
Higher-Order and Symbolic Computation,, 12, 125–170 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

CPS Translations and Applications:
The Cube and Beyond

GILLES BARTHE gilles@di.uminho.pt
Departamento de Inforḿatica, Universidade do Minho, 4709 Braga Codex, Portugal

JOHN HATCLIFF hatcliff@cis.ksu.edu
Department of Computing and Information Sciences, Kansas State University, Manhattan, KS, USA, 66506

MORTEN HEINE B. SØRENSEN rambo@diku.dk
DIKU, Universitetsparken 1, DK-2100 Copenhagen, Denmark

Abstract. Continuation passing style (CPS) translations of typedλ-calculi have numerous applications. How-
ever, the range of these applications has been confined by the fact that CPS translations are known fornon-
dependenttype systems only, thus excluding well-known systems like the calculus of constructions (CC) and the
logical frameworks (LF). This paper presents techniques for CPS translating systems with dependent types, with
an emphasis on pure type-theoretical applications.

In thefirst partof the paper we review several lines of work in which the need for CPS translations of dependent
type systems has arisen, and discuss the difficulties involved with CPS translating such systems. One way of
overcoming these difficulties is to work with so-calleddomain-freetype systems. Thus, instead of Barendregt’s
λ-cube we shall consider thedomain-freeλ-cube, and instead of traditional pure type systems, we shall consider
domain-free pure type systems.

We therefore begin thesecond partby reviewing the domain-freeλ-cube, which includes domain-free versions
of CC and LF, and then present CPS translations for all the systems of the domain-freeλ-cube. We also introduce
Direct Style (DS) (i.e., inverse CPS) translations for all the systems of the domain-freeλ-cube; such DS translations,
which have been used in a number of applications, were previously formulated for untyped and simply-typed
languages only.

In the third part we review domain-free pure type systems and generalize the CPS translations of the domain-
freeλ-cube to a large class of domain-free pure type systems which includes most of the systems that appear in
the literature, including those of the domain-freeλ-cube. Many translations that appear in the literature arise as
special cases of ours.

In thefourth partof the paper we present two approaches to CPS translations of traditional pure type systems.
The first, indirect, technique lifts the CPS translation of domain-free pure type systems to the analogous class
of traditional pure type systems by using results that relate derivations in domain-free and traditional pure type
systems. The second, direct, approach translates derivations, requiring a certain order on derivations to be well-
founded. Both techniques yield translations for most of the systems that appear in the literature, including those
of Barendregt’sλ-cube.

Keywords: continuation-passing style, pure type systems, dependent types, the lambda cube

1. Introduction

Continuation passing style (CPS) translations of typedλ-calculi have appeared throughout
the literature since the work of Meyer and Wand [46]. Applications, too numerous to be

126 BARTHE, HATCLIFF AND SØRENSEN

listed exhaustively here, include compilation [1, 25], transformation [14, 49], and analysis
[58, 59, 65] of typed programming languages, construction of semantics definitions for
languages with jumps [56, 61], exceptions, and concurrency primitives [26], embedding of
classical logics in intuitionistic logics [31, 48], techniques to infer strong normalization from
weak normalization in typedλ-calculi [66, 74], and the construction of looping combinators
in inconsistent pure type systems [15]. Related Direct Style (DS) translations [17, 19, 58]
have also been used in both theoretical [57] and implementation-oriented applications [60].

The range of these applications has been confined thus far by the fact that CPS translations
are known fornon-dependenttype systems only. Indeed, the most general class of systems
with known CPS translation seems to be the non-dependent logical pure type systems,
studied by Coquand and Herbelin [15] and later by Werner [73]. While this class contains
a number of well-known systems, like simply typedλ-calculus and Girard’s SystemF
(second-orderλ-calculus) and SystemFω (higher-orderλ-calculus), it also excludes some
well-known dependent systems, e.g., the calculus of constructions (CC) and the logical
frameworks (LF). As for DS translations, they have only been defined for untyped and
simply-typed languages.

Below we sketch three of the above mentioned applications of CPS translations in more
detail: intermediate languages for compiling and partial evaluation, inferring strong nor-
malization from weak normalization in typedλ-calculi and embedding classical logics in
intuitionistic logics. With these examples we hope to convince the reader that, indeed, it
is desirable to extend existing results concerning CPS translations to richer type systems,
including systems with dependent types. The last two subsections discuss the difficulties
involved with this extension and how we propose to solve them in this paper.

1.1. Intermediate languages for compiling

CPS or languages with properties similar to CPS (such as A-normal forms [25] or monadic
normal forms [39]—we refer to these asCPS-based languages) are often used as interme-
diate languages when compiling and partial evaluating functional languages [1, 21, 38, 40,
43, 50, 60, 68]. These applications take advantage of the fact that, in CPS, all intermediate
values are named and that contexts are represented explicitly. For example, intermediate
value naming is used to aid register allocation in compiling (roughly, each name corres-
ponds to a register) and to prevent computations from being discarded or reordered in partial
evaluation. Explicit context representation is helpful for optimizing tail-calls in compiling
and for performing binding-time improvements in partial evaluation.

Moreover, current trends in compilation and partial evaluation are emphasizing the im-
portance oftypedCPS-based intermediate languages. These intermediate languages are
particularly relevant for compilation of languages like ML and Haskell that have sophisti-
cated polymorphic type systems. Recently, Meijer and Peyton Jones [45] suggested using the
λ-cube as a basis for typed intermediate languages. This strategy builds on a well-established
practice of using SystemF for compilation (see e.g., [35, 37, 47, 51, 71, 64]). Theλ-cube
and more general pure type systems seem well-suited for intermediate languages because
of the following features:

CPS TRANSLATIONS AND APPLICATIONS 127

• compactness: since terms and types are conflated in one syntactic category, the same
functions can be used for their manipulation, and
• parametricity: the intermediate language is robust with respect to changes to the type

system of the source language—extensions to the source type system often amount to
changing only the specification of the pure type system.

Direct-style (DS) translations have been used for performing partial evaluation, and for
designing intermediate languages for compilation and partial evaluation. Danvy and Lawall
[17, 19] used CPS and DS translations to enable partial evaluation of functional programs
with control operators without requiring partial evaluators to treat control operators. This
proceeds in three steps: (1) remove control operators by CPS translating, (2) partially
evaluate, (3) apply a DS translation to obtain a specialized program in direct-style. They
apply this technique to e.g., co-routines written using Scheme’scall/cccontrol operator.

Sabry and Felleisen [58] and Flanagan et al. [25] illustrated how a DS translation could
be used to derive an appropriate reduction calculus for an intermediate language called
A-normal forms. Sabry and Wadler [60] and the authors [8] use DS translations to establish
correctness properties of CPS-based translations. Lawall and Thiemann use a DS translation
to prove the correctness of a partial evaluation strategy for specializing functional programs
with computational effects [43].

Given the wide applicability of CPS and DS translations for compilation and partial
evaluation as well as the recent emphasis on typed CPS-based intermediate languages, it is
worthwhile to investigate how they can be scaled up to languages with type systems that can
be described using theλ-cube and the framework of pure type systems. Various researchers
are advocating programming languages with dependent types, and an investigation of CPS
seems especially relevant in this context. For example, Augustsson [2] has developed
a version of Haskell with dependent types called Cayenne, and Xi and Pfenning have
proposed an extension of ML that uses dependent types to eliminate array bound checking
[75]. The lack of CPS/DS translations for dependently-typed systems means that none of
the CPS/DS techniques discussed above can be applied immediately to such systems.

1.2. Strong normalization from weak normalization

Informally, a term in some calculus is weakly normalizing if it has a reduction sequence
ending in a normal form, i.e., in a term to which no further reductions apply. A term is
strongly normalizing if all reduction sequences from the term eventually end in normal
forms; that is, if the term has no infinite reductions.

The classical proof of strong normalization forβ-reduction in simply typedλ-calculus
is due to Tait [69]. It was generalized to second-order typedλ-calculus by Girard [30], and
subsequently simplified by Tait [70]. The technique is very flexible and has been generalized
to a variety ofλ-calculi.

For some notions of reduction in some typedλ-calculi there is a technique to prove weak
normalization that is simpler than the Tait-Girard technique to prove strong normalization.
For instance, Turing [27] proves weak normalization forβ-reduction in simply typedλ-
calculus by giving an explicit measure which decreases in every step of a certainβ-reduction

128 BARTHE, HATCLIFF AND SØRENSEN

sequence. Prawitz [53] independently uses the same technique to prove weak normalization
for reduction of natural deduction derivations in predicate logic.

Since weak normalization is sometimes easier to establish than strong normalization, it
is natural to develop techniques to infer the latter from the former. Indeed, several such
techniques have been presented, most of which infer strong normalization of one notion of
reduction from weak normalization of amore complicatednotion of reduction, see [66] for
references. However Sørensen [66] and Xi [74] recently developed techniques which infer
strong normalization ofβ-reduction in a typedλ-calculus from weak normalization of the
samenotion of reduction, i.e.β-reduction.

These techniques provide some hope for a positive answer to a conjecture, presented by
Barendregt atTyped Lambda-Calculus and Applications, Edinburgh 1995, stating that for
every pure type system weak normalization ofβ-reduction implies strong normalization
of β-reduction. The conjecture has also been mentioned by Geuvers [28], and, in a less
concrete form, by Klop.

To explain these recent techniques by Sørensen and Xi we consider simply typed
λ-calculusà la Curry. Let3 denote the set ofuntypedλ-terms, as defined by the abstract
syntax:

3 3 M ::= x | λx.M | M1M2

wherex ranges over a denumerable set of variables. The set ofsimple typesT is defined
by the abstract syntax:

T 3 τ ::= α | τ1→ τ2

whereα ranges over a denumerable set of type variables. The set ofcontextsis the set of
all

{x1 : τ1, . . . , xn : τn}

whereτ1, . . . , τn ∈ T , x1, . . . , xn are variables, and wherexi 6≡ xj for i 6= j . We write
x : τ for {x : τ } and0,0′ for 0 ∪ 0′ where it is assumed that for no variablex is thereσ
andτ such that bothx : σ ∈ 0 andx : τ ∈ 0′. The relatioǹ on triples (0,M, σ), where
0 is a context,M is aλ-term, andσ is a simple type, is defined by:

0, x : τ ` x : τ

0, x : σ ` P : τ

0 ` λx.P : σ → τ

0 ` P : σ → τ 0 ` Q : σ

0 ` P Q : τ

A λ-term M is typableif there are0 andσ such that0 ` M : σ .
As usualβ-reduction→β on3 is the smallest compatible relation such that

(λx.P)Q→β P{x := Q}

where P{x := Q} denotes substitution ofQ for all the free occurrences ofx in P.1

A β-normal formis aλ-term M such that there is no otherλ-term N with M →β N. A

CPS TRANSLATIONS AND APPLICATIONS 129

Figure 1. Plotkin’s call-by-name CPS translation for untypedλ-terms.

Figure 2. Modified call-by-name CPS translation for untypedλ-terms.

λ-termM isβ-weakly normalizingif there exists aβ-reduction sequenceM →β · · · →β N
ending in aβ-normal formN, andβ-strongly normalizingif all β-reduction sequences from
M end inβ-normal forms (that is, if there are no infiniteβ-reduction sequences fromM).2

We shall say that simply typedλ-calculus isweaklyandstrongly normalizingif all typable
terms are weakly and strongly normalizing, respectively. The latter property trivially implies
the former, but the converse is not obvious.

Recall Plotkin’s [52] CPS translation [•] :3→ 3 defined in figure 1. The main idea of
the techniques by Sørensen and Xi is to modify Plotkin’s translation by changing the clause
for abstractions so as to arrive at the translation〈•〉 :3→ 3 defined in figure 2. The free
variabley on the right hand side must be so construed as to be fresh every time the clause
containing it is invoked. Thus, we do not have

〈λx.λz.x〉 ≡ λk.k(λx.λh.y(λl .l (λz.λm.y((λk.xk)m)z)h)x)

but rather

〈λx.λz.x〉 ≡ λk.k(λx.λh.y1(λl .l (λz.λm.y2((λk.xk)m)z)h)x)

For every abstractionλx.P in 〈M〉, x occurs free inP. Therefore, by the Conservation
Theorem forλI (see [3]), weak normalization of〈M〉 implies strong normalization of〈M〉.
The intuition behind this result is that the only way a term can be weakly normalizing and
at the same time fail to be strongly normalizing is by having, roughly, a subterm with an
infinite reduction and the capability to erase—via an abstractionλx.P wherex is not free
in P—this subterm.

One can also show that strong normalization of〈M〉 implies strong normalization ofM .
Thus, if〈M〉 is weakly normalizing,M is strongly normalizing.3

Incidentally, the modified translation does not map a term to something which is
β-equivalent (orβη-equivalent) with the original term, but the translation is still very
useful for the intended application.

Now let ⊥ be a fixed type variable, and¬σ ≡ σ →⊥. The map〈•〉 : T → T
defined in figure 3 is the call-by-name analogue of Meyer and Wand’s [45] CPS translation
of types. As usual,〈0〉 = {x : 〈σ 〉 | x : σ ∈ 0}. One can now show that if0 ` M : σ
then〈0〉,1 ` 〈M〉 : 〈σ 〉 for a certain1; that is, the translation maps simply typable terms

130 BARTHE, HATCLIFF AND SØRENSEN

Figure 3. Call-by-name CPS translation of types.

to simply typable terms. It follows that if all typable terms are weakly normalizing then
all typable terms are in fact strongly normalizing. Indeed, suppose all typable terms are
weakly normalizing. Given any typable termM , also〈M〉 is typable, hence〈M〉 is weakly
normalizing, and thereforeM is strongly normalizing.

A main problem in extending the technique to other typedλ-calculi is to extend the CPS
translation. The paper [66] presents the technique for versions of second- and higher-order
λ-calculus, as well as for systems with subtypes and recursive types. Later, the authors
[7] generalize the technique to a class of non-dependent pure type systems. Thus far the
technique has not been applied to dependent systems, partly because CPS translations for
such systems are not known, and partly because of certain other difficulties which are
beyond the scope of this paper.

1.3. Classical pure type systems

The Curry-Howard isomorphism[16, 42] states a correspondence between constructive
logics and typedλ-calculi, and reflects an old idea that proofs in constructive logics are
certain functions and objects. The isomorphism has evolved with the invention of numerous
typedλ-calculi and corresponding natural deduction logics—see [4, 28].

Until the late 1980s, the Curry-Howard isomorphism was concerned exclusively with
constructive logics. At that time Griffin [31] discovered that Felleisen’s [22, 24] control
operatorC could be meaningfully added to the simply typedλ-calculus by typingC with
the double negation rule. The reduction rules forC are related to well-known reductions
on classical proofs [53, 62, 67]. Moreover, Griffin discovered that well-known double-
negation embeddings of classical logic in intuitionistic logic, due to Kolmogorov and others,
correspond to CPS-translations.4

For concreteness we consider again simple types; here we assume that⊥ is a fixed
type variable. Let3µ denote the set of untypedλ-terms extended with a simple control
operatorµ:

3µ 3 M ::= x | λx.M | M1M2 | µx.M

wherex ranges over a denumerable set of variables. The relation` on triples (0,M, σ),
where0 is a context,M ∈ 3µ, andσ is a simple type, is defined by:

0, x : τ ` x : τ

0, x : σ ` P : τ

0 ` λx.P : σ → τ

0 ` P : σ → τ 0 ` Q : σ

0 ` P Q : τ

0, x : ¬σ ` M : ⊥
0 ` µx.M : σ

An M ∈ 3µ is typableif there are0 andσ such that0 ` M : σ .

CPS TRANSLATIONS AND APPLICATIONS 131

There are several reduction rules one can adopt for3µ; by→βµ we denote the smallest
compatible relation such that

(λx.P)Q→βµ P{x := Q}
(µx.P)Q→βµ µy.P{x := λz.y(zQ)}

where againP{x := Q} denotes substitution ofQ for all the free occurrences ofx in P;
this is the core of the system studied in [55]. Aβµ-normal form is aλ-term M such that
there is no otherλ-termN with M→βµ N. A λ-termsM isβµ-weakly normalizingif there
exists aβµ-reduction sequenceM →βµ · · · →βµ N ending in aβµ-normal formN, and
βµ-strongly normalizingif all βµ-reduction sequences fromM end inβµ-normal forms
(that is, if there are no infiniteβµ-reduction sequences from theM). The aboveλ-calculus
is weaklyandstrongly normalizingif all typable terms areβµ-weakly andβµ-strongly
normalizing, respectively.

What we have above may be construed as a natural deduction presentation of classical
propositional logic where proofs are decorated with terms (these can, in turn, be viewed as a
linear representation of the proofs), whereas the formulation of the simply typedλ-calculus
in the preceding subsection corresponds to minimal propositional logic.

As mentioned above, CPS translations of control operators correspond to embeddings of
classical logics. Indeed, consider the extension of Plotkin’s call-by-name CPS-translation
in figure 4, which is a call-by-name variant of Griffin’s translation. One can then show the
embedding property, i.e. that0 ` M : σ implies〈0〉 ` 〈M〉 : 〈σ 〉. This shows that logical
consistency of minimal, propositional logic implies consistency of classical propositional
logic. Indeed, assume classical propositional logic were inconsistent, i.e.` M :⊥ for
someM . Then alsò 〈M〉 : ¬¬⊥, and theǹ 〈M〉λx.x :⊥. Thus, the assumption implies
that minimal, propositional logic is inconsistent too.5

The embedding property can also be used to relate normalization in classical logic
with normalization in minimal logic and to extract computational contents of classical
proofs.

Recently, several authors have considered control operators in the context of rich type
disciplines. Werner [73] considers non-dependent logical pure type systems extended with
a variant of theµ-operator, and shows that the extended systems is strongly normalizing
if the same holds for the underlying pure type system—using CPS translations from the
extended systems to the underlying pure type systems. The authors [6] study a more general
notion of classical pure type system, whereby most logical pure type systems, including
those with dependent types, give rise to a corresponding classical pure type system.

Figure 4. Call-by-name CPS translation of3µ.

132 BARTHE, HATCLIFF AND SØRENSEN

In order to study embeddings of classical pure type systems into pure type systems, in
general, the need arises for more general CPS-translations, and preliminary versions of such
translations in fact appeared in [6].

1.4. Difficulties with dependent types

Recall Plotkin’s translation in figure 1. The translation is defined byinduction over the
structure(or alternatively, the size) of terms. This method of definition scales up to richer
languages that are either untyped [18, 58] or typed using a “Curry-style” type system
[35, 39], i.e. a type system in which the terms are the untypedλ-terms possibly extended
with other forms such as conditionals, or control operators as in the language3µ.

However, as mentioned in the preceding two subsections, we are interested in extending
CPS translations to pure type systems (in particular, dependent pure type systems) and
these are “Church-style” type systems in that they make use ofdomain-fullabstractions
λx : σ.M where a tagσ is attached to indicate the domain of the argumentx. For such
systems the induction over terms does not generally work. In a nut-shell, the translation of
an abstractionλx : σ.M has form

〈λx : σ.M〉 = λk : τ. k(λx : 〈σ 〉. 〈M〉) (∗)

and the problem is: what shouldτ be? It turns out that if we want the analogue of the
embedding property to hold, thenτ should be¬〈ρ〉 whereρ is the type ofλx : σ.M . Thus,
we need to take the type of a term into account when transforming the term.

The conventional solution is to define the CPS translation by induction over the structure
(or over the height) ofderivations0 ` M : A. For example, this is the approach taken by
Harper and Lillibridge when CPS translatingλω [34]. With such definitions, one generally
desires acoherence property:given two different derivationsD1 andD2 of 0 ` M : σ , the
translations〈D1〉 and〈D2〉 areequivalentin some sense. Resonable notions of equivalence
include syntactic identity as well as weaker notions such asβ-convertibility. Coherence is
a crucial property upon which proofs of other properties are built (e.g., properties showing
how the CPS translation interacts with substitution, reduction, and conversion, as well as
properties showing that the translation preserves typing).

For dependent systems this approach leads to difficulties. The problematic aspect of such
systems is thattypes may contain terms. More specifically such systems operate with types
of form5x : σ.τ . Informally, a termM of this type is such that for allN of typeσ,M N
has typeτ {x := N}, as expressed by theapplicationrule

0 ` M : 5α : σ.τ & 0 ` N : σ

0 ` M N : τ {α := N}

For instance, one may think ofM as a term whose type is arrays of any length where for
each numberN, the type ofM N is arrays of lengthN. HereN is a term, and it occurs in
the type. In most dependent systems the terms that can arise inside types areλ-terms (not

CPS TRANSLATIONS AND APPLICATIONS 133

some distinct category of numbers) and one then adopts theconversionrule

0 ` M : σ(α0 ` M : s) & σ =β σ ′
0 ` M : σ ′

When naively defining the CPS translation of dependent systems by induction over deriva-
tions, one runs into difficulty with both the conversion rule (which involvesβ-conversion)
and the application rule (which involves substitution). The definition of the translation it-
self involves convertability and substitution. Thus, one cannot proceed by first addressing
coherence andthenproceeding to substitution, and conversion, etc.; one is forced to tackle
the associated properties simultaneously.

As a point of comparison, Harper and Lillibridge [34] avoid both the problems associated
with the conversion and application rules. When translating two different derivationsD1

andD2 of the same judgment0 ` M : σ , use of the conversion rule in eitherD1 or D2 may
cause the terms〈D1〉 and〈D2〉 to have different domain tags on abstractions. Instead of
considering a general theory of equality based onβ-convertability (which is what we desire),
Harper and Lillibridge consider a notion of object equivalence based on an operationally-
flavored form of reduction (e.g., call-by-name standard reduction) that is insensitive to
domain tags. This insensitivity implies that differences in domain tags do not affect the
equivalence of terms [34, p. 214]. The substitution in the application rule is neither an issue
sinceλω (the system considered by Harper and Lillibridge) is a non-dependent system, and
thus the substitutionτ {x := N} degenerates intoτ .

Instead of defining CPS translations by induction on derivations, one can simply add
to the clause (*) the side condition thatτ be¬〈ρ〉 whereρ is the type ofλx : σ.M . For
non-dependent systems this works perfectly well because there is a stratification of levels
into terms and types, where the latter do not depend on the former. This is the route taken by
Harper and Lillibridge, and also by Coquand and Herbelin [15] in their CPS translation of
non-dependent logical pure type systems. In dependent systems, however, the categories of
terms and types will be mutually dependent, so in this case the translation〈•〉 on terms and
types will be mutually recursive, and the definition with side conditions is not well-founded,
sinceρ may containM as a subterm.

The preceding considerations show that defining CPS translations for dependent Church-
style type systems involves a number of difficulties. This is true, in particular, for dependent
pure type systems.6

1.5. This paper

A simple approach to CPS translations of classes of type systems that include dependent
systems is to considerdomain-freepure type systems [12], i.e. a variant of pure type systems
with abstractions of the formλx.M , instead of the traditional pure type systems—in fact,
this idea was one of the motivations for introducing domain-free pure type systems. This
idea is carried out in Sections 2–5.

We begin by reviewing the domain-freeλ-cube (Section 2), which includes domain-free
versions of CC and LF, and then present CPS translations of the systems of the domain-free

134 BARTHE, HATCLIFF AND SØRENSEN

λ-cube (Section 3). Then we introduce DS translations for all the systems of the domain-
freeλ-cube (Section 4) and relate these translations to the corresponding CPS translations.
We then briefly review the general notion of domain-free pure type system and generalize
the above CPS translations to a certain class of domain-free pure type systems (Section 5)
which includes all the systems of the domain-freeλ-cube as well as domain-free versions
of many the non-dependent logical systems of Coquand and Herbelin. Many translations
that appear in the literature arise as special cases of our translation.

We also present two approaches to CPS translations of traditional pure type systems: an
indirect and a direct method. This is carried out in Section 6. Both techniques work for
most of the systems that occur in the literature. The first, indirect, technique factorises the
translation for pure type systems through the translation for domain-free pure type systems.
The second, direct, technique translates traditional pseudo-terms of pure type systems, but
relies on a non-standard order to be well-founded. These results justify defining the CPS
translation on domain-free pure type systems instead of on traditional pure type systems.

The paper is an extended and elaborated version of [5].

2. The domain-freeλ-cube

This section is a brief introduction to the domain-freeλ-cube. The first subsection is devoted
to the definition of the systems involved. For readers with no previous knowledge of
λ-calculi presented in this style, the second subsection includes a number of examples;
readers familiar with [4] may skip the latter subsection.

2.1. Definition of the domain-freeλ-cube

For the clarity of exposition, we depart from the original presentation of the domain-free
λ-cube [12] and make explicit the distinction between objects, constructors and kinds.7

Definition 1(The domain-freeλ-cube).

1. Let V∗ andV¤ be denumerable, disjoint sets of variables, ranged over byx, y, . . . and
α, β, . . . , respectively. Define the syntactic classesObj[DFCUBE], Constr[DFCUBE],
Kind[DFCUBE] of domain-free pseudo-objects, pseudo-constructors, and pseudo-kinds,
respectively, as follows:

Obj[DFCUBE] 3 O ::= x | λx.O | O O | λα.O | OC

Constr[DFCUBE] 3 C ::= α | λx.C | C O | λα.C | CC | 5x : C.C | 5α : K .C

Kind[DFCUBE] 3 K ::= 5x : C.K | 5α : K .K | ∗

We useA, B, . . . to denote arbitrary pseudo-objects, -constructors, or -kinds, ands, s′

to range over the set{¤, ∗} of so-calledsorts. We assume the reader is familiar with the
notions of free and bound variables, and the related conventions—see [3]. The symbol
≡ denotes syntactic equality modulo renaming of bound variables. We writeC→C′ as

CPS TRANSLATIONS AND APPLICATIONS 135

an abbreviation of5α : C.C′, whereα is not free inC′. We also writeλx1, . . . , xn.M
for λx1, . . . , λxn.M .

2. Substitution•{• := •} is defined as the usual capture-free operation, with the proviso
thatx andN belong to the same class inM{x := N}.

3. The setContexts[DFCUBE] of domain-free pseudo-contextsis defined by the abstract
syntax:

Contexts[DFCUBE] 3 0 ::= · | 0, x : A

We write dom(x1 : A1, . . . , xn : An) = {x1, . . . , xn} and use0,1, etc. to denote pseudo-
contexts. If0 is x1 : A1, . . . , xn : An we also writexi : Ai ∈ 0 for eachi ∈ {1, . . . ,n}.

4. Domain-freeβ-reduction→β on

Obj[DFCUBE] ∪ Constr[DFCUBE] ∪ Kind[DFCUBE]

is defined as the smallest compatible relation such that

(λx.A)B→β A{x := B}
for all x and B belonging to the same class.β-equality=β is the reflexive, transitive,
symmetric closure of→β . The relation→β is extended to contexts by:

A→β B⇒ 0, x : A,1→β 0, x : B,1

and=β on contexts is the reflexive, transitive, symmetric closure of→β .
5. ForS∈ {→, 2, P, ω, P2, 2ω, Pω, P2ω} define the relation‖−S by the rules of figure 5,

where a side condition, e.g. (2), indicates that the rule in question only be included when
Scontains the corresponding symbol, e.g. 2 (except that rules marked(→) are included
in all systems). If0 ‖−S A : B then0, A andB arelegal. We sometimes write‖− M : A
instead of· ‖− M : A.

According to the eight relations‖−S defined above, we speak of the eight domain-free
λ-calculi λS depicted in figure 6, collectively known as the domain-freeλ-cube.8 We use
the abbreviationsω = 2ω, C = Pω.

Intuitively, one may view the systems of the domain-freeλ-cube as the domain-free
counterpart of some well-known typedλ-calculi, as depicted in the table below—see also
the next subsection.9

→ Simply typedλ-calculus

2 SystemF (second-orderλ-calculus)

P LF, Automath

P2 A system considered in [44]

ω Polyrec

ω SystemFω (higher-orderλ-calculus)

Pω Martin-Löf’s type theory with one universe

Pω = C Calculus of constructions

136 BARTHE, HATCLIFF AND SØRENSEN

Figure 5. Rules for the domain-freeλ-cube.

Figure 6. The domain-freeλ-cube.

CPS TRANSLATIONS AND APPLICATIONS 137

2.2. The systems at work

In this subsection we try to provide some intuitions behind the systems of the domain-free
λ-cube, and illustrate the strength of each of the systems.

1. The simplest systemλ→ consists of just the four rules (S), (W), (β), (A), along with the
three (→) rules. This system is very similar to the simply typedλ-calculusà la Curry
introduced in Section 1.2.

Both systems contain astart rule for introducing variables; in Section 1.2 this is the
left-most rule, and in the present subsection it is the (S) rule. However, the two rules do
not work in exactly the same way. In the formulation in Section 1.2, contexts aresets,
and one can “look up” any member of the context is the start rule. In contrast, in the
present subsection contexts areordered sequencesin which only the right-most member
can be looked up in the start rule. However, using the weakening rule (W) one can look
up variables further to the left in the context formulated by sequences.

The side conditionx 6∈ dom(0) in the present subsection is mirrored in Section 1.2
by the stipulation that0,0′ only be defined when the domains of0 and0′ are disjoint.

The side condition0 ‖− A : s together with the axiom (A) and the product rule for (→)
(the one in the lower left corner) in the present subsection ensure that simple types, and
only simple types, can occur in contexts. Since simple types have no redexes, it follows
that the conversion rule (β) is not used inλ→, but it is used in dependent systems, e.g.,
λP—see below.

One can show that whenever,0, z : D,1 ‖− A : B in the systemλ→ whereA, B, or
D has form5x : C.C′ thenx is not free inC′, i.e.,5x : C.C′ ≡ C→ C′. It follows that
the abstraction and application rule in this subsection are identical to those in Section
1.2.

2. The systemλ2 allows polymorphic functions to be defined. For example, one can define
polymorphic composition

‖− λA, B,C, f, g, x . g (f x) :5A, B,C : ∗ . (A→ B)→ (B→ C)→ A→ C

or polymorphic projections, e.g.

‖− λA, B, x, y . x : 5A, B : ∗ . A→ B→ A

In logical terms,λ2 corresponds to second-order propositional logic via the Curry-
Howard isomorphism. In this context, the formalization of contexts as ordered sequences
captures the usual side condition on the introduction rule for universal quantification.

3. The specificationω allows polymorphic and higher-order functions to be defined. For
example, let

0 ≡ List : ∗ → ∗, nil : 5α : ∗ . List α, cons : 5α : ∗ . (α→ List α→ List α)

0′ ≡ 0,MapList : 5A, B : ∗ .(A→ B)→ List A→ List B

138 BARTHE, HATCLIFF AND SØRENSEN

One can derive a polymorphic function that makes every object into a one element list.

0 ‖− λα,a . cons α a(nil α) : 5α : ∗. α→ List α

or a polymorphic function which manipulates functions on lists:

0′ ‖− λA, B,C, f, g, l .MapList BCg (MapList AB f l) :

5A, B,C : ∗ . (A→ B)→ (B→ C)→ List A→ List C

4. The specificationP has the power of first-order predicate logic. The systemλP, which
is closely related to the type system of the proof-assistants Authomath, Alf and Elf,
acts as a framework in which formal systems can be defined. The following example,
taken from [33, Section 3.1], introduces first-order arithmetic as a context. There are two
base typesι ando, which respectively correspond to arithmetic expressions and logical
formulae. In addition, one introduces the usual operations on natural numbers and the
usual logical connectives and quantifiers.

ι : ∗, o : ∗, ∧ : o→ o→ o,

0 : ι, = : ι→ ι→ o, ∨ : o→ o→ o,

s : ι→ ι, < : ι→ ι→ o, ⊃ : o→ o→ o,

+ : ι→ ι→ ι, ∀ : (ι→ o)→ o, ¬ : o→ o

× : ι→ ι→ ι, ∃ : (ι→ o)→ o,

This context provides enough structure for terms and formulae of first-order arithmetic
to be encoded into the system. However, the context lacks enough structure to build
or manipulate proofs. Following [33, Section 4.1], it is possible to extend the above
context so that proofs may be encoded. The basic judgment from ‘φ is a logical truth’
is encoded in the context by adding a declaration

true : o→ ∗

and the basic rules for logic are encoded in the context by adding suitable declarations.
For example, the left introduction rule for disjunction is encoded by

∨l : 5x, y : o. (true x)→ (true(∨xy))

Note how the typeo→ ∗ and how the above declaration require the use of dependent
types.

5. The specificationP2 combines dependent types and polymorphism. In logical terms,
λP2 has the power of second-order predicate logic with equality. Indeed, one may use
polymorphism (sometimes known as impredicative quantification) to encode the usual
connectives and quantifiers. The encoding is given below, where we letA, B, P, T ∈ V¤

andx, y ∈ V∗:

CPS TRANSLATIONS AND APPLICATIONS 139

Operator Definition Type

Implication → ≡ λA, B.(A→ B) ∗ → ∗ → ∗
Universal quantifier ∀ ≡ λT, P.(5x : T.Px) 5T : ∗ . (T → ∗)→ ∗
Truth > ≡ 5x : ∗.x→ x ∗
Falsehood ⊥ ≡ 5x : ∗.x ∗
Conjunction ∧ ≡ λA, B.(5x : ∗.A→ B→ x) ∗ → ∗ → ∗
Disjunction ∨ ≡ λA, B(5x : ∗. (A→ x)→ (B→ x)→ x) ∗ → ∗ → ∗
Negation ¬ ≡ λA.(A→⊥) ∗ → ∗
Existential quantifier ∃ ≡ λA, P(5p : ∗.(5x : T.((Px)→ p)→ p) 5T : ∗ . (T → ∗)→ ∗
(Leibniz) equality =≡ λT, x, y.5P : T → ∗.(Px)→ (Py) 5T : ∗ . T → T → ∗

Besides, one can defineλ-terms that correspond to the standard natural deduction rules.
For example, we have

‖− λA, B, p . pA(λx, y.x) :5A, B : ∗.(∧AB)→ A

Note a fundamental difference betweenλP andλP2: in λP, predicate logic is defined
in a context, while inλP2, logic is presentin the system and is not defined in a context.

6. The systemλPω = λC has the power of higher-order predicate logic. InλC, one can
define, e.g. a polymorphic function that forms the conjunction of two predicates:

‖− λA, P, Q, x. ∧ (Px)(Qx) : 5A : ∗. (A→ ∗)→ (A→ ∗)→ A→ ∗

where∧ is the impredicative conjunction.

3. CPS translation for the domain-freeλ-cube

In this section we present CPS translations for all the systems of the domain-freeλ-cube.
This is carried out in the first subsection. In the second subsection we present optimizing
CPS translations.

3.1. CPS translation for theλ-cube

When one moves fromλ→ to systems with richer type structure, it is not immediately
clear which syntactic categories should be converted by the CPS translation. For example,
in the domain-freeλ-cube, one might imagine anon-pervasiveCPS translation where only
objects are converted (i.e., only abstractions at the object level are passed continuations), or a
pervasivetranslation where both objects and constructors are converted (i.e., all abstractions
are passed continuations).

Our presentation, which is based on a non-pervasive translation, is motivated by particular
applications. In classical pure type systems [6], the control operator corresponding to the

140 BARTHE, HATCLIFF AND SØRENSEN

reductio ad absurdumrule only appears at the object level. Thus, one only needs to convert
objects when embedding classical pure type systems into traditional pure type systems.
Similarly, in Coquand and Herbelin’s [15] method for showing the existence of looping
combinators and in compilation and partial evaluation applications, one only needs to
convert objects to obtain the associated benefits of CPS.

Definition 2(CPS translation). Define the CPS translation functionsC〈[·]〉 andC〈·〉 for the
domain-freeλ-cube by the clauses in figure 7.

As noted earlier, the translation of objects is based on Plotkin’s original call-by-name
translation of the untypedλ-calculus (see figure 1). Continuation-passing only occurs at the
object level. Thus, the translation of constructors and kinds is straightforward.¬C abbre-
viatesC→⊥ where⊥∈V¤ is a distinguished (but arbitrary) type variable (ofanswers).

The top level translationC〈[·]〉 for objects and kinds simply callC〈·〉. For constructors,
a double negation is added at the outer level. For assumptions, the answer variable⊥ is
added.

The following theorem establishes the correctness of the translation.

Theorem 1 (Correctness of CPS translation).

0 ‖− A : B⇒ C〈[0]〉 ‖− C〈A〉 : C〈[B]〉

Proof sketch: We proceed in four steps:

(i) show that for all O ∈Obj[DFCUBE], C〈O〉≡ λk.O′ for some O′ and therefore
λk.C〈O〉k→β C〈O〉;

(ii) prove by induction on the structure ofA ∈ Terms[DFCUBE] that

(a) C〈A〉{x := C〈O〉} →→β C〈A{x := O}〉 and
(b) C〈A〉{α := C〈C〉} ≡ C〈A{α := C}〉;

(iii) prove by induction on the structure ofA ∈ Terms[DFCUBE] that A→→β B implies
C〈A〉 →→β C〈B〉;

(iv) prove0 ‖− A : B⇒ C〈[0]〉 ‖−C〈A〉 : C〈[B]〉 by induction on the structure of derivations.

2

The following example illustrates the CPS translation applied to the context and term
that makes every object into a one element list (see Section 2.2).

0cps ≡ List : ∗ → ∗,
nil : ¬¬(5α : ∗ .¬¬(List α)),

cons : ¬¬(5α : ∗ .¬¬(¬¬α→ ¬¬(¬¬(List α)→ ¬¬(List α))))

CPS TRANSLATIONS AND APPLICATIONS 141

Figure 7. Call-by-name CPS translation for the domain-freeλ-cube.

0cps‖− λk.k(λα.λk.k(λa.O1)) : ¬¬(5α : ∗ .¬¬(¬¬α→ ¬¬(List α)))

where O1 ≡ λk.O2 (λy1.y1O3k)

O2 ≡ λk.O4 (λy2.y2(λk.ak)k)

O3 ≡ λk.(λk.nil k)(λy3.y3αk)

O4 ≡ λk.(λk.cons k)(λy4.y4αk)

Note that there is a higher degree of continuation-passing than one would obtain when
CPS-ing a conventional call-by-value program for the following reasons.

142 BARTHE, HATCLIFF AND SØRENSEN

• A call-by-name evaluation strategy is being encoded, and thus all identifiers are passed
continuations (i.e., they are “CPS thunks”).
• Operations such ascons andnil are given in curried form, and thus continuations are

introduced at each function space.

Recent work onmonadic type systems[11] provides a framework where one can distinguish
between values and non-values in an extended type system. A CPS translation based on this
richer type system allows a finer control over continuation introduction, and one can give a
specification that avoids the overly general introduction of continuations in this particular
example.

3.2. An optimizing CPS translation

When discussing terms in the image of the CPS translation, it is convenient to divide
abstractions into two classes:

• source abstractions: these are CPS-translated versions of abstractions appearing in the
argument of the CPS translation. In figure 7, abstractions of the form (λx . . .) and (λα . . .)
in the image of the translation are source abstractions.
• administrative abstractions: these are abstractions introduced by the translation to mani-

pulate continuations—there are no corresponding abstractions in the argument of the
translation. In figure 7, abstractions of the form (λk . . .) and (λy . . .) are administrative
abstractions.

Reducing a CPS term involves contracting manyadministrative redexes—redexes involving
administrative abstractions [52, p. 149]. We writeA→adm A′ whenA β-reduces toA′ by
contracting an administrative redex.

Most practical applications of CPS (such as compiling and partial evaluation) use an
optimizing version of a particular CPS translation that produces terms with fewer admi-
nistrative redexes [18, 26, 52, 58, 68]. In this section, we present an optimizing version of
the translation in figure 7 that yields terms inadministrative normal-form(i.e., the terms
contain no administrative redexes). We need to consider the CPS translation of objects only,
since continuations are introduced only in this category.

Definition 3(CPS translation). Define the optimizing CPS translation functionsC+〈[·]〉
andC+〈·〉 for the domain-freeλ-cube by the clauses in figure 8.

Figure 8 only presents the translation on objects; translation of the remaining syntactic
categories is the same as in figure 7.O : K represents the translation of an object whereK is
a continuation corresponding to the evaluation context in whichO appeared. The translation
proceeds recursively overO—transforming it into a continuation with no administrative
redexes. Depending on the form ofO, the resulting continuation is either, passed as an
argument to the translation ofO (if O is a variable), or applied to the translation ofO (if
O is an abstraction).

CPS TRANSLATIONS AND APPLICATIONS 143

Figure 8. Optimizing CPS translation for the domain-freeλ-cube (excerpts).

Lemma 1 (Optimizing CPS translation for the λ-cube). For all A ∈ Terms[CUBE]
such that0 ‖− A : B,
• C〈A〉 →→adm C+〈A〉
• C+〈A〉 is in administrative normal-form.

The following example illustrates the optimizing CPS translation applied to the term that
makes every object into a one element list (the context and type are the same as for the
example for the non-optimizing translation).

0cps‖− λk.k(λα.λk.k(λa.O1)) : ¬¬(5α : ∗ .¬¬(¬¬α→ ¬¬(List α)))

where O1 ≡ λk.O2

O2 ≡ cons(λy4.y4 α(λy2.y2(λk.a k)(λy1.y1O3k)))

O3 ≡ λk.nil(λy3.y3αk)

In contrast to the analogous term produced by the non-optimizing translation, the term
above has no administrative redexes.

4. DS translation for the domain-freeλ-cube

In this section, we present a DS translation for the domain-freeλ-cube that maps continu-
ation-passing terms back to direct-style terms. Since the rules of theλ-cube involve
β-conversion, the DS translation must be able to handle not only terms in the image of
the CPS translation, but termsβ-convertible with terms in the image of the CPS translation.
Since systems of theλ-cube are Church-Rosser, it is sufficient to reason about the language
of legal terms in the image of CPS translation closed underβ-reduction. The first subsection
below presents CPS pseudo-terms, and then gives rules for deriving legal CPS terms. The
DS translation is then defined in the following subsection. The last subsection addresses
the relation between the CPS and DS translations.

144 BARTHE, HATCLIFF AND SØRENSEN

4.1. Language of CPS terms

We define the DS translation of the languageCPS of CPS terms.

Definition 4(CPS pseudo-terms and contexts). Define the pseudo-terms and context by
the grammar in figure 9.

Objects are divided into the following five categories.

• computations: these are pseudo-objects to which continuations will be passed. The types
of these objects will be double-negated at the top level.
• values: these are the source abstractions defined above. The types of these objects will

not be double-negated at the top-level.

Figure 9. CPS pseudo-terms.

CPS TRANSLATIONS AND APPLICATIONS 145

The termscomputationandvalueare inspired by presentations of CPS based on monads
[39]. In a monadic framework, our computations have “computational types”, and our
values have “value types”.
• arguments: these will be the arguments to source abstractions.
• answers: these are pseudo-objects that will have answer type⊥. An answer results from

passing a value to continuation, or passing a continuation to a computation.
• continuations: These are either continuation identifiers, or abstractions that will be passed

values.

It is convenient to divide identifiers of the CPS language into four disjoint sets:

• computation identifiers: bound by source abstractions that take computations as argu-
ments;
• value identifiers: bound by administrative abstractions that take values as arguments—

they are the formal parameters of continuations;
• constructor identifiers: bound by source abstractions that take constructors as arguments;
• continuation identifiers: bound by administrative abstractions that take continuations as

arguments.

The first three sets of identifiers are countably infinite. Only one continuation identifierk
is needed—a familiar property of CPS terms [17, 19, 58].

CPS contexts always include the answer variable⊥. CPS contexts only contain construc-
tor and computation identifiers (identifiers bound by source abstractions). It is unnecessary
for contexts to contain value identifiersy and continuation identifiersk (identifiers bound by
administrative abstractions). These are handled as special cases when defining legal terms.

• Value identifiers are bound immediately after they are introduced, so that don’t need to
appear in the contexts (see the last rule in figure 10).
• Since only one continuation identifier is needed, and since no types can depend on it, we

define special purpose judgments〈0〉 〈k : ¬C〉 ‖−φ A : B for φ ∈ {ans, cnt} that keep the
continuation identifier separate from the rest of the context.

Definition 5 (CPS legal terms and contexts). Figures 10–12 present rules for deriving
legal terms in each syntactic category of the CPS language.

In the judgments for answers and continuations in figures 10 and 11, continuation iden-
tifiers k are given special treatment in the context. In addition to the rules for specific
categories, figure 12 gives generic weakening and conversion rules which apply to each
syntactic category. Since all of the conversion rules have a similar form, we only show
cases.

The following property states that legal terms inCPS are also legal terms in the domain-
free cube.

146 BARTHE, HATCLIFF AND SØRENSEN

Figure 10. CPS legal objects.
(Continued on next page.)

CPS TRANSLATIONS AND APPLICATIONS 147

Figure 10. (Continued).

Property 1.

0 ‖−θ A : B⇒ 0 ‖− A : B θ ∈ {com, val, arg, con, knd}
〈0〉〈k :¬C〉 ‖−φ A : B⇒ 0, k :¬C ‖− A : B φ ∈ {ans, cnt}

The following property states that the CPS language does indeed contain the image of the
CPS translation.

Property 2.

0 ‖− O : C ⇒ C〈[0]〉 ‖−comC〈O〉 : C〈[C]〉
0 ‖− C : K ⇒ C〈[0]〉 ‖−conC〈C〉 : C〈[K]〉
0 ‖− K : ¤⇒ C〈[0]〉 ‖−knd C〈K 〉 : C〈[¤]〉

The following property states that legal terms in the CPS language are closed under reduc-
tion.

Property 3.

0 ‖−θ A : B and A→β A′ ⇒ 0 ‖−θ A′ : B θ ∈ {com, val, arg, con, knd}
〈0〉〈k :¬C〉 ‖−φ A : B and A→β A′ ⇒ 〈0〉〈k :¬C〉 ‖−φ A′ : B φ ∈ {ans, cnt}

148 BARTHE, HATCLIFF AND SØRENSEN

Figure 11. CPS legal constructors and kinds.

CPS TRANSLATIONS AND APPLICATIONS 149

Figure 12. CPS weakening and conversion rules.

4.2. DS translation for theλ-cube

Figure 13 presents a DS translation from the domain-free CPS language to the domain-
freeλ-cube. For objects, the most interesting aspect is that continuations are translated to
call-by-nameevaluation contexts[23] defined by the following grammar.

E ∈ Evaluation-Contexts[CUBE]

E ::= [·] | E O | EC

150 BARTHE, HATCLIFF AND SØRENSEN

Figure 13. DS translation for theλ-cube.

CPS TRANSLATIONS AND APPLICATIONS 151

The holes in the evaluation contexts are filled during the translation of the CPSanswer
syntactic category. The translation of constructors and kinds is straightforward—double
negations are removed and translation continues on substructures.

The following example illustrates the interaction between the CPS and DS translation
for the term (λx.O1)O2C1. An easy induction over the structure of terms shows thatD is
the inverse ofC.

The calculation below illustrates the interaction between the translationsC andD for
arbitrary termsO1,O2, andC1.

D〈C〈((λx.O1)O2C1)〉〉
=β D〈(λk2.(λk0.k0(λx.C〈O1〉))(λy1.y1C〈O2〉(λy2.y2C〈C1〉k2)))〉com

=β D〈((λk0.k0(λx.C〈O1〉))(λy1.y1C〈O2〉(λy2.y2C〈C1〉k2)))〉ans

=β D〈(λy1.y1C〈O2〉(λy2.y2C〈C1〉k2))〉cnt[D〈(λk0.k0(λx.C〈O1〉))〉com]

...

=β D〈(λy1.y1C〈O2〉(λy2.y2C〈C1〉k2))〉cnt[(λx.O1)]

=β D〈(λy2.y2C〈C1〉k2)〉cnt[(λx.O1)O2]

=β D〈k2〉cnt[(λx.O1)O2C1]

=β (λx.O1)O2C1

Note that in contrast to the CPS translation, the DS translation can be defined by induction
over the structure of pseudo-terms even when mapping to domain-full systems. Since no
abstractions (e.g., abstractions analogous to the administrative abstractions of the CPS
translations) are introduced during the DS translation, all required domain tags can be
constructed by translating tags appearing on abstractions in the argument of the translation.

Theorem 2 (Correctness of DS translation).

0 ‖−θ A : B⇒ D〈[0]〉 ‖−D〈A〉 : D〈[B]〉

for θ ∈ {com, con, knd}.

Proof sketch: The proof follows the same outline as the proof for the CPS translation in
Theorem 1. 2

4.3. Interaction between CPS and DS translations

Sinceβ-conversion is the principal notion of equality in the cube, we now consider the
interaction of the translations up to this notion of equality. The following theorem states an
equational correspondence (as presented by Sabry and Felleisen [58]) between direct style
terms and the CPS language.

152 BARTHE, HATCLIFF AND SØRENSEN

Theorem 3. Let0 ‖− A, A1, A2 : B and6 ‖−θ P, P1, P2 : Q for θ ∈ {com, con, knd}.
1. A =β D〈C〈A〉〉
2. P =β C〈D〈P〉〉
3. A1 =β A2 iff C〈A1〉 =β C〈A2〉
4. P1 =β P2 iff D〈P1〉 =β D〈P2〉

Using the optimizing CPS translation, the equational correspondence in the above theorem
can be strengthened to areduction correspondence[8]. This is noteworthy since the applica-
tions we have in mind (e.g., compilation, partial evaluation, inferring strong normalization
from weak normalization) often require relating DS and CPS reductions.

Theorem 4 (Reduction correspondence forC+ and D). Let 0 ‖− A, A1, A2 : B and
6 ‖−θ P, P1, P2 : Q for θ ∈ {com, con, knd}.
1. A ≡ D〈C+〈A〉〉
2. P→→β C〈D〈P〉〉
3. A1→β A2 impliesC〈A1〉 →→β C〈A2〉
4. P1→β P2 impliesD〈P1〉 →→β D〈P2〉

Proof sketch: The proof is very similar to the proof of the analogous theorem for the
untyped setting given in detail by the authors in [10]. 2

5. CPS translations for domain-free pure type systems

The definition of the domain-freeλ-cube in figure 5 contains a certain amount of redundancy.
Indeed, the four product rules (the four bottom-most rules) are very similar; in fact, they
may be viewed as instances of a general scheme. Something similar can be said of the
abstraction rules (to the left in the figure) and application rules (to the right in the figure).
Indeed it is possible to compactify the presentation of the domain-freeλ-cube by having a
single rule for product, a single rule for abstraction and a single rule for application and by
parameterizing their use according to the system considered. In this section we systematize
this observation by reviewing the general notion ofdomain-free pure type systemsfrom
[12]. The development here is completely analogous to the classical development of pure
type systems by Barendregt [4], Berardi [13] and Terlouw [72].

In the first subsection we introduce the notion of a domain-free pure type system. In the
second subsection we show that the systems of the domain-freeλ-cube can be viewed as
domain-free pure type systems. The third subsection introduces the notion of logical speci-
fication, due to Coquand and Herbelin [15], which captures most of the common features
of specifications for which CPS translations may be defined. In the fourth subsection, we
establish a classification lemma, which provides the main technical tool for the definition
of the CPS translations. The translation itself is defined in the fifth and last subsection.

5.1. Specifications and domain-free pure type systems

Parametricity is achieved through the notion ofspecification, upon which the framework
is parameterized. Specifications are abstract structures expressing dependencies between
type universes, or sorts.

CPS TRANSLATIONS AND APPLICATIONS 153

Definition 6(Specifications). A specificationis a tripleS= (S,A,R) where

1. S is a set ofsorts;
2. A ⊆ S × S is a set ofaxioms;
3. R ⊆ S × S × S is a set ofrules.

As usual, we use (s1, s2) to denote rules of the form (s1, s2, s2).
Most concrete specifications in the literature have form (s1, s2); as we shall see, this

means that products5x : A.B live in the same universe asB. The role of specifications
will be clearer at the end of this subsection. Throughout this subsection, we assume a fixed
specificationS= (S,A,R).

In our presentation, we require each variable to have an underlying sort. This requirement,
which is reminiscent of our presentation of the domain-freeλ-cube, simplifies the definition
of the CPS translation.

Definition 7(Sorted variables). We letVS (or, for brevity, justV leaving the dependence
onS implicit) denote a denumerable set of variables, partitioned into countably infinite sets
Vs for all s ∈ S; that is,

• V =⋃s∈S Vs;
• Vs ∩ Vs′ = ∅ for s 6= s′;
• Vs is countably infinite for eachs ∈ S.

While we maintain the use of sorted variables, we shall not define syntactic categories by
mutual recursion, because such an approach is overly complicated for arbitrary specifica-
tions. Instead, we revert to the traditional formulation of domain-free pure type systems, in
which there is a single syntactic category of expressions. Note however that, in most cases,
we shall be able to retrieve disjoint syntactic categories, akin to those of the domain-free
λ-cube, via a a classification lemma.

Definition 8(Domain-free pseudo-terms). The setTerms[DFPTS] of domain-free pseudo-
terms(overS) is given by the abstract syntax below, wherex ranges overV ands ranges
overS.

Terms[DFPTS] 3 A, B ::= x | s | AB | λx.A |5x : A.B

We usea, b, A, B,M, N . . . to denote domain-free pseudo-terms,x, y, z, . . . to denote
variables, ands, s′, . . . to denote sorts.

The computational behavior of domain-free pure type systems is the expected one.

Definition 9(Domain-free reduction). The notion ofβ-reduction→β is defined as the
smallest compatible relation

(λx.M)N →β M{x := N}
where•{• := •} denotes the obvious substitution operator.

154 BARTHE, HATCLIFF AND SØRENSEN

We now turn to the typing relation of domain-free pure type systems.

Definition 10(Domain-free pure type system).

1. The setContexts[DFPTS] of domain-free pseudo-contextsis given by the abstract syntax
below, wherex ranges overV andA ranges overTerms[DFPTS].

Contexts[DFPTS] 3 0 ::= · | 0, x : A

We use0,1, . . . to denote domain-free contexts. For0 ≡ x1 : A1, . . . , xn : An, we
write dom(0) = {x1, . . . , xn} and say thatxi : Ai ∈ 0 for eachi ∈ {1, . . . ,n}.

2. The domain-free derivability relation ‖− on triples (0,M, A), where 0 ∈
Contexts[DFPTS] and M, A ∈ Terms[DFPTS], is defined in figure 14. If0 ‖− A : B
then0, A, andB arelegal. We also say that thejudgment0 ‖− M : A is derivable, or
legal.

3. The tupleλS = (Terms[DFPTS], Contexts[DFPTS], →β, ‖−) is thedomain-free pure
type system(DFPTS) induced byS.

Domain-free pure type systems enjoy most of the properties of pure type systems, except
uniqueness of types(indeed, a term such asλx.x may have more than one type in a single
context, and therefore uniqueness of types fails). We refer the reader to [12] for a detailed
study of the theory of domain-free pure type systems.

Figure 14. Domain-free pure type systems.

CPS TRANSLATIONS AND APPLICATIONS 155

5.2. Domain-free pure type systems vs. the domain-freeλ-cube

We now show that one can recover from the formalism of domain-free pure type systems
the systems of the domain-freeλ-cube by choosing appropriate sorts, axioms, and rules. In
fact, letS= (S,A,R) whereS = {∗,¤} andA = {(∗,¤)}. Then for each system of the
domain-freeλ-cube we obtain a corresponding domain-free pure type system by taking the
following sets of rulesR:

Cube systemS Rules of corresponding specificationS

→ (∗, ∗)
2 (∗, ∗) (¤, ∗)
P (∗, ∗) (∗, ¤)

P2 (∗, ∗) (¤, ∗) (∗, ¤)

ω (∗, ∗) (¤, ¤)

ω (∗, ∗) (¤, ∗) (¤, ¤)

Pω (∗, ∗) (∗, ¤) (¤, ¤)

Pω = C (∗, ∗) (¤, ∗) (∗, ¤) (¤, ¤)

Let us elaborate this in some detail. The set

Obj[DFCUBE] ∪ Constr[DFCUBE] ∪ Kind[DFCUBE] ∪ {¤}

is a subset of the setTerms[DFPTS]. One can show aclassification resultstating that if
0 ‖− A : B in the domain-free pure type systemλS, then

1. (A, B) ∈ Obj[DFCUBE] × Constr[DFCUBE], or
2. (A, B) ∈ Constr[DFCUBE] × Kind[DFCUBE], or
3. (A, B) ∈ Kind[DFCUBE] × {¤}.

Thus, although the notions of objects and constructors, etc., are not defineda priori in a
domain-free pure type system, such notions can be derived from the typing system itself by
classification results of the above form. Moreover, one can the show that if

1. (A, B) ∈ Obj[DFCUBE] × Constr[DFCUBE], or
2. (A, B) ∈ Constr[DFCUBE] × Kind[DFCUBE], or
3. (A, B) ∈ Kind[DFCUBE] × {¤}

then0 ‖− A : B in the domain-freeλ-cube systemλS iff 0 ‖− A : B in the domain-free pure
type systemλS. This shows that a cube system and the corresponding domain-free pure
type system derive exactly the same judgments.

The intuition behind this is that if one unfolds the inference rules of the domain-free
pure type system for all rules(s, s′) ∈ R, then one obtains the same inference rules as are
present in the cube system:

156 BARTHE, HATCLIFF AND SØRENSEN

1. The rules (S) and (start), (W) and (weakening), and (β) and (conversion) are clearly
identical. The rule (A) is identical to (axiom) since we have chosenA = {(∗,¤)}.

2. The product rules (→), (2), (ω), (P) correspond to the instances (∗, ∗), (¤, ∗), (¤, ¤),
(∗, ¤) of the rule (product). Thus, the rulesR determine which generalized function
spaces may be formed and what is their nature.

Note that in the domain-freeλ-cube an assumption is missing in the product rules
compared to the domain-free pure type system. For instance, in the product rule (→)
the assumption0 ‖− C : ∗ is missing. However, due to the disjointness of the syntactic
classes in the cube, one can show that if0, x : C ‖− A : B, then in fact0 ‖− C : ∗.

In the general setting of domain-free pure type systems where we have noa priori
distinction into categories, the assumption is necessary.

3. The application rules (→), (2), (ω), (P) correspond to the rule (application) with different
products.

4. The abstraction rules (→), (2), (ω), (P) correspond to the instances of the rule (abstrac-
tion) with different products.

Note that in the domain-freeλ-cube an assumption is missing in the abstraction rules
compared to the domain-free pure type system. For instance, in the abstraction rule (→)
the assumption0 ` 5x : C.C′ : s is missing. In the domain-free system this assumption is
used to prevent invocations of the abstraction rule for products that cannot be constructed
according to the rulesR; however, in the cube we obtained the same effect by explicitly
excluding some of the inference rules; for instance, the cube systemλ→ does not include
rules labeled (2).

5.3. Logical specifications

The notion of logical specification, due to Coquand and Herbelin [15], captures most of
the features of specifications for which it is possible to define CPS translations. Below
we review the notion of logical specification and introduce the class of locally persistent
specifications, for which CPS translations may be defined.

Definition 11.

1. A specificationS= (S,A,R) is functionalif A andR are partial functions, i.e. for all
s1, s2, s′2, s3, s′3 ∈ S
• (s1, s2) ∈ A & (s1, s′2) ∈ A⇒ s2 = s′2;
• (s1, s2, s3) ∈ R & (s1, s2, s′3) ∈ R⇒ s3 = s′3.

2. A logical specificationis a quadruple(S,A,R,Prop) where (S,A,R) is a functional
specification andProp ∈ S is a sort such that

(A) there existss ∈ S such that (Prop, s) ∈ A;
(B) there is nos ∈ S such that(s, Prop) ∈ A;
(C) (Prop, Prop, Prop) ∈ R.

CPS TRANSLATIONS AND APPLICATIONS 157

3. A logical specification (S,A,R, Prop) is locally persistentif for every (s1, s2, s3) ∈ R,

s2 = Prop⇔ s3 = Prop

4. A logical specification (S,A,R, Prop) is non-dependentif it is locally persistent and
for every (s1, s2, s3) ∈ R,

s1 = Prop⇒ s2 = s3 = Prop

Examples of non-dependent logical specification include the specifications on the left-
hand side of theλ-cube (i.e.→, 2, ω andω), the specifications of theL-cubes [4, 13,
28], HOL,U− andU [4]. The specifications on the right-hand side of theλ-cube (i.e.
P, P2, Pω and Pω), are examples of dependent, locally persistent specifications. More
generally, every logical specification with rules of the form (s1, s2) only is locally persistent.
Finally, the specification∗ [4] is not logical becauseProp : Prop is an axiom and hence the
second requirement is violated.

5.4. Injective specifications and the classification lemma

The CPS translations of Section 3 rely on a classification of expressions into different
syntactic categories; in fact, this classification is built into the system by consideringa
priori the classes of objects, constructors, and kinds. In Section 5.2, we showed that, when
starting out from domain-free pure type systems, then—at least for a particular choice of
S,A,R—one can use the type system to divide the pseudo-terms into different syntactic
categories. In order to scale up the CPS translation to domain-free pure type systems, we
generalize this classification. For this purpose, we introduce the following standard notions.

Definition 12. A specificationS= (S,A,R) is injectiveif it is functional and moreover,
for everys1, s′1, s2, s′2, s3 ∈ S,

• (s1, s2) ∈ A & (s′1, s2) ∈ A⇒ s1 ≡ s′1
• (s1, s2, s3) ∈ R & (s1, s′2, s3) ∈ R⇒ s2 ≡ s′2

Most specifications appearing in the literature are injective. Indeed, every specification that
only uses rules of the form (s1, s2) trivially satisfies the conditions on rules; thus such a
specification is injective iffA is an injective, partial function. We invite the reader to verify
that all the specifications considered in this paper and most of the specifications introduced
in [4] are indeed injective.

For these specifications, one can formulate the following classification result, which is a
direct consequence of [12].

Definition 13. Let S be a specification. Define

Prp = {M ∈ Terms[DFPTS] | 0 ‖− M : Prop for some0}
Set = {M ∈ Terms[DFPTS] | 0 ‖− M : s for somes 6= Prop}

158 BARTHE, HATCLIFF AND SØRENSEN

Prf = {M ∈ Terms[DFPTS] | 0 ‖− M : A & 0 ‖− A : Prop for some0 andA}
Elt = {M ∈ Terms[DFPTS] | 0 ‖− M : A & 0 ‖− A : s for some0, A ands 6= Prop}

We also useType for Prp ∪ Set.

In the sequel, we often assume types to be normalizing, i.e.Type ⊆WNβ . This assump-
tion is needed to ensure preservation of sorts, i.e.

0 ‖− A : s & 0 ‖− A′ : s′ & A =β A′ ⇒ s= s′

which in turn is needed in the proof of classification.

Proposition 1 (Classification for DFPTSs). If S is injective andType ⊆ WNβ then
Prp ∩ Set = ∅ andPrf ∩ Elt = ∅.

As for theλ-cube, it is possible to strengthen the result by defining pairwise disjoint,
decidable, syntactic classes of terms that contain the classes below. For the purpose of
conciseness, we limit ourselves to this weak form of classification.

5.5. CPS translations for domain-free pure type systems

In this section we define a CPS translation for any injective, locally persistent logical
specification in which all types are weakly normalizing. It is worth pointing that there is no
technical hurdle to scale up the CPS translations. For the sake of brevity, we only present
the basic translation. Other (e.g. optimized, direct style) translations are generalized in a
similar fashion.

Definition 14. Let S be an injective, locally persistent logical specification withType ⊆
WNβ . The (domain-free) CPS translation is defined in figure 15.

Figure 15 provides a compact alternative to the CPS translation of the domain-freeλ-cube
by instantiatingProp = ∗ andPrf = Constr[CUBE]. The two definitions are not exactly
identical, as the former is not defined on all pseudo-terms, but this difference is of no
importance: we are primarily interested in well-typed terms. Following the method of
Theorem 1 and using Proposition 1, one proves:

Theorem 5.

0 ‖− A : B⇒ C〈[0]〉 ‖− C〈A〉 : C〈[B]〉

Note that the assumption of the specification being locally persistent is needed in the
application rule.

CPS TRANSLATIONS AND APPLICATIONS 159

Figure 15. CPS translation for domain-free pure type systems.

One can envisage to generalize the CPS translation in several directions:

• one can consider even larger classes of logical specifications, e.g. by not requiring the
specification to be injective. There is little incentive for such a translation as most speci-
fications of interest are injective. However, one may use the domain-full CPS translation,
as summarized in Section 6.4, and the relationship between domain-free pure type sys-
tems and domain-full pure type systems, as summarized in Section 6.3, to achieve the
desired translation.
• one can consider a more general notion of logical specification, in which several uni-

verses of propositions are allowed. In fact, such a generalization is natural both from
programming and logical perspectives. While we have not checked the details, we do not
expect any difficulty in scaling up the CPS translation to a suitably defined extension of
the class of locally persistent specifications.

6. CPS translations for (domain-full) pure type systems

Although domain-free pure type systems appear to be more appropriate for the purpose of
defining CPS translation, there are strong reasons to study CPS translations in the more
traditional setting of traditional pure type systems. The primary reason is of sociological
nature: traditional pure type systems are better established than their domain-free counter-
part and many of the existing CPS translations have been phrased in terms of domain-full
systems. The second reason is of practical nature: in a number of applications, one is

160 BARTHE, HATCLIFF AND SØRENSEN

interested in domain-full systems. Such applications range from looping combinators for
inconsistent pure type systems to compilation of typed intermediate languages. In this sec-
tion, we therefore embark on defining CPS translations for traditional pure type systems.
Two methods are considered:

• thedirect methodwhich relies on a non-standard induction principle, inspired from earlier
work by Dowek et al. [20], see also [9].
• the indirect methodwhich relies on the close correspondence between domain-free and

traditional pure type systems, see [12].

This section is organized as follows. In the first subsection, we briefly outline the main
definitions for domain-full pure type systems. In the second subsection, we relate domain-
full and domain-free pure type systems. In the third subsection, we exploit this relation
to define CPS translations via the indirect method. In the fourth subsection, we define
CPS translations via the direct method. In the fifth subsection, we summarize the different
approaches to define CPS translations. For conciseness, we limit ourselves to the Plotkin’s
style, un-optimized, CPS translation. Other translations (optimized, direct style), can be
treated likewise.

6.1. Domain-full pure type systems

Pure type systems are defined in essentially the same way as domain-free pure type systems.
The only difference is that the former feature a domain-fullλ-abstraction of the form
λx : A.M . Throughout the rest of this subsection,S = (S,A,R) denotes an arbitrary
specification.

Definition 15(pure type systems).

1. The setTerms[PTS] is given by the abstract syntax:

Terms[PTS] 3 A, B ::= x | s | AB | λx : A.B | 5x : A.B

wherex ∈ V ands ∈ S.
2. The setContexts[PTS] is given by the abstract syntax:

Contexts[PTS] 3 0 ::= · | 0, x : A

3. β-reduction→β is defined as the smallest compatible relation closed under the rule

(λx : A.M)N →β M{x := N}

4. Thepure type system derivabilityrelation` is given by the rules of figure 16.

We use the same notation, terminology, and conventions as were employed for domain-free
pure type systems.

CPS TRANSLATIONS AND APPLICATIONS 161

Figure 16. Pure type systems.

6.2. Domain-full pure type systems vs. domain-free pure type systems

In this subsection, we relate derivability in domain-full pure type systems to derivability
in domain-free pure type systems. Most of the results in this subsection come from [12].
Throughout this subsection, we letS be a fixed specification.

It is trivial to define a map from domain-full pseudo-terms to domain-free pseudo-terms.

Definition 16(erasure). Theerasuremap|.| : Terms[PTS] → Terms[DFPTS] is defined
as follows:

|x| = x

|s| = s

tu	=	t		u
λx : A.t	= λx.	t		
5x : A.B	= 5x :	A	.	B

Erasure preserves typing.

Proposition 2. If 0 ` M : A then|0| ‖− |M | : |A|.

162 BARTHE, HATCLIFF AND SØRENSEN

It is more difficult to define a decorating function that is inverse to erasure and that maps
domain-free judgments to domain-full judgments.

Proposition 3. Assume thatS is functional and thatType ⊆ WNβ . If 1 ‖− E : F then
there exists0 ∈ Contexts[PTS] and M, A ∈ Terms[PTS] s.t . 0 ` M : A, |0| ≡ 1, |M | ≡
E and|A| ≡ F.

The exact description of the decoration process, and the proof of the Proposition, are to
be found in [12]. Below we briefly indicate how the decoration process works. Clearly the
crucial case is that of the abstraction rule,

0, x : A‖− b : B 0 ‖− (5x : A.B) : s

0 ‖− λx.b : 5x : A.B

So assume that we have decorations of0, x : A‖− b : B and0 ‖− (5x : A.B) : s from
which we must construct a decoration of0 ‖− λx.b : 5x : A.B. The only term to treat is
λx.b. We simply decorate it asλx : A′.b′ whereA′ andb′ are the respective decorations of
A andb (in suitable contexts). Using the induction hypothesis and some auxiliary results,
one then shows that typing is preserved.

For the sake of completeness, note that decoration needs to be context-dependent. Indeed,
one cannot define a mapdec : Terms[DFPTS] → Terms[PTS] such that|dec(M)| = M
for everyM ∈ Terms[DFPTS] and

0 ‖− M : C⇒ dec(0) ‖− dec(M) : dec(C)

wheredec is extended in the obvious way to contexts.
Indeed, consider the termλx.x. In λ→, we have

A : ∗, B : ∗ ‖− λx.x : A→ A

and

A : ∗, B : ∗ ‖− λx.x : B→ B

If there were a mapdec with the above mentioned properties, it would satisfy

dec(λx.x) = λx : C.x

with

A : ∗, B : ∗ ` λx : C.x : A→ A

and

A : ∗, B : ∗ ` λx : C.x : B→ B

The above judgments are only derivable in caseC = A = B, which needs not be the case.

CPS TRANSLATIONS AND APPLICATIONS 163

In contrast, there is no problem with context-dependent decoration as the above examples
are decorated respectively into

A : ∗, B : ∗ ` λx : A.x : A→ A

and

A : ∗, B : ∗ ` λx : B.x : B→ B

6.3. The indirect method

In this subsection, we scale up to domain-fullPTSs the domain-free CPS translation of
Section 5.5. Below we letSbe an injective, locally persistent logical specification such that
Type ⊆WNβ . (Note thatType ⊆WNβ impliesType ⊆WNβ).

The indirect method consists in factorizing the CPS translation of a domain-full pseudo-
context0 and a domain-full pseudo-termM in three steps:

1. erase the domains of theλ-abstractions so as to obtain a domain-free pseudo-context|0|
and a domain-free pseudo-term|M |;

2. translate|0| into C〈[|0|]〉 and|M | into C〈|M |〉;
3. usingC〈[|0|]〉, decorateλ-abstractions inC〈|M |〉 so as to obtain a domain-full pseudo-

term N.

In picture, the indirect method is represented as follows:

Terms[PTS] Terms[PTS]

erase↓ ↑decorate

Terms[DFPTS]→
CPS

Terms[DFPTS]

Symbolically, one can define

C ′0〈.〉 : Terms[PTS] → Terms[PTS]

asdecC〈[|0|]〉(C〈|M |〉), wheredec1(M) is a decoration ofM w.r.t. 1, as given by Proposi-
tion 3.

6.4. The direct method

In this subsection, we present a family of CPS translations which preserve typing and
act on domain-full pseudo-terms. More precisely, we define a family of (partial) maps
C0〈.〉 : Terms[PTS] → Terms[PTS], where0 is a pseudo-context. The definition, which
proceeds by well-founded induction over pairs (0,M), where0 is a pseudo-context and
M is a pseudo-term, preserves typing and applies to most Pure Type Systems that appear

164 BARTHE, HATCLIFF AND SØRENSEN

in the literature. For the sake of conciseness, we gloss over technical details, including the
definition of the order≺ (to be found in [9]) and limit ourselves to an informal description
of the order.

Firstly, ≺ contains the subterm relation, defined on pairs (0,M) in the obvious way.
However, this is not enough because the CPS translation cannot proceed by induction on
the structure of pairs (0,M), where0 is a pseudo-context andM is a pseudo-term. Take
for example a context0 and a variablex of sort∗. It will be translated intoλk : A.xk for
some suitableA. If the CPS translation is to preserve typing,A must be related to the CPS
translation of (0, B), whereB is a type ofx in 0. So the order to be used in the definition
of the translation should satisfy: if0 ` M : A then (0, B) ≺ (0, A) for someB such that
0 ` M : B. Following [9, 20], we takeB to be the normal form ofA. The resulting order
≺ is well-founded for most systems that appear in the literature.

Definition 17. C0〈.〉 : Legal-Terms[PTS] → Legal-Terms[PTS] is defined in figure 17.

The translation is well-defined for all locally persistent logical specifications for which
≺ is well-founded. For such specifications, we have:

Theorem 6.

0 ` M : A⇒ C〈[0]〉 ` C0〈M〉 : C0〈[A]〉

6.5. Assessment

In closing this section, it is perhaps worth noticing a number of variations in the CPS
translations we have defined above for the domain-free cube (figure 7), for domain free
PTSs (figure 15), and for domain-fullPTSs (figure 17).

• Syntactic/type-based classification. The translation of terms and types are different, so
one must have a means of distinguishing between the two notions. This can be done either
syntactically by dividing the pseudo-terms into various categories (e.g. the categories of
pseudo-objects, -constructors, and -kinds in the domain-free cube) or based on types by
dividing the legal terms into various categories (e.g. the categoriesPrp, Set, Prf, Elt in
domain-freePTSs).
• Context-dependent/-independent classification. The type-based classification can be done

either independently of the context (as the categoriesPrp, etc. in domain-freePTSs) or
depending on the context (by checking e.g.0 ` M : Prop as in the translation of
domain-fullPTSs).
• Context-dependent/-independent translation. If the CPS translation uses a type-based

context-dependent classification, then the translation must be parametrized by the context.
Also, if the translation reconstructs types (as in the domain-full CPS-translation), then
the translation must again be parametrized by the context.

The various translations are often related by results such as the following:

Proposition 4. If 0 ` M : A, then|C0〈M〉| ≡ C〈|M |〉.

CPS TRANSLATIONS AND APPLICATIONS 165

Figure 17. Domain-full CPS translation.

Proof: By induction on the structure of derivations. 2

7. Conclusion and directions for further work

In this paper, we have generalized some important CPS translations to classes of pure type
systems and domain-free pure type systems. To our knowledge, our CPS translations are the
first of their kind to handle systems of dependent types. Reflecting on this work, we believe
that several research avenues deserve further attention; for the sake of clarity, we distinguish
between pure CPS questions and applications-oriented questions.

7.1. Pure CPS questions

The most fundamental question left open in this paper is the role of normalization in
the definition of CPS translations. While our translations require types to be normalizing,

166 BARTHE, HATCLIFF AND SØRENSEN

one would hope to device CPS translations which do not rely on any such assumption.
Unfortunately, we have been unable to come up with such translations so far.

Another important question is to unveil the limitations of CPS translations. While the
translations apply to most Pure Type Systems that appear in the literature, they cannot be
extended readily to6-types as the usual translation for pairs does not preserve typing. Sim-
ilar difficulties appear with inductive types as the standard class of strictly positive inductive
definitions is not closed under CPS translation. However, the class of positive inductive def-
initions is closed under CPS translation so it would be interesting to study CPS translations
for typedλ-calculi with positive inductive types. These limitations of CPS translations are
in fact deeply connected to inherent difficulties in extracting the computational content of
impredicative classical predicate logic with the axiom of choice.

On a more positive side, one can try to build up on the results of this paper:

• one natural objective is to recast existing CPS translations in the framework of pure
type systems and domain-free pure type systems. A priori the techniques introduced
in the paper seem general enough for this purpose and we expect no difficulty there. In
particular, it seems worth exploring Fischer-style CPS translations (where continuations
are the first arguments to functions) for pure type systems. As Sabry and Felleisen [58]
illustrate, the CPS terms produced by these translations have slightly different reduction
properties than those produced by Plotkin-style translations. This may be of use in some
applications;
• in order to enhance the generality of our approach, one can also envision a generic staging

through a monadic metalanguage as presented by Hatcliff and Danvy [39]. A preliminary
step in this direction is the introduction of monadic type systems [11], which generalize
the simply typed metalanguage in the same way as the pure type systems generalize the
simply typedλ-calculus.

7.2. Application-related questions

The applications sketched in the introduction give obvious directions for future work.

• Recent trends in compilation emphasize the use of typed intermediate languages with
sophisticated type structures. It seems worth to apply our results in this line of work
following the remarks in Section 1.1.
• Strong normalization from weak normalization: thus far the Barendregt-Geuvers-Klop

conjecture remains open for systems of dependent types. Further investigation is needed
to determine whether the tools developed in this paper can lead to a successful solution
to the conjecture. In [7], the authors solve the conjecture for the so-called generalized
non-dependent pure type systems by using a pervasive CPS translation. However, this
work falls short of treating systems of dependent types;
• Classical pure type systems: one important objective is a suitable generalization of the

Kreisel-Friedman theorem, which provides a foundation for extracting the computational
content from classical proofs. Other applications related to consistency and strong nor-
malization have been partially achieved in [6].

CPS TRANSLATIONS AND APPLICATIONS 167

Acknowledgments

We would like to thank T. Coquand for useful discussions on the paper, and we are grateful
to the referees for their comments and suggestions.

Part of this work was performed while the first author was working at CWI (Amsterdam,
The Netherlands) and at Chalmers University (G¨oteborg, Sweden). The first author was
partially supported by a European TMR Fellowship. The second author was partially
supported by the United States National Science Foundation under grant CCR-9701418,
and by the United States National Aeronautics and Space Administration (NASA) under
award NAG 21209.

Notes

1. We assume that the reader is familiar with the notions of free and bound variables and the related conventions—
see [3].

2. Below we often omit the prefix “β-”.
3. The reader may well wonder what the intuition is behind this property and where the modification of Plotkin’s

translation comes from; these issues are explained at length in [66].
4. Griffin’s discovery was followed by several lines of work on classical logic, control operators, and the Curry-

Howard isomorphism—some initiated independently of his work. It is not possible here to explain the aims
and achievements of the individual lines of work, but see e.g., [6] for more references.

5. Consistency of both classical and minimal propositional logic can of course be proved by the method of truth
tables! However, the above method scales up to logics for which the truth table method does not apply.

6. The use ofλ-abstractions with domain in pure type systems is motivated by history (most type systems have
adopted such abstractions) as well as by practical considerations (domain-full abstractions are necessary for
type-checking to be decidable).

7. This presentation is equivalent to the original one, as sketched in Section 5.2.
8. Theλ is used to distinguish these systems from the corresponding systemsλS of Barendregt’sλ-cube, intro-

duced later.
9. This claim implicitly relies on the view that pure type systems do indeed correspond to these well-known typed
λ-calculi. This latter issue is studied in some detail in [28].

References

1. Appel, A.Compiling with Continuations. Cambridge University Press, 1992.
2. Augustsson, L. Cayenne: A programming language with dependent types. InProceedings of the 1998 ACM

SIGPLAN International Conference on Functional Programming. Baltimore, Maryland, 1998, ACM Press,
pp. 239–250.

3. Barendregt, H.P.The Lambda Calculus—Its Syntax and Semantics. North-Holland, 1984.
4. Barendregt, H.P. Lambda calculi with types. InHandbook of Logic in Computer Science, S. Abramsky, D.M.

Gabbay, and T.S.E. Maibaum (Eds.). Vol. 2, Oxford Science Publications, 1992, pp. 117–309.
5. Barthe, G., Hatcliff, J., and Sørensen, M.H. CPS-translation and applications: The cube and beyond. In

Proceedings of the Second ACM SIGPLAN Workshop on Continuations, O. Danvy (Ed.), number NS-96-13
in BRICS Notes, 1996, pp. 4/1–4/31.

6. Barthe, G., Hatcliff, J., and Sørensen, M.H. A notion of classical pure type system. InProceedings of the
Thirteenth Annual Conference on the Mathematical Foundations of Programming Semantics, S. Brookes and
M. Mislove (Eds.). Pittsburgh, Pennsylvania, March 1997. Electronic Notes in Theoretical Computer Science,
vol. 6.

168 BARTHE, HATCLIFF AND SØRENSEN

7. Barthe, G., Hatcliff, J., and Sørensen, M.H.Weak Normalization Implies Strong Normalization in Generalized
Non-Dependent Pure Type Systems. March 1997, submitted for publication.

8. Barthe, G., Hatcliff, J., and Sørensen, M.H. Reflections on reflections. InProceedings of the Ninth International
Symposium on Programming Languages, Implementations, Logics and Programs, H. Glaser, P. Hartel, and
H. Kuchen (Eds.). Southampton, United Kingdom, September 1997. Lecture Notes in Computer Science,
vol. 1292, Springer-Verlag, pp. 241–258.

9. Barthe, G., Hatcliff, J., and Sørensen, M.H.An Induction Principle for Pure Type Systems. March 1998,
submitted for publication.

10. Barthe, G., Hatcliff, J., and Sørensen, M.H. A taxonomy of CPS and DS translations. Technical Report TR
98-11, Department of Computing and Information Sciences, Kansas State University, 1988.

11. Barthe, G., Hatcliff, J., and Thiemann, P. Monadic type systems: Pure type systems for impure settings. In
Proceedings of the Second Workshop on Higher-Order Operational Techniques in Semantics (HOOTS II), A.
Gordon, A. Pitts, and C. Talcott (Eds.). Stanford, California, December 1997. Electronic Notes in Theoretical
Computer Science, vol. 10.

12. Barthe, G. and Sørensen, M.H. Domain-free pure type systems. InProceedings of Logical Foundations of
Computer Science LFCS’97, S. Adian and A. Nerode (Eds.), Yaroslav, Russia, July 1997. Lecture Notes in
Computer Science, vol. 1234, Springer-Verlag, pp. 9–20.

13. Berardi, S. Type Dependence and Constructive Mathematics. Ph.D. Thesis. University of Torino, 1990.
14. Consel, C. and Danvy, O. For a better support of static data flow. InConference on Functional Programming

and Computer Architecture, J. Hughes (Ed.). 1991. Lecture Notes in Computer Science, vol. 523, Springer-
Verlag, pp. 495–519.

15. Coquand, T. and Herbelin, H. A-translation and looping combinators in pure type systems.Journal of Func-
tional Programming, 4(1):77–88, 1994.

16. Curry, H.B. and Feys, R.Combinatory Logic. North-Holland, 1958.
17. Danvy, O. Back to direct style.Science of Computer Programming, 22(3):183–195, 1994.
18. Danvy, O. and Filinski, A. Representing control, a study of the CPS transformation.Mathematical Structures

in Computer Science, 2(4):361–391, 1992.
19. Danvy, O. and Lawall, J. Back to direct style II: First-class continuations. InProceedings of the 1992 ACM

Conference on Lisp and Functional Programming. San Francisco, California, June 1992. ACM Press, LISP
Pointers, V(1):299–310.

20. Dowek, G., Huet, G., and Werner, B. On the existence of longβη-normal forms in the cube. InInformal
Proceedings of TYPES’93, H. Geuvers (Ed.). Nijmegen, The Netherlands, May 1993, pp. 115–130.

21. Dussart, D., Hughes, J., and Thiemann, P. Type specialisation for imperative languages. InProceedings of the
1997 ACM SIGPLAN International Conference on Functional Programming. Amsterdam, The Netherlands,
June 1997. ACM Press, pp. 204–216.

22. Felleisen, M. The Calculi ofλv-CS Conversion: A Syntactic Theory of Control and State in Imperative Higher
Order Programming Languages. Ph.D. Thesis. Indiana University, 1987.

23. Felleisen, M. and Friedman, D. Control operators, the SECD machine, and theλ-calculus. InFormal Descrip-
tion of Programming Concepts III, M. Wirsing (Ed.), North-Holland, 1986, pp. 193–217.

24. Felleisen, M., Friedman, D., Kohlbecker, E., and Duba, B. A syntactic theory of sequential control.Theoretical
Computer Science, 52(3):205–237, 1987.

25. Flanagan, C., Sabry, A., Duba, B., and Felleisen, M. The essence of compiling with continuations. InPro-
ceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and Implementation.
Albuquerque, New Mexico, June 1993, pp. 237–247, SIGPLAN Notices 28(6).

26. Friedman, D., Wand, M., and Haynes, C.Essentials of Programming Languages. MIT Press and McGraw-
Hill, 1991.

27. Gandy, R.O. An early proof of normalization by A.M. Turing. In J.P. Seldin and J.R. Hindley, Academic Press
Limited, 1980, pp. 453–455.

28. Geuvers, H. Logics and Type Systems. Ph.D. Thesis. University of Nijmegen, 1993.
29. Geuvers, H. and Nederhof, M.J. A modular proof of strong normalisation for the Calculus of Constructions.

Journal of Functional Programming, 1:155–189, 1991.
30. Girard, J.-Y.Interprétation fonctionnelle et́elimination des coupures dans l’arithmétique d’ordre suṕerieur.

Thèse d’Etat. Universit´e Paris VII, 1972.

CPS TRANSLATIONS AND APPLICATIONS 169

31. Griffin, T.G. A formulae-as-types notion of control. InConference Record of the Annual ACM Symposium on
Principles of Programming Languages. San Francisco, California, January 1990. ACM Press, pp. 47–58.

32. de Groote, P. The conservation theorem revisited. InTyped Lambda Calculus and Applications, M. Bezem
and J.F. Groote (Eds.). Utrecht, The Netherlands, March 1993. Lecture Notes in Computer Science, vol. 664,
Springer-Verlag, pp. 163–178.

33. Harper, R., Honsell, F., and Plotkin, G. A framework for defining logics.Journal of the ACM, 40(1):143–184,
1993. A Preliminary Version Appeared in the Proceedings of the First IEEE Symposium on Logic in Computer
Science, June 1987, pp. 194–204.

34. Harper, R. and Lillibridge, M. Explicit polymorphism and CPS conversion. InConference Record of the
Twentieth Annual ACM Symposium on Principles of Programming Languages. Charleston, South Carolina,
January 1993, ACM Press, pp. 206–219.

35. Harper, R. and Lillibridge, M. Polymormphic type assignment and CPS conversion.LISP and Symbolic
Computation, 6:361–380, 1993.

36. Harper, R. and Mitchell, J.C. On the type structure of Standard ML.ACM Transactions on Programming
Languages and Systems, 15(2):211–252, 1993.

37. Harper, R. and Morrisett, G. Compiling polymorphism using intensional type analysis. InConference Record
of the Twenty-Second Annual ACM Symposium on Principles of Programming Languages. San Francisco,
California, January 1995, ACM Press, pp. 130–141.

38. Hatcliff, J. Foundations of partial evaluation of functional programs with computational effects. InSymposium
on Partial Evaluation, O. Danvy, R. Gl¨uck, and P. Thiemann (Eds.). September 1998 ACM Computing
Surveys, vol. 30.

39. Hatcliff, J. and Danvy, O. A generic account of continuation-passing styles. InConference Record of the
Twenty-First Annual ACM Symposium on Principles of Programming Languages. Portland, Oregon, January
1994, ACM Press, pp. 458–471.

40. Hatcliff, J. and Danvy, O. A computational formalization for partial evaluation.Mathematical Structures in
Computer Science, 7:507–541, 1997. Special issue devoted to selected papers from theWorkshop on Logic,
Domains, and Programming Languages. Darmstadt, Germany, May 1995.

41. Hindley, J.R. and Seldin, J.P.Introduction to Combinators andλ-Calculus. Cambridge University Press,
1986.

42. Howard, W. The formulae-as-types notion of construction. In T.H.B. Curry: Essays on Combinatory Logic,
Lambda, Calculus and Formalism, J.P. Seldin and J.R. Hindley, Academic Press Limited, 1980, pp. 479–490.

43. Lawall, J. and Thiemann, P. Sound specialization in the presence of computational effects. InProceedings
of Theoretical Aspects of Computer Software, M. Abadi and T. Ito (Eds.). Sendai, Japan, September 1997.
Lecture Notes in Computer Science, vol. 1281, Springer-Verlag, pp. 165–190.

44. Longo, G. and Moggi, E. Constructive natural deduction and its ‘ω-set’ interpretation.Mathematical Structures
in Computer Science, 1(2):215–254, 1991.

45. Meijer, E. and Peyton Jones, S. Henk: A typed intermediate language. InProceedings of the ACM SIGPLAN
Workshop on Types in Compilation, Amsterdam, The Netherlands, June 1997.

46. Meyer, A.R. and Wand, M. Continuation semantics in typed lambda-calculi (summary). InLogics of Programs,
R. Parikh (Ed.). Lecture Notes in Computer Science, vol. 193, Springer-Verlag, 1985, pp. 219–224.

47. Minamide, Y., Morrisett, G., and Harper, R. Typed closure conversion. InConference Record of the Twenty-
third Annual ACM Symposium on Principles of Programming Languages. St. Petersburg, Florida, January
1996, ACM Press, pp. 271–283.

48. Murthy, C. Extracting Constructive Contents from Classical Proofs. Ph.D. Thesis, Cornell University, 1990.
49. Nielsen, K. and Sørensen, M.H. Call-by-name CPS-translation as a binding-time improvement. InStatic

Analysis Symposium, A. Mycroft (Ed.). Glasgow, Scotland, September 1995. Lecture Notes in Computer
Science, Springer-Verlag, vol. 983, pp. 296–313.

50. Peyton Jones, S.L.The Implementation of Functional Programming Languages. Prentice Hall International.
1987.

51. Peyton Jones, S.L., Hall, C., Hammond, K., Partain, W., and Wadler, P. The Glasgow Haskell compiler: A
technical overview. InProceedings of the UK Joint Framework for Information Technology (JFIT) Technical
Conference, Keele, 1993.

52. Plotkin, G. Call-by-name, call-by-value and theλ-calculus.Theoretical Computer Science, 1:125–159, 1975.

170 BARTHE, HATCLIFF AND SØRENSEN

53. Prawitz, D.Natural Deduction: A Proof Theoretical Study. Almquist & Wiksell, 1965.
54. Prawitz, D. Ideas and results of proof theory. InThe 2nd Scandinavian Logical Symposium, J.E. Fenstad (Ed.).

North-Holland, 1970, pp. 235–307.
55. Rehof, N.J. and Sørensen, M.H. Theλ1 calculus. InTheoretical Aspects of Computer Software, M. Hagiya and

J. Mitchell (Eds.). Sendai, Japan, April 1994. Lecture Notes in Computer Science, vol. 789, Springer-Verlag,
pp. 516–542.

56. Reynolds, J.C. Definitional interpreters for higher-order programming languages.Higher-Order and Symbolic
Computation11(4):7–105, 1998. Reprinted from the proceedings of the 25th ACM National Conference, 1972.

57. Sabry, A. Note on Axiomatizing the Semantics of Control Operators. Technical Report CIS-TR-96-03.
Department of Computer and Information Science, University of Oregon, 1996.

58. Sabry, A. and Felleisen, M. Reasoning about programs in continuation-passing style.Lisp and Symbolic
Computation, 6:289–360, 1993.

59. Sabry, A. and Felleisen, M. Is continuation passing useful for data-flow analysis? InProceedings of the ACM
SIGPLAN’94 Conference on Programming Language Design and Implementation, Orlando, Florida, June
1994, pp. 1–12. SIGPLAN Notices 29(6).

60. Sabry, A. and Wadler, P. A reflection on call-by-value.ACM Transactions on Programming Languages and
Systems, 19(6):916–941, 1997. Earlier version in the proceedings of the 1996 International Conference on
Functional Programming.

61. Schmidt, D.A.Denotational Semantics: A Methodology for Language Development. Allyn and Bacon, Inc.,
1986.

62. Seldin, J.P. Normalization and excluded middle I.Studia Logica, XLVIII (2):193–217, 1989.
63. Seldin, J.P. and Hindley, J.R. (Eds.).To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism. Academic Press Limited, 1980.
64. Shao, Z. and Appel, A.W. A type-based compiler for Standard ML. InProceedings of the ACM SIGPLAN’95

Conference on Programming Language Design and Implementation, La Jolla, California, June 1995, pp.
116–129, SIGPLAN Notices 30(6).

65. Shivers, O. Control-Flow Analysis of Higher-Order Languages. Ph.D. Thesis. Carnegie Mellon University,
1991.

66. Sørensen, M.H. Strong normalization from weak normalization in typedλ-calculi. Information and Compu-
tation, 133(1):35–71, 1997.

67. Sta◦◦ lmarck, G. Normalization theorems for full first order classical natural deduction.Journal of Symbolic
Logic, 56(1):129–149, 1991.

68. Steele, G.L., Jr. Rabbit: A compiler for scheme. Technical Report AI-TR-474, Artificial Intelligence Labora-
tory, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1978.

69. Tait, W.W. Intensional interpretations of functionals of finite type I.Journal of Symbolic Logic, 32(2):190–212,
1967.

70. Tait, W.W. A realizability interpretation of the theory of species. InLogic Colloquium, R. Parikh (Ed.). Lecture
Notes in Mathematics, vol. 453, Springer-Verlag, 1975, pp. 240–251.

71. Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., and Lee, P. TIL: A type-directed optimizing
compiler for ML. InProceedings of the ACM SIGPLAN ’96 Conference on Programming Language Design
and Implementation, Philadelphia, Pennsylvania, May 1996, pp. 181–192. SIGPLAN Notices 31(5).

72. Terlouw, J.Een Nadere Bewijstheoretische Analyse van GSTT’s. Manuscript (in Dutch), 1989.
73. Werner, B.Continuations, Evaluation Styles and Types Systems. Manuscript, 1992.
74. Xi, H. Weak and strong normalizations in typedλ-calculi. In Proceedings of TLCA’97, P. de Groote and

J. Hindley (Eds.). Nancy, France, Lecture Notes in Computer Science, vol. 1210, Springer-Verlag, April
1997, pp. 390–404.

75. Xi, H. and Pfenning, F. Eliminating array bound checking through dependent types. InProceedings of the
ACM SIGPLAN’98 Conference on Programming Languages Design and Implementation, Montréal, Canada,
June 1998, pp. 249–257. SIGPLAN Notices 33(5).

