';:‘ Higher-Order and Symbolic Computation,, 12, 125-170 (1999)

(© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

CPS Translations and Applications:
The Cube and Beyond

GILLES BARTHE gilles@di.uminho.pt
Departamento de Inforatica, Universidade do Minho, 4709 Braga Codex, Portugal

JOHN HATCLIFF hatcliff @cis.ksu.edu
Department of Computing and Information Sciences, Kansas State University, Manhattan, KS, USA, 66506

MORTEN HEINE B. SORENSEN rambo@diku.dk
DIKU, Universitetsparken 1, DK-2100 Copenhagen, Denmark

Abstract. Continuation passing style (CPS) translations of typexiculi have numerous applications. How-

ever, the range of these applications has been confined by the fact that CPS translations are known for
dependentype systems only, thus excluding well-known systems like the calculus of constructions (CC) and the
logical frameworks (LF). This paper presents techniques for CPS translating systems with dependent types, with
an emphasis on pure type-theoretical applications.

In thefirst partof the paper we review several lines of work in which the need for CPS translations of dependent
type systems has arisen, and discuss the difficulties involved with CPS translating such systems. One way of
overcoming these difficulties is to work with so-callddmain-freetype systems. Thus, instead of Barendregt’s
A-cube we shall consider tldomain-freer-cube and instead of traditional pure type systems, we shall consider
domain-free pure type systems

We therefore begin theecond parby reviewing the domain-free-cube, which includes domain-free versions
of CC and LF, and then present CPS translations for all the systems of the domairctree. We also introduce
Direct Style (DS) (i.e., inverse CPS) translations for all the systems of the domain-été®e; such DS translations,
which have been used in a number of applications, were previously formulated for untyped and simply-typed
languages only.

In thethird part we review domain-free pure type systems and generalize the CPS translations of the domain-
free A-cube to a large class of domain-free pure type systems which includes most of the systems that appear in
the literature, including those of the domain-feeeube. Many translations that appear in the literature arise as
special cases of ours.

In thefourth partof the paper we present two approaches to CPS translations of traditional pure type systems.
The first, indirect, technique lifts the CPS translation of domain-free pure type systems to the analogous class
of traditional pure type systems by using results that relate derivations in domain-free and traditional pure type
systems. The second, direct, approach translates derivations, requiring a certain order on derivations to be well-
founded. Both techniques yield translations for most of the systems that appear in the literature, including those
of Barendregt’s.-cube.

Keywords: continuation-passing style, pure type systems, dependent types, the lambda cube

1. Introduction

Continuation passing style (CPS) translations of typealculi have appeared throughout
the literature since the work of Meyer and Wand [46]. Applications, too numerous to be

126 BARTHE, HATCLIFF AND SORENSEN

listed exhaustively here, include compilation [1, 25], transformation [14, 49], and analysis
[58, 59, 65] of typed programming languages, construction of semantics definitions for
languages with jumps [56, 61], exceptions, and concurrency primitives [26], embedding of
classical logicsinintuitionistic logics [31, 48], techniques to infer strong normalization from
weak normalization in typet-calculi [66, 74], and the construction of looping combinators

in inconsistent pure type systems [15]. Related Direct Style (DS) translations [17, 19, 58]
have also been used in both theoretical [57] and implementation-oriented applications [60].

The range of these applications has been confined thus far by the fact that CPS translations
are known fomon-dependenype systems only. Indeed, the most general class of systems
with known CPS translation seems to be the non-dependent logical pure type systems,
studied by Coquand and Herbelin [15] and later by Werner [73]. While this class contains
a number of well-known systems, like simply typgetalculus and Girard’s Systefa
(second-ordek-calculus) and Systea (higher-orden.-calculus), it also excludes some
well-known dependent systems, e.g., the calculus of constructions (CC) and the logical
frameworks (LF). As for DS translations, they have only been defined for untyped and
simply-typed languages.

Below we sketch three of the above mentioned applications of CPS translations in more
detail: intermediate languages for compiling and partial evaluation, inferring strong nor-
malization from weak normalization in typedcalculi and embedding classical logics in
intuitionistic logics. With these examples we hope to convince the reader that, indeed, it
is desirable to extend existing results concerning CPS translations to richer type systems,
including systems with dependent types. The last two subsections discuss the difficulties
involved with this extension and how we propose to solve them in this paper.

1.1. Intermediate languages for compiling

CPS or languages with properties similar to CPS (such as A-normal forms [25] or monadic
normal forms [39]—we refer to these &P S-based languagkeare often used as interme-

diate languages when compiling and partial evaluating functional languages [1, 21, 38, 40,
43, 50, 60, 68]. These applications take advantage of the fact that, in CPS, all intermediate
values are named and that contexts are represented explicitly. For example, intermediate
value naming is used to aid register allocation in compiling (roughly, each name corres-
ponds to a register) and to prevent computations from being discarded or reordered in partial
evaluation. Explicit context representation is helpful for optimizing tail-calls in compiling
and for performing binding-time improvements in partial evaluation.

Moreover, current trends in compilation and partial evaluation are emphasizing the im-
portance oftyped CPS-based intermediate languages. These intermediate languages are
particularly relevant for compilation of languages like ML and Haskell that have sophisti-
cated polymorphic type systems. Recently, Meijer and Peyton Jones [45] suggested using the
A-cube as a basis for typed intermediate languages. This strategy builds on a well-established
practice of using Systerh for compilation (see e.qg., [35, 37, 47, 51, 71, 64]). Theube
and more general pure type systems seem well-suited for intermediate languages because
of the following features:

CPS TRANSLATIONS AND APPLICATIONS 127

e compactnesssince terms and types are conflated in one syntactic category, the same
functions can be used for their manipulation, and

e parametricity the intermediate language is robust with respect to changes to the type
system of the source language—extensions to the source type system often amount to
changing only the specification of the pure type system.

Direct-style (DS) translations have been used for performing partial evaluation, and for
designing intermediate languages for compilation and partial evaluation. Danvy and Lawall
[17, 19] used CPS and DS translations to enable partial evaluation of functional programs
with control operators without requiring partial evaluators to treat control operators. This

proceeds in three steps: (1) remove control operators by CPS translating, (2) partially
evaluate, (3) apply a DS translation to obtain a specialized program in direct-style. They
apply this technique to e.g., co-routines written using Scheoad&c control operator.

Sabry and Felleisen [58] and Flanagan et al. [25] illustrated how a DS translation could
be used to derive an appropriate reduction calculus for an intermediate language called
A-normal forms. Sabry and Wadler [60] and the authors [8] use DS translations to establish
correctness properties of CPS-based translations. Lawall and Thiemann use a DS translation
to prove the correctness of a partial evaluation strategy for specializing functional programs
with computational effects [43].

Given the wide applicability of CPS and DS translations for compilation and partial
evaluation as well as the recent emphasis on typed CPS-based intermediate languages, it is
worthwhile to investigate how they can be scaled up to languages with type systems that can
be described using thecube and the framework of pure type systems. Various researchers
are advocating programming languages with dependent types, and an investigation of CPS
seems especially relevant in this context. For example, Augustsson [2] has developed
a version of Haskell with dependent types called Cayenne, and Xi and Pfenning have
proposed an extension of ML that uses dependent types to eliminate array bound checking
[75]. The lack of CPS/DS translations for dependently-typed systems means that none of
the CPS/DS techniques discussed above can be applied immediately to such systems.

1.2. Strong normalization from weak normalization

Informally, a term in some calculus is weakly normalizing if it has a reduction sequence
ending in a normal form, i.e., in a term to which no further reductions apply. A term is
strongly normalizing if all reduction sequences from the term eventually end in normal
forms; that is, if the term has no infinite reductions.

The classical proof of strong normalization fe#reduction in simply typed.-calculus
is due to Tait [69]. It was generalized to second-order typedlculus by Girard [30], and
subsequently simplified by Tait [70]. The technique is very flexible and has been generalized
to a variety ofa-calculi.

For some notions of reduction in some typedalculi there is a technique to prove weak
normalization that is simpler than the Tait-Girard technique to prove strong normalization.
For instance, Turing [27] proves weak normalization gereduction in simply typed.-
calculus by giving an explicit measure which decreases in every step of a ¢gerediuction

128 BARTHE, HATCLIFF AND SORENSEN

sequence. Prawitz [53] independently uses the same technique to prove weak normalization
for reduction of natural deduction derivations in predicate logic.

Since weak normalization is sometimes easier to establish than strong normalization, it
is natural to develop techniques to infer the latter from the former. Indeed, several such
techniques have been presented, most of which infer strong normalization of one notion of
reduction from weak normalization ofraore complicatedotion of reduction, see [66] for
references. However Sgrensen [66] and Xi [74] recently developed techniques which infer
strong normalization oB-reduction in a typed-calculus from weak normalization of the
samenotion of reduction, i.e-reduction.

These techniques provide some hope for a positive answer to a conjecture, presented by
Barendregt aTyped Lambda-Calculus and Applicatioidinburgh 1995stating that for
every pure type system weak normalizationgefeduction implies strong normalization
of B-reduction. The conjecture has also been mentioned by Geuvers [28], and, in a less
concrete form, by Klop.

To explain these recent techniques by Sgrensen and Xi we consider simply typed
A-calculusa la Curry. LetA denote the set aintypedi-terms as defined by the abstract
syntax:

A>M:i=X]|AX.M | MM,

wherex ranges over a denumerable set of variables. The sstgfle typed is defined
by the abstract syntax:

Toti=a|tn1—>

wherea ranges over a denumerable set of type variables. The sentéxtss the set of
all

{X1: 71, ..., %Xn . Tn}

wherety, ..., 1y € 7, Xy, ..., X, are variables, and whese # x; fori # j. We write
x :tfor{x:t}andl', T’ for I UT" where it is assumed that for no varialdés thereo
andr such that botix : o € T andx : € I'". The relatiort- on triples C, M, o), where
" is a contextM is ai-term, andy is a simple type, is defined by:

'x:oFP:1 '-P:o—>1t THQ:o
N'x:tkEx:t 'EAxx.P.:o—>r1 r-PQ:r

A i-term M is typableif there arel’ ando suchthal" - M : o.
As usualg-reduction— g on A is the smallest compatible relation such that

(AX.P)Q =5 P{x:=Q}

where P{x := Q} denotes substitution o) for all the free occurrences of in P.1
A g-normal formis aA-term M such that there is no otherterm N with M —45 N. A

CPS TRANSLATIONS AND APPLICATIONS 129

[z] = M.z k
[Pz M] = Me.k(Az[M])
(M1 M,) = Mk [Mq] (Dm.m [M:] k)

Figure L Plotkin’s call-by-name CPS translation for untypeterms.

() = Akzk
(Az.M) = M.k (Az.Ahy ((M)h) z)

Figure 2 Modified call-by-name CPS translation for untypeterms.

A-termM is g-weakly normalizingf there exists g@-reduction sequendd —4 --- —g N
ending in g8-normal formN, andg-strongly normalizingf all 8-reduction sequences from
M end ing-normal forms (that is, if there are no infinifereduction sequences from).?
We shall say that simply typedcalculus isveaklyandstrongly normalizingf all typable
terms are weakly and strongly normalizing, respectively. The latter property trivially implies
the former, but the converse is not obvious.

Recall Plotkin’s [52] CPS translatiom]: A — A defined in figure 1. The main idea of
the techniques by Sarensen and Xi is to modify Plotkin’s translation by changing the clause
for abstractions so as to arrive at the translati@n A — A defined in figure 2. The free
variabley on the right hand side must be so construed as to be fresh every time the clause
containing it is invoked. Thus, we do not have

(Ax.Az.X) = Ak.k(Ax.Ah.y(AlI (Az.am.y((Ak.xkym)z)h)x)
but rather
(Ax.Az.X) = Ak.k(Ax.Ah.yp (AL Az am.yo ((Ak.xk)m)2)h)x)

For every abstractionx.P in (M), x occurs free inP. Therefore, by the Conservation
Theorem fon | (see [3]), weak normalization @M) implies strong normalization M).

The intuition behind this result is that the only way a term can be weakly normalizing and
at the same time fail to be strongly normalizing is by having, roughly, a subterm with an
infinite reduction and the capability to erase—via an abstractio® wherex is not free

in P—this subterm.

One can also show that strong normalizatioriidf) implies strong normalization d¥l.
Thus, if (M) is weakly normalizingM is strongly normalizing.

Incidentally, the modified translation does not map a term to something which is
B-equivalent (orgn-equivalent) with the original term, but the translation is still very
useful for the intended application.

Now let L be a fixed type variable, antlc = 0 —1. The map(e) : 7 — T
defined in figure 3 is the call-by-name analogue of Meyer and Wand'’s [45] CPS translation
of types. As usual{l') = {Xx: (o) | X:o € I'}. One can now show thatif - M:o
then(T"), A -+ (M) : (o) for a certainA; that is, the translation maps simply typable terms

130 BARTHE, HATCLIFF AND SORENSEN

@ =y
(@)’ = a
(=7 = (6) 2 (1)

Figure 3 Call-by-name CPS translation of types.

to simply typable terms. It follows that if all typable terms are weakly normalizing then
all typable terms are in fact strongly normalizing. Indeed, suppose all typable terms are
weakly normalizing. Given any typable teruh, also(M) is typable, hencéM) is weakly
normalizing, and therefor®! is strongly normalizing.

A main problem in extending the technique to other typezhlculi is to extend the CPS
translation. The paper [66] presents the technique for versions of second- and higher-order
A-calculus, as well as for systems with subtypes and recursive types. Later, the authors
[7] generalize the technique to a class of non-dependent pure type systems. Thus far the
technique has not been applied to dependent systems, partly because CPS translations for
such systems are not known, and partly because of certain other difficulties which are
beyond the scope of this paper.

1.3. Classical pure type systems

The Curry-Howard isomorphisniil6, 42] states a correspondence between constructive
logics and typed.-calculi, and reflects an old idea that proofs in constructive logics are
certain functions and objects. The isomorphism has evolved with the invention of numerous
typeda-calculi and corresponding natural deduction logics—see [4, 28].

Until the late 1980s, the Curry-Howard isomorphism was concerned exclusively with
constructive logics. At that time Griffin [31] discovered that Felleisen’s [22, 24] control
operatorC could be meaningfully added to the simply typedalculus by typing® with
the double negation rule. The reduction rules@oare related to well-known reductions
on classical proofs [53, 62, 67]. Moreover, Griffin discovered that well-known double-
negation embeddings of classical logic in intuitionistic logic, due to Kolmogorov and others,
correspond to CPS-translatiohs.

For concreteness we consider again simple types; here we assumk ithat fixed
type variable. LetA,, denote the set of untypedterms extended with a simple control
operatoru:

AydMi=X[AX.M | MM | ux.M

wherex ranges over a denumerable set of variables. The relation triples (O, M, o),
whererl is a contextM € A, ando is a simple type, is defined by:
x:oFP:1T
I'Xx:tkEx:7t F'-AX.P:io—>r1
'-P:o—>1 I'FQ:0o I,Xx:—-ockFM: _L
r-PQ:r I'Eux.M:o

An M e A, istypableif there arel” ando such thal” - M : o.

CPS TRANSLATIONS AND APPLICATIONS 131

There are several reduction rules one can adopAfgrby — g,, we denote the smallest
compatible relation such that

(AX.P)Q —p, P{x:=Q}
(uX.P)Q =g, my.P{x:=2x12.y(zQ)}

where againP{x := Q} denotes substitution d for all the free occurrences afin P;

this is the core of the system studied in [55].44-normal form is ax-term M such that
there is no othex-termN with M — g, N. A A-termsM is g -weakly normalizingf there
exists agu-reduction sequencel — g, --- — g, N ending in a8u-normal formN, and
Bu-strongly normalizingf all Bu-reduction sequences froM end inBu-normal forms
(that s, if there are no infinitg u-reduction sequences from the). The above.-calculus
is weaklyand strongly normalizingf all typable terms are8u-weakly andgu-strongly
normalizing, respectively.

What we have above may be construed as a natural deduction presentation of classical
propositional logic where proofs are decorated with terms (these can, in turn, be viewed as a
linear representation of the proofs), whereas the formulation of the simply typeftulus
in the preceding subsection corresponds to minimal propositional logic.

As mentioned above, CPS translations of control operators correspond to embeddings of
classical logics. Indeed, consider the extension of Plotkin’s call-by-name CPS-translation
in figure 4, which is a call-by-name variant of Griffin’s translation. One can then show the
embedding property.e. thatl' = M : ¢ implies(I") ~ (M) : (o). This shows that logical
consistency of minimal, propositional logic implies consistency of classical propositional
logic. Indeed, assume classical propositional logic were inconsistent;-i.sl : 1 for
someM. Then alsd- (M) : =—_1, and thert- (M)Ax.x : L. Thus, the assumption implies
that minimal, propositional logic is inconsistent t®o.

The embedding property can also be used to relate normalization in classical logic
with normalization in minimal logic and to extract computational contents of classical
proofs.

Recently, several authors have considered control operators in the context of rich type
disciplines. Werner [73] considers non-dependent logical pure type systems extended with
a variant of theu-operator, and shows that the extended systems is strongly normalizing
if the same holds for the underlying pure type system—using CPS translations from the
extended systems to the underlying pure type systems. The authors [6] study a more general
notion of classical pure type system, whereby most logical pure type systems, including
those with dependent types, give rise to a corresponding classical pure type system.

{z) = Ak.zk

(Az.M) = Ik.k(\z.{M))

(My M) = Xe.(My) (Am.m (Ma) k)

(uz. M) = Ak.((M){z := Ah.h (A\j.Xijk)}) Az.z

Figure 4 Call-by-name CPS translation af,,.

132 BARTHE, HATCLIFF AND SORENSEN

In order to study embeddings of classical pure type systems into pure type systems, in
general, the need arises for more general CPS-translations, and preliminary versions of such
translations in fact appeared in [6].

1.4. Difficulties with dependent types

Recall Plotkin’s translation in figure 1. The translation is definedrgluction over the
structure(or alternatively the siz¢ of terms This method of definition scales up to richer
languages that are either untyped [18, 58] or typed using a “Curry-style” type system
[35, 39], i.e. atype system in which the terms are the untyptatms possibly extended
with other forms such as conditionals, or control operators as in the langyage

However, as mentioned in the preceding two subsections, we are interested in extending
CPS translations to pure type systems (in particular, dependent pure type systems) and
these are “Church-style” type systems in that they make usewiain-full abstractions
AX:o. M where a tagr is attached to indicate the domain of the argumentor such
systems the induction over terms does not generally work. In a nut-shell, the translation of
an abstractionx : o. M has form

(AX:o. M) = Ak: 1. K(AX: (o). (M)) (%)

and the problem is: what shoutdbe? It turns out that if we want the analogue of the
embedding property to hold, thershould be-(p) wherep is the type ofix: .M. Thus,
we need to take the type of a term into account when transforming the term.

The conventional solution is to define the CPS translation by induction over the structure
(or over the height) oflerivationsI” = M : A. For example, this is the approach taken by
Harper and Lillibridge when CPS translatihg [34]. With such definitions, one generally
desires a&oherence propertygiven two different derivation®; andD, of ' = M : o, the
translationgD;) and(D;) areequivalenin some sense. Resonable notions of equivalence
include syntactic identity as well as weaker notions sucp-asnvertibility. Coherence is
a crucial property upon which proofs of other properties are built (e.g., properties showing
how the CPS translation interacts with substitution, reduction, and conversion, as well as
properties showing that the translation preserves typing).

For dependent systems this approach leads to difficulties. The problematic aspect of such
systems is thalpes may contain term#/ore specifically such systems operate with types
of form IIx: o.7. Informally, a termM of this type is such that for alN of typeo, MN
has typer{x := N}, as expressed by ttapplicationrule

'EM:Ma:ot&T'EN:o
'-MN:7{a:= N}

For instance, one may think &l as a term whose type is arrays of any length where for
each numbeN, the type ofM N is arrays of lengtiN. HereN is a term, and it occurs in
the type. In most dependent systems the terms that can arise inside typegans (not

CPS TRANSLATIONS AND APPLICATIONS 133

some distinct category of numbers) and one then adoptsoiieersiorrule

Fr'-M:oc@lFM:s)& o =50’
'EM:o’

When naively defining the CPS translation of dependent systems by induction over deriva-
tions, one runs into difficulty with both the conversion rule (which involgesonversion)

and the application rule (which involves substitution). The definition of the translation it-
self involves convertability and substitution. Thus, one cannot proceed by first addressing
coherence anthenproceeding to substitution, and conversion, etc.; one is forced to tackle
the associated properties simultaneously.

As a point of comparison, Harper and Lillibridge [34] avoid both the problems associated
with the conversion and application rules. When translating two different derivaigns
andD, of the same judgment - M : o, use of the conversion rule in eithBg or D, may
cause the termé&D;) and (D) to have different domain tags on abstractions. Instead of
considering a general theory of equality base@aonvertability (which is what we desire),
Harper and Lillibridge consider a notion of object equivalence based on an operationally-
flavored form of reduction (e.g., call-by-name standard reduction) that is insensitive to
domain tags. This insensitivity implies that differences in domain tags do not affect the
equivalence of terms [34, p. 214]. The substitution in the application rule is neither an issue
sinceirw (the system considered by Harper and Lillibridge) is a non-dependent system, and
thus the substitution{x := N} degenerates inte.

Instead of defining CPS translations by induction on derivations, one can simply add
to the clause (*) the side condition thatbe —(p) wherep is the type ofAx:o.M. For
non-dependent systems this works perfectly well because there is a stratification of levels
into terms and types, where the latter do not depend on the former. This is the route taken by
Harper and Lillibridge, and also by Coquand and Herbelin [15] in their CPS translation of
non-dependent logical pure type systems. In dependent systems, however, the categories of
terms and types will be mutually dependent, so in this case the trans|ation terms and
types will be mutually recursive, and the definition with side conditions is not well-founded,
sincep may containM as a subterm.

The preceding considerations show that defining CPS translations for dependent Church-
style type systems involves a number of difficulties. Thisistrue, in particular, for dependent
pure type systenfs.

1.5. This paper

A simple approach to CPS translations of classes of type systems that include dependent
systems is to considdomain-fregoure type systems[12], i.e. avariant of pure type systems
with abstractions of the formix.M, instead of the traditional pure type systems—in fact,
this idea was one of the motivations for introducing domain-free pure type systems. This
idea is carried out in Sections 2-5.

We begin by reviewing the domain-fréecube (Section 2), which includes domain-free
versions of CC and LF, and then present CPS translations of the systems of the domain-free

134 BARTHE, HATCLIFF AND SORENSEN

A-cube (Section 3). Then we introduce DS translations for all the systems of the domain-
freer-cube (Section 4) and relate these translations to the corresponding CPS translations.
We then briefly review the general notion of domain-free pure type system and generalize
the above CPS translations to a certain class of domain-free pure type systems (Section 5)
which includes all the systems of the domain-fieeube as well as domain-free versions

of many the non-dependent logical systems of Coquand and Herbelin. Many translations
that appear in the literature arise as special cases of our translation.

We also present two approaches to CPS translations of traditional pure type systems: an
indirect and a direct method. This is carried out in Section 6. Both techniques work for
most of the systems that occur in the literature. The first, indirect, technique factorises the
translation for pure type systems through the translation for domain-free pure type systems.
The second, direct, technique translates traditional pseudo-terms of pure type systems, but
relies on a non-standard order to be well-founded. These results justify defining the CPS
translation on domain-free pure type systems instead of on traditional pure type systems.

The paper is an extended and elaborated version of [5].

2. The domain-freeA-cube

This section is a brief introduction to the domain-fieeube. The first subsection is devoted

to the definition of the systems involved. For readers with no previous knowledge of
A-calculi presented in this style, the second subsection includes a number of examples;
readers familiar with [4] may skip the latter subsection.

2.1. Definition of the domain-freecube

For the clarity of exposition, we depart from the original presentation of the domain-free
A-cube [12] and make explicit the distinction between objects, constructors and’kinds.

Definition 1(The domain-fre&-cube.

1. Let V* andV" be denumerable, disjoint sets of variables, ranged ovex, jy. .. and
a, B, ..., respectively. Define the syntactic clas€#g[DFCUBE], ConstfDFCUBE],
Kind[DFCUBE] of domain-free pseudo-objects, pseudo-constructors, and pseudo-kinds,
respectively, as follows:

ObjIDFCUBE] 2 O ::=x | Ax.0 | OO0 | Aa.O | OC
Const[DFCUBE] 2 C i:=a | AX.C|CO | Aa.C |CC | IIX:C.C | Ta: K.C
Kind[DFCUBE] 5 K :=TIx:C.K | [la: K.K | *
We useA, B, ... to denote arbitrary pseudo-objects, -constructors, or -kindssasid
to range over the séty, x} of so-calledsorts We assume the reader is familiar with the

notions of free and bound variables, and the related conventions—see [3]. The symbol
= denotes syntactic equality modulo renaming of bound variables. We@vriteC’ as

CPS TRANSLATIONS AND APPLICATIONS 135

an abbreviation ofl« : C.C’, wherex is not free inC’. We also writexxa, ..., X,.M
for AXq, ..., AXp.M.

2. Substitutione{e := e} is defined as the usual capture-free operation, with the proviso
thatx andN belong to the same classi{x := N}.

3. The setContextfDFCUBE] of domain-free pseudo-contextsdefined by the abstract
syntax:

ContextfDFCUBE] > T ::=- | ', x: A
We write domiXy : A, ..., Xn: An) = {X1, ..., Xp} @nd usd’, A, etc. to denote pseudo-
contexts. T isXy: Aq, ..., Xn: Ay we also writex; : Ay € T’ foreachi € {1,...,n}.

4. Domain-fregg-reduction— 5 on
Obj[DFCUBE] U Const{DFCUBE] U Kind[DFCUBE]
is defined as the smallest compatible relation such that
(Ax.A)B —>p A{x := B}

for all x and B belonging to the same clasg-equality = is the reflexive, transitive,
symmetric closure of> 5. The relation— is extended to contexts by:

A—-gB=I XA A= x:B A

and=g on contexts is the reflexive, transitive, symmetric closure>gf.

5. ForSe {—,2, P, w, P2, 20w, Pw, P2w)} define the relation}- s by the rules of figure 5,
where a side condition, e.g. (2), indicates that the rule in question only be included when
Scontains the corresponding symbol, e.g. 2 (except that rules markgdre included
in all systems). If" s A : B thenI', AandB arelegal. We sometimes writg- M : A
instead of + M : A.

According to the eight relationf-s defined above, we speak of the eight domain-free
A-calculi A S depicted in figure 6, collectively known as the domain-fkeeube® We use
the abbreviations = 2w, C = Pw.

Intuitively, one may view the systems of the domain-feeeube as the domain-free
counterpart of some well-known typedcalculi, as depicted in the table below—see also
the next subsectioh.

— Simply typedai-calculus

2 SystemF (second-ordek-calculus)

P LF, Automath

P2 A system considered in [44]

w Polyrec

1) SystemF< (higher-orden.-calculus)

Pw Martin-Lof’s type theory with one universe

Pw = C Calculus of constructions

136 BARTHE, HATCLIFF AND SORENSEN

) ' A:s z¢dom(l) (W)I‘I—A:B I'FC:s z¢dom(l)
IcAF z: A INoCH A:B
I'FA:B TF+B':s B=gB'
= A -+ %:0
®) T A: B (4) *
LeCt+ O:C' ' O:(IIzzC.C'"Y Tk O':C
(=) (=)
'k Az.0 :Nlz:C.C’ ' 00 :C{z:=0"}
@) LaKF O:C' @ ' O:(Mla:K.C'") THC:K
Tk A0 :TMla:K.C' FrO0C:C{a:=C}
P) IaC» C': K (P) ' C':(IzzC.K) TFO:C
Tk Az.C':Oz:C. K '+ C'O0:K{z:=0'}
@) IaKv C': K’ ()I‘I- C:(la:K.K'Y) TV C':K
w
- 'k Aa.C':NMa:K. K' o '+ CC:K'{a:=C"}
) ' . '
(=) De:CF O :x @ NaKkF C':x
'k (IIe:C. C") = % 't (Ma:K.C"): *
LzCk+ K:0O INaKF K':0O
(P) (w)
't (IIe:C.K) : O ' la:K. K'): O

Figure 5 Rules for the domain-free-cube.

Aw AC
A2] AP2
Aw APw

N\
N\

A AP

Figure 6. The domain-frea.-cube.

CPS TRANSLATIONS AND APPLICATIONS 137

2.2. The systems at work

In this subsection we try to provide some intuitions behind the systems of the domain-free
A-cube, and illustrate the strength of each of the systems.

1. The simplest system— consists of just the four rules (S), (WB); (A), along with the
three () rules. This system is very similar to the simply typedalculusa la Curry
introduced in Section 1.2.

Both systems containstart rule for introducing variables; in Section 1.2 this is the
left-most rule, and in the present subsection it is the (S) rule. However, the two rules do
not work in exactly the same way. In the formulation in Section 1.2, contextseise
and one can “look up” any member of the context is the start rule. In contrast, in the
present subsection contexts ardered sequences which only the right-most member
can be looked up in the start rule. However, using the weakening rule (W) one can look
up variables further to the left in the context formulated by sequences.

The side conditiorx ¢ dom(T") in the present subsection is mirrored in Section 1.2
by the stipulation thaF', I'” only be defined when the domainsiofandI™ are disjoint.

The side conditiol } A : stogether with the axiom4) and the product rule for$)

(the one in the lower left corner) in the present subsection ensure that simple types, and
only simple types, can occur in contexts. Since simple types have no redexes, it follows
that the conversion ruleg] is not used irh—, but it is used in dependent systems, e.g.,

A P—see below.

One can show that whenevér, z: D, A |- A: B in the systenk— whereA, B, or
D has formllx : C.C’ thenx is not free inC’, i.e.,I1x: C.C’ = C — C'. Itfollows that
the abstraction and application rule in this subsection are identical to those in Section
1.2.

2. The system2 allows polymorphic functions to be defined. For example, one can define
polymorphic composition

1A, B,C, f,g,x.g(fx):TTIA,B,C: *.(A->B) - (B—-C)—> A—>C
or polymorphic projections, e.qg.
XA B, x,y.x:ITA,B: x.A— B —> A
In logical terms,12 corresponds to second-order propositional logic via the Curry-
Howard isomorphism. In this context, the formalization of contexts as ordered sequences
captures the usual side condition on the introduction rule for universal quantification.
3. The specificatiom allows polymorphic and higher-order functions to be defined. For

example, let

I' = List: % — #,nil : [T : *.Lista, cons : M« : *. (@ — Lista — List)

I'" =T, MapList : [TA, B: *.(A— B) — List A — List B

138 BARTHE, HATCLIFF AND SORENSEN

5.

One can derive a polymorphic function that makes every object into a one element list.
I'f ra,a.conscanila) : Ma: *x.a — Lista
or a polymorphic function which manipulates functions on lists:

I 1A, B,C, f,g,l.MapList BCg (MapList ABfl) :
A, B,C: x.(A— B) - (B— C) — List A— ListC

. The specificatior® has the power of first-order predicate logic. The systdtnwhich

is closely related to the type system of the proof-assistants Authomath, Alf and EIf,
acts as a framework in which formal systems can be defined. The following example,
taken from [33, Section 3.1], introduces first-order arithmetic as a context. There are two
base types ando, which respectively correspond to arithmetic expressions and logical
formulae. In addition, one introduces the usual operations on natural numbers and the
usual logical connectives and quantifiers.

L%, 0: x*, AI0— 0— O,
0:¢, =:t—>1—>0, V:i0o—> 00— 0,
S.tL—1t, <:tL—>1L— 0, 2:0—->0—0,
+ L= 1=, V:i— 0 — 0, —-:0—>0

X l—=> 11—, 3:(— 0 — 0,

This context provides enough structure for terms and formulae of first-order arithmetic
to be encoded into the system. However, the context lacks enough structure to build
or manipulate proofs. Following [33, Section 4.1], it is possible to extend the above

context so that proofs may be encoded. The basic judgment ffdmd logical truth’

is encoded in the context by adding a declaration

true: 0 — x

and the basic rules for logic are encoded in the context by adding suitable declarations.
For example, the left introduction rule for disjunction is encoded by

vy L IIX, y:o. (true X) — (true(Vvxy))

Note how the typ® — * and how the above declaration require the use of dependent
types.

The specificatior?2 combines dependent types and polymorphism. In logical terms,
1 P2 has the power of second-order predicate logic with equality. Indeed, one may use
polymorphism (sometimes known as impredicative quantification) to encode the usual
connectives and quantifiers. The encoding is given below, where e RtP, T € VE
andx,y e V*:

CPS TRANSLATIONS AND APPLICATIONS 139

Operator Definition Type
Implication — =AA B.(A— B) * —> % —> %

Universal quantifier V= AT, P.(ITx: T.Px) T %.(T = %) —> %
Truth T =X %X > X *

Falsehood 1 =TIx:*.X *

Conjunction A= AA B.(IIx:*.A— B — X) * — ok —> %
Disjunction V=AABIIX:x.(A—>X) > (B—>X) > X) *—>%x—>x%

Negation -=AA.(A—> 1) * — %

Existential quantifier 3 = AA, P(ITp:*.(IIx: T.((PX) = p) — p) OT: %.(T = %) > *
(Leibniz) equality ==AT,X,y.IIP: T - %.(PX — (Py) O7:%«.T—>T— %

Besides, one can defineterms that correspond to the standard natural deduction rules.
For example, we have

AA, B, p. pAAX, y.X): TIA, B: % (AAB) - A

Note a fundamental difference betweelR andA P2: in AP, predicate logic is defined

in a context, while irh. P2, logic is presenin the system and is not defined in a context.
6. The system.Pw = AC has the power of higher-order predicate logicA{D, one can

define, e.g. a polymorphic function that forms the conjunction of two predicates:

FAA P, Q,X. A (PX)(QX) : TTA: x. (A—> %) > (A—> %) > A— x

wheren is the impredicative conjunction.

3. CPS translation for the domain-freeA-cube

In this section we present CPS translations for all the systems of the domain-drdze.
This is carried out in the first subsection. In the second subsection we present optimizing
CPS translations.

3.1. CPS translation for th&-cube

When one moves from— to systems with richer type structure, it is not immediately
clear which syntactic categories should be converted by the CPS translation. For example,
in the domain-free.-cube, one might imaginerson-pervasiveCPS translation where only
objects are converted (i.e., only abstractions at the object level are passed continuations), or a
pervasivdranslation where both objects and constructors are converted (i.e., all abstractions
are passed continuations).

Our presentation, which is based on a non-pervasive translation, is motivated by particular
applications. In classical pure type systems [6], the control operator corresponding to the

140 BARTHE, HATCLIFF AND SORENSEN

reductio ad absurdurrule only appears at the object level. Thus, one only needs to convert
objects when embedding classical pure type systems into traditional pure type systems.
Similarly, in Coquand and Herbelin’s [15] method for showing the existence of looping
combinators and in compilation and partial evaluation applications, one only needs to
convert objects to obtain the associated benefits of CPS.

Definition 2(CPS translatiop. Define the CPS translation functiofi§-) andC(-) for the
domain-free\-cube by the clauses in figure 7.

As noted earlier, the translation of objects is based on Plotkin’s original call-by-name
translation of the untypeit-calculus (see figure 1). Continuation-passing only occurs at the
object level. Thus, the translation of constructors and kinds is straightforwérebbre-
viatesC — 1 where L € V7 is a distinguished (but arbitrary) type variable éofswer.

The top level translatiod{-) for objects and kinds simply call{-). For constructors,

a double negation is added at the outer level. For assumptions, the answer variable
added.

The following theorem establishes the correctness of the translation.

Theorem 1 (Correctness of CPS translation).
' A:B=C{T)}C(A) :C{B)
Proof sketch: We proceed in four steps:

(i) show that for all O € Obj[DFCUBE], C{O)=2k.O’ for some O’ and therefore
2k.C{O)k =4 C(O);
(i) prove by induction on the structure @ € Term§DFCUBE] that

(@) C(A){x:=C(0O)} —p C(A{x = O}) and

(b) C{A){x :=C(C)} =C(Alx :=C});

(iii) prove by induction on the structure & € Term§DFCUBE] that A —z B implies
C(A) —4 C(B); B
(iv) provel' - A: B = C{I') # C(A) : C{B) by induction on the structure of derivations.
|

The following example illustrates the CPS translation applied to the context and term
that makes every object into a one element list (see Section 2.2).

[Ceps = List: * — x,
nil : == (Tl : % .——(List @)),

cons : =——(Ia: * .=—=(=—a — ——=(——(List) — ——(List ®))))

CPS TRANSLATIONS AND APPLICATIONS 141

Objects
Clz) = Mkxk
C{A\z.0) = Ak.k (\2.C(O))
C(O0") = Ak.C{O) Dy C(O") k)
C{Aa.0) = Ak.k (Aa.C(O))
C(OC) = Ik.C{O) MyyC(C)E)
Constructors
Cla) = a
C{Az.C") = Xz.C(C")
C({CO) = ¢(C)C(O)
C{ra.C) = ra.C{C)
C({CCy = c(Cyc(c)
C{Ilz:C. C"y = Mz:~=C(C). ~=C(C")
CIla: K.C) = Ma:C{K). ==C{C)
Kinds
C{x) = %
C{llz:C. K) = Mz:——C{C).C(K)
Cll: K. K'Yy = Ha:C(K).C{K')
Contexts
cly = -
Clz:C) = C(I'),z:~~C(C)
Cla:K) = C(1),a:C(K)

Top-level translation

C{0) = C{0)
c{C) = --C(C)
C{K) = C(K)
CQDD =0

C{T) = L:«,C(T)

Figure 7. Call-by-name CPS translation for the domain-freeube.

Teps - Ak k(Aa. Ak k(ra.0yp)) : ==(Tle : % .==(=—a — ——(List «)))
where O3 = Ak.O; (Ay1.y103K)
O, = Ak.O4 (AY2.y2(Ak.ak)k)
O3 = Ak.(Ak.nil k) (Ly3.y3aK)
04 = Ak.(1k.cons K) (Lys.ysak)

Note that there is a higher degree of continuation-passing than one would obtain when
CPS-ing a conventional call-by-value program for the following reasons.

142 BARTHE, HATCLIFF AND SORENSEN

e A call-by-name evaluation strategy is being encoded, and thus all identifiers are passed
continuations (i.e., they are “CPS thunks”).

e Operations such ans andnil are given in curried form, and thus continuations are
introduced at each function space.

Recent work omonadic type systerfikl] provides a framework where one can distinguish
between values and non-values in an extended type system. A CPS translation based on this
richer type system allows a finer control over continuation introduction, and one can give a
specification that avoids the overly general introduction of continuations in this particular
example.

3.2. An optimizing CPS translation

When discussing terms in the image of the CPS translation, it is convenient to divide
abstractions into two classes:

e source abstractionghese are CPS-translated versions of abstractions appearing in the
argument of the CPS translation. Infigure 7, abstractions of the foxm () and .« . . .)
in the image of the translation are source abstractions.

e administrative abstractionghese are abstractions introduced by the translation to mani-
pulate continuations—there are no corresponding abstractions in the argument of the
translation. In figure 7, abstractions of the forkk (..) and @y...) are administrative
abstractions.

Reducing a CPS term involves contracting madyninistrative redexesredexes involving
administrative abstractions [52, p. 149]. We wite—> 5qm A’ when A -reduces toA’ by
contracting an administrative redex.

Most practical applications of CPS (such as compiling and partial evaluation) use an
optimizing version of a particular CPS translation that produces terms with fewer admi-
nistrative redexes [18, 26, 52, 58, 68]. In this section, we present an optimizing version of
the translation in figure 7 that yields termsadministrative normal-fornfi.e., the terms
contain no administrative redexes). We need to consider the CPS translation of objects only,
since continuations are introduced only in this category.

Definition 3 (CPS translatioin. Define the optimizing CPS translation functiofis{-)
andC*{-) for the domain-free.-cube by the clauses in figure 8.

Figure 8 only presents the translation on objects; translation of the remaining syntactic
categories is the same as in figure' : K represents the translation of an object whéiis
acontinuation corresponding to the evaluation contextin wbicippeared. The translation
proceeds recursively ovéd—transforming it into a continuation with no administrative
redexes. Depending on the form ©f, the resulting continuation is either, passed as an
argument to the translation @ (if O is a variable), or applied to the translation©f(if
O is an abstraction).

CPS TRANSLATIONS AND APPLICATIONS 143

00 : K
ocC: kK

O : (QyyCHOYK)
O : (QyyCHCYK)

CHO) = Ak.(O : k)
z: K =zK
(Az.0) : k = k(A\z.CH{(0))
(Aa.0) : k = k(Aa.CH(0O))
(Az.0) : (WyyO'K) = (Az.CHO))O' K
(Aa.0) : AyyCK) = (QalHO)CK

Figure 8 Optimizing CPS translation for the domain-fre€ube (excerpts).

Lemma 1 (Optimizing CPS translation for the A-cube). For all A € Term§CUBE]
such that” - A: B,
o C{A) =>aamCT(A)

e CT(A) is in administrative normal-form.

The following example illustrates the optimizing CPS translation applied to the term that
makes every object into a one element list (the context and type are the same as for the
example for the non-optimizing translation).

Tepst Akk(ra.ak.k(2a.0p)) : =—(Ma : % .~—(——a — ——(Lista)))

where O; = Ak.O,
Oz = cons(Ays.Yaa(LY2.Y2(Ak.a k) (Ay1.y1O3K)))
O3 = Ak.nil(ky3.y3ak)

In contrast to the analogous term produced by the non-optimizing translation, the term
above has no administrative redexes.

4. DS translation for the domain-free A\-cube

In this section, we present a DS translation for the domain-freabe that maps continu-
ation-passing terms back to direct-style terms. Since the rules of-thée involve
B-conversion, the DS translation must be able to handle not only terms in the image of
the CPS translation, but termisconvertible with terms in the image of the CPS translation.
Since systems of thie-cube are Church-Rosser, it is sufficient to reason about the language
of legal terms in the image of CPS translation closed ugdeduction. The first subsection
below presents CPS pseudo-terms, and then gives rules for deriving legal CPS terms. The
DS translation is then defined in the following subsection. The last subsection addresses
the relation between the CPS and DS translations.

144 BARTHE, HATCLIFF AND SORENSEN

4.1. Language of CPS terms
We define the DS translation of the langu#zfeS of CPS terms.

Definition 4(CPS pseudo-terms and contexts Define the pseudo-terms and context by
the grammar in figure 9.

Objects are divided into the following five categories.

e computationsthese are pseudo-objects to which continuations will be passed. The types
of these objects will be double-negated at the top level.

e values these are the source abstractions defined above. The types of these objects will
not be double-negated at the top-level.

Objects
M € Computations[CPS] A € Answers[CPS]
Mzu=z | dBA | VN A=KV | MK
V € Values|CPS] K € Continuations[CPS]
V 2= Az kA | daXk.A K==k | WyNK
N € Arguments[CPS)
N o=XA | C

Constructors and Kinds

C € Constr{CPS]
Cu=oa | Xl | XalC: | CN |
z:~=Cy. -~Cy | D K. --C

K € Kind[CPS]

K = x | I:--C. K | NlaK;. K,
Identifiers

z € Computation-ident{CPS] cv

y € Value-ident[CPS) c v

a € Constructor-ident[CPS] cv®

k € Continuation-ident{CPS] = {k} C V*

Contexts

I' € Contexts[CPS]
Pu= 1+ | TLa:==C | Tha:K

Figure 9 CPS pseudo-terms.

CPS TRANSLATIONS AND APPLICATIONS 145

The termsomputatiorandvalueare inspired by presentations of CPS based on monads
[39]. In a monadic framework, our computations have “computational types”, and our
values have “value types”.

e argumentsthese will be the arguments to source abstractions.

e answersthese are pseudo-objects that will have answer typ&n answer results from
passing a value to continuation, or passing a continuation to a computation.

e continuationsThese are either continuation identifiers, or abstractions that will be passed
values.

It is convenient to divide identifiers of the CPS language into four disjoint sets:

e computation identifiersbound by source abstractions that take computations as argu-
ments;

e value identifiersbound by administrative abstractions that take values as arguments—
they are the formal parameters of continuations;

e constructor identifiersbound by source abstractions that take constructors as arguments;

e continuation identifiersbound by administrative abstractions that take continuations as
arguments.

The first three sets of identifiers are countably infinite. Only one continuation ideftifier
is needed—a familiar property of CPS terms [17, 19, 58].

CPS contexts always include the answer varidbl€PS contexts only contain construc-
tor and computation identifiers (identifiers bound by source abstractions). Itis unnecessary
for contexts to contain value identifiegygnd continuation identifieks(identifiers bound by
administrative abstractions). These are handled as special cases when defining legal terms.

e Value identifiers are bound immediately after they are introduced, so that don’t need to
appear in the contexts (see the last rule in figure 10).

e Since only one continuation identifier is needed, and since no types can depend on it, we
define special purpose judgmeky (k : —=C) -, A : B for ¢ € {ans cnt} that keep the
continuation identifier separate from the rest of the context.

Definition 5 (CPS legal terms and contexts Figures 10-12 present rules for deriving
legal terms in each syntactic category of the CPS language.

In the judgments for answers and continuations in figures 10 and 11, continuation iden-
tifiers k are given special treatment in the context. In addition to the rules for specific
categories, figure 12 gives generic weakening and conversion rules which apply to each
syntactic category. Since all of the conversion rules have a similar form, we only show
cases.

The following property states that legal term<JRS are also legal terms in the domain-
free cube.

146 BARTHE, HATCLIFF AND SORENSEN

Computations

I'beon C %

if £ € T and z € Computation-ident[CPS]
[,z:--C Feom 2 =C

() (k:=CY baps A: L
I'beom Ak A 0C

'ty V:Ha: K. --Co Thag C1: K
I'Feom V C1 1 »Ca{a :=C1}

F “-val V : H:L': —1‘|Cl. "1—102 F “'arg ()\k.A) : -|-|01
T bFeom V (Ak.A) : o-Co{z := Ak. A}

Values
F,x:ﬁﬂcl “‘com kA ﬂ“'Cz r H_con Iz: —|—|Cl. —|—|02 ML
T val Az Ak A Tz ==Cy. - Co

I'a: Ky Feom Ak, L : 2Co I'Feon Do Ky ==Cs ¢ %
T Fya A dk A TTa: K. =—Cy

Arguments
(C) (k:=C) Fans A: L Then C: K
T Farg Ak A: ~—C ThoygC:K
Answers

(L) (k:C1) bens K 2 2Cs 't V:C
(L) (k:=Ch) Fans KV : L

r “_com M: “"Cz (F) (k:"Cl) “—cnt K: —‘Cz
(DY (k:=C1) Fans KV L

Figure 10 CPS legal objects.
(Continued on next page.

CPS TRANSLATIONS AND APPLICATIONS 147

Continuations
I'teon C:
(TY (k:-C) Feng k< -C

T Feon Hz:==Cp. =05 ¢ %
T barg Ak A 000y
() (k:-Co) bent K : ~Co{z := (Ak.A)}

(T) (k:—Co) Fens (My.y (Ak.A) K) : =Ia:==C. ~—C,
if y T and y € Computation-ident{CPS]

r “—con Ha:Kl. ﬁ—102 sk
[larg C1 i Ka
(F> (k:_'CO) Fent K- _'Cz{a = Cl}

(T) {k:=Co) Fent (My.y C1 K) : ~Ha: Ky. ==C>
if y ¢ T and y € Computation-ident{CPS]

Figure 10 (Continued.

Property 1.

't A:B=T} A:B 0 € {com val, arg, con knd}
(F')(k:=C) 4 A:B=T,k:=CH A: B ¢ € {anscnt}

The following property states that the CPS language does indeed contain the image of the
CPS translation.

Property 2.

'} 0:C = C(I) fcomC(O) : C{C)
'k C: K = C{T) fconC(C) : C{K)
T K:o= C{I) kuna C(K) : C{O)

The following property states that legal terms in the CPS language are closed under reduc-
tion.

Property 3.

Il A: Band A=y A =THgeA:B 6 e{comval arg, con knd

(T)(k:=C) |-y A: Band A—g A = (I')(k:=C)}o A': B ¢ € {anscnt)

148 BARTHE, HATCLIFF AND SORENSEN

Constructors

'bnga K:O
lNa:Ktna: K

if @ € T and a € Constructor-ident{CPS)

I,z:7-C) beon C2 : Ka I’ byng Na:==C1. K, : O
r l_con /\.’I)Cz Mz —'—'Cl. K2

I'a:K bFeon C2 : Ko Itrung e K1 K5 : O
r '_con /\a.Cz e Kg. K2

T “—con Co : Iz —'—|Cl. K2 T “_com /\kA : "'—'Cl
T Feon Co (Ak.A) : Ka{z := Ak.A}

F"con Co ZHa:Kl.Kz F“—com C] :Kl
r “—con Co Cl . Kz{a = Cl}

T'teon Cr i % I,z:--Cy beon Co 0 %
r "con Iz —'—lol. —l—'C2 M

'teon Ky : O I'Na:K; beon Co 2 *
['Feon Ha: Ky =—Cs5 ¢

Kinds

_L:*l—knd*:l:l

Theon C: Nz:-—Chtya K:0O
I bypg Hz:=-C. K : O

I'bia Ky : 0O Ia:K; byng K2 : O
T “_knd HO(ZK]. K2 -0

Figure 11 CPS legal constructors and kinds.

CPS TRANSLATIONS AND APPLICATIONS 149

Weakening

't A: B 't K:03O

Ia:Kky A: B
if a €T and a € Constructor-ident[CPS]

(F)(k:"CO) “‘¢A:B Ty K:0O

(Tya:K) (k:~Co) b4 A: B
if o ¢ T and a € Constructor-ident{CPS]

't A:B Fhkeon C:

I'Nz:-——Cty A: B
if z ¢ T and = € Computation-ident[CPS]

(F)(k—lC()) |’¢A:B F“‘}de:D

(T, z:2-C) (k:~Co) by A: B
if z ¢ T and = € Computation-ident[CPS]

Conversion: (excerpts)

ThenC:K Thyq K': 0O

ifK =5 K'
I'keon C: K! =
I'Feom M 2C I'heon C 2 %
ifC =5 C'
I Feom M : =C! -

0 € {com,val,arg,con, knd}
¢ € {ans,cnt}

Figure 12 CPS weakening and conversion rules.
4.2. DS translation for thé-cube
Figure 13 presents a DS translation from the domain-free CPS language to the domain-

free A-cube. For objects, the most interesting aspect is that continuations are translated to
call-by-nameevaluation contextR23] defined by the following grammar.

E € Evaluation-Contex{€UBE]
E:=[]I/EO]|EC

150

BARTHE, HATCLIFF AND SORENSEN

Objects
D(z)com =z
D(/\k.A)com = D(A)ans
D(V N)com = D(V)Val D(Marg
DPs M. A)ar = Az DOE.Acom
DOk Aa = A DAk A)com
'D(Ak.A)arg = D()\k--A>com
D(C)arg = D(C)con
DK VYans = D{K)ent[D(V)val
D(M ’C)ans = D(Ic)cnt[D(M)com]
D(k)cnt =]
D()\y.leC)cnt = D(’C)cnt[[] D(N>arg]
Constructors
D<a)con =«
D(/\:L‘.Cg)con =)\m-D(C2)con
D(Co (Ak.A))con = D{Co)con D(Ak.A)com
'D(/\a.C)con =)\a.D(C)con
D(C] 02)con = D(Cl)con D(C2>con

D(H.’E: ﬂ“lCl . —'—‘02)con
D(Ha: K- _‘_|C)con

Kinds
D(Mlz: ~—C. K)knd
'D(Ha: Kl . K2)knd
D(*)knd

Contexts

D(L:*) =
D{,z:~C) =
D{la:K) =
Top-level translation
D(0) = D(0)
D{~~C) = D(C)
D{K) = D(K)

D(O) O
D(r) = D(I)

Figure 13 DS translation for the-cube.

TIx: D(C])con- D(C2)con
Ha:D(K)knd- D(C)con

IIz: D{C)con- D{K)xna
Mo D{K1)knd- D{K2)xnd

:l)(I‘), z:D(C)con
D), a: D(K)xna

CPS TRANSLATIONS AND APPLICATIONS 151

The holes in the evaluation contexts are filled during the translation of thea@G&\&er
syntactic category. The translation of constructors and kinds is straightforward—double
negations are removed and translation continues on substructures.

The following example illustrates the interaction between the CPS and DS translation
for the term {x.0;) O,C;. An easy induction over the structure of terms shows thi
the inverse of.

The calculation below illustrates the interaction between the translafiarsl D for
arbitrary termg0,, O,, andC;.

D(C{((1x.01) O2C1)))
=p D((AKz.(Ako.ko(AX.C{O1))) (AY1.Y2C(O2) (AY2.Y2C{C1)K2)))) com
=g D(((Ako.ko(AX.C{O1))) (AY1.Y2C(O2) (AY2.Y2C{C1)K2)))) ans
=g D{(AY1.y1€(O2) (AY2.Y2C{C1)k2)))en D{(AKo.Ko(AX.C{O1))))coml

=g D((AY1.y1€(O2) (Ay2.Y2L (C1)K2)))enil (AX. O1)]
=g D((AY2.Y2C(C1)k2))end (1X.01) O]
=g D(k2)en (AX.01) 02C4]
=g (Ax.01)0,Cq
Note thatin contrast to the CPS translation, the DS translation can be defined by induction
over the structure of pseudo-terms even when mapping to domain-full systems. Since no
abstractions (e.g., abstractions analogous to the administrative abstractions of the CPS

translations) are introduced during the DS translation, all required domain tags can be
constructed by translating tags appearing on abstractions in the argument of the translation.

Theorem 2 (Correctness of DS translation).
Iy A:B= D(I') D(A) : D{B)
for 6 € {com con knd}.

Proof sketch: The proof follows the same outline as the proof for the CPS translation in
Theorem 1. O

4.3. Interaction between CPS and DS translations

Since g-conversion is the principal notion of equality in the cube, we now consider the
interaction of the translations up to this notion of equality. The following theorem states an
equational correspondence (as presented by Sabry and Felleisen [58]) between direct style
terms and the CPS language.

152 BARTHE, HATCLIFF AND SORENSEN

Theorem 3. LetI'- A, A1, Ao : BandZ |4 P, P, P, : Q for9 € {com con knd}.
1. A=4 D({C(A))
2. P =§ C(D(P))
3. Ar=p AIff C(A) =
4. Py =5 Piff D(P) =

(=

C(A2)
D(Py)

=)

Using the optimizing CPS translation, the equational correspondence in the above theorem
can be strengthened toeduction correspondend®]. This is noteworthy since the applica-
tions we have in mind (e.g., compilation, partial evaluation, inferring strong normalization
from weak normalization) often require relating DS and CPS reductions.

Theorem 4 (Reduction correspondence fo€* and D). LetD | A, A, A2 : B and
Y e P, P, Po: Q foré e {com con knd}.

1. A=D(CT(A)

2. P =4 C(D(P))

3. A — Ao |mpI|esC(A1) —>p C(Ay)

4. P, =5 PyimpliesD(Py) — 5 D(P»)

Proof sketch: The proof is very similar to the proof of the analogous theorem for the
untyped setting given in detail by the authors in [10]. O

5. CPS translations for domain-free pure type systems

The definition of the domain-freecube in figure 5 contains a certain amount of redundancy.
Indeed, the four product rules (the four bottom-most rules) are very similar; in fact, they
may be viewed as instances of a general scheme. Something similar can be said of the
abstraction rules (to the left in the figure) and application rules (to the right in the figure).
Indeed it is possible to compactify the presentation of the domainxfi@eée by having a

single rule for product, a single rule for abstraction and a single rule for application and by
parameterizing their use according to the system considered. In this section we systematize
this observation by reviewing the general notiondoimain-free pure type systerfism

[12]. The development here is completely analogous to the classical development of pure
type systems by Barendregt [4], Berardi [13] and Terlouw [72].

In the first subsection we introduce the notion of a domain-free pure type system. In the
second subsection we show that the systems of the domain-tabe can be viewed as
domain-free pure type systems. The third subsection introduces the notion of logical speci-
fication, due to Coquand and Herbelin [15], which captures most of the common features
of specifications for which CPS translations may be defined. In the fourth subsection, we
establish a classification lemma, which provides the main technical tool for the definition
of the CPS translations. The translation itself is defined in the fifth and last subsection.

5.1. Specifications and domain-free pure type systems

Parametricity is achieved through the notionspgcification upon which the framework
is parameterized. Specifications are abstract structures expressing dependencies between
type universes, or sorts.

CPS TRANSLATIONS AND APPLICATIONS 153

Definition 6(Specifications A specifications a tripleS = (S, A, R) where

1. Sis a set ofsorts
2. A C S x Sisasetofaxioms
3. RCS xS x Sisasetofules

As usual, we uses(, s;) to denote rules of the forng{, s,).

Most concrete specifications in the literature have fosms); as we shall see, this
means that product8x : A.B live in the same universe &. The role of specifications
will be clearer at the end of this subsection. Throughout this subsection, we assume a fixed
specificatiorS = (S, A, R).

Inour presentation, we require each variable to have an underlying sort. This requirement,
which is reminiscent of our presentation of the domain-freeibe, simplifies the definition
of the CPS translation.

Definition 7(Sorted variables We letVs (or, for brevity, justV leaving the dependence
onSimplicit) denote a denumerable set of variables, partitioned into countably infinite sets
Vs forall s € S; that is,

o V= USES VS;
e VSNVS =gfors#s,
e V5 is countably infinite for each € S.

While we maintain the use of sorted variables, we shall not define syntactic categories by
mutual recursion, because such an approach is overly complicated for arbitrary specifica-
tions. Instead, we revert to the traditional formulation of domain-free pure type systems, in
which there is a single syntactic category of expressions. Note however that, in most cases,
we shall be able to retrieve disjoint syntactic categories, akin to those of the domain-free
A-cube, va a a classification lemma.

Definition 8(Domain-free pseudo-terms The sefferm$DFPTS] of domain-free pseudo-
terms(overS) is given by the abstract syntax below, whereanges ovel ands ranges
overS.

TermgDFPTS] > A, B :=x|s| AB|Ax.A|TIx: A.B

We usea, b, A, B, M, N ... to denote domain-free pseudo-termsy, z, ... to denote
variables, and, s/, ... to denote sorts.

The computational behavior of domain-free pure type systems is the expected one.

Definition 9 (Domain-free reduction The notion ofg-reduction — 4 is defined as the
smallest compatible relation B

(Ax.M)N —8 M{x := N}

wheree{e := o} denotes the obvious substitution operator.

154 BARTHE, HATCLIFF AND SORENSEN

We now turn to the typing relation of domain-free pure type systems.
Definition 10(Domain-free pure type systém

1. The seContextfDFPTS] of domain-free pseudo-contexsgiven by the abstract syntax
below, wherex ranges oveV and A ranges ovelferm$DFPTS].

ContextfDFPTS] > T ::i=-| I, x: A

We userl’, A, ... to denote domain-free contexts. HOr= X; : A1, ..., X . An, We
write dom(") = {Xg, ..., Xn} and say thax; : A € I" foreachi € {1, ...,n}.

2. The domain-free derivability relation - on triples (, M, A), where I' e
ContextfDFPTS] and M, A € Term¢$DFPTS], is defined in figure 14. I"' - A: B
thenT, A, andB arelegal. We also say that thiegdgmentI” |- M : A is derivable or
legal.

3. The tuplerS = (Term§DFPTS], ContextfDFPTS], — 4, |-) is thedomain-free pure
type systenDFPTS) induced bysS. -

Domain-free pure type systems enjoy most of the properties of pure type systems, except
unigueness of typémdeed, a term such ax.x may have more than one type in a single
context, and therefore uniqueness of types fails). We refer the reader to [12] for a detailed
study of the theory of domain-free pure type systems.

(axiom) -k s1:82 if (s1,82) € A

'k A:s

(start) —_—
FNz:AFz:A

if z ¢ dom(T") and z € V*

T+-A:B THFC:s

(weakening) To CF AB if z dom(T') and z € V*
- A: tAF B:
(product) Fhd:s Da:4 52 if (s1,82,83) ER
'\ (Ilx:A.B) : s3
L '+ F:(TIl:A.B) Tkta:A
(application)
' + Fa:B{z:=a}
. It:A+b:B T F (IInnA.B):s
(abstraction)
't Azb:1Ilx:A. B
. L
(conversion) TrA:B TFB:s if B=g B'

'r A:B

Figure 14 Domain-free pure type systems.

CPS TRANSLATIONS AND APPLICATIONS 155

5.2. Domain-free pure type systems vs. the domainxfeagbe

We now show that one can recover from the formalism of domain-free pure type systems
the systems of the domain-freecube by choosing appropriate sorts, axioms, and rules. In
fact, letS = (S, A, R) whereS = {x,0} andA = {(x, 0)}. Then for each system of the
domain-free.-cube we obtain a corresponding domain-free pure type system by taking the
following sets of rulesk:

Cube systens Rules of corresponding specificatién
2 (%, *) (O, *)

P (*, %) (%, 0)

P2 (*, %) (O, %) (%, 0)

[2) (. %) (@.0)
13 (*, %) (O, *) (o, o)
Pw (%, *) (%, 0) (@, o)
Pw=C (*, %) (O, %) (*,0) (@, o)

Let us elaborate this in some detail. The set
Obj[DFCUBE] U Const{DFCUBE] U Kind[DFCUBE] U {00}

is a subset of the s@ermgDFPTS]. One can show alassification resulstating that if
I |- A: B in the domain-free pure type syste§, then

1. (A, B) € Obj[DFCUBE] x Const{DFCUBE], or
2. (A, B) € Const[DFCUBE] x Kind[DFCUBE], or
3. (A, B) e Kind[DFCUBE] x {0}.

Thus, although the notions of objects and constructors, etc., are not defpréati in a
domain-free pure type system, such notions can be derived from the typing system itself by
classification results of the above form. Moreover, one can the show that if

1. (A, B) € Obj[DFCUBE] x Const{DFCUBE], or
2. (A, B) € Const[DFCUBE] x Kind[DFCUBE], or
3. (A, B) € Kind[DFCUBE] x {0}

thenI” } A : B in the domain-free.-cube system. Siff I" - A : B in the domain-free pure
type systeniS. This shows that a cube system and the corresponding domain-free pure
type system derive exactly the same judgments.

The intuition behind this is that if one unfolds the inference rules of the domain-free
pure type system for all rulgs, s') € R, then one obtains the same inference rules as are
present in the cube system:

156 BARTHE, HATCLIFF AND SORENSEN

1. The rules (S) and (start), (W) and (weakening), af)dand (conversion) are clearly
identical. The rule (A) is identical to (axiom) since we have chaden {(x, 0)}.

2. The product rules+$), (2), (@), (P) correspond to the instances &), (O, x), (@, O),
(*,) of the rule (product). Thus, the ruléd determine which generalized function
spaces may be formed and what is their nature.

Note that in the domain-freg-cube an assumption is missing in the product rules
compared to the domain-free pure type system. For instance, in the productslle (
the assumptiom }- C : x is missing. However, due to the disjointness of the syntactic
classes in the cube, one can show thatik : C - A: B, theninfactl’ - C : .

In the general setting of domain-free pure type systems where we hawgriori
distinction into categories, the assumption is necessary.

3. Theapplicationrules$), (2), (w), (P) correspondto the rule (application) with different
products.

4. The abstraction rules%), (2), (w), (P) correspond to the instances of the rule (abstrac-
tion) with different products.

Note that in the domain-free-cube an assumption is missing in the abstraction rules
compared to the domain-free pure type system. For instance, in the abstractien jule (
the assumptiof I~ ITx : C.C’: sis missing. Inthe domain-free system this assumption is
used to prevent invocations of the abstraction rule for products that cannot be constructed
according to the ruleR; however, in the cube we obtained the same effect by explicitly
excluding some of the inference rules; for instance, the cube systenioes notinclude
rules labeled (2).

5.3. Logical specifications

The notion of logical specification, due to Coquand and Herbelin [15], captures most of
the features of specifications for which it is possible to define CPS translations. Below
we review the notion of logical specification and introduce the class of locally persistent
specifications, for which CPS translations may be defined.

Definition 11
1. A specificatiorS = (S, A, R) is functionalif A andR are partial functions, i.e. for all
$1,.9.$,88, €S

e (5,2) € A& (s,8) e A= 5 =5);
e (5,9, %) eER& (S,) eR=5=5,.

2. Alogical specificationis a quadruplésS, A, R, Prop) where §, A, R) is a functional
specification anérop € S is a sort such that

(A) there exists € S such thatProp, s) € A;
(B) thereis nas € S such that(s, Prop) € A;
(C) (Prop, Prop, Prop) € R.

CPS TRANSLATIONS AND APPLICATIONS 157

3. Alogical specification§, A, R, Prop) is locally persistentif for every (51, S, S3) € R,
S = Prop & s3 = Prop

4. A logical specification§, A, R, Prop) is non-dependerit it is locally persistent and
for every 6, S, 83) € R,

S, = Prop = s, = s3 = Prop

Examples of non-dependent logical specification include the specifications on the left-
hand side of the.-cube (i.e. —, 2, » andw), the specifications of the-cubes [4, 13,

28], HOL, U~ andU [4]. The specifications on the right-hand side of theube (i.e.

P, P2, Pw and Pw), are examples of dependent, locally persistent specifications. More
generally, every logical specification with rules of the fosy §,) only is locally persistent.
Finally, the specificatior [4] is not logical becausBrop : Prop is an axiom and hence the
second requirement is violated.

5.4. Injective specifications and the classification lemma

The CPS translations of Section 3 rely on a classification of expressions into different
syntactic categories; in fact, this classification is built into the system by considering
priori the classes of objects, constructors, and kinds. In Section 5.2, we showed that, when
starting out from domain-free pure type systems, then—at least for a particular choice of
S, A, R—one can use the type system to divide the pseudo-terms into different syntactic
categories. In order to scale up the CPS translation to domain-free pure type systems, we
generalize this classification. For this purpose, we introduce the following standard notions.

Definition 12 A specificationS = (S, A, R) is injectiveif it is functional and moreover,
for everys;, s, %, S, 3 € S,

e (1, A& (S, A =5
o (51,9, %) ER&(S,S, Y ERSL=S,

Most specifications appearing in the literature are injective. Indeed, every specification that
only uses rules of the forms{, s,) trivially satisfies the conditions on rules; thus such a
specification is injective iffd is an injective, partial function. We invite the reader to verify
that all the specifications considered in this paper and most of the specifications introduced
in [4] are indeed injective.

For these specifications, one can formulate the following classification result, which is a
direct consequence of [12].

Definition 13 Let Sbe a specification. Define

Prp = {M € Term$DFPTS] | T |- M : Prop for somer}
Set = {M € Term§DFPTS] | I" - M : s for somes # Prop}

158 BARTHE, HATCLIFF AND SORENSEN

Prf = {M € Term$DFPTS] | T }- M : A& ' - A: Prop for somel" and A}
Elt = {M € Term$DFPTS] [T+ M : A& I' - A: sfor somerl’, A ands # Prop}

We also usé@ype for Prp U Set.

In the sequel, we often assume types to be normalizingTyge < WNg. This assump-
tion is needed to ensure preservation of sorts, i.e.

F-A:s&THA:S& A= A=s=¢
which in turn is needed in the proof of classification.

Proposition 1 (Classification for DFPTSs). If Sis injective andType € WNg then
Prp N Set = ¥ andPrf N Elt = . -

As for the A-cube, it is possible to strengthen the result by defining pairwise disjoint,
decidable, syntactic classes of terms that contain the classes below. For the purpose of
conciseness, we limit ourselves to this weak form of classification.

5.5. CPS translations for domain-free pure type systems

In this section we define a CPS translation for any injective, locally persistent logical
specification in which all types are weakly normalizing. It is worth pointing that there is no
technical hurdle to scale up the CPS translations. For the sake of brevity, we only present
the basic translation. Other (e.g. optimized, direct style) translations are generalized in a
similar fashion.

Definition 14 Let Sbe an injective, locally persistent logical specification vilifipe <
WNp. The (domain-free) CPS translation is defined in figure 15.

Figure 15 provides a compact alternative to the CPS translation of the domaindube
by instantiatingProp = x andPrf = Const{CUBE]. The two definitions are not exactly
identical, as the former is not defined on all pseudo-terms, but this difference is of no
importance: we are primarily interested in well-typed terms. Following the method of
Theorem 1 and using Proposition 1, one proves:

Theorem 5.
'kA:B=C{T)H#C(A) :C{B)

Note that the assumption of the specification being locally persistent is needed in the
application rule.

CPS TRANSLATIONS AND APPLICATIONS 159

C(z) _f Xezk if z € VProp

T 1z otherwise
C(s) =s

[Mk (aC(M)) if Az.M € Prf
CeM) = { Az.C(M) otherwise

n [ARC(MY (Mg CM'YE) if MM e Prf

C(M M) { C(M)C(M") otherwise
C(llz: A. B) = Hz:C{A).C{B)

_ -=C{M) if M € Prp
C(M) - { C(M) otherwise
c() = 1:Prop
C{l,z: A) = C(T),z:C{4)

Figure 15 CPS translation for domain-free pure type systems.
One can envisage to generalize the CPS translation in several directions:

e one can consider even larger classes of logical specifications, e.g. by not requiring the
specification to be injective. There is little incentive for such a translation as most speci-
fications of interest are injective. However, one may use the domain-full CPS translation,
as summarized in Section 6.4, and the relationship between domain-free pure type sys-
tems and domain-full pure type systems, as summarized in Section 6.3, to achieve the
desired translation.

e one can consider a more general notion of logical specification, in which several uni-
verses of propositions are allowed. In fact, such a generalization is natural both from
programming and logical perspectives. While we have not checked the details, we do not
expect any difficulty in scaling up the CPS translation to a suitably defined extension of
the class of locally persistent specifications.

6. CPS translations for (domain-full) pure type systems

Although domain-free pure type systems appear to be more appropriate for the purpose of
defining CPS translation, there are strong reasons to study CPS translations in the more
traditional setting of traditional pure type systems. The primary reason is of sociological

nature: traditional pure type systems are better established than their domain-free counter-
part and many of the existing CPS translations have been phrased in terms of domain-full
systems. The second reason is of practical nature: in a number of applications, one is

160 BARTHE, HATCLIFF AND SORENSEN

interested in domain-full systems. Such applications range from looping combinators for

inconsistent pure type systems to compilation of typed intermediate languages. In this sec-
tion, we therefore embark on defining CPS translations for traditional pure type systems.

Two methods are considered:

o thedirect methodvhich relies on a non-standard induction principle, inspired from earlier
work by Dowek et al. [20], see also [9].

o theindirect methodvhich relies on the close correspondence between domain-free and
traditional pure type systems, see [12].

This section is organized as follows. In the first subsection, we briefly outline the main
definitions for domain-full pure type systems. In the second subsection, we relate domain-
full and domain-free pure type systems. In the third subsection, we exploit this relation
to define CPS translations via the indirect method. In the fourth subsection, we define
CPS translations via the direct method. In the fifth subsection, we summarize the different
approaches to define CPS translations. For conciseness, we limit ourselves to the Plotkin’s
style, un-optimized, CPS translation. Other translations (optimized, direct style), can be
treated likewise.

6.1. Domain-full pure type systems
Pure type systems are defined in essentially the same way as domain-free pure type systems.
The only difference is that the former feature a domain-fulibstraction of the form
AX: A.M. Throughout the rest of this subsectid,= (S, A, R) denotes an arbitrary
specification.
Definition 15(pure type systems
1. The sefferm$PTS] is given by the abstract syntax:
TermgPTS] > A,B::=x|s|AB| Ax: A.B| IIx: A.B

wherex € V ands € S.
2. The seContextfPTS] is given by the abstract syntax:

ContextfPTS] o ' ii=- | [, x: A

3. B-reduction— 4 is defined as the smallest compatible relation closed under the rule
(AX:AM)N —5 M{x := N}

4. Thepure type system derivabilitglationt is given by the rules of figure 16.

We use the same notation, terminology, and conventions as were employed for domain-free
pure type systems.

CPS TRANSLATIONS AND APPLICATIONS

161
(axiom) - F 8189 if (s1,82) € A
(start) _LFA:s ifz ¢ dom(T') and z € V'*
Iz:AFzxz: A
(weakening) LrA:B TFC:s if z ¢ dom(I') and z € V*
I'z:C+ A:B
' A: z:AVF B:
(product) it il 52 if (s1,82,83) €ER
'+ (lz:A. B) : s3
L '+ F:.(II::A.B) I'ta:4A
(application)
'+ Fa:B{z:=a}
. Lx:AFb:B T F (IInA.B):s
(abstraction)
FF A b:lIxs:A. B
. ! .
(conversion) LrA:B TFB:s if B=g B’

' A:B

Figure 16 Pure type systems.

6.2. Domain-full pure type systems vs. domain-free pure type systems

In this subsection, we relate derivability in domain-full pure type systems to derivability
in domain-free pure type systems. Most of the results in this subsection come from [12].
Throughout this subsection, we [Bbe a fixed specification.

Itis trivial to define a map from domain-full pseudo-terms to domain-free pseudo-terms.

Definition 16(erasurg. Theerasuremap|.|: Term$PTS] — Term$DFPTS] is defined
as follows:

[X| = X
Is|=s
[tu] = [t]u]

[AX: ALl = AX.t|
[TIx: A.B| = IIx : |A].|B|

Erasure preserves typing.

Proposition 2. If ' = M : Athen|['| | [M] : |Al.

162 BARTHE, HATCLIFF AND SORENSEN

It is more difficult to define a decorating function that is inverse to erasure and that maps
domain-free judgments to domain-full judgments.

Proposition 3. Assume that is functional and thafype € WNg. If A |- E : F then
there exist§™ € ContextfPTS] and M, A € TermgPTS]st. T - M : A Il = A, M| =
E and|A| = F.

The exact description of the decoration process, and the proof of the Proposition, are to
be found in [12]. Below we briefly indicate how the decoration process works. Clearly the
crucial case is that of the abstraction rule,

Ix:Afrb:B Tk (TIx:AB):s
' ax.b:TIx: A.B

So assume that we have decorationg’ok : A|- b : B andrl' |- (ITx: A.B) : s from
which we must construct a decorationlof— Ax.b : TIx: A.B. The only term to treat is
Ax.b. We simply decorate it asx : A'.b’ where A" andb’ are the respective decorations of
A andb (in suitable contexts). Using the induction hypothesis and some auxiliary results,
one then shows that typing is preserved.
Forthe sake of completeness, note that decoration needs to be context-dependent. Indeed,
one cannot define a majec : Term$DFPTS] — Term$PTS] such thatldec(M)| = M
for everyM € Term¢DFPTS] and

'k M :C = dec(I") } dec(M) : dec(C)

wheredec is extended in the obvious way to contexts.
Indeed, consider the terax.x. In A —, we have

A x,B:ix}IxXX:A—> A
and
A:x,B:xFAxx:B—> B
If there were a magec with the above mentioned properties, it would satisfy
dec(Ax.X) = Ax:C.x
with
A x,B:xFAX:CX:A—> A
and
A:x,B:xFAx:Cx:B— B

The above judgments are only derivable in c@se A = B, which needs not be the case.

CPS TRANSLATIONS AND APPLICATIONS 163

In contrast, there is no problem with context-dependent decoration as the above examples
are decorated respectively into

A x,B:xFAX:AX:A—> A
and

A x,B:xFAXx:Bx:B— B

6.3. The indirect method

In this subsection, we scale up to domain-fllSs the domain-free CPS translation of
Section 5.5. Below we le&® be an injective, locally persistent logical specification such that
Type € WNg. (Note thatfType € WNg impliesType € WNg).

The indirect method consists in factorizing the CPS translation of a domain-full pseudo-
contextl” and a domain-full pseudo-terM in three steps:

1. erase the domains of theabstractions so as to obtain a domain-free pseudo-cdmtext
and a domain-free pseudo-tefiv|;

2. translatgl'| into C{|T"|) and|M| into C{|M|);

3. usingC{|I'|), decorater-abstractions i€ {{M|) so as to obtain a domain-full pseudo-
termN.

In picture, the indirect method is represented as follows:

TermgPTS] TermgPTS]

erasei/ T decorate

Term§DFPTS] —> Term$DFPTS]
CPS

Symbolically, one can define
Cr(.) : TermgPTS] — Term¢§PTS]

asdeceqr;p (C{IM])), wheredec, (M) is a decoration oM w.r.t. A, as given by Proposi-
tion 3.

6.4. The direct method

In this subsection, we present a family of CPS translations which preserve typing and
act on domain-full pseudo-terms. More precisely, we define a family of (partial) maps
Cr{.) : TermgPTS] — Termg$PTS], wherel is a pseudo-context. The definition, which
proceeds by well-founded induction over pairs M), whererl is a pseudo-context and

M is a pseudo-term, preserves typing and applies to most Pure Type Systems that appear

164 BARTHE, HATCLIFF AND SORENSEN

in the literature. For the sake of conciseness, we gloss over technical details, including the
definition of the ordek (to be found in [9]) and limit ourselves to an informal description
of the order.

Firstly, < contains the subterm relation, defined on paitsN) in the obvious way.
However, this is not enough because the CPS translation cannot proceed by induction on
the structure of pairsl{, M), wherer is a pseudo-context and is a pseudo-term. Take
for example a contextt and a variablec of sortx. It will be translated intouk : A.xk for
some suitablé\. If the CPS translation is to preserve typifgmust be related to the CPS
translation of ", B), whereB is a type ofx in I". So the order to be used in the definition
of the translation should satisfy: if = M : Athen (, B) < (', A) for someB such that
I' = M : B. Following [9, 20], we takeB to be the normal form oA. The resulting order
< is well-founded for most systems that appear in the literature.

Definition 17 Cr{(.) : Legal-TermfPTS] — Legal-TermfPTS] is defined in figure 17.

The translation is well-defined for all locally persistent logical specifications for which
< is well-founded. For such specifications, we have:

Theorem 6.

6.5. Assessment

In closing this section, it is perhaps worth noticing a number of variations in the CPS
translations we have defined above for the domain-free cube (figure 7), for domain free
PTSs (figure 15), and for domain-fulTSs (figure 17).

e Syntactic/type-based classification. The translation of terms and types are different, so
one must have a means of distinguishing between the two notions. This can be done either
syntactically by dividing the pseudo-terms into various categories (e.g. the categories of
pseudo-objects, -constructors, and -kinds in the domain-free cube) or based on types by
dividing the legal terms into various categories (e.g. the categBrigsSet, Prf, Elt in
domain-freePTSs).

e Context-dependent/-independent classification. The type-based classification can be done
either independently of the context (as the categdrips etc. in domain-fre®TSs) or
depending on the context (by checking e.§. = M : Prop as in the translation of
domain-fullPTSs).

e Context-dependent/-independent translation. If the CPS translation uses a type-based
context-dependent classification, then the translation must be parametrized by the context.
Also, if the translation reconstructs types (as in the domain-full CPS-translation), then
the translation must again be parametrized by the context.

The various translations are often related by results such as the following:

Proposition 4. If T = M : A, then|Cr(M)| = C(|IM}]).

CPS TRANSLATIONS AND APPLICATIONS 165

Cr(z) =
Mk:-~CP(D).z k if ' b z:D:Prop
x otherwise
Cr(s) =s
Cr(Az:A. M) =
Me:~CM¥(D). k (Az:Cr(A) .C(r z:2)(M)) ifT' F Ax:A. M : D : Prop
Az:Cr {A). C(r z:.4)(M) otherwise
Cr(M My =
Me:=CP (D). Cr(M) (A\j:CR(D').j Cr(M'y k) ifT + MM :D:Prop
andT" + M : D'
Cr{M) Cr(M") otherwise
Cr(llz:A. B) = IIz:Cr (A). C(r,z:4){B)
_ | —=Cr{M) ifT + M :Prop
Cr{M) = { Cr(M) otherwise
CM(M) = Cr(nf M)
() = 1 :Prop
C{T,z: A) = C{T),z : Cr (A)
Figure 17 Domain-full CPS translation.
Proof: By induction on the structure of derivations. O

7. Conclusion and directions for further work

In this paper, we have generalized some important CPS translations to classes of pure type
systems and domain-free pure type systems. To our knowledge, our CPS translations are the
first of their kind to handle systems of dependent types. Reflecting on this work, we believe
that several research avenues deserve further attention; for the sake of clarity, we distinguish
between pure CPS questions and applications-oriented questions.

7.1. Pure CPS questions

The most fundamental question left open in this paper is the role of normalization in
the definition of CPS translations. While our translations require types to be normalizing,

166 BARTHE, HATCLIFF AND SORENSEN

one would hope to device CPS translations which do not rely on any such assumption.
Unfortunately, we have been unable to come up with such translations so far.

Another important question is to unveil the limitations of CPS translations. While the
translations apply to most Pure Type Systems that appear in the literature, they cannot be
extended readily t&-types as the usual translation for pairs does not preserve typing. Sim-
ilar difficulties appear with inductive types as the standard class of strictly positive inductive
definitions is not closed under CPS translation. However, the class of positive inductive def-
initions is closed under CPS translation so it would be interesting to study CPS translations
for typeda-calculi with positive inductive types. These limitations of CPS translations are
in fact deeply connected to inherent difficulties in extracting the computational content of
impredicative classical predicate logic with the axiom of choice.

On a more positive side, one can try to build up on the results of this paper:

e One natural objective is to recast existing CPS translations in the framework of pure
type systems and domain-free pure type systems. A priori the techniques introduced
in the paper seem general enough for this purpose and we expect no difficulty there. In
particular, it seems worth exploring Fischer-style CPS translations (where continuations
are the first arguments to functions) for pure type systems. As Sabry and Felleisen [58]
illustrate, the CPS terms produced by these translations have slightly different reduction
properties than those produced by Plotkin-style translations. This may be of use in some
applications;

e inorderto enhance the generality of our approach, one can also envision a generic staging
through a monadic metalanguage as presented by Hatcliff and Danvy [39]. A preliminary
step in this direction is the introduction of monadic type systems [11], which generalize
the simply typed metalanguage in the same way as the pure type systems generalize the
simply typedi-calculus.

7.2. Application-related questions
The applications sketched in the introduction give obvious directions for future work.

e Recent trends in compilation emphasize the use of typed intermediate languages with
sophisticated type structures. It seems worth to apply our results in this line of work
following the remarks in Section 1.1.

e Strong normalization from weak normalization: thus far the Barendregt-Geuvers-Klop
conjecture remains open for systems of dependent types. Further investigation is needed
to determine whether the tools developed in this paper can lead to a successful solution
to the conjecture. In [7], the authors solve the conjecture for the so-called generalized
non-dependent pure type systems by using a pervasive CPS translation. However, this
work falls short of treating systems of dependent types;

e Classical pure type systems: one important objective is a suitable generalization of the
Kreisel-Friedman theorem, which provides a foundation for extracting the computational
content from classical proofs. Other applications related to consistency and strong nor-
malization have been partially achieved in [6].

CPS TRANSLATIONS AND APPLICATIONS 167

Acknowledgments

We would like to thank T. Coquand for useful discussions on the paper, and we are grateful
to the referees for their comments and suggestions.

Part of this work was performed while the first author was working at CWI (Amsterdam,
The Netherlands) and at Chalmers Universitpi{g&borg, Sweden). The first author was
partially supported by a European TMR Fellowship. The second author was partially
supported by the United States National Science Foundation under grant CCR-9701418,
and by the United States National Aeronautics and Space Administration (NASA) under
award NAG 21209.

Notes

1. We assume that the reader is familiar with the notions of free and bound variables and the related conventions—
see [3].

2. Below we often omit the prefixs-".

3. The reader may well wonder what the intuition is behind this property and where the modification of Plotkin’s
translation comes from; these issues are explained at length in [66].

4. Griffin’s discovery was followed by several lines of work on classical logic, control operators, and the Curry-
Howard isomorphism—some initiated independently of his work. It is not possible here to explain the aims
and achievements of the individual lines of work, but see e.qg., [6] for more references.

5. Consistency of both classical and minimal propositional logic can of course be proved by the method of truth
tables! However, the above method scales up to logics for which the truth table method does not apply.

6. The use of.-abstractions with domain in pure type systems is motivated by history (most type systems have
adopted such abstractions) as well as by practical considerations (domain-full abstractions are necessary for
type-checking to be decidable).

7. This presentation is equivalent to the original one, as sketched in Section 5.2.

8. Thex is used to distinguish these systems from the corresponding sys&ofBarendregt's.-cube, intro-
duced later.

9. This claim implicitly relies on the view that pure type systems do indeed correspond to these well-known typed
A-calculi. This latter issue is studied in some detail in [28].

References

1. Appel, A.Compiling with ContinuationsgCambridge University Press, 1992.

2. Augustsson, L. Cayenne: A programming language with dependent tygemdeedings of the 1998 ACM
SIGPLAN International Conference on Functional ProgrammiBgltimore, Maryland, 1998, ACM Press,
pp. 239-250.

3. Barendregt, H.PThe Lambda Calculus—Its Syntax and Semaniesth-Holland, 1984.

4. Barendregt, H.P. Lambda calculi with typesHandbook of Logic in Computer Scien& Abramsky, D.M.
Gabbay, and T.S.E. Maibaum (Eds.). Vol. 2, Oxford Science Publications, 1992, pp. 117-309.

5. Barthe, G., Hatcliff, J., and Sgrensen, M.H. CPS-translation and applications: The cube and beyond. In
Proceedings of the Second ACM SIGPLAN Workshop on Continua@orianvy (Ed.), number NS-96-13
in BRICS Notes, 1996, pp. 4/1-4/31.

6. Barthe, G., Hatcliff, J., and Sgrensen, M.H. A notion of classical pure type systétnodeedings of the
Thirteenth Annual Conference on the Mathematical Foundations of Programming Sem@nBesokes and
M. Mislove (Eds.). Pittsburgh, Pennsylvania, March 1997. Electronic Notes in Theoretical Computer Science,
vol. 6.

168 BARTHE, HATCLIFF AND SORENSEN

10.

11.

12.

13.
14.
15.
16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

. Barthe, G., Hatcliff, J., and Sgrensen, MWeak Normalization Implies Strong Normalization in Generalized

Non-Dependent Pure Type SysteMarch 1997, submitted for publication.

. Barthe, G., Hatcliff, J., and Sgrensen, M.H. Reflections on reflectioRsoteedings of the Ninth International

Symposium on Programming Languages, Implementations, Logics and Pro¢ta@kser, P. Hartel, and
H. Kuchen (Eds.). Southampton, United Kingdom, September 1997. Lecture Notes in Computer Science,
vol. 1292, Springer-Verlag, pp. 241-258.

. Barthe, G., Hatcliff, J., and Sgrensen, MAh Induction Principle for Pure Type SystenMarch 1998,

submitted for publication.

Barthe, G., Hatcliff, J., and Sgrensen, M.H. A taxonomy of CPS and DS translations. Technical Report TR
98-11, Department of Computing and Information Sciences, Kansas State University, 1988.

Barthe, G., Hatcliff, J., and Thiemann, P. Monadic type systems: Pure type systems for impure settings. In
Proceedings of the Second Workshop on Higher-Order Operational Techniques in Semantics (HOQTS I1)
Gordon, A. Pitts, and C. Talcott (Eds.). Stanford, California, December 1997. Electronic Notes in Theoretical
Computer Science, vol. 10.

Barthe, G. and Sgrensen, M.H. Domain-free pure type syster@soteedings of Logical Foundations of
Computer Science LFCS'9%. Adian and A. Nerode (Eds.), Yaroslav, Russia, July 1997. Lecture Notes in
Computer Science, vol. 1234, Springer-Verlag, pp. 9-20.

Berardi, S. Type Dependence and Constructive Mathematics. Ph.D. Thesis. University of Torino, 1990.
Consel, C. and Danvy, O. For a better support of static data fldotference on Functional Programming

and Computer Architecturel. Hughes (Ed.). 1991. Lecture Notes in Computer Science, vol. 523, Springer-
Verlag, pp. 495-519.

Coquand, T. and Herbelin, H. A-translation and looping combinators in pure type sydtemmal of Func-

tional Programming4(1):77-88, 1994.

Curry, H.B. and Feys, Eombinatory LogicNorth-Holland, 1958.

Danvy, O. Back to direct styl&cience of Computer Programmirz(3):183-195, 1994.

Danvy, O. and Filinski, A. Representing control, a study of the CPS transformisliihematical Structures

in Computer Scienc&(4):361-391, 1992.

Danvy, O. and Lawall, J. Back to direct style II: First-class continuationBrdneedings of the 1992 ACM
Conference on Lisp and Functional Programmi&an Francisco, California, June 1992. ACM Press, LISP
Pointers, V(1):299-310.

Dowek, G., Huet, G., and Werner, B. On the existence of |dmgormal forms in the cube. Iinformal
Proceedings of TYPES'98BI. Geuvers (Ed.). Nijmegen, The Netherlands, May 1993, pp. 115-130.

Dussart, D., Hughes, J., and Thiemann, P. Type specialisation for imperative langugeseédings of the

1997 ACM SIGPLAN International Conference on Functional Programmngsterdam, The Netherlands,
June 1997. ACM Press, pp. 204-216.

Felleisen, M. The Calculi of,-CS Conversion: A Syntactic Theory of Control and State in Imperative Higher
Order Programming Languages. Ph.D. Thesis. Indiana University, 1987.

Felleisen, M. and Friedman, D. Control operators, the SECD machine, anddf@ilus. IfFormal Descrip-

tion of Programming Concepts |IM. Wirsing (Ed.), North-Holland, 1986, pp. 193-217.

Felleisen, M., Friedman, D., Kohlbecker, E., and Duba, B. A syntactic theory of sequential ctmeaktical
Computer Scien¢®2(3):205-237, 1987.

Flanagan, C., Sabry, A., Duba, B., and Felleisen, M. The essence of compiling with continuatfms. In
ceedings of the ACM SIGPLAN’'93 Conference on Programming Language Design and Implementation
Albuquerque, New Mexico, June 1993, pp. 237-247, SIGPLAN Notices 28(6).

Friedman, D., Wand, M., and Haynes,E3sentials of Programming Languag®8iT Press and McGraw-

Hill, 1991.

Gandy, R.O. An early proof of normalization by A.M. Turing. In J.P. Seldin and J.R. Hindley, Academic Press
Limited, 1980, pp. 453-455.

Geuvers, H. Logics and Type Systems. Ph.D. Thesis. University of Nijmegen, 1993.

Geuvers, H. and Nederhof, M.J. A modular proof of strong normalisation for the Calculus of Constructions.
Journal of Functional Programmind.:155-189, 1991.

Girard, J.-YInterprétation fonctionnelle etlimination des coupures dans I'aritfatique d’ordre sugrieur.

Theése d’Etat. UniversitParis VII, 1972.

CPS TRANSLATIONS AND APPLICATIONS 169

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52

Griffin, T.G. A formulae-as-types notion of control.@onference Record of the Annual ACM Symposium on
Principles of Programming LanguageSan Francisco, California, January 1990. ACM Press, pp. 47-58.

de Groote, P. The conservation theorem revisitedyped Lambda Calculus and Applicatioid. Bezem

and J.F. Groote (Eds.). Utrecht, The Netherlands, March 1993. Lecture Notes in Computer Science, vol. 664,
Springer-Verlag, pp. 163-178.

Harper, R., Honsell, F., and Plotkin, G. A framework for defining loglosrnal of the ACM40(1):143-184,

1993. A Preliminary Version Appeared in the Proceedings of the First IEEE Symposium on Logic in Computer
Science, June 1987, pp. 194-204.

Harper, R. and Lillibridge, M. Explicit polymorphism and CPS conversiorCdmference Record of the
Twentieth Annual ACM Symposium on Principles of Programming Langu&gesleston, South Carolina,
January 1993, ACM Press, pp. 206-219.

Harper, R. and Lillibridge, M. Polymormphic type assignment and CPS convetd®iR.and Symbolic
Computation6:361-380, 1993.

Harper, R. and Mitchell, J.C. On the type structure of Standard MM Transactions on Programming
Languages and Systend$(2):211-252, 1993.

Harper, R. and Morrisett, G. Compiling polymorphism using intensional type analy€ienference Record

of the Twenty-Second Annual ACM Symposium on Principles of Programming Lang8agesrancisco,
California, January 1995, ACM Press, pp. 130-141.

Hatcliff, J. Foundations of partial evaluation of functional programs with computational effeSiamiposium

on Partial Evaluation O. Danvy, R. Glick, and P. Thiemann (Eds.). September 1998 ACM Computing
Surveys, vol. 30.

Hatcliff, J. and Danvy, O. A generic account of continuation-passing styl€Soifierence Record of the
Twenty-First Annual ACM Symposium on Principles of Programming LanguBgettand, Oregon, January
1994, ACM Press, pp. 458-471.

Hatcliff, J. and Danvy, O. A computational formalization for partial evaluafidathematical Structures in
Computer Scienc&:507-541, 1997. Special issue devoted to selected papers froiottkshop on Logic,
Domains, and Programming Languag&armstadt, Germany, May 1995.

Hindley, J.R. and Seldin, J.mtroduction to Combinators and-Calculus Cambridge University Press,
1986.

Howard, W. The formulae-as-types notion of construction. In T.H.B. Curry: Essays on Combinatory Logic,
Lambda, Calculus and Formalism, J.P. Seldin and J.R. Hindley, Academic Press Limited, 1980, pp. 479-490.
Lawall, J. and Thiemann, P. Sound specialization in the presence of computational effBcteekedings

of Theoretical Aspects of Computer Softwave Abadi and T. Ito (Eds.). Sendai, Japan, September 1997.
Lecture Notes in Computer Science, vol. 1281, Springer-Verlag, pp. 165-190.

Longo, G. and Moggi, E. Constructive natural deduction an@iset’ interpretationMathematical Structures

in Computer Sciengé(2):215-254, 1991.

Meijer, E. and Peyton Jones, S. Henk: A typed intermediate languagmdeedings of the ACM SIGPLAN
Workshop on Types in CompilatioAmsterdam, The Netherlands, June 1997.

Meyer, A.R.and Wand, M. Continuation semantics in typed lambda-calculi (summargdits of Programs

R. Parikh (Ed.). Lecture Notes in Computer Science, vol. 193, Springer-Verlag, 1985, pp. 219-224.
Minamide, Y., Morrisett, G., and Harper, R. Typed closure conversioBohference Record of the Twenty-
third Annual ACM Symposium on Principles of Programming Langua8esPetersburg, Florida, January
1996, ACM Press, pp. 271-283.

Murthy, C. Extracting Constructive Contents from Classical Proofs. Ph.D. Thesis, Cornell University, 1990.
Nielsen, K. and Sgrensen, M.H. Call-by-name CPS-translation as a binding-time improventatidn
Analysis SymposiunA. Mycroft (Ed.). Glasgow, Scotland, September 1995. Lecture Notes in Computer
Science, Springer-Verlag, vol. 983, pp. 296-313.

Peyton Jones, S.The Implementation of Functional Programming Languadgrentice Hall International.
1987.

Peyton Jones, S.L., Hall, C., Hammond, K., Partain, W., and Wadler, P. The Glasgow Haskell compiler: A
technical overview. IfProceedings of the UK Joint Framework for Information Technology (JFIT) Technical
ConferenceKeele, 1993.

. Plotkin, G. Call-by-name, call-by-value and #healculus.Theoretical Computer Sciencke125-159, 1975.

170 BARTHE, HATCLIFF AND SORENSEN

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.
74.

75.

Prawitz, DNatural Deduction: A Proof Theoretical Studdlmquist & Wiksell, 1965.

Prawitz, D. Ideas and results of proof theoryThe 2nd Scandinavian Logical SymposjJri. Fenstad (Ed.).
North-Holland, 1970, pp. 235-307.

Rehof, N.J. and Sgrensen, M.H. Thecalculus. InTheoretical Aspects of Computer Softwavie Hagiya and

J. Mitchell (Eds.). Sendai, Japan, April 1994. Lecture Notes in Computer Science, vol. 789, Springer-Verlag,
pp. 516-542.

Reynolds, J.C. Definitional interpreters for higher-order programming langu#igher-Order and Symbolic
Computatiori1(4):7-105, 1998. Reprinted from the proceedings of the 25th ACM National Conference, 1972.
Sabry, A. Note on Axiomatizing the Semantics of Control Operators. Technical Report CIS-TR-96-03.
Department of Computer and Information Science, University of Oregon, 1996.

Sabry, A. and Felleisen, M. Reasoning about programs in continuation-passind-isiyland Symbolic
Computation6:289-360, 1993.

Sabry, A. and Felleisen, M. Is continuation passing useful for data-flow analydfs8deedings of the ACM
SIGPLAN'94 Conference on Programming Language Design and Implementé@titamdo, Florida, June
1994, pp. 1-12. SIGPLAN Notices 29(6).

Sabry, A. and Wadler, P. A reflection on call-by-valA€M Transactions on Programming Languages and
Systems19(6):916-941, 1997. Earlier version in the proceedings of the 1996 International Conference on
Functional Programming.

Schmidt, D.ADenotational Semantics: A Methodology for Language Developmdigh and Bacon, Inc.,
1986.

Seldin, J.P. Normalization and excluded middigtudia LogicaXLVIIl (2):193-217, 1989.

Seldin, J.P. and Hindley, J.R. (Ed§9.H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism Academic Press Limited, 1980.

Shao, Z. and Appel, A.W. A type-based compiler for Standard MPréieedings of the ACM SIGPLAN'95
Conference on Programming Language Design and Implementdtemolla, California, June 1995, pp.
116-129, SIGPLAN Notices 30(6).

Shivers, O. Control-Flow Analysis of Higher-Order Languages. Ph.D. Thesis. Carnegie Mellon University,
1991.

Sgrensen, M.H. Strong normalization from weak normalization in typealculi. Information and Compu-
tation, 133(1):35-71, 1997.

Stémarck, G. Normalization theorems for full first order classical natural deduclimrnal of Symbolic
Logic, 56(1):129-149, 1991.

Steele, G.L., Jr. Rabbit: A compiler for scheme. Technical Report Al-TR-474, Atrtificial Intelligence Labora-
tory, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1978.

Tait, W.W. Intensional interpretations of functionals of finite ty@eurnal of Symbolic Logi82(2):190-212,

1967.

Tait, W.W. A realizability interpretation of the theory of specied.dgic ColloquiumR. Parikh (Ed.). Lecture
Notes in Mathematics, vol. 453, Springer-Verlag, 1975, pp. 240-251.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., and Lee, P. TIL: A type-directed optimizing
compiler for ML. InProceedings of the ACM SIGPLAN '96 Conference on Programming Language Design
and ImplementatiorPhiladelphia, Pennsylvania, May 1996, pp. 181-192. SIGPLAN Notices 31(5).
Terlouw, JEen Nadere Bewijstheoretische Analyse van GS™Masuscript (in Dutch), 1989.

Werner, BContinuations, Evaluation Styles and Types Systéasuscript, 1992.

Xi, H. Weak and strong normalizations in typegtalculi. In Proceedings of TLCA'Q7P. de Groote and

J. Hindley (Eds.). Nancy, France, Lecture Notes in Computer Science, vol. 1210, Springer-Verlag, April
1997, pp. 390-404.

Xi, H. and Pfenning, F. Eliminating array bound checking through dependent typgeésdeedings of the
ACM SIGPLAN’'98 Conference on Programming Languages Design and Implemenkétioméal, Canada,

June 1998, pp. 249-257. SIGPLAN Notices 33(5).

