
Type Theory and Coq 2018-2019
11-06-2019

1. This exercise is about simple type theory and propositional logic.

(a) Give a proof in minimal propositional logic of the formula:

(a→ b)→ (b→ c)→ (a→ c)

[b→ cy]

[a→ bx] [az]

b
E→

c
E→

a→ c
I[z]→

(b→ c)→ (a→ c)
I[y]→

(a→ b)→ (b→ c)→ (a→ c)
I[x]→

(b) Give the proof term in (Church-style) simple type theory of the proof
from the previous subexercise, which is a lambda term with type:

(a→ b)→ (b→ c)→ (a→ c)

λx : a→ b. λy : b→ c. λz : a. y(xz)

(c) Give a derivation of the typing judgement of the term from the previous
subexercise.

Γ := x : a→ b, y : b→ c, z : a

Γ ` y : b→ c

Γ ` x : a→ b Γ ` z : a

Γ ` xz : b

Γ ` y(xz) : c

x : a→ b, y : b→ c ` λz : a. y(xz) : a→ c

x : a→ b ` λy : b→ c. λz : a. y(xz) : (b→ c)→ (a→ c)

` λx : a→ b. λy : b→ c. λz : a. y(xz) : (a→ b)→ (b→ c)→ (a→ c)

1

(d) Give the three typing rules of simple type theory.

Γ ` x : A
if x : A ∈ Γ

Γ, x : A `M : B

Γ ` (λx : A.M) : A→ B

Γ `M : A→ B Γ ` N : A

Γ `MN : B

(e) Give the most general type of the lambda term:

λxyz. x(yxz)

You do not need to show that this is the most general type, or how you
obtained it, just giving the type is sufficient.

(a→ b)→ ((a→ b)→ c→ a)→ c→ b

2. This exercise is about dependent types and predicate logic.

(a) Give a proof that contains a detour in minimal predicate logic of the
formula:

∀x. ((∀y. p(y))→ p(x))

(Note: if you do not know what a detour is, or you cannot find a proof
with a detour, you can get partial points for a proof of this formula
without a detour.)

[p(x)H
′
]

p(x)→ p(x)
I[H ′]→

[∀y. p(y)H]

p(x)
E∀

p(x)
E→

(∀y. p(y))→ p(x)
I[H]→

∀x. ((∀y. p(y))→ p(x))
I∀

(b) Give the proof term in λP of the proof from the previous subexercise.
Use the type D for the domain that is being quantified over.

λx : D.λH : (Πy : D. py). (λH ′ : px.H ′)(Hx)

2

(c) Give the normal form of the term from the previous subexercise. Ex-
plain your answer.

By reducing the only beta redex (λH ′ : px.H ′)(Hx) in this term to Hx,
we get the normal form:

λx : D.λH : (Πy : D. py). Hx

(d) Give the full λP typing judgement (i.e., including the λP context) of
the term in normal form from the previous subexercise.

D : ∗, p : (D → ∗) `
(
λx : D.λH : (Πy : D. py). Hx

)
:
(
Πx : D. (Πy : D.py)→ px

)
(e) What is the formula in minimal predicate logic that has as proof term:

λH1 : (Πx:D. px→ qx). λH2 : (Πy:D. qy → ry). λz : D.λH3 : pz.H2z (H1zH3)

(∀x. p(x)→ q(x))→ (∀y. q(y)→ r(y))→ (∀z. p(z)→ r(z))

3. This exercise is about polymorphism and second order propositional logic.

(a) Give a proof in minimal second order propositional logic of the formula:

∀a. (a→ a)→ a→ a

[ay]

a→ a
I[y]→

(a→ a)→ a→ a
I[x]→

∀a. (a→ a)→ a→ a
I∀

(b) Give the proof term in λ2 for the proof from the previous subexercise.

λa : ∗. λx : a→ a. λy : a. y

(c) Give a different proof term for the formula from the previous subexer-
cises, where ‘different’ means that the β normal forms are different.

λa : ∗. λx : a→ a. λy : a. xy

3

which can be η-reduced to:

λa : ∗. λx : a→ a. x

Another solution is any other Church numeral, like the one for three:

λa : ∗. λx : a→ a. λy : a. x(x(xy))

(d) Give the lambda term for the polymorphic composition operator, which,
apart from type arguments, takes two functions f and g, and returns
the composition f ◦ g.

λa : ∗. λb : ∗. λc : ∗. λf : b→ c. λg : a→ b. λx : a. f(gx)

(e) Does there exist a λ2 term M with type A, such that MA is a well
typed λ2 term too? If so, give an example. If not, explain why.

This question asks whether λ2 is impredicative. And it is. So, yes, terms
like this exist.

In fact, any term with a type of the form Πa : ∗. . . . has this property.
For instance take for M the polymorphic identity function:

M := λa : ∗. λx : a. x

A := Πa : ∗. a→ a

then we have:

M : A

MA =β (λx : A.A) : A→ A

4. This exercise is about the typing rules of pure type systems and the lambda
cube.

For the typing rules of the lambda cube, see page 11 of this exam.

(a) Give a derivation in λ→ of the judgement:

a : ∗ ` (λx : a. x) : (a→ a)

4

∗ : �

a : ∗ ` a : ∗
a : ∗, x : a ` x : a

∗ : �

a : ∗ ` a : ∗

∗ : �

a : ∗ ` a : ∗
∗ : �

a : ∗ ` a : ∗
a : ∗, x : a ` a : ∗

a : ∗ ` (a→ a) : ∗
a : ∗ ` (λx : a. x) : (a→ a)

(b) Conjunction can be impredicatively defined as:

λa : ∗. λb : ∗.Πc : ∗. ((a→ b→ c)→ c)

List the systems of the lambda cube in which this term is typable.
Explain your answer.

For the lambdas, we need the rule (�,�,�), because the type of the
term is ∗ → ∗ → ∗. For the dependent product, we need the rule
(�, ∗, ∗). And for the arrows, we need the rule (∗, ∗, ∗). Hence we need:

R ⊆ {(∗, ∗, ∗), (�, ∗, ∗), (�,�,�)}

For this reason this term can only be typed in the systems λω and λPω.

Other names for these systems are system Fω and the calculus of con-
structions.

(c) The systems of the lambda cube all satsify the property of subject re-
duction. State what this means.

If Γ `M : A, and M →β M
′ then Γ `M ′ : A.

(d) The systems of the lambda cube all satisfy the property of strong nor-
malization. State what this means.

There is no infinite reduction sequence:

M0 →β M1 →β M2 →β . . .

5. This exercise is about inductive types and recursive functions.

(a) We want a datatype for binary trees with no further data at either
nodes or leaves. Define an inductive type tree of type Set using Coq
syntax for this datatype. An example of an element of this type might
be:

5

Node (Node Leaf (Node Leaf Leaf)) Leaf

Inductive tree : Set :=

| Leaf : tree

| Node : tree -> tree -> tree.

(b) Give the type of the recursion principle tree rec for the inductive type
from the previous subexercise.

forall A : tree -> Set,

A Leaf ->

(forall t1 : tree, A t1 -> forall t2 : tree, A t2 ->

A (Node t1 t2)) ->

forall t : tree, A t

This is the dependent recursion principle, which is called tree rec in
Coq. The non-dependent recursion principle is also an acceptable an-
swer to this exercise:

forall A : Set,

A -> (tree -> A -> tree -> A -> A) -> tree -> A

(c) Define a function count leaves that counts the number of leaves of a
tree using Fixpoint and match. The count for the example tree should
be four, as there are four Leafs. Remember that the Coq type for
natural numbers is called nat, and the function for addition on natural
numbers is called plus.

Fixpoint count_leaves (t : tree) {struct t} : nat :=

match t with

| Leaf => S O

| Node t1 t2 => plus (count_leaves t1) (count_leaves t2)

end.

(d) Define the same function using tree rec.

tree_rec (fun _ => nat) (S O) (fun _ n1 _ n2 => plus n1 n2)

(e) Define an inductive predicate

mirrors : tree→ tree→ Prop

6

that states that the first argument is the left-to-right mirror of the
second argument. Note that this is not a function that mirrors its
input, but a relation between two trees.

For example the following type should be inhabited:

mirrors (Node (Node Leaf (Node Leaf Leaf)) Leaf)

(Node Leaf (Node (Node Leaf Leaf) Leaf))

Inductive mirrors : tree -> tree -> Prop :=

| mirrors_leaf : mirrors Leaf Leaf

| mirrors_node : forall t1 t1’ t2 t2’ : tree,

mirrors t1 t1’ -> mirrors t2 t2’ ->

mirrors (Node t1 t2) (Node t2’ t1’).

(f) Give a definition of Leibniz equality as an inductive predicate. (There
are two different versions for this, depending on whether one of the
arguments of the equality is a parameter or not. Both versions are a
proper answer to this exercise.)

Inductive eq (A : Type) (x : A) : A -> Prop :=

eq_refl : eq A x x

Or, alternatively:

Inductive eq (A : Type) : A -> A -> Prop :=

eq_refl : forall x : A, eq A x x

6. This exercise is about guarded type theory.

(a) Consider the following Coq definitions:

CoInductive stream : Set :=

| cons : nat -> stream -> stream.

Definition f (x : nat) (s : stream) : stream :=

cons x s.

CoFixpoint fold_f (s : stream) : stream :=

match s with

| cons x s’ => f x (fold_f s’)

end.

7

Coq will accept this without complaint, as f is just another name of
cons, and therefore fold f just returns its input stream in a compli-
cated way.

However, the following definition, in which now f is an arbitrary func-
tion, is not accepted by Coq:

CoFixpoint fold (f : nat -> stream -> stream)

(s : stream) : stream :=

match s with

| cons x t => f x (fold f t)

end.

Explain the problem with this definition.

This definition does not satisfy Coq’s guard conditions. But the prob-
lem is not just an artifact of the way Coq checks productivity, the
problem is that this function is just not productive for some f.

For example when f is the function that returns its second argument,
the function fold f is not well-defined, as the definition then will not
say anything about the output stream.

(b) Haskell (in which streams generally are called ‘lazy lists’) does allow
the counterpart of the definition of fold from the previous exercise:

fold :: (Int -> [Int] -> [Int]) -> [Int] -> [Int]

fold f (x:t) = f x (fold f t)

Explain in what way Haskell differs from Coq, so that Haskell does not
have a problem with this function.

In Coq every function is total, which corresponds to the fact that in Coq
all reductions have to terminate. The fact that all functions are total
is essential for the Curry-Howard isomorphism. For this reason, type
theories that are not normalizing generally are inconsistent (everything
becomes provable).

In Haskell, computations do not need to terminate, which means that
a function defined in Haskell can be partial. And therefore this fold

function is just a partial function, and there is no problem. If one runs it
on a computer with a ‘bad’ f, there just will be no output forthcoming,
but there will not be any inconsistency.

We will now look at a guarded type theory (in Curry-style). The syntax of

8

the types and terms and ‘clock contexts’ of this theory is:

A ::= a | A→ A | 1 | A+ A | A× A | µa.A | .A | �A | ↑A
M ::= x | λx.M |MM |

? | inlM | inrM | caseM ofx.M ;x.M | (M,M) | fstA | sndA

constructµa.AM | primrecµa.AM | fixM |
nextM |M ~M | boxM | unboxM | forceM | upM | downM

∆ ::= ∅ | κ

In this a and x are respectively type and term variables. We write construct
instead of the more customary cons, because we use the latter already for
the stream constructor.

This theory has many rules, of which the rules that are relevant for this exam
are, for the types:

Γ `κ A type

Γ `κ .A type

↑Γ `κ A type

Γ `∅ �A type

Γ `∅ A type

↑Γ `κ ↑A type

And for the terms:

↑Γ `κ M : A

Γ `∅ boxM : �A
Γ `∅ M : �A

↑Γ `κ unboxM : A

Γ `κ M : A

Γ `κ nextM : .A

Γ `∅ M : � .A
Γ `∅ forceM : �A

Γ `∅ M : A

↑Γ `κ upM : ↑A
↑Γ `κ M : ↑A

Γ `∅ downM : A

In these rules, for each type A defined in the empty clock context ∅, the
‘weakened’ type in the clock context κ is written ↑A, and if we weaken all
types in a context Γ like this, we get ↑Γ.

(c) There are two types for streams of natural numbers in this system, the
guarded streams Strg and the completed streams Str. Give the defini-
tions of these types, by replacing the dots in the definitions of N and
Strg by something sensible:

N := µa. . . .

Strg := µa. . . .

Str := �Strg

9

In other words: show that you understand how µ is used to define
inductive and coinductive types in this system. Keep in mind that Strg

is a stream of natural numbers, so you will have to use N in its definition.

As for the clock contexts of these three types: the first and third are
defined in the empty clock context ∅, while of course the second type
Strg needs the clock context κ.

The definitions are:

N := µa. 1 + a

Strg := µa. ↑N× .a
Str := �Strg

(d) In this system we can define functions hdg, tlg and consg, with types:

consg : ↑N→ .Strg → Strg

hdg : Strg → ↑N
tlg : Strg → .Strg

Now from these functions define functions hd, tl and cons on completed
streams, with types:

cons : N→ Str→ Str

hd : Str→ N

tl : Str→ Str

(Note that you only need to define the latter three functions from the
former three, you do not need to define the former three functions them-
selves.)

The definitions are:

consx s = box (consg (upx) (next (unbox s)))

hd s = down (hdg (unbox s))

tl s = force (box (tlg (unbox s)))

For completeness (not required by the exercise) here are the definitions
of the former three functions as well:

consg x s = constructStrg (x, s)

hdg s = primrecStrg (λz. fst z)

tlg s = primrecStrg (λz. next (λx.fstx)~ (snd z))

10

(e) Give the type of foldg, which is a counterpart to the fold function from
the earlier exercises that can be defined in this system. (Note that you
do not need to define it, just giving the type is sufficient.)

To ‘solve’ the productivity problem of this function, one just needs to
add a single ‘.’ to the type of the first argument:

foldg : (↑N→ .Strg → Strg)→ Strg → Strg

foldg = λf. fix (λF. λs. f (hdg s)(F ~ (tlg s)))

Again, the definition is just given for completeness.

11

