Type Theory and Coq 2021-2022 19-11-2021

Write your name and student number on each paper that you hand in.

This exam consists of 12 exercises. Each exercise is worth 15 points. The first 20 points are free. The final mark is the number of points divided by 20.

Write all natural deduction proofs and type derivations using the notation from Femke's course notes.

Good luck!

1. Give a proof in intuitionistic propositional logic of the formula

$$a \wedge (b \vee c) \rightarrow (a \wedge b) \vee (a \wedge c)$$

2. Replace the question marks in the following type judgment with simple types, such that it becomes derivable in simple type theory, and give the full type derivation:

$$x:?, y:? \vdash (\lambda z:?.xyz):?$$

3. Consider the following two inductive types:

```
Inductive nat : Set := 0 : nat | S : nat -> nat.
Inductive le (n : nat) : nat -> Prop :=
  le_n : le n n
| le_S : forall m : nat, le n m -> le n (S m).
```

Give the Coq term using these definitions that corresponds to the statement $2 \le 4$, and give a Coq term that proves this.

4. Consider the proof term

$$\lambda x : D. (\lambda y : D. \lambda H : py. H) x$$

for the formula of predicate logic

$$\forall x.(p(x) \to p(x))$$

Give the natural deduction proof that corresponds to this term.

Does this proof contain a *detour*? If so, explain why, what connective the detour is for, and normalize this proof.

5. Give a derivation in $\lambda 2$ of the type judgment

$$a:*\vdash(*\rightarrow a):*$$

For the rules of $\lambda 2$ see page 4.

6. We define in minimal second order propositional logic:

$$\operatorname{and}_2 A B := \forall c. ((A \to B \to c) \to c)$$
$$\operatorname{or}_2 A B := \forall c. ((A \to c) \to (B \to c) \to c)$$

Give a proof in this logic of the formula

$$\operatorname{and}_2 a b \to \operatorname{or}_2 a b$$

- 7. Give the polymorphic identity function and its type as a term and type of $\lambda 2$.
- 8. Consider the inductive type for the Cartesian product $A \times B$:

```
Inductive prod (A B : Set) : Set := pair : A -> B -> prod A B.
```

Coq defines the *dependent* recursion principle for this type automatically, with type:

prod_rec

```
: forall (A B : Set) (P : prod A B -> Set),
  (forall (a : A) (b : B), P (pair a b)) ->
  forall p : prod A B, P p
```

The exercise is to give the type of the *non-dependent* recursion principle prod_rec_nondep.

9. Consider the lambda term:

$$\lambda xyz.xy(zyx)$$

Use the algorithm PT to find whether this term is typable, and if so, give the principal type and show how the algorithm computed it.

10. One of the cases in the definition of the function $Type_{-}(-)$ is:

$$\mathsf{Type}_{\Gamma}(MN) \ = \ \left\{ \begin{array}{ll} \mathsf{if} & \mathsf{Type}_{\Gamma}(M) = C \mathsf{ and } \mathsf{Type}_{\Gamma}(N) = D \\ \mathsf{then} & \mathsf{if } C \twoheadrightarrow_{\beta} \Pi x : A.\, B \mathsf{ and } A =_{\beta} D \\ & \mathsf{then } B[x := N] \mathsf{ else 'false'} \\ \mathsf{else 'false'} \end{array} \right.$$

Compute

$$\mathsf{Type}_{\Gamma_{\mathsf{zeroes}}}(\mathsf{zeroes}\;\mathsf{O})$$

where

$$\Gamma_{\mathsf{zeroes}} := \mathsf{nat} : *, \ \mathsf{O} : \mathsf{nat}, \ \mathsf{vec} : \mathsf{nat} \to *, \ \mathsf{zeroes} : (\Pi n : \mathsf{nat}. \ \mathsf{vec} \ n)$$

and explain what M, N, x, A, B, C and D are in the above definition when working out this specific type.

11. In the proof of $CR(\beta)$ for the untyped lambda calculus, the notion of parallel reduction is defined, which is written as $M \Longrightarrow P$.

We denote the reflexive transitive closure of \Longrightarrow by \Longrightarrow^* .

Now give all inclusions that hold between the four relations \rightarrow_{β} , $\twoheadrightarrow_{\beta}$ (which is the same as \rightarrow_{β}^*), \Longrightarrow and \Longrightarrow^* . You do not need to explain why this is the case.

As an example of what we mean with 'inclusions': the inclusion $\twoheadrightarrow_{\beta} \subseteq \to_{\beta}$ does *not* hold, because $x \twoheadrightarrow_{\beta} x$, but not $x \to_{\beta} x$.

12. In the proof of SN for $\lambda \rightarrow$, a model for $\lambda \rightarrow$ is defined consisting of *saturated* sets of untyped lambda terms. The definition is:

$$\label{eq:all_section} \begin{split} [\![a]\!] := \mathsf{SN} & \text{for all base types } a \\ [\![A \to B]\!] := \{M \mid \forall N \in [\![A]\!]. \, MN \in [\![B]\!] \} \end{split}$$

Now for a given type A, consider the four sets:

In the definitions of the sets $\mathcal{T}_0(A)$ and $\mathcal{T}_1(A)$, the typing is in Curry-style simple type theory, so these sets consist of untyped lambda terms that are typable with type A.

Now give all inclusions that hold between these four sets for all types A. You do not need to explain why these inclusions hold.

However, for all inclusions that are not equalities for all types A, you should give such a type A and an (untyped) term that shows this.

Typing rules of $\lambda 2$

axiom

$$\overline{\vdash * : \Box}$$

variable

$$\frac{\Gamma \vdash A : s}{\Gamma, \ x : A \vdash \ x : A}$$

weakening

$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash C : s}{\Gamma, \, x : C \vdash A : B}$$

application

$$\frac{\Gamma \vdash M: \Pi x: A.\, B \qquad \Gamma \vdash N: A}{\Gamma \vdash M N: B[x:=N]}$$

abstraction

$$\frac{\Gamma,\,x:A\,\vdash\,M:B}{\Gamma\,\vdash\,\lambda x:A.\,M:\Pi x:A.\,B:s}$$

product

$$\frac{\Gamma \vdash A:s \qquad \Gamma,\, x:A \vdash B:*}{\Gamma \vdash \Pi x:A.B:*}$$

conversion

$$\frac{\Gamma \vdash A : B \qquad \Gamma \vdash B' : s}{\Gamma \vdash A : B'} \quad \text{when } B =_{\beta} B'$$