Dedukti and Lambdapi

Mikhail Ushakov

Radboud University

June 4, 2025

1/24

Interoperability
@000

The diverse world of Proof Systems

Cubical HoTT

Jgi)tawa E—‘f—s\rl]et[fs Jessie HOL Zero
mega
CiVimpire Metamath
e ACL2 Epigram

— A da X PVS @ There are many proof systems (more
. <& - : .
Minlog @ mg LL SEL4 7% § than 40 mentioned in this course)

- — 0-_ © . . .
gg ¢ (T E: C = 5 o Different systems use different logical
= o @ .
= g&’ﬂi; (O3 theories (DTT, HOL)

ou == NE £ .
wo X R G)ELE“ g @ Not all theorems and definitions are
3 . -
EIE E O Cq | £ _Ié’ available in every proof system
2 o
25 QO a
28 Compcert 2223
Lego Why3 & =
ngthm

Analytica
2/24

Interoperability
[o] Jele}

Why do we need interoperability?

@ Preventing work duplication
@ Improving the reliability of formal proofs through cross-checking

@ Providing multi-system data to machine learning

3/24

Interoperability
[e]e] e}

Why interoperability is difficult?

1 1
2 2 Theoretical issues:
@ Each system is based on different
3 3 axioms
@ A theorem proved in one logic may be
not provable in another proof system
o Different systems use different tactics
n n

4/24

Interoperability
[e]e] e}

Why interoperability is difficult?

1 1
2 2 o
Practical issues:
@ The number of translations is
3 3 quadratic: n x (n — 1) for n systems
@ How can the translations be
maintained and implemented?
n n

4/24

Interoperability
[e]e]e] }

The desirable solution

1 1
@ A logical framework that allows
2 2 embedding different logics
\ / @ Allows for a linear number of
3 D s 3 cross-system translations: 2n for n
systems
@ Allows for expressive embeddings from
: : other systems that scale with real
proofs
n n

5/24

Dedukti
000000000

Dedukti: Overview

@ A logical framework based on All-calculus
modulo theory

@ It can express different kinds of logic
(Constructive logic, CIC, STT, etc.)

@ Allows for checking various libraries of proofs
developed in different systems

6/24

Dedukti

O@0000000

Dedukti: History

@ Developed in 2011 by Mathieu Boespflug in
Haskell as a PhD thesis in Ecole Polytechnique

@ In late 2011, the Deducteam research group in
Inria was created

@ In 2012, the tool was re-implemented in OCaml

DEDUCH
—EAM

7/24

Dedukti
0®0000000

Dedukti: History

@ From 2012 to 2015: new system versions were
developed, several logical theories were
expressed in Dedukti (Matita, HOL Light,
FoCalLiZe, etc.)

e From 2015, Deducteam focused on translating
proofs between different logical theories to
allow export to different proof systems (Coq,
Lean, PVS, etc.)

7/24

Dedukti
00e000000

Dedukti: Projects

OpenTheory

Matita \Krajena,

gda2Dedukty

sabelle_Dedukti

Agda

LRAT
SMT-LIB
Irati2dk
ArchSAT -
HOL-Light
hot2dk _
Dedukti
(STTfa)

Isabelle

Logipedia

Rocq, Lean,

PVS, OpenTheory,

8/24

Dedukti
[e]e]e] lelelele]e)

Dedukti: Logical Foundations

AM-Calculus modulo theory = AM-Calculus® + Rewriting rules

1Extension of the Simply Typed Lambda Calculus with Dependent types
9/24

Dedukti
[e]e]e]e] Telelele)

Al-Calculus: Typing Rules

Well-formedness of a context

= A: Kind =A: Type I" well-formed
[] well-formed I, x : A well-formed I, x : A well-formed I+ Type : Kind

I well-formed

cAcT
rx A &)

10/24

Dedukti
[e]e]e]e] Telelele)

Al-Calculus: Typing Rules

Product rules

= A: Type INx:AF B: Kind N A: Type Ix:AkFB: Type
N=MNx:A.B: Kind MN=MNx:A.B: Type

Abstraction rules

' A: Type Ix:AFB: Kind Nx:A-t:B
N=-Ax:At:lNx:A.B

M= A: Type x:AkFB: Type MNx:AFt:B
NEXx:At:Mx:A.B

10/24

Dedukti
[e]e]e]e] Telelele)

Al-Calculus: Typing Rules

Application rule

Nt:MNx:A.B r-t:A
r=(tt):(f/x)B

Conversion rules

MN=t: A M= A: Type =B : Type
: (A=5 B)
Mr-t:B

r-t:A TFA:Kind TF+B:Kind
: (A=g B)
r-t:B

10/24

Dedukti
00000000

Al-Calculus Modulo Theory

Context is split into local and global ones:
@ Locality of the empty context

I" well-formed
=[] local
@ Declaration of an object variable in a local context

I A local NAFA: Type
M= A, x: Alocal

Well-formed global contexts are allowed to store rewrite rules:
I" well-formed = A local

1 —2 r well-formed

11/24

Dedukti
00000000

Al-Calculus Modulo Theory

Conversion rules are extended to account for the rewrite rules

M= A: Type = B: Type NrN-t: A

A=4 1B
r-¢:B (A=pr °B)

= A: Kind = B: Kind Mr-t: A
N-t:B

(A=pr B)

=4 is a reflexive-symmetric transitive closure of the rewrite relation —gr
11/24

Dedukti
00000000

Al-Calculus Modulo Theory

Subject reduction expresses that the reduction preserves the type of the term

I strongly well-formed ' A: Type/Kind

[] strongly well-formed® I, x : A strongly well-formed

I" strongly well-formed FTHEI=8r

M—=2r strongly well-formed
Rewrite rule typing

l'is a pattern MARTI:T MAETr: T dom(A) C FV(I)
FE1—=%r

LAl the rules in T are well-typed
11/24

Dedukti
000000e00

Dedukti: Syntax

nat : Type.

0 : nat.
S : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus 0 n --> n.

[n1, n2] plus (S n1) n2 --> S (plus nl n2).
def two := S (S5 0).

def K2 := x:nat => two.

12/24

Dedukti
000000e00

Dedukti: Syntax

I+ Type : Kind
[+ nat : Type well-formed

nat : Type. 4— Declaration of a type:

0 : nat.
S : nat -> nat.
def plus : nat -> nat -> nat.

[n] plus 0 n --> n.
[n1, n2] plus (S n1) n2 --> S (plus nl n2).

def two := S (S 0).

def K2 := x:nat => two.

12/24

Dedukti
000000e00

Dedukti: Syntax

nat : Type.
. . . I+ nat: Type
0 : nat. 4— Declaration of an object variable: "
S : nat -> nat. I O : nat well-formed
def plus : nat -> nat -> nat.

[n] plus 0 n --> n.
[n1, n2] plus (S n1) n2 --> S (plus nl n2).

def two := S (S 0).

def K2 := x:nat => two.

12/24

Dedukti
000000e00

Dedukti: Syntax

nat : Type.

0 : nat.

["F nat : Type I, x : nat = nat : Type
S : nat -> nat. <— Types product:

[+ Tx: nat.nat: Type
def plus : nat -> nat -> nat.
[n] plus 0 n --> n.
[n1, n2] plus (S n1) n2 --> S (plus nl n2).
def two := S (5 0).

def K2 := x:nat => two.

12/24

Dedukti
000000e00

Dedukti: Syntax

Rewrite rules with local contexts:
nat : Type.

plus(O, n) is a pattern
0 : nat. I,{n} + Tplus(O, n) : nat r,{n}+ 7n: nat {n} C FV(plus(O, n))

S : nat -> nat. 7
I+ plus(O,n) =" n

def plus : nat -¥ nat -> nat.

[n] plus 0 n -->n.

[n1, n2] plus (S n1) n2 --> S (plus nl n2).
def two := S (S 0).

def K2 := x:nat => two.

12/24

Dedukti
000000e00

Dedukti: Syntax

nat : Type.

0 : nat.
S : nat -> nat.

def plus : nat -> nat -> nat.
[n] plus 0 n --> n.
[n1, n2] plus (S n1) n2 --> S (plus nl n2).

[+ S :Mx: nat.nat =SO: nat

def two := S (S 0). <— Objects application: FF5(50) nat

def K2 := x:nat => two.

12/24

Dedukti
000000e00

Dedukti: Syntax

nat : Type.

0 : nat.
S : nat -> nat.

def plus : nat -> nat -> nat.
[n] plus 0 n --> n.
[n1, n2] plus (S n1) n2 --> S (plus nl n2).

def two := S (S 0).

- o Lambda abstraction:

def K2 := x:nat =>,t\w.

I+ nat : Type [, x : nat - nat : Type [, x : nat - two : nat

[+ Ax : nat.two : MNx : nat. nat

12/24

Dedukti
000000080

Dedukti: Embedding Minimal Predicate Logic

Minimal Predicate Logic

t=x|f(t,...,t)
A=P(t,...,t) | (A= A) | Vx.A

Embedding in Dedukti

=% [F(tn,....ta)] = (E[t] ... [ta]), [P(tr,....ta)] = ® [t] ... [ta]),
[A — B] = [A] -> [B], [Vex. Al = x5 -> [A]

13/24

Dedukti
00000000e

Dedukti: Demo

Checking a proof for:
Vrx.(P(x) = P(x))

14 /24

Lambdapi
@0000

Lambdapi: Overview

An interactive proof assistant based on All-calculus modulo rewriting
A new implementation of the Dedukti logical framework

Allows developing proofs inside the system

Comes with a repository of pre-defined logics

Compatible with Dedukti (through the export command)

Sources can be exported to Rocq

There exist plugins for Emacs, Vim, and VSCode

15/24

Lambdapi: History

Lambdapi
0e000

@ The system was proposed by Rodolphe Lepigre

@ The first version was released in 2018

Commit 6aed610

Rodolphe Lepigre committed on Sep 1, 2017
First version, few tests, no file format.

¥ master . lambdapi-1.0 +-- 0.0.8.9

First commit

16 /24

Lambdapi
[e]e] Tele]

Lambdapi: Syntax

constant symbol nat : TYPE;

constant symbol 0 : nat;
constant symbol S : nat — nat;

symbol plus : nat — nat — nat;
rule plus 0 $n — $n;
rule plus (S $n1) $n2 — S (plus $nl $n2);

symbol two =S (S 0);
symbol K2 = A (x : nat), two;

17/24

Lambdapi
00000

Lambdapi: Tactics

The symbol command followed by begin allows to enter an interactive proof mode.
The end exits from the proof mode.

Proof tactics:

abort admit apply assume fail generalize have induction

refine remove set simplify solve why3
Proof tactics on equality:

reflexivity rewrite symmetry

18/24

Lambdapi
00000

Lambdapi: Tactics

The symbol command followed by begin allows to enter an interactive proof mode.
The end exits from the proof mode.

Queries

assert assertnot compute debug flag print proofterm prover

prover_timeout search type verbose

5 (5 (5 (50)))

No quick fixes available

nat - nat (0] ¢

No quick fixes available

No quick fixes

type K2;

compute plus two two; assert - S 0 : nat;

18/24

Lambdapi
[e]e]e]e]]

Lambdapi: Demo

Vrx.(P(x) = P(x))

(A= B —= () = (A= B) = A= C

Vrx.(Vry.P(y)) = P(x)

19/24

A Rocq plugin to translate Rocq proofs into Dedukti terms.

Rocq
VO

CoqlnE

A,

Dedukti
.dk

Overview:

@ Is capable of translating a sufficiently large
subset of Rocq theory in Dedukti (84% of
StdLib)

@ Current development is mainly focused on
supporting universe polymorphism

Translation details:

@ Fixpoints and inductive types are translated

using new declarations and rewrite rules

@ Since Dedukti only supports namespaces, all

structure definitions include module parameters
20/ 24

CoglnE: Demo

Inductive types and inductive predicates.

Inductive MyNat :=
| MyQ : MyNat
| MyS : MyNat -> MyNat.

Inductive MyEven : MyNat -> Prop :=
| O_even : MyEven MyO
| S_even : forall n : MyNat, MyEven n -> MyEven (MyS (MyS n)).

Lemma two_is_even : MyEven (MyS (MyS My0)).
Proof.

apply S_even, 0O_even.
Qed.

21/24

CoglnE: Demo

Translation pipeline

Rocq

coqc

Rocq
.VO

CoqInE |

Dedukti
.dk

lambdapi
export

Lambdapi
Ip

22/24

CoglnE: Demo

Let's prove:
Lemma four_is_even : MyEven (MyS (MyS (MyS (MyS My0)))).

... but in Lambdapi

23/24

End
°

Thank you!

Do you have any questions?

24 /24

	Interoperability
	Dedukti
	Lambdapi
	CoqInE
	End

