
Interoperability Dedukti Lambdapi CoqInE End

Dedukti and Lambdapi

Mikhail Ushakov

Radboud University

June 4, 2025

1 / 24

Interoperability Dedukti Lambdapi CoqInE End

The diverse world of Proof Systems

There are many proof systems (more
than 40 mentioned in this course)

Different systems use different logical
theories (DTT, HOL)

Not all theorems and definitions are
available in every proof system

2 / 24

Interoperability Dedukti Lambdapi CoqInE End

Why do we need interoperability?

Preventing work duplication

Improving the reliability of formal proofs through cross-checking

Providing multi-system data to machine learning

3 / 24

Interoperability Dedukti Lambdapi CoqInE End

Why interoperability is difficult?

1 1

2 2

3 3

...
...

n n

Theoretical issues:

Each system is based on different
axioms

A theorem proved in one logic may be
not provable in another proof system

Different systems use different tactics

4 / 24

Interoperability Dedukti Lambdapi CoqInE End

Why interoperability is difficult?

1 1

2 2

3 3

...
...

n n

Practical issues:

The number of translations is
quadratic: n × (n − 1) for n systems

How can the translations be
maintained and implemented?

4 / 24

Interoperability Dedukti Lambdapi CoqInE End

The desirable solution

1 1

2 2

3 D 3

...
...

n n

A logical framework that allows
embedding different logics

Allows for a linear number of
cross-system translations: 2n for n
systems

Allows for expressive embeddings from
other systems that scale with real
proofs

5 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Overview

A logical framework based on λΠ-calculus
modulo theory

It can express different kinds of logic
(Constructive logic, CIC, STT, etc.)

Allows for checking various libraries of proofs
developed in different systems

6 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: History

Developed in 2011 by Mathieu Boespflug in
Haskell as a PhD thesis in École Polytechnique

In late 2011, the Deducteam research group in
Inria was created

In 2012, the tool was re-implemented in OCaml

7 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: History

From 2012 to 2015: new system versions were
developed, several logical theories were
expressed in Dedukti (Matita, HOL Light,
FoCaLiZe, etc.)

From 2015, Deducteam focused on translating
proofs between different logical theories to
allow export to different proof systems (Coq,
Lean, PVS, etc.)

7 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Projects

Dedukti
Dedukti
(STTfa)

Rocq, Lean,
PVS, OpenTheory,

. . .

Logipedia

Rocq

IsabelleAgda

OpenTheory

Matita

TSTP

LRAT
SMT-LIB

HOL-Light

CoqInE

Isabelle Dedukti

Agda2Dedukti

Holide

Krajono

Ekstrakto

lrat2dk

ArchSAT

hol2dk

8 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Logical Foundations

λΠ-Calculus modulo theory = λΠ-Calculus1 + Rewriting rules

1Extension of the Simply Typed Lambda Calculus with Dependent types
9 / 24

Interoperability Dedukti Lambdapi CoqInE End

λΠ-Calculus: Typing Rules

Well-formedness of a context

[] well-formed

Γ ⊢ A : Kind

Γ, x : A well-formed

Γ ⊢ A : Type

Γ, x : A well-formed

Γ well-formed

Γ ⊢ Type : Kind

Γ well-formed

Γ ⊢ x : A
(x : A ∈ Γ)

10 / 24

Interoperability Dedukti Lambdapi CoqInE End

λΠ-Calculus: Typing Rules

Product rules

Γ ⊢ A : Type Γ, x : A ⊢ B : Kind

Γ ⊢ Πx : A .B : Kind

Γ ⊢ A : Type Γ, x : A ⊢ B : Type

Γ ⊢ Πx : A .B : Type

Abstraction rules

Γ ⊢ A : Type Γ, x : A ⊢ B : Kind Γ, x : A ⊢ t : B

Γ ⊢ λx : A t : Πx : A .B

Γ ⊢ A : Type Γ, x : A ⊢ B : Type Γ, x : A ⊢ t : B

Γ ⊢ λx : A t : Πx : A .B

10 / 24

Interoperability Dedukti Lambdapi CoqInE End

λΠ-Calculus: Typing Rules

Application rule

Γ ⊢ t : Πx : A .B Γ ⊢ t ′ : A

Γ ⊢ (t t ′) : (t ′/x)B

Conversion rules

Γ ⊢ t : A Γ ⊢ A : Type Γ ⊢ B : Type

Γ ⊢ t : B
(A ≡β B)

Γ ⊢ t : A Γ ⊢ A : Kind Γ ⊢ B : Kind

Γ ⊢ t : B
(A ≡β B)

10 / 24

Interoperability Dedukti Lambdapi CoqInE End

λΠ-Calculus Modulo Theory

Context is split into local and global ones:

Locality of the empty context

Γ well-formed

Γ ⊢ [] local

Declaration of an object variable in a local context

Γ ⊢ ∆ local Γ,∆ ⊢ A : Type

Γ ⊢ ∆, x : A local

Well-formed global contexts are allowed to store rewrite rules:

Γ well-formed Γ ⊢ ∆ local

Γ, l →∆ r well-formed

11 / 24

Interoperability Dedukti Lambdapi CoqInE End

λΠ-Calculus Modulo Theory

Conversion rules are extended to account for the rewrite rules

Γ ⊢ A : Type Γ ⊢ B : Type Γ ⊢ t : A

Γ ⊢ t : B
(A ≡βΓ

1B)

Γ ⊢ A : Kind Γ ⊢ B : Kind Γ ⊢ t : A

Γ ⊢ t : B
(A ≡βΓ B)

1≡βΓ is a reflexive-symmetric transitive closure of the rewrite relation →βΓ
11 / 24

Interoperability Dedukti Lambdapi CoqInE End

λΠ-Calculus Modulo Theory

Subject reduction expresses that the reduction preserves the type of the term

[] strongly well-formed1
Γ strongly well-formed Γ ⊢ A : Type/Kind

Γ, x : A strongly well-formed

Γ strongly well-formed Γ ⊢ l →∆ r

Γ, l →∆ r strongly well-formed

Rewrite rule typing

l is a pattern Γ,∆ ⊢ τ l : T Γ,∆ ⊢ τ r : T dom(∆) ⊆ FV (l)

Γ ⊢ l →∆ r

1All the rules in Γ are well-typed
11 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Syntax

nat : Type.

O : nat.

S : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus O n --> n.

[n1, n2] plus (S n1) n2 --> S (plus n1 n2).

def two := S (S O).

def K2 := x:nat => two.

12 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Syntax

nat : Type. Declaration of a type:
Γ ⊢ Type : Kind

Γ ⊢ nat : Type well-formed

O : nat.

S : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus O n --> n.

[n1, n2] plus (S n1) n2 --> S (plus n1 n2).

def two := S (S O).

def K2 := x:nat => two.

12 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Syntax

nat : Type.

O : nat. Declaration of an object variable:
Γ ⊢ nat : Type

Γ ⊢ O : nat well-formedS : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus O n --> n.

[n1, n2] plus (S n1) n2 --> S (plus n1 n2).

def two := S (S O).

def K2 := x:nat => two.

12 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Syntax

nat : Type.

O : nat.

S : nat -> nat. Types product:
Γ ⊢ nat : Type Γ, x : nat ⊢ nat : Type

Γ ⊢ Πx : nat . nat : Type

def plus : nat -> nat -> nat.

[n] plus O n --> n.

[n1, n2] plus (S n1) n2 --> S (plus n1 n2).

def two := S (S O).

def K2 := x:nat => two.

12 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Syntax

nat : Type.

O : nat.

S : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus O n -->

Rewrite rules with local contexts:

plus(O, n) is a pattern
Γ, {n} ⊢ τplus(O, n) : nat Γ, {n} ⊢ τn : nat {n} ⊆ FV (plus(O, n))

Γ ⊢ plus(O, n) →{n} n

n.

[n1, n2] plus (S n1) n2 --> S (plus n1 n2).

def two := S (S O).

def K2 := x:nat => two.

12 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Syntax

nat : Type.

O : nat.

S : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus O n --> n.

[n1, n2] plus (S n1) n2 --> S (plus n1 n2).

def two := S (S O). Objects application:
Γ ⊢ S : Πx : nat . nat Γ ⊢ S O : nat

Γ ⊢ S (S O) : nat

def K2 := x:nat => two.

12 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Syntax

nat : Type.

O : nat.

S : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus O n --> n.

[n1, n2] plus (S n1) n2 --> S (plus n1 n2).

def two := S (S O).

def K2 := x:nat => Lambda abstraction:

Γ ⊢ nat : Type Γ, x : nat ⊢ nat : Type Γ, x : nat ⊢ two : nat

Γ ⊢ λx : nat . two : Πx : nat . nat

two.

12 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Embedding Minimal Predicate Logic

Minimal Predicate Logic

t = x | f (t, . . . , t)

A = P(t, . . . , t) | (A → A) | ∀x .A

Embedding in Dedukti

JxK = x, Jf (t1, . . . , tn)K = (f Jt1K . . . JtnK), JP(t1, . . . , tn)K = (P Jt1K . . . JtnK),

JA =⇒ BK = JAK -> JBK, J∀sx .AK = x:s -> JAK

13 / 24

Interoperability Dedukti Lambdapi CoqInE End

Dedukti: Demo

Checking a proof for:

∀Tx . (P(x) =⇒ P(x))

14 / 24

Interoperability Dedukti Lambdapi CoqInE End

Lambdapi: Overview

An interactive proof assistant based on λΠ-calculus modulo rewriting

A new implementation of the Dedukti logical framework

Allows developing proofs inside the system

Comes with a repository of pre-defined logics

Compatible with Dedukti (through the export command)

Sources can be exported to Rocq

There exist plugins for Emacs, Vim, and VSCode

15 / 24

Interoperability Dedukti Lambdapi CoqInE End

Lambdapi: History

The system was proposed by Rodolphe Lepigre

The first version was released in 2018

First commit

16 / 24

Interoperability Dedukti Lambdapi CoqInE End

Lambdapi: Syntax

constant symbol nat : TYPE;

constant symbol O : nat;

constant symbol S : nat → nat;

symbol plus : nat → nat → nat;

rule plus O $n ↪→ $n;
rule plus (S $n1) $n2 ↪→ S (plus $n1 $n2);

symbol two := S (S O);

symbol K2 := λ (x : nat), two;

17 / 24

Interoperability Dedukti Lambdapi CoqInE End

Lambdapi: Tactics

The symbol command followed by begin allows to enter an interactive proof mode.
The end exits from the proof mode.

Proof tactics:

abort admit apply assume fail generalize have induction

refine remove set simplify solve why3

Proof tactics on equality:

reflexivity rewrite symmetry

18 / 24

Interoperability Dedukti Lambdapi CoqInE End

Lambdapi: Tactics

The symbol command followed by begin allows to enter an interactive proof mode.
The end exits from the proof mode.

Queries

assert assertnot compute debug flag print proofterm prover

prover timeout search type verbose

18 / 24

Interoperability Dedukti Lambdapi CoqInE End

Lambdapi: Demo

∀Tx . (P(x) =⇒ P(x))

(A =⇒ B =⇒ C) =⇒ (A =⇒ B) =⇒ A =⇒ C

∀Tx . (∀Ty .P(y)) =⇒ P(x)

19 / 24

Interoperability Dedukti Lambdapi CoqInE End

CoqInE

A Rocq plugin to translate Rocq proofs into Dedukti terms.

Rocq
.vo

Dedukti
.dk

CoqInE

Overview:

Is capable of translating a sufficiently large
subset of Rocq theory in Dedukti (84% of
StdLib)

Current development is mainly focused on
supporting universe polymorphism

Translation details:

Fixpoints and inductive types are translated
using new declarations and rewrite rules

Since Dedukti only supports namespaces, all
structure definitions include module parameters

20 / 24

Interoperability Dedukti Lambdapi CoqInE End

CoqInE: Demo

Inductive types and inductive predicates.

Inductive MyNat :=

| MyO : MyNat

| MyS : MyNat -> MyNat.

Inductive MyEven : MyNat -> Prop :=

| O_even : MyEven MyO

| S_even : forall n : MyNat, MyEven n -> MyEven (MyS (MyS n)).

Lemma two_is_even : MyEven (MyS (MyS MyO)).

Proof.

apply S_even, O_even.

Qed.
21 / 24

Interoperability Dedukti Lambdapi CoqInE End

CoqInE: Demo

Translation pipeline

Rocq
.v

Rocq
.vo

Dedukti
.dk

Lambdapi
.lpcoqc CoqInE lambdapi

export

22 / 24

Interoperability Dedukti Lambdapi CoqInE End

CoqInE: Demo

Let’s prove:

Lemma four_is_even : MyEven (MyS (MyS (MyS (MyS MyO)))).

. . . but in Lambdapi

23 / 24

Interoperability Dedukti Lambdapi CoqInE End

Thank you!
Do you have any questions?

24 / 24

	Interoperability
	Dedukti
	Lambdapi
	CoqInE
	End

