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® The initiator of B method

Jean-Raymond
Abrial

> Wasinthe development team of Ada

Specification of data structures and programs
Initiated the Z-Notation (in Oxford)

Good for formal specifications, not for development

(el Published “The B Book”
Atelier B B4free, Bart, ABTools...

o6l Published "Modeling in Event-B : system and software engineering”
Rodin platform

G. Laffitte,
F. Mejia,
|. Mc Neal



Use cases



© Train related B projects around the worlo

f 7
1/
CLEARSY

BYSTEME ENBINEERING

ALSTOM

Braking system, platform screen doors...
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& Use case: Meteor in Paris (line 14)

110 000 lines of B </>

| 29 000 lemmas ufs
87 000 lines of Ada </>

9.2 km &

October 1998 ™

No bugs discovered yet! ¥

Still in version 1.0 %

Driverless trains 4=

Extension in 2003 £
80 million passengers in 2009 &




Other use cases

« Peugeot cars: formalization of sub systems (lights system,

airbags, motor) to help building diagnostic tools

« Modeling of tasks scheduling from the software controlling the

stage separations of Ariane rocket

* Protocol study

e JavaCard runtime formalization

Java runtime for smartcard
Provide safe: authentication, data storage, application processing
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How does method B works

[ Module: modelling of a sub system Static part |
Definition of: Variables, constants, sets

List of invariants

Abstract machine Dynamic part
 Refinements O Component Initialize variables

_ Define operations on variables
1 Implementation Proof

Static part coherence
Initializing preserve invariants
Operations preserve invariants

We refine a previous
component: we make it
more precise and specific
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More substitutions

Machine Refinement Implementation
Block Y Y Y
ldentical Y Y Y
Becomes Equal Y Y Y
Precondition Y Y N
Assertion Y Y Y
Bounded choice Y Y N
IF conditional Y Y Y
Conditional Bounded choice Y Y N
Case Conditional Y Y Y
Unbounded choice Y Y N
Local Definition Y Y N
Becomes Element of Y Y N
Becomes such that Y Y N
Local Variable N Y Y
Seqguencing N Y Y
Operation Call Y Y Y
While Loop N N Y
Simultaneous Y Y N
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How does B method internally prove things?

First, expressions are normalized

Expression Normal Form

n>m m+1<=n

m<n m+1l<=n

a <=>b (a=>b)&(b=>a)

a <:b a : POW(b)

a <<: b a : POW(b)&not(a = b)
a/:b not(a : b)

a/= b not(a = b)

a/<:b not(a : POW (b))
a/<<:b a: POW(b)=>a=0b
a: NATURAL | a: INTEGER&0 <= a
NATURAL1 NATURAL — {0}
NAT1 NAT — {0}

FIN1(A) FIN(A)— ({1}
POW1(A) POW(A) —{{}}
seql(4) sealA) — (0]

iseql(A) iseq(A) — {{}}
perm(E) iseq(E)/\(NATURAL — {0} + — >> F)
<> U

{z.y} {z}\/{y}

{z|P} SET(x).P "
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How does B method internally prove things?

First, expressions are normalized

a>»b

S c {1,2,3}

b+1<a

SepPow({1}u{2}u {3}
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How does B method internally prove things?

_ _ THEORY SimplifyX IS
Theory files: list of rules (i=> (3 =>Kk) ==(i&73 => k)
) (a => bfalse) == not(a)
) (bfalse => a) == btrue

(a => btrue) == btrue
(btrue => a) == a

(bvrb(x)) &
(x\a)

=>

#x.a == a

(bvrb(x)) &
(x\b)
=>

#x.(a & b) == (#x.a & b) "
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User can add rules

Still, we can prove a
rule before adding it

A No safe core
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How does B method internally prove things?

Theory files: list of rules

10.000 lines of rules
User can add rules

Still, we can prove a
rule before adding it

A No safe core

THEORY SimplifyX IS

)

J

J

(1=>(J=>k)) ==({8&]=>k)
(a => bfalse) == not(a)

(bfalse => a) == btrue

(a => btrue) == btrue

P == btrue

(btrue => a) == a

(bvrb(x)) &

(x\a)

=>

#tx.a == a

(bvrb(x)) &
(x\b)
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How does B method internally prove things?

Theory files: list of rules

10.000 lines of rules
User can add rules

Still, we can prove a
rule before adding it

A No safe core

Automatic prover
 Applies recursively rules
 Case proof
* Tactics

THEORY SimplifyX IS

J

J

J

(1=>(]=>k))==({8&J=>k)
(a => bfalse) == not(a)

(bfalse => a) == btrue

(a => btrue) == btrue

P == btrue

(btrue => a) == a

(bvrb(x)) &

(x\a)

=>

##tx.a == a

(bvrb(x)) &
(x\b)
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Interactive proofs

Proof construction
Search information
Browsing proof obligations

Command repetition
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Proof construction
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Interactive proofs

Proof construction
Search information Search rule / hypothesis / goal, show proof, reduce PO...
Browsing proof obligations ~ Back (ba), Reset (re), Next (ne), Previous (pv), Goto (go)...

Command repetition  Repeat (rr), loop (bb)...
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Interactive proofs

Proof construction

Prover call  automatic proofs & simplification

Rule applications

Rewrite equality applications, abstract terms

Inference rules contradiction, false hypothesis, cases, instantiate

Operations on hypothesis  deduction, add hypothesis...
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Concrete case



Example: seat reservation system

D 2

1 2 10 11 12 14 15 16 17 22 24 25 26 27 28 29 30 31 34 35 36 37 43 G
C L
B L

Two operations: reserve g seat or free a seat

Data : set of seats and sub set of taken seats
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Thank you for listening!

Any questions?



