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◎ B-method goal

Specifications Actual 
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1996 Published “The B Book”

Atelier B
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2010 Published “Modeling in Event-B : system and software engineering”

Rodin platform
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Use cases



 Train related B projects around the world

Braking system, platform screen doors…
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 Use case: Meteor in Paris (line 14)

9.2 km  .

October 1998  
No bugs discovered yet! 

Still in version 1.0  

Driverless trains  
Extension in 2003  

80 million passengers in 2009 

110 000 lines of B 

87 000 lines of Ada 
29 000 lemmas 
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Other use cases

• Peugeot cars: formalization of sub systems (lights system, 

airbags, motor) to help building diagnostic tools

• Modeling of tasks scheduling from the software controlling the 

stage separations of Ariane rocket

• Protocol study

• JavaCard runtime formalization
Java runtime for smartcard

Provide safe: authentication, data storage, application processing
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Developing in B



B method development
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Specification


Integration tests


Conception


Unit tests


Code

Validation
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 Module: modelling of a sub system 

 Abstract machine
 Refinements  Component

Static part
Definition of: Variables, constants, sets
List of invariants

Dynamic part
Initialize variables
Define operations on variables

Proof
Static part coherence
Initializing preserve invariants
Operations preserve invariants

 Implementation

We refine a previous
component: we make it
more precise and specific
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More substitutions

Machine Refinement Implementation
Block        Y Y Y 
Identical Y Y Y 
Becomes Equal      Y Y Y 
Precondition      Y Y N 
Assertion       Y Y Y 
Bounded choice Y Y N 
IF conditional Y Y Y 
Conditional Bounded choice Y Y N 
Case Conditional Y Y Y 
Unbounded choice Y Y N 
Local Definition Y Y N 
Becomes Element of     Y Y N 
Becomes such that     Y Y N 
Local Variable      N Y Y 
Sequencing N Y Y 
Operation Call      Y Y Y 
While Loop       N N Y 
Simultaneous Y Y N 
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Component
 Abstract machine
 Refinements

 Implementation

MACHINE
Name(input1, input2, ...)

CONSTRAINTS
input1 ∈ INT ∧ input2 ∈ INT ...

CONSTANTS
cst1, cst2, ...

VARIABLES
var1, var2, ...

INVARIANT
var1 + var2 ∈ {x . X**(1/2) ∈ Ժ} ∧ ...

ASSERTIONS
predicate1 ∧ predicate2 ∧ ...

INITIALISATION
var1 := expr || var2 := expr

OPERATIONS
varOutput1 ← fun1(i1, i2, ...) =

...
varOutput2 ← fun2(i1, i2, ...) =

...

Prove all predicates 

For each initialization, prove 
invariant conservations

Show each operation 
conserve invariants

 Proof Obligations
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How does B method internally prove things?

First, expressions are normalized
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How does B method internally prove things?

First, expressions are normalized

ܽ	 ൐ 	ܾ ܾ ൅ 1 ൑ ܽ

S	 ⊆ 	 ሼ1,2,3ሽ ܵ ∈ ܱܹܲሺ 1 ∪ 2 ∪ ሼ3ሽሻ
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How does B method internally prove things?

(btrue => a) == a
;

(bvrb(x)) &
(x\a)
=>
#x.a == a

;
(bvrb(x)) &
(x\b)
=>
#x.(a & b) == (#x.a & b)

THEORY SimplifyX IS
(i => (j => k)) == (i & j => k)

;
(a => bfalse) == not(a)

;
(bfalse => a) == btrue

;
(a => btrue) == btrue

;

Theory files: list of rules
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How does B method internally prove things?

Theory files: list of rules

 No safe core

10.000 lines of rules
User can add rules

THEORY SimplifyX IS
(i => (j => k)) == (i & j => k)

;
(a => bfalse) == not(a)

;
(bfalse => a) == btrue

;
(a => btrue) == btrue

;

Automatic prover
• Applies recursively rules
• Case proof
• Tactics

(btrue => a) == a
;

(bvrb(x)) &
(x\a)
=>
#x.a == a

;
(bvrb(x)) &
(x\b)

P == btrue
;

Still, we can prove a 
rule before adding it
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Interactive proofs

Proof construction

Search information

Browsing proof obligations

Command repetition
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Interactive proofs

Proof construction

Search information

Browsing proof obligations

Command repetition

Back (ba), Reset (re), Next (ne), Previous (pv), Goto (go)…

Repeat (rr), loop (bb)…

Search rule / hypothesis / goal, show proof, reduce PO… 
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Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

pr ss

ar

eh ae

ܽ ൅ 3 ൏ ܾ	 ∧ 	ܽ ൅ 3 ∈ ܵ

݊ ൏ ܾ	 ∧ ݊ ∈ ܵ

⇒
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Interactive proofs

Proof construction

Prover call automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

Operations on hypothesis deduction, add hypothesis…

pr ss

ar

eh ae

ct fh dc se

dd ah
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Concrete case



Example: seat reservation system

Two operations: reserve a seat or free a seat

Data : set of seats and sub set of taken seats
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Thank you for listening!

Any questions?


