initialization, prove | INITIALISATION
invariant conservations varl := expr var2 := expr

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)
Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...
CONSTANTS
cstl, cst2,
VARIABLES
varl, var2,
INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...

ASSERT
emmas
Prove all predicates { @_ﬂy@\ @/\

For each initialization, prove | INITIALISATION
invariant conservations varl := expr var2 := expr
OPERATIONS
varOutputl <« funl(il, i2, ...)

varOutput2 <« fun2(il, i2, ...)

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)
Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...
CONSTANTS
cstl, cst2,
VARIABLES
varl, var2,
INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...

ASSERT
emmas
Prove all predicates { @_ﬂy@\ @/\

For each initialization, prove | INITIALISATION
invariant conservations varl := expr var2 := expr
OPERATIONS
varOutputl <« funl(il, i2, ...)

Show each operation e
conserve invariants varOutput2 « fun2(i1, i2, ...)

17

How does B method handles proofs?

MACHINE
= Abstract machine Name(inputl, input2, ...)
Component - @ Refinements CONSTRAINTS
1 Implementation inputl € INT A input2 € INT ...
CONSTANTS
cstl, cst2,
VARIABLES
varl, var2,

77 Proof Obligations INVARIANT
varl + var2 € {x . X**(1/2) € Z} A ...

ASSERT
emmas
Prove all predicates { @_ﬂy@\ @/\

For each initialization, prove | INITIALISATION
invariant conservations varl := expr var2 := expr
OPERATIONS
varOutputl <« funl(il, i2, ...)

Show each operation e
conserve invariants varOutput2 « fun2(i1, i2, ...)

17

Proving with B method: interactive only

£ Atelier B — | >

Atelier B View Workspace Project Component Help

DO OO0 O VELIxEOHOW A0

Workspac... # X & goatReservation (OK|OK|99|61]38%)
a] Classical view - E a Clear
LA
v = |ocal A - -
vBR Component TypeChecked POs Generated Proot Obligations Proved Unproved BO Checked
o @ Reservation 0K 0K 12 2o 0
& @ Reservation i OK OK 36 122 14
™ ™ Reservation r OK DK 51 4 47
@
vids,
%]
e
L
€ >
Tasks &2 ¥ Emms 3 %
| & FErrars (0) [v] & Wamings (0) |—| Multi-Line messages
] ide Finished tasks &3 3 © © 2 v
Message
Project Componen Action Status Messages Ser ™
SeatRe... Reservati.. (&) Finished 36 proof ... loca
Commb Db D mm s e [B | Clmicbad Comed ~& Me lmmm ~
< >
- < >
Mo errors

18

Proving with B method: interactive only

£ Atelier B — | >

Atelier B View Workspace Project Component Help

DO OO0 O VELIxEOHOW A0

Workspac... # X & goatReservation (OK|OK|99|61]38%)
a] Classical view - E a Clear
LA
v = |ocal A ~ s
vBR Component TypeChecked POs Generated Proof Obligations Proved Unproved 80 Checked
o ® Reservation OK 0K 12 2o 0
& @ Reservation i OK OK 36 122 14
™ ™ Reservation r OK 0K 51 4 A7
@
v @S,
L+
e
W
€ >
Tasks & » Emors 3 %
| & FErrars (0) [v] & Wamings (0) |—| Multi-Line messages
] ide Finished tasks &3 3 © © 2 v
Message
Project Componen Action Status Messages Ser ™
SeatRe... Reservati.. (&) Finished 36 proof ... loca
L P [[Fg] Clmicbad Comrd ~f N Il <
< >
- < >
Mo errors

18

Proving with B method: interactive only

£ Atelier B — | >

Atelier B View Workspace Project Component Help

DO OO0 O VELIxEOHOW A0

Workspac... # X & goatReservation (OK|OK|99|61]38%)
a] Classical view - E a Clear
LA
v = |ocal A - (
vBR Component TypeChecked POs Generated Proof Obligations Proved Unproved 80 Checked
ul @ Reservation QK 0K 12 12 0
a ® Reservation i OK OK 36 O
™ ™ Reservation r OK 0K 51 4 A7
@
~ds.
o
e
W
€ >
Tacks & » Emors %
| & FErrars (0) [v] & Wamings (0) |—| Multi-Line messages
] ide Finished tasks &3 3 © © 2 v
Message
Project Componen Action Status Messages Ser ™
SeatRe... Reservati.. (&) Finished 36 proof ... loca
L P [[Fg] Clmicbad Comrd ~f N Il <
< 2
- < >
Mo errors

18

Proving with B method: interactive only

£ Atelier B — | >

Atelier B View Workspace Project Component Help

DO OO0 O VELIEIxXOBOYL OO

Workspac... # X & goatReservation (OK|OK|99|61]38%)
a] Classical view - E a Clear
v = |ocal A =
vBR Component TypeChecked POs Generated Proof Obligations Proved Unproved 80 Checked
o © Reservation QK 0K 12 12
a @© Reservation i OK oK 36 O
™ ™ Reservation r OK 0K 51 4 A7
4]
Proofic Lashs = > @
‘ of{¢es
o roof< tas
E
W
£ > /
Tacks & » Emors %
+| & Errors (0) [& Wamings (0 Multi-Line messages
fie Finished tasks (3 k3 © © 2 (@] & Wamings (0) N ?
Message
Project Componen A n Status Messages Ser ™
SeatRe... Reservati.. (&) Finished 36 proof ... loca
L P [[Fg] Clmicbad Comrd ~f N Il <
< 2
- £ >
Mo errors

18

Proving with B method: interactive only

£ Atelier B — | >

Atelier B View Workspace Project Component Help

DO OO0 O VELIEIxXOBOYL OO

Workspac... # X & goatReservation (OK|OK|99|61]38%)
a] Classical view - E a Clear
LA
v = |ocal A ¢
vBR Component TypeChecked POs Generated Proof Obligations Proved Unproved 80 Checked

ol @ Reservation 0K 0K 12 12

a ® Reservation i OK OK 36 O

™ ™ Reservation r OK 0K 51 4 A7

2]

ves. Proofc tashis - L Lotaes
// ’

L-; -
v Cautoratic)
£ >
Tacks & ® Emors %
+| & Errors (0) [& Wamings (0 Multi-Line messages
fie Finished tasks (3 k3 © © 2 (44 Wamings(0) L ?
Message
Project Componen A n Status Messages Ser ™
SeatRe... Reservati.. (&) Finished 36 proof ... loca
L P [[Fg] Clmicbad Comrd ~f N Il <
< 2
- £ >
Mo errors

18

Proving with B method: interactive only

-£ Atelier B - Prover - Reservation_i - SeatReservation — | X
£ Atelier B Proof Edit View Help
Atelier B View Workspace Project Component Help i 9 ra 9 ™ A 5N & G0 @R | & r PPy PP ss ct te te* = w2
, . [a0 000 WO WY BEOAHEOO OGDE B ® B Foxol »
-5 = I . ’ |
O u u = \._E/ I._, - g)‘Situation 8 x -
. X . .
Waorkspac SeatResenvation (OK|OK[959]61]38%) | [] Show only unproved POs WRefinement is correct’ &
[CI i I i - "check inwvaria Sta 5] : - d - "
] assical view POs recently proved _ heck invariant ((state$l) (eeee) (nmax))) > (BOOL))))
» = |ocal A = All POs - (1..nmax)* {FALSE}: 1..nmax --> BOOL
Component TypeChecked
v &R) , @ PO1 ~
o © Reservation OK e
o v @ |nitialisation
& @ Reservationi OK @ PO1
® Reservation r
o Esefvation OK v @ takeASeat v
e Navigation information available
~ds.
o Proof 8 X
E
oy ~ Force(0)
< > Next
/ o
Tasks
ide Finished tasks e ki
Project Componen A n Status Mess
SeatRe... Reservati.. (&) Finished 36 pr
[T . DU o R [o] Clmicbadd R N . i
< Initial proof obligation 8 x Search hypothesis result 8 X
] btrue A
=3
(1 .. nmax) * {FALSE} : 1 .. nmmax --> BOOL
18

Proving with B method: interactive only

-£ Atelier B - Prover - Reservation_i - SeatReservation — | X
£ Atelier B Proof Edit View Help
Atelier B View Workspace Project Component Help i 9 ra 9 ™ A 5N & G0 @R | & r PPy PP ss ct te te* = w2
, . [a0 000 WO WY BEOAHEOO OGDE B ® B Foxol »
-5 = I . ’ |
O u u = \._E/ I._, - g)‘Situation 8 x -
. X . .
Workspac SeatResenvation (OK|OK[959]61]38%) | [] Show only unproved POs "Refinement is correct” &
~ Classical vi - "check invaria : "
= Eis T vEa) POs recently proved - heck invariant
» = |ocal A = All POs - (1..nmax)* {FALSE}: 1..nmax --> BOOL
Component TypeChecked
v &R) , @ PO1 ~
o © Reservation OK e
o v @ |nitialisation
& @ Reservationi OK @ PO1
® Reservation r
o Esefvation OK v @ takeASeat v
e Navigation information available
~&ds,
o Proof 8 X
E
oy ~ Force(0)
< > Next
/ o
Tasks
ide Finished tasks e ki
Project Componen A n Status Mess
SeatRe... Reservati.. (&) Finished 36 pr
[- P - [o] Cimicbind R N . i
< Initial proof obligation 8 x Search hypothesis result 8 X
] btrue A
=3
(1 .. nmax) * {FALSE} : 1 .. nmmax --> BOOL
18

How does B method internally prove things?

First, expressions are normalized

Expression Normal Form

n>m m+1<=n

m<n m+1l<=n

a <=>b (a=>b)&(b=>a)

a <:b a : POW(b)

a <<: b a : POW(b)¬(a = b)
a/:b not(a : b)

a/= b not(a = b)

a/<:b not(a : POW (b))
a/<<:b a: POW(b)=>a=0b
a: NATURAL | a: INTEGER&0 <= a
NATURAL1 NATURAL — {0}
NAT1 NAT — {0}

FIN1(A) FIN(A)— ({1}
POW1(A) POW(A) —{{}}
seql(4) sealA) — (0]

iseql(A) iseq(A) — {{}}
perm(E) iseq(E)/\(NATURAL — {0} + — >> F)
<> U

{z.y} {z}\/{y}

{z|P} SET(x).P "

How does B method internally prove things?

First, expressions are normalized

a>»b

b+1<a

Expression Normal Form

n>m m+1<=n

m<n m+1l<=n

a <=>b (a=>b)&(b=>a)

a <:b a : POW(b)

a <<: b a : POW(b)¬(a = b)
a/:b not(a : b)

a/= b not(a = b)

a/<:b not(a : POW (b))
a/<<:b a: POW(b)=>a=0b
a: NATURAL | a: INTEGER&0 <= a
NATURAL1 NATURAL — {0}
NAT1 NAT — {0}

FIN1(A) FIN(A)— ({1}
POW1(A) POW(A) —{{}}
seql(4) sealA) — (0]

iseql(A) iseq(A) — {{}}
perm(E) iseq(E)/\(NATURAL — {0} + — >> F)
<> U

{z.y} {z}\/{y}

{z|P} SET(x).P "

How does B method internally prove things?

First, expressions are normalized

a>»b

S c {1,2,3}

b+1<a

SepPow({1}u{2}u {3}

Expression Normal Form

n>m m+1<=n

m<n m+1l<=n

a <=>b (a=>b)&(b=>a)

a <:b a : POW(b)

a <<: b a : POW(b)¬(a = b)
a/:b not(a : b)

a/= b not(a = b)

a/<:b not(a : POW (b))
a/<<:b a: POW(b)=>a=0b
a: NATURAL | a: INTEGER&0 <= a
NATURAL1 NATURAL — {0}
NAT1 NAT — {0}

FIN1(A) FIN(A)— ({1}
POW1(A) POW(A) —{{}}
seql(4) sealA) — (0]

iseql(A) iseq(A) — {{}}
perm(E) iseq(E)/\(NATURAL — {0} + — >> F)
<> U

{z.y} {z}\/{y}

{z|P} SET(x).P "

How does B method internally prove things?

_ _ THEORY SimplifyX IS
Theory files: list of rules (i=> (3 =>Kk) ==(i&73 => k)
) (a => bfalse) == not(a)
) (bfalse => a) == btrue

(a => btrue) == btrue
(btrue => a) == a

(bvrb(x)) &
(x\a)

=>

#x.a == a

(bvrb(x)) &
(x\b)
=>

#x.(a & b) == (#x.a & b) "

How does B method internally prove things?

_ _ THEORY SimplifyX IS
Theory files: list of rules (i=> (3 =>Kk) ==(i&73 => k)
) (a => bfalse) == not(a)

10.000 lines of rules ;

(bfalse => a) == btrue

(a => btrue) == btrue
(btrue => a) == a

(bvrb(x)) &
(x\a)

=>

#x.a == a

(bvrb(x)) &
(x\b)
=>

#x.(a & b) == (#x.a & b) "

How does B method internally prove things?

THEORY SimplifyX IS

Theory files: list of rules (i=> (3 =>Kk) ==(i&73 => k)
.) (a => bfalse) == not(a)

10.000 lines of rules ;

(bfalse => a) == btrue
User can add rules ;

(a => btrue) == btrue

A No safe core | (btrue => a) == a
, (bvrb(x)) &

(x\a)

=>

#x.a == a

(bvrb(x)) &
(x\b)
=>

#x.(a & b) == (#x.a & b) "

How does B method internally prove things?

Theory files: list of rules

10.000 lines of rules
User can add rules

Still, we can prove a
rule before adding it

A No safe core

THEORY SimplifyX IS

J

J

J

(1=>(J=>k)) ==({8&J=>k)
(a => bfalse) == not(a)

(bfalse => a) == btrue

(a => btrue) == btrue

(btrue => a) == a

(bvrb(x)) &
(x\a)

=>

#x.a == a

(bvrb(x)) &
(x\b)
=>

#x.(a & b) == (#x.a & b) "

How does B method internally prove things?

Theory files: list of rules

10.000 lines of rules
User can add rules

Still, we can prove a
rule before adding it

A No safe core

THEORY SimplifyX IS

)

J

J

(1=>(J=>k)) ==({8&]=>k)
(a => bfalse) == not(a)

(bfalse => a) == btrue

(a => btrue) == btrue

P == btrue

(btrue => a) == a

(bvrb(x)) &

(x\a)

=>

#tx.a == a

(bvrb(x)) &
(x\b)

20

How does B method internally prove things?

Theory files: list of rules

10.000 lines of rules
User can add rules

Still, we can prove a
rule before adding it

A No safe core

Automatic prover
 Applies recursively rules
 Case proof
* Tactics

THEORY SimplifyX IS

J

J

J

(1=>(]=>k))==({8&J=>k)
(a => bfalse) == not(a)

(bfalse => a) == btrue

(a => btrue) == btrue

P == btrue

(btrue => a) == a

(bvrb(x)) &

(x\a)

=>

##tx.a == a

(bvrb(x)) &
(x\b)

2

Interactive proofs

Proof construction
Search information
Browsing proof obligations

Command repetition

22

Interactive proofs

Proof construction
Search information
Browsing proof obligations

Command repetition Repeat (rr), loop (bb)...

22

Interactive proofs

Proof construction
Search information
Browsing proof obligations ~ Back (ba), Reset (re), Next (ne), Previous (pv), Goto (go)...

Command repetition Repeat (rr), loop (bb)...

22

Interactive proofs

Proof construction
Search information Search rule / hypothesis / goal, show proof, reduce PO...
Browsing proof obligations ~ Back (ba), Reset (re), Next (ne), Previous (pv), Goto (go)...

Command repetition Repeat (rr), loop (bb)...

22

Interactive proofs

Proof construction

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss

Rule applications

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss

Rule applications ar

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss
Rule applications ar

Rewrite equality applications, abstract terms

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss
Rule applications ar

Rewrite equality applications, abstract terms eh

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss
Rule applications ar

Rewrite equality applications, abstract terms eh ae

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss
Rule applications ar
Rewrite equality applications, abstract terms eh ae

a+3<bANa+3€ES
[}

n<bAnesS

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss
Rule applications ar

Rewrite equality applications, abstract terms eh ae

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss
Rule applications ar
Rewrite equality applications, abstract terms eh ae

Inference rules contradiction, false hypothesis, cases, instantiate

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr
ar
eh

ct

SS

ae

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr
ar
eh

ct

SS

ae

th

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr
ar
eh

ct

SS

ae

th

dc

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr
ar
eh

ct

SS

ae

th

dc

se

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss

Rule applications ar

Rewrite equality applications, abstract terms eh ae

Inference rules contradiction, false hypothesis, cases, instantiate ct fh dc se

Operations on hypothesis deduction, add hypothesis...

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

Operations on hypothesis deduction, add hypothesis...

pr
ar
eh
ct

dd

SS

ae

th

dc

se

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

Operations on hypothesis deduction, add hypothesis...

pr
ar
eh
ct

dd

SS

ae

th

ah

dc

se

Concrete case

Example: seat reservation system

D 2

1 2 10 11 12 14 15 16 17 22 24 25 26 27 28 29 30 31 34 35 36 37 43 G
C L
B L

Two operations: reserve g seat or free a seat

Data : set of seats and sub set of taken seats

25

Thank you for listening!

Any questions?

