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1. Consider the following formula of first order propositional logic:

((A → B) → A) → (A → B) → B

(a) Give a proof in first order propositional logic of this formula.
(Write all names of the proof rules in the proof tree.)

[A → By]

[(A → B) → Ax] [A → By]
E→

A
E→

B I[y]→
(A → B) → B

I[x]→
((A → B) → A) → (A → B) → B

(b) Give the proof term in simply typed λ-calculus à la Church.

λx : (A → B) → A .λy : A → B .y(xy)

(c) Give the type judgment for the term from the previous subexer-
cise.

⊢ λx : (A → B) → A .λy : A → B .y(xy) : ((A → B) → A) → (A → B) → B

(d) Give a derivation of the type judgment from the previous subex-
ercise. (You do not need to give names for the typing rules in the
derivation tree, and you may use abbreviations for contexts.)

We use the abbreviation Γ1 := x : (A → B) → A, y : A → B.

Γ1 ⊢ y : A → B

Γ1 ⊢ x : (A → B) → A Γ1 ⊢ y : A → B

Γ1 ⊢ xy : A

Γ1 ⊢ y(xy) : B

x : (A → B) → A ⊢ λy : A → B .y(xy) : (A → B) → B

⊢ λx : (A → B) → A .λy : A → B .y(xy) : ((A → B) → A) → (A → B) → B
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(e) Is the proof term from subexercise (1b) in normal form? If not,
reduce it to a normal form. If yes, give a term of this type that is
not in normal form.

Yes, there are no β-redexes in the term. The following term is not
in normal form:

λx : (A → B) → A .λy : A → B .(λz : B. z)(y(xy))

2. Consider the following formula of first order predicate logic:

(∀x. P (x) → Q(x)) → (∀x. P (x)) → ∀x.Q(x)

Furthermore we have the following λC context:

Γ2 := D : ∗ , P : D → ∗ , Q : D → ∗

(a) Give a proof in first order predicate logic of this formula. (Write
all names of the proof rules in the proof tree.)

[∀x.P (x) → Q(x)H1 ]
E∀

P (x) → Q(x)

[∀x.P (x)H2 ]
E∀

P (x)
E→

Q(x)
I∀∀x.Q(x)

I[H2]→
(∀x.P (x)) → ∀x.Q(x)

I[H1]→
(∀x.P (x) → Q(x)) → (∀x.P (x)) → ∀x.Q(x)

(b) Which of the rules in this proof has a variable condition, what is
this condition, and why is it satisfied?

The I∀ rule has the variable condition that x should not occur
freely in any of the available assumptions. Yes, this condition is
satisfied, as the available assumptions at the use of this rule do
not contain any free variables at all.

(c) Give the type of λC that corresponds to the formula in the context
Γ2. (Use the syntax for dependent products from Femke’s course
notes, i.e., written using Π and with explicit types.)

(Πx : D.Px → Qx) → (Πx : D.Px) → Πx : D.Qx
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(d) Give a λC proof term for the type from the previous subexercise.
(See page 8 for the typing rules.)

λH1 : (Πx : D.Px → Qx). λH2 : (Πx : D.Px). λx : D.H1x(H2x)

3. Consider the following term of λC:

and2 := λA,B : ∗.ΠC : ∗. (A → B → C) → C

(a) Give the type of and2 in λC. (See page 8 for the typing rules.)

∗ → ∗ → ∗

(b) Is and2 also typeable in λ2? Explain your answer.

No, it is not. It also needs the product rule with s1 = s2 = □,
and therefore we need to be at least in λω.

(c) Give a term of λC that inhabits the following type:

ΠA,B : ∗. A → B → and2 AB

λA,B : ∗. λx : A. λy : B. λC : ∗. λf : A → B → C. fxy

(d) Give a term of λC that inhabits the following type:

ΠA,B : ∗. and2 AB → A

λA,B : ∗. λp : and2 AB. pA(λa : A. λb : B. a)

4. Consider the λC type ∗ → ∗.

(a) Give the λC typing judgment (without a derivation) that gives
the kind of this type.

⊢ (∗ → ∗) : □
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(b) Give a derivation in λC of the judgment from the previous subex-
ercise. (See page 8 for the typing rules. You do not need to give
names for the typing rules in the derivation tree.)

⊢ ∗ : □
⊢ ∗ : □ ⊢ ∗ : □

A : ∗ ⊢ ∗ : □
⊢ ∗ → ∗ : □

(c) Give an inhabitant in λC of this type that is not the identity.

λA : ∗. A → A

5. Consider the following terms of the untyped λ-calculus:

K∗ := λx.λy.y (1)

Ω := (λx.xx)(λx.xx) (2)

M := K∗Ω (3)

(a) Which of these terms are confluent? Explain your answer.

All these terms are confluent, because β-reduction in the λ-calculus
is confluent (by e.g. Takahashi’s proof).

(b) Which of these terms are SN (strongly normalizing)? Explain your
answer.

The term K∗ is in normal form, and hence it is SN. The term Ω
reduces to itself, and hence it is not SN. The term M reduces to
itself, and hence it is not SN.

(c) Which of these terms are WN (weakly normalizing)? Explain your
answer.

The term K∗ is SN, and thus WN. The only reduction from Ω
is to itself, and hence it is not WN. The term M reduces to the
normal form λx.x, hence it is WN.

(d) Which of these terms are typeable in simply typed λ-calculus à
la Curry? For the terms that are typeable, you have to give the
most general type (but you do not need to explain how you have
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obtained this type, nor why it is a most general type). For the
terms that are not typeable, you should explain why not.

The terms Ω and K∗Ω are not SN, and thus not typeable because
that would contradict the SN property of λ→. The term K∗ is
typeable, and has principle type A → B → B.

6. Consider the Coq inductive type for lists:

Inductive list (A : Type) : Type :=

| nil : list A

| cons : A -> list A -> list A.

(a) What is the type of list, nil, and cons?

list : Type -> Type

nil : forall A : Type, list A

cons : forall A : Type, A -> list A -> list A

(b) Give a Coq term that represents the list of natural numbers (3 1 4).

cons nat 3 (cons nat 1 (cons nat 1 (nil nat)))

(c) Give the type of the dependent recursion principle list_rect for
this inductive type. (You are allowed to use either Coq or PTS
syntax to give this induction principle.)

forall A : Type, forall P : list A -> Type,

P (nil A) ->

(forall (x : A) (l : list A),

P l -> P (cons A x l)) ->

forall l, P l

(d) Write a function map with type

forall A B : Type, (A -> B) -> list A -> list B

that maps a function over the elements of the list using a combi-
nation of Fixpoint and match.
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Fixpoint map (A B : Type)

(f : A -> B) (l : list A) : list B :=

match l with

| nil => nil B

| cons x l => cons B (f x) (map A B f l)

end

(e) Now also write the map function using the recursion principle from
subexercise (6c).

Definition map (A B : Type)

(f : A -> B) : list A -> list B :=

list_rect A

(fun l : list A => list B)

(nil B)

(fun (x : A) (l : list A) => cons B (f x))

7. Consider the type for equality in HoTT, written using Coq syntax:

Inductive eq (A : Type) (x : A) : A -> Type :=

| refl : eq A x x.

We write x =A y or even x = y for (eqAxy). The induction principle
for equality is:

A : Type x : A P : Πz : A. x = z → Type H : Px(reflAx) y : A p : x = y

eq_rectAxP H y p : Pyp

with reduction rule:

eq_rectAxP H x (reflAx) →ι H

(a) To what kind of mathematical objects do types and equality cor-
respond using the homotopy interpretation of type theory?

Types correspond to (topological) spaces, and equality corresponds
to paths between these spaces. (Equalities between equality proofs
correspond to homotopies.)
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(b) Write a function transport with type

ΠA : Type.ΠP : A → Type.Πx, y : A. x = y → Px → Py

using the induction principle eq_rect. (You are allowed to use
either Coq or PTS syntax.)

λA : Type. λP : A → Type. λx, y : A. λp : x = y. λH : Px.

eq_rectAx (λz : A. λq : x = z. Pz)H y p

Definition transport :=

fun A : Type =>

fun P : A -> Type =>

fun x y : A => fun p : x = y =>

fun H : P x =>

eq_rect A x

(fun z : A => fun q : x = z => P z) H y p.

(c) Dependent functions are fibrations in the homotopy interpretation
of type theory. That means, there is a function apd with type

ΠA : Type.ΠP : A → Type.Πf : (Πx : A.Px).

Πx, y : A.Πp : x = y. p∗(fx) = fy,

where p∗ denotes transportAP x y p. Draw a diagram to indicate
why the use of p∗ is necessary.

The terms fx and fy have different types, namely Bx and By,
respectively. Therefore, to be able to compare these terms we use
the transport p∗. In a diagram:

A

Bx

By

x

y

fx

p∗(fx)

fy

f

f

p
∗

p

a
p
d
A
P
f
x
y
p
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(d) Give the definition of apd using the induction principle eq_rect.
(You are allowed to use either Coq or PTS syntax.)

λA : Type. λP : A → Type. λf : (Πx : A.Px). λx : A.

eq_rectAx (λz : A. λq : x = z. q∗(fx) = fz)(refl (Px) (fx))

Definition apd :=

fun A : Type =>

fun P : A -> Type =>

fun f : (forall x : A, P x) =>

fun x : A =>

eq_rect A x (fun z : A => fun q : x = z =>

transport A P x z q (f x) = f z)

(refl (P x) (f x)).

(e) HoTT extends type theory with additional features. Name two of
those features and give an example of their use.

The two most important features are:

• Higher inductive types, these extend conventional inductive
types with path contructors. Examples are: the interval, the
circle, and quotients.

• Univalence, an axiom that enables one to prove that isomor-
phic types are equal. For equal, it enables one to prove that
the binary naturals are equal to the unary naturals.

A consequence of both these features is functional extensionality.
Other features as universe polymorphism, or universe scaling, are
also allowed in case proper examples are given.
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