
May 16, 2017

B Method
Proof assistants

Lucas Franceschino

What is B method?

◎ B-method goal

Specifications Actual
program

3

◎ B-method goal

Specifications Actual
program


Machine

3

◎ B-method goal

Specifications Actual
program


Machine


Refinement 1

3

◎ B-method goal

Specifications Actual
program


Machine


Refinement 1


Refinement 2

3

◎ B-method goal

Specifications Actual
program


Machine


Refinement 1


Refinement 2


Refinement 3

3

◎ B-method goal

Specifications Actual
program


Machine


Refinement 1

C / ada
Refinement 2


Refinement 3

3

◎ B-method goal

Specifications Actual
program


Machine


Refinement 1

C / ada
Refinement 2


Refinement 3

3

◎ B-method goal

Specifications Actual
program

No gap between specification and
actual program

3

♂ The initiator of B method

Jean-Raymond
Abrial

1970 Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

G. Laffitte,
F. Mejia,

I. Mc Neal

B4free, Bart, ABTools…

4

♂ The initiator of B method

Jean-Raymond
Abrial

1970 Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

G. Laffitte,
F. Mejia,

I. Mc Neal
4

♂ The initiator of B method

Jean-Raymond
Abrial

1970 Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

1996 Published “The B Book”

Atelier B

G. Laffitte,
F. Mejia,

I. Mc Neal

B4free, Bart, ABTools…

4

♂ The initiator of B method

Jean-Raymond
Abrial

1970 Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

1996 Published “The B Book”

Atelier B

2010 Published “Modeling in Event-B : system and software engineering”

Rodin platform

G. Laffitte,
F. Mejia,

I. Mc Neal

B4free, Bart, ABTools…

4

♂ The initiator of B method

Jean-Raymond
Abrial

1970 Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

1996 Published “The B Book”

Atelier B

Was in the development team of Ada

2010 Published “Modeling in Event-B : system and software engineering”

Rodin platform

G. Laffitte,
F. Mejia,

I. Mc Neal

B4free, Bart, ABTools…

4

Use cases

 Train related B projects around the world

Braking system, platform screen doors…
6

 Use case: Meteor in Paris (line 14)

110 000 lines of B 

87 000 lines of Ada 
29 000 lemmas 

7

 Use case: Meteor in Paris (line 14)

Driverless trains 
Extension in 2003 

80 million passengers in 2009 

110 000 lines of B 

87 000 lines of Ada 
29 000 lemmas 

7

 Use case: Meteor in Paris (line 14)

9.2 km .

October 1998 

Driverless trains 
Extension in 2003 

80 million passengers in 2009 

110 000 lines of B 

87 000 lines of Ada 
29 000 lemmas 

7

 Use case: Meteor in Paris (line 14)

9.2 km .

October 1998 
No bugs discovered yet! 

Still in version 1.0 

Driverless trains 
Extension in 2003 

80 million passengers in 2009 

110 000 lines of B 

87 000 lines of Ada 
29 000 lemmas 

7

Other use cases

• Peugeot cars: formalization of sub systems (lights system,

airbags, motor) to help building diagnostic tools

• Modeling of tasks scheduling from the software controlling the

stage separations of Ariane rocket

• Protocol study

• JavaCard runtime formalization
Java runtime for smartcard

Provide safe: authentication, data storage, application processing

8

Developing in B

B method development


Specification


Integration tests


Conception


Unit tests


Code

Validation

10

B method development


Specification


Integration tests


Conception


Unit tests


Code

Validation

10

B method development


Specification


Integration tests


Conception


Unit tests


Code

Validation

10

B method development


Specification


Integration tests


Conception


Unit tests


Code

Validation

10

B method development


Specification


Integration tests


Conception


Unit tests


Code

Validation

10

B method development


Specification


Integration tests


Conception


Unit tests


Code

Validation

10

How does method B works

 Module: modelling of a sub system

 Component

11

How does method B works

 Module: modelling of a sub system

 Component

Static part
Definition of: Variables, constants, sets
List of invariants

Dynamic part
Initialize variables
Define operations on variables

Proof
Static part coherence
Initializing preserve invariants
Operations preserve invariants

11

How does method B works

 Module: modelling of a sub system

 Abstract machine
 Component

Static part
Definition of: Variables, constants, sets
List of invariants

Dynamic part
Initialize variables
Define operations on variables

Proof
Static part coherence
Initializing preserve invariants
Operations preserve invariants

11

How does method B works

 Module: modelling of a sub system

 Abstract machine
 Refinements  Component

Static part
Definition of: Variables, constants, sets
List of invariants

Dynamic part
Initialize variables
Define operations on variables

Proof
Static part coherence
Initializing preserve invariants
Operations preserve invariants

11

How does method B works

 Module: modelling of a sub system

 Abstract machine
 Refinements  Component

Static part
Definition of: Variables, constants, sets
List of invariants

Dynamic part
Initialize variables
Define operations on variables

Proof
Static part coherence
Initializing preserve invariants
Operations preserve invariants

 Implementation

11

How does method B works

 Module: modelling of a sub system

 Abstract machine
 Refinements  Component

Static part
Definition of: Variables, constants, sets
List of invariants

Dynamic part
Initialize variables
Define operations on variables

Proof
Static part coherence
Initializing preserve invariants
Operations preserve invariants

 Implementation

We refine a previous
component: we make it
more precise and specific

11

Machine, refinement, implementation

 Abstract machine
 Refinements
 Implementation

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Predicated-based IF

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Predicated-based IF
ANY x WHERE x ∈ S

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Predicated-based IF
ANY x WHERE x ∈ S a := 1 ; b := 1

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Predicated-based IF
ANY x WHERE x ∈ S a := 1 ; b := 1

x : (x ∈ INT ∧ x < 20) not deterministic

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Predicated-based IF
ANY x WHERE x ∈ S a := 1 ; b := 1a := 1 || b := 1

b := 1 || a := 1

x : (x ∈ INT ∧ x < 20) not deterministic

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation

 Precondition  Choice  Let bindings

 Become such that  Simultaneous operations

 Sequencing

While loop

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Predicated-based IF
ANY x WHERE x ∈ S a := 1 ; b := 1a := 1 || b := 1

b := 1 || a := 1

x : (x ∈ INT ∧ x < 20) not deterministic

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation
 Precondition  Choice  Let bindings

 Become such that  Simultaneous operations

 Sequencing

While loop

 Precondition  Choice  Let bindings

 Become such that  Simultaneous operations

 Sequencing

While loop

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Predicated-based IF
ANY x WHERE x ∈ S a := 1 ; b := 1a := 1 || b := 1

b := 1 || a := 1

x : (x ∈ INT ∧ x < 20) not deterministic

Substitutions 12

Machine, refinement, implementation

 Abstract machine

 Refinements

 Implementation
 Precondition  Choice  Let bindings

 Become such that  Simultaneous operations

 Sequencing

While loop

 Precondition  Choice  Let bindings

 Become such that  Simultaneous operations

 Sequencing

While loop

 Precondition  Choice

 Become such that  Simultaneous operations

 Sequencing

While loop

 Let bindings

Predicated-based IF
ANY x WHERE x ∈ S a := 1 ; b := 1a := 1 || b := 1

b := 1 || a := 1

x : (x ∈ INT ∧ x < 20) not deterministic

M
a
k
i
n
g
p
r
o
g
r
a
m
m
o
r
e
c
o
n
c
r
e
t
e

Substitutions 12

More substitutions

Machine Refinement Implementation
Block Y Y Y
Identical Y Y Y
Becomes Equal Y Y Y
Precondition Y Y N
Assertion Y Y Y
Bounded choice Y Y N
IF conditional Y Y Y
Conditional Bounded choice Y Y N
Case Conditional Y Y Y
Unbounded choice Y Y N
Local Definition Y Y N
Becomes Element of Y Y N
Becomes such that Y Y N
Local Variable N Y Y
Sequencing N Y Y
Operation Call Y Y Y
While Loop N N Y
Simultaneous Y Y N

13

B language

14

B language

State oriented S1 S2

14

B language

State oriented S1 S2

Hoare logic ܲ ሼܳሽ	ܥ	

14

B language

State oriented S1 S2

Hoare logic ܲ ሼܳሽ	ܥ	
݁ݑݎݐ y := 3 ሼݕ ൌ 3ሽ
ݔ ൐ 2 x := x*x ሼݔ ൐ 4ሽ

14

B language

State oriented S1 S2

Hoare logic ܲ ሼܳሽ	ܥ	
݁ݑݎݐ y := 3 ሼݕ ൌ 3ሽ
ݔ ൐ 2 x := x*x ሼݔ ൐ 4ሽ

	
ܲሾݔ/ܧሿ ݔ		 ≔ ሼܲሽ				ܧ

ASSIGNMENT

14

B language

State oriented S1 S2

Hoare logic ܲ ሼܳሽ	ܥ	
݁ݑݎݐ y := 3 ሼݕ ൌ 3ሽ
ݔ ൐ 2 x := x*x ሼݔ ൐ 4ሽ

	
ܲሾݔ/ܧሿ ݔ		 ≔ ሼܲሽ				ܧ

ASSIGNMENT
ܲ 	ܵ	 ܳ 	, 	 ܳ 	ܶ	ሼܴሽ	

ܲ 		ܵ; ܶ		ሼܴሽ
COMPOSITION

14

B language

State oriented S1 S2

Hoare logic ܲ ሼܳሽ	ܥ	
݁ݑݎݐ y := 3 ሼݕ ൌ 3ሽ
ݔ ൐ 2 x := x*x ሼݔ ൐ 4ሽ

	
ܲሾݔ/ܧሿ ݔ		 ≔ ሼܲሽ				ܧ

ASSIGNMENT
ܲ 	ܵ	 ܳ 	, 	 ܳ 	ܶ	ሼܴሽ	

ܲ 		ܵ; ܶ		ሼܴሽ
COMPOSITION

ܤ ∧ ܲ 	ܵ	 ܳ 	, 	 ൓ܤ ∧ ܲ 	ܶ	ሼܳሽ	
ܲ 		if	ܤ	then	ܵ	else	ܶ	end		ሼܳሽ

CONDITIONAL

14

B language

State oriented S1 S2

Hoare logic ܲ ሼܳሽ	ܥ	
݁ݑݎݐ y := 3 ሼݕ ൌ 3ሽ
ݔ ൐ 2 x := x*x ሼݔ ൐ 4ሽ

	
ܲሾݔ/ܧሿ ݔ		 ≔ ሼܲሽ				ܧ

ASSIGNMENT
ܲ 	ܵ	 ܳ 	, 	 ܳ 	ܶ	ሼܴሽ	

ܲ 		ܵ; ܶ		ሼܴሽ
COMPOSITION

ܤ ∧ ܲ 	ܵ	 ܳ 	, 	 ൓ܤ ∧ ܲ 	ܶ	ሼܳሽ	
ܲ 		if	ܤ	then	ܵ	else	ܶ	end		ሼܳሽ

CONDITIONAL

ܫ ∧ ܤ 	ܵ		ሼܫሽ
ܫ 		while	ܤ	do	ܵ	done		ሼ൓ܤ ∧ ሽܫ

WHILE

14

B language

State oriented S1 S2

Hoare logic ܲ ሼܳሽ	ܥ	
݁ݑݎݐ y := 3 ሼݕ ൌ 3ሽ
ݔ ൐ 2 x := x*x ሼݔ ൐ 4ሽ

	
ܲሾݔ/ܧሿ ݔ		 ≔ ሼܲሽ				ܧ

ASSIGNMENT
ܲ 	ܵ	 ܳ 	, 	 ܳ 	ܶ	ሼܴሽ	

ܲ 		ܵ; ܶ		ሼܴሽ
COMPOSITION

ܤ ∧ ܲ 	ܵ	 ܳ 	, 	 ൓ܤ ∧ ܲ 	ܶ	ሼܳሽ	
ܲ 		if	ܤ	then	ܵ	else	ܶ	end		ሼܳሽ

CONDITIONAL

ܫ ∧ ܤ 	ܵ		ሼܫሽ
ܫ 		while	ܤ	do	ܵ	done		ሼ൓ܤ ∧ ሽܫ

WHILE
ܲ	 → ܲᇱ, 	 ܲᇱ 	ܵ	 ܳᇱ , ܳᇱ → ܳ

ܲ 		ܵ		ሼܳሽ
CONSEQUENCE

14

B language

15

B language

Arithmetic

15

B language

൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

Partial / total functions, surjections, lambda,
domain/range manipulations, closure, inversions…Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

Partial / total functions, surjections, lambda,
domain/range manipulations, closure, inversions…Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

Sets

Partial / total functions, surjections, lambda,
domain/range manipulations, closure, inversions…Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

Set comprehension, generalized union & intersectionsSets

Partial / total functions, surjections, lambda,
domain/range manipulations, closure, inversions…Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

Records

Set comprehension, generalized union & intersectionsSets

Partial / total functions, surjections, lambda,
domain/range manipulations, closure, inversions…Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

TreesRecords

Set comprehension, generalized union & intersectionsSets

Partial / total functions, surjections, lambda,
domain/range manipulations, closure, inversions…Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

SequencesTreesRecords

Set comprehension, generalized union & intersectionsSets

Partial / total functions, surjections, lambda,
domain/range manipulations, closure, inversions…Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

B language

No algebraic data typesSequencesTreesRecords

Set comprehension, generalized union & intersectionsSets

Partial / total functions, surjections, lambda,
domain/range manipulations, closure, inversions…Functions and relations

∏		∑Ժ		Գ൅		െ		ൊ ௬ݔ		 	ൈ		൏	൐		൑		൒Arithmetic

15

Proofs with B

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...Prove all predicates

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...

INITIALISATION
var1 := expr || var2 := expr

Prove all predicates

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...

INITIALISATION
var1 := expr || var2 := expr

Prove all predicates

For each initialization, prove
invariant conservations

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...

INITIALISATION
var1 := expr || var2 := expr

OPERATIONS
varOutput1 ← fun1(i1, i2, ...) =

...
varOutput2 ← fun2(i1, i2, ...) =

...

Prove all predicates

For each initialization, prove
invariant conservations

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...

INITIALISATION
var1 := expr || var2 := expr

OPERATIONS
varOutput1 ← fun1(i1, i2, ...) =

...
varOutput2 ← fun2(i1, i2, ...) =

...

Prove all predicates

For each initialization, prove
invariant conservations

Show each operation
conserve invariants

17

How does B method handles proofs?

Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...

INITIALISATION
var1 := expr || var2 := expr

OPERATIONS
varOutput1 ← fun1(i1, i2, ...) =

...
varOutput2 ← fun2(i1, i2, ...) =

...

Prove all predicates

For each initialization, prove
invariant conservations

Show each operation
conserve invariants

 Proof Obligations

17

Proving with B method: interactive only

18

Proving with B method: interactive only

18

Proving with B method: interactive only

18

Proving with B method: interactive only

18

Proving with B method: interactive only

18

Proving with B method: interactive only

18

Proving with B method: interactive only

18

How does B method internally prove things?

First, expressions are normalized

19

How does B method internally prove things?

First, expressions are normalized

ܽ	 ൐ 	ܾ ܾ ൅ 1 ൑ ܽ

19

How does B method internally prove things?

First, expressions are normalized

ܽ	 ൐ 	ܾ ܾ ൅ 1 ൑ ܽ

S	 ⊆ 	 ሼ1,2,3ሽ ܵ ∈ ܱܹܲሺ 1 ∪ 2 ∪ ሼ3ሽሻ

19

How does B method internally prove things?

(btrue => a) == a
;

(bvrb(x)) &
(x\a)
=>
#x.a == a

;
(bvrb(x)) &
(x\b)
=>
#x.(a & b) == (#x.a & b)

THEORY SimplifyX IS
(i => (j => k)) == (i & j => k)

;
(a => bfalse) == not(a)

;
(bfalse => a) == btrue

;
(a => btrue) == btrue

;

Theory files: list of rules

20

How does B method internally prove things?

(btrue => a) == a
;

(bvrb(x)) &
(x\a)
=>
#x.a == a

;
(bvrb(x)) &
(x\b)
=>
#x.(a & b) == (#x.a & b)

THEORY SimplifyX IS
(i => (j => k)) == (i & j => k)

;
(a => bfalse) == not(a)

;
(bfalse => a) == btrue

;
(a => btrue) == btrue

;

Theory files: list of rules

10.000 lines of rules

20

How does B method internally prove things?

(btrue => a) == a
;

(bvrb(x)) &
(x\a)
=>
#x.a == a

;
(bvrb(x)) &
(x\b)
=>
#x.(a & b) == (#x.a & b)

THEORY SimplifyX IS
(i => (j => k)) == (i & j => k)

;
(a => bfalse) == not(a)

;
(bfalse => a) == btrue

;
(a => btrue) == btrue

;

Theory files: list of rules

10.000 lines of rules
User can add rules

 No safe core

20

How does B method internally prove things?

(btrue => a) == a
;

(bvrb(x)) &
(x\a)
=>
#x.a == a

;
(bvrb(x)) &
(x\b)
=>
#x.(a & b) == (#x.a & b)

THEORY SimplifyX IS
(i => (j => k)) == (i & j => k)

;
(a => bfalse) == not(a)

;
(bfalse => a) == btrue

;
(a => btrue) == btrue

;

Theory files: list of rules

10.000 lines of rules
User can add rules

 No safe core Still, we can prove a
rule before adding it

20

How does B method internally prove things?

(btrue => a) == a
;

(bvrb(x)) &
(x\a)
=>
#x.a == a

;
(bvrb(x)) &
(x\b)

THEORY SimplifyX IS
(i => (j => k)) == (i & j => k)

;
(a => bfalse) == not(a)

;
(bfalse => a) == btrue

;
(a => btrue) == btrue

;
P == btrue

;

Theory files: list of rules

10.000 lines of rules
User can add rules

 No safe core Still, we can prove a
rule before adding it

20

How does B method internally prove things?

Theory files: list of rules

 No safe core

10.000 lines of rules
User can add rules

THEORY SimplifyX IS
(i => (j => k)) == (i & j => k)

;
(a => bfalse) == not(a)

;
(bfalse => a) == btrue

;
(a => btrue) == btrue

;

Automatic prover
• Applies recursively rules
• Case proof
• Tactics

(btrue => a) == a
;

(bvrb(x)) &
(x\a)
=>
#x.a == a

;
(bvrb(x)) &
(x\b)

P == btrue
;

Still, we can prove a
rule before adding it

21

Interactive proofs

Proof construction

Search information

Browsing proof obligations

Command repetition

22

Interactive proofs

Proof construction

Search information

Browsing proof obligations

Command repetition Repeat (rr), loop (bb)…

22

Interactive proofs

Proof construction

Search information

Browsing proof obligations

Command repetition

Back (ba), Reset (re), Next (ne), Previous (pv), Goto (go)…

Repeat (rr), loop (bb)…

22

Interactive proofs

Proof construction

Search information

Browsing proof obligations

Command repetition

Back (ba), Reset (re), Next (ne), Previous (pv), Goto (go)…

Repeat (rr), loop (bb)…

Search rule / hypothesis / goal, show proof, reduce PO…

22

Interactive proofs

Proof construction

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification pr ss

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

pr ss

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

pr ss

ar

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

pr ss

ar

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

pr ss

ar

eh

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

pr ss

ar

eh ae

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

pr ss

ar

eh ae

ܽ ൅ 3 ൏ ܾ	 ∧ 	ܽ ൅ 3 ∈ ܵ

݊ ൏ ܾ	 ∧ ݊ ∈ ܵ

⇒
23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

pr ss

ar

eh ae

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr ss

ar

eh ae

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr ss

ar

eh ae

ct

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr ss

ar

eh ae

ct fh

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr ss

ar

eh ae

ct fh dc

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

pr ss

ar

eh ae

ct fh dc se

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

Operations on hypothesis deduction, add hypothesis…

pr ss

ar

eh ae

ct fh dc se

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

Operations on hypothesis deduction, add hypothesis…

pr ss

ar

eh ae

ct fh dc se

dd

23

Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

Operations on hypothesis deduction, add hypothesis…

pr ss

ar

eh ae

ct fh dc se

dd ah

23

Concrete case

Example: seat reservation system

Two operations: reserve a seat or free a seat

Data : set of seats and sub set of taken seats

25

Thank you for listening!

Any questions?

