Type Theory and Coq

Radboud University Nijmegen, The Netherlands

Lecture 3

The Church-Rosser Property and Principal Types

Today's lecture

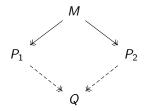
What do we want to prove about type systems? So: what about the meta theory of type theory

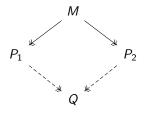
Today's lecture

What do we want to prove about type systems? So: what about the meta theory of type theory

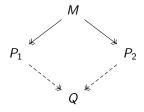
- ► Church-Rosser (confluence) of reduction
- ► Type inference (inferring principal types)

More properties are of interest, such as (strong) normalization, but that is not for today



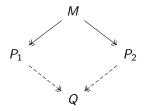


Church-Rosser Theorem for β -reduction, CR_{β} . If $M \twoheadrightarrow_{\beta} P_1$ and $M \twoheadrightarrow_{\beta} P_2$, then $\exists Q(P_1 \twoheadrightarrow_{\beta} Q \land P_2 \twoheadrightarrow_{\beta} Q)$



Church-Rosser Theorem for β -reduction, CR_{β} . If $M \twoheadrightarrow_{\beta} P_1$ and $M \twoheadrightarrow_{\beta} P_2$, then $\exists Q(P_1 \twoheadrightarrow_{\beta} Q \land P_2 \twoheadrightarrow_{\beta} Q)$

NB. M o P denotes the reflexive transitive closure of M o P, that is: M o P iff there is a multi-step (0 or more) reduction from M to P.



Church-Rosser Theorem for β -reduction, CR_{β} . If $M \twoheadrightarrow_{\beta} P_1$ and $M \twoheadrightarrow_{\beta} P_2$, then $\exists Q(P_1 \twoheadrightarrow_{\beta} Q \land P_2 \twoheadrightarrow_{\beta} Q)$

NB. M o P denotes the reflexive transitive closure of M o P, that is: M o P iff there is a multi-step (0 or more) reduction from M to P.

We will prove the Church-Rosser Theorem for β -reduction of the untyped λ -calculus in this lecture.

Church-Rosser (for β) example

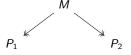
 $(\lambda x.yxx)(\mathbf{II})$

THEOREM $CR(\rightarrow_R)$ implies $UN(\rightarrow_R)$ (Uniqueness of Normal forms)



If P_1 and P_2 are in normal form, then $P_1 = P_2$, due to CR.

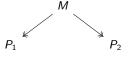
THEOREM $CR(\rightarrow_R)$ implies $UN(\rightarrow_R)$ (Uniqueness of Normal forms)



If P_1 and P_2 are in normal form, then $P_1 = P_2$, due to CR.

THEOREM $CR(\rightarrow_R) + SN(\rightarrow_R)$ implies $=_R$ is decidable.

THEOREM $CR(\rightarrow_R)$ implies $UN(\rightarrow_R)$ (Uniqueness of Normal forms)

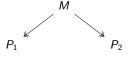


If P_1 and P_2 are in normal form, then $P_1 = P_2$, due to CR.

THEOREM $CR(\rightarrow_R) + SN(\rightarrow_R)$ implies $=_R$ is decidable.

PROOF: To decide $a =_R b$, just rewrite a and b until you find their normal forms a' and b'. Due to UN (which follows form CR), we have $a =_R b$ iff a' = b'.

THEOREM $CR(\rightarrow_R)$ implies $UN(\rightarrow_R)$ (Uniqueness of Normal forms)



If P_1 and P_2 are in normal form, then $P_1 = P_2$, due to CR.

THEOREM $CR(\rightarrow_R) + SN(\rightarrow_R)$ implies $=_R$ is decidable.

PROOF: To decide $a =_R b$, just rewrite a and b until you find their normal forms a' and b'. Due to UN (which follows form CR), we have $a =_R b$ iff a' = b'.

Foreshadowing: decidability of $=_{\beta}$ is crucial for decidability of type checking! We will see the conversion rule (next lecture):

$$\frac{\Gamma \vdash M : A \qquad \Gamma \vdash B : s}{\Gamma \vdash M : B} A =_{\beta} B$$

Parallel reduction in untyped λ -calculus

We prove $CR(\beta)$ using parallel reduction, a method due to Tait and Martin-Löf and refined by Takahashi.

Parallel reduction $M \Longrightarrow P$ allows to contract several redexes in M in one step. It can be defined inductively.

Parallel reduction in untyped λ -calculus

We prove $CR(\beta)$ using parallel reduction, a method due to Tait and Martin-Löf and refined by Takahashi.

Parallel reduction $M \Longrightarrow P$ allows to contract several redexes in M in one step. It can be defined inductively.

DEFINITION

$$\frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{(\lambda x.M)P \Longrightarrow M'[x := P']}(\beta) \qquad \frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{MP \Longrightarrow M'P'}(app)$$

$$\frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}(\lambda) \qquad \frac{x \Longrightarrow x}{x \Longrightarrow x}(var)$$

Parallel reduction in untyped λ -calculus

We prove $CR(\beta)$ using parallel reduction, a method due to Tait and Martin-Löf and refined by Takahashi.

Parallel reduction $M \Longrightarrow P$ allows to contract several redexes in M in one step. It can be defined inductively.

DEFINITION

$$\frac{M \Longrightarrow M' \qquad P \Longrightarrow P'}{(\lambda x.M)P \Longrightarrow M'[x := P']}(\beta) \qquad \qquad \frac{M \Longrightarrow M' \qquad P \Longrightarrow P'}{MP \Longrightarrow M'P'}(\mathsf{app})$$

$$\frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}(\lambda) \qquad \qquad \frac{x \Longrightarrow x}{x \Longrightarrow x}(\mathsf{var})$$

Examples:

$$(\lambda x.y \times x)(\mathbf{II})$$
 $(\lambda x.x (x \mathbf{I}))(\mathbf{II})$

$$\frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{(\lambda x.M)P \Longrightarrow M'[x := P']}(\beta) \qquad \frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{MP \Longrightarrow M'P'}(app)$$

$$\frac{M \Longrightarrow M'}{\lambda x.M \Longrightarrow \lambda x.M'}(\lambda) \qquad \frac{x \Longrightarrow x}{x \Longrightarrow x}(var)$$

$$\frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{(\lambda x. M)P \Longrightarrow M'[x := P']}(\beta) \qquad \frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{MP \Longrightarrow M'P'}(app)$$

$$\frac{M \Longrightarrow M'}{\lambda x. M \Longrightarrow \lambda x. M'}(\lambda) \qquad \frac{}{x \Longrightarrow x}(var)$$

THEOREM

1. $M \Longrightarrow M$

The proof is by induction on M.

$$\frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{(\lambda x. M)P \Longrightarrow M'[x := P']}(\beta) \qquad \qquad \frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{MP \Longrightarrow M'P'}(app)$$

$$\frac{M \Longrightarrow M'}{\lambda x. M \Longrightarrow \lambda x. M'}(\lambda) \qquad \qquad \frac{x \Longrightarrow x}{x \Longrightarrow x}(var)$$

THEOREM

- 1. $M \Longrightarrow M$ The proof is by induction on M.
- 2. If $M \to_{\beta} P$, then $M \Longrightarrow P$ The proof is by induction on the derivation, using (1).

$$\frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{(\lambda x. M)P \Longrightarrow M'[x := P']}(\beta) \qquad \qquad \frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{MP \Longrightarrow M'P'}(app)$$

$$\frac{M \Longrightarrow M'}{\lambda x. M \Longrightarrow \lambda x. M'}(\lambda) \qquad \qquad \frac{x \Longrightarrow x}{x \Longrightarrow x}(var)$$

THEOREM

- 1. $M \Longrightarrow M$ The proof is by induction on M.
- 2. If $M \to_{\beta} P$, then $M \Longrightarrow P$ The proof is by induction on the derivation, using (1).
- 3. If $M \Longrightarrow P$, then $M \twoheadrightarrow_{\beta} P$. The proof is by induction on the derivation.

THEOREM

$$\forall M \exists Q \forall P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow Q).$$

This immediately implies $DP(\Longrightarrow)$ (and thereby $CR(\beta)$).

THEOREM

$$\forall M \exists Q \forall P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow Q).$$

This immediately implies $DP(\Longrightarrow)$ (and thereby $CR(\beta)$).

We can even define this Q inductively from M; it will be called M^* . So we have

 $\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$

THEOREM

$$\forall M \exists Q \forall P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow Q).$$

This immediately implies $DP(\Longrightarrow)$ (and thereby $CR(\beta)$).

We can even define this Q inductively from M; it will be called M^* .

So we have

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

Note: This implies $\forall M (M \Longrightarrow M^*)$.

THEOREM

$$\forall M \exists Q \forall P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow Q).$$

This immediately implies $DP(\Longrightarrow)$ (and thereby $CR(\beta)$).

We can even define this Q inductively from M; it will be called M^* . So we have

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

Note: This implies $\forall M (M \Longrightarrow M^*)$.

Definition

$$x^* := x$$

$$(\lambda x.M)^* := \lambda x.M^*$$

$$((\lambda x.P) N)^* := P^*[x := N^*]$$

$$(M N)^* := M^* N^* \text{ if } M \neq \lambda x.P \text{ } (M \text{ is not a } \lambda \text{-abstraction})$$

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF by induction on the derivation of $M \Longrightarrow P$. There are 4 cases. We treat 3 of them.

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF by induction on the derivation of $M \Longrightarrow P$. There are 4 cases. We treat 3 of them.

case (1)
$$\frac{}{x \Longrightarrow x} \text{ (var)}$$

Then indeed $x \Longrightarrow x^*$ (because $x^* = x$).

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF by induction on the derivation of $M \Longrightarrow P$. There are 4 cases. We treat 3 of them.

$$\frac{}{x \Longrightarrow x}$$
 (var)

Then indeed $x \Longrightarrow x^*$ (because $x^* = x$).

case (2)

$$\frac{M \Longrightarrow M'}{\lambda \times M \Longrightarrow \lambda \times M'} (\lambda)$$

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF by induction on the derivation of $M \Longrightarrow P$. There are 4 cases. We treat 3 of them.

case
$$(1)$$

$$\frac{}{x \Longrightarrow x}$$
 (var)

Then indeed $x \Longrightarrow x^*$ (because $x^* = x$).

case (2)

$$\frac{M \Longrightarrow M'}{\lambda \times M \Longrightarrow \lambda \times M'} (\lambda)$$

IH: $M' \Longrightarrow M^*$. We need to prove: $\lambda x.M' \Longrightarrow (\lambda x.M)^*$

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF by induction on the derivation of $M \Longrightarrow P$. There are 4 cases. We treat 3 of them.

$$\frac{}{x \Longrightarrow x}$$
 (var)

Then indeed $x \Longrightarrow x^*$ (because $x^* = x$).

case (2)

$$\frac{M \Longrightarrow M'}{\lambda x. M \Longrightarrow \lambda x. M'} (\lambda)$$

IH: $M' \Longrightarrow M^*$. We need to prove: $\lambda x.M' \Longrightarrow (\lambda x.M)^*$

We have $(\lambda x.M)^* = \lambda x.M^*$.

 $\lambda x.M' \Longrightarrow \lambda x.M^*$ follows immediately from IH and the definition of \Longrightarrow .

THEOREM

 $\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$

 ${\rm PROOF} \ \text{continued}$

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF continued

$$\frac{M \Longrightarrow M' \quad P \Longrightarrow P'}{(\lambda x.M) \, P \Longrightarrow M'[x := P']}$$

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF continued

case (4)

$$\frac{M \Longrightarrow M' \qquad P \Longrightarrow P'}{(\lambda x.M) \, P \Longrightarrow M'[x := P']}$$

IH: $M' \Longrightarrow M^*$ and $P' \Longrightarrow P^*$.

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF continued

case (4)

$$\frac{M \Longrightarrow M' \qquad P \Longrightarrow P'}{(\lambda x.M) P \Longrightarrow M'[x := P']}$$

IH: $M' \Longrightarrow M^*$ and $P' \Longrightarrow P^*$.

We need to prove: $M'[x := P'] \Longrightarrow ((\lambda x.M) P)^* = M^*[x := P^*].$

THEOREM

$$\forall M, P \text{ (if } M \Longrightarrow P \text{ then } P \Longrightarrow M^* \text{)}.$$

PROOF continued

case (4)

$$\frac{M \Longrightarrow M' \qquad P \Longrightarrow P'}{(\lambda x.M) \, P \Longrightarrow M'[x := P']}$$

IH: $M' \Longrightarrow M^*$ and $P' \Longrightarrow P^*$.

We need to prove: $M'[x := P'] \Longrightarrow ((\lambda x.M) P)^* = M^*[x := P^*].$

To prove this we need a separate

Substitution Lemma If $M\Longrightarrow M'$ and $P\Longrightarrow P'$, then

$$M[x := P] \Longrightarrow M'[x := P'].$$

This is proved by induction on the structure of M.

$\mathsf{DP}(\Longrightarrow)$ implies $\mathsf{CR}(\beta)$

The proof that $DP(\Longrightarrow)$ implies $CR(\beta)$ follows from the properties we have established:

- 1. If $M \rightarrow_{\beta} P$, then $M \Longrightarrow P$.
- 2. If $M \Longrightarrow P$, then $M \twoheadrightarrow_{\beta} P$.
- 3. If $M \Longrightarrow P$, then $P \Longrightarrow M^*$.

Example

$$x^* := x$$

$$(\lambda x.M)^* := \lambda x.M^*$$

$$(MN)^* := P^*[x := N^*] \text{ if } M = \lambda x.P$$

$$:= M^* N^* \text{ otherwise.}$$

$$(\lambda x.y \times x)(\mathbf{II})$$

$$(\lambda z.z z)(\mathbf{I}(\mathbf{I}x))$$

This is a flexible proof of Church-Rosser

- ▶ Methods works for proving CR for reduction in Combinatory Logic
- lacktriangle Methods works for proving CR for β on pseudo-terms of Pure Type Systems

This is a flexible proof of Church-Rosser

- Methods works for proving CR for reduction in Combinatory Logic
- lacktriangle Methods works for proving CR for β on pseudo-terms of Pure Type Systems
- Method extends to typed lambda calculus with data types, for example natural numbers:

$$M,N:=x\mid M\,N\mid \lambda x.M\mid 0\mid \mathsf{suc}\,M\mid \mathsf{nrec}\,M\,N\,P$$
 with
$$\mathsf{nrec}\,M\,N\,0\quad\rightarrow\quad M$$

$$\mathsf{nrec}\,M\,N\,(\mathsf{suc}\,P)\quad\rightarrow\quad N\,P\,(\mathsf{nrec}\,M\,N\,P)$$

This is a flexible proof of Church-Rosser

- Methods works for proving CR for reduction in Combinatory Logic
- lacktriangle Methods works for proving CR for β on pseudo-terms of Pure Type Systems
- Method extends to typed lambda calculus with data types, for example natural numbers:

$$M, N := x \mid M N \mid \lambda x. M \mid 0 \mid \mathsf{suc}\, M \mid \mathsf{nrec}\, M \, N \, P$$
 with
$$\mathsf{nrec}\, M \, N \, 0 \ \to \ M$$

$$\mathsf{nrec}\, M \, N \, (\mathsf{suc}\, P) \ \to \ N \, P \, (\mathsf{nrec}\, M \, N \, P)$$

▶ Method extends to η -reduction:

$$\lambda x.Mx \rightarrow_{\eta} M$$
 if $x \notin FV(M)$

Part 2: Principal Typing

Why do programmers want types?

- ► Types give a (partial) specification
- ► Typed terms can't go wrong (Milner) Subject Reduction property: If M : A and $M \rightarrow_{\beta} N$, then N : A.
- ► Typed terms always terminate
- ► The type checking algorithm detects (simple) mistakes

But:

Part 2: Principal Typing

Why do programmers want types?

- ► Types give a (partial) specification
- ► Typed terms can't go wrong (Milner) Subject Reduction property: If M : A and $M \rightarrow_{\beta} N$, then N : A.
- Typed terms always terminate
- ► The type checking algorithm detects (simple) mistakes

But:

- ► The compiler should compute the type information for us! (Why would the programmer have to type all that?)
- ► This is called a type assignment system, or also typing à la Curry:
- For M an untyped term, the type system assigns a type σ to M (or not)

Simple Type Theory à la Church and à la Curry

 $\lambda \rightarrow \text{ (à la Church):}$ $\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \qquad \frac{\Gamma \vdash M:\sigma \rightarrow \tau \ \Gamma \vdash N:\sigma}{\Gamma \vdash MN:\tau} \qquad \frac{\Gamma,x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x:\sigma . P:\sigma \rightarrow \tau}$ $\lambda \rightarrow \text{ (à la Curry):}$

$$\frac{x : \sigma \in \Gamma}{\Gamma \vdash x : \sigma} \qquad \frac{\Gamma \vdash M : \sigma \to \tau \ \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau} \qquad \frac{\Gamma, x : \sigma \vdash P : \tau}{\Gamma \vdash \lambda x . P : \sigma \to \tau}$$

Type Assignment systems

ightharpoonup With typed assignment also called typing à la Curry, we assign types to untyped λ-terms

$$\lambda x.x: \alpha \rightarrow \alpha$$

- As a consequence:
 - Terms do not have unique types,
 - ► A principal type can be computed using unification.

Type Assignment systems

ightharpoonup With typed assignment also called typing à la Curry, we assign types to untyped λ-terms

$$\lambda x.x: \alpha \rightarrow \alpha$$

- As a consequence:
 - Terms do not have unique types,
 - ► A principal type can be computed using unification.
- Example:

$$\lambda x.\lambda y.y(\lambda z.x)$$

can be assigned the types

- $(\alpha \rightarrow \alpha) \rightarrow ((\beta \rightarrow \alpha \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$
- **•** . .

with $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$ being the principal type

Example of computing a principal type Consider $\lambda x. \lambda y. y (\lambda z. y. x)$

Consider $\lambda x. \lambda y. y (\lambda z. y. x)$

1. Assign type vars to all variables: $x : \alpha, y : \beta, z : \gamma$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

Consider $\lambda x. \lambda y. y (\lambda z. y. x)$

1. Assign type vars to all variables: $x : \alpha, y : \beta, z : \gamma$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

2. Assign type vars to all applicative subterms: y x and $y(\lambda z.yx)$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.\underbrace{y^{\beta}(\lambda z^{\gamma}.\underbrace{y^{\beta}x^{\alpha}})}_{\varepsilon}$$

Consider $\lambda x. \lambda y. y (\lambda z. y. x)$

1. Assign type vars to all variables: $x : \alpha, y : \beta, z : \gamma$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

2. Assign type vars to all applicative subterms: y x and $y(\lambda z.y x)$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.\underbrace{y^{\beta}(\lambda z^{\gamma}.\underbrace{y^{\beta}x^{\alpha}})}_{\varepsilon}$$

3. Generate equations between types, necessary for the term to be typable:

Consider $\lambda x. \lambda y. y (\lambda z. y. x)$

1. Assign type vars to all variables: $x : \alpha, y : \beta, z : \gamma$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

2. Assign type vars to all applicative subterms: y x and $y(\lambda z.y x)$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.\underbrace{y^{\beta}(\lambda z^{\gamma}.\underbrace{y^{\beta}x^{\alpha}})}_{\varepsilon}$$

3. Generate equations between types, necessary for the term to be typable: $\beta = \alpha \rightarrow \delta$ $\beta = (\gamma \rightarrow \delta) \rightarrow \varepsilon$

Consider $\lambda x. \lambda y. y (\lambda z. y. x)$

1. Assign type vars to all variables: $x : \alpha, y : \beta, z : \gamma$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

2. Assign type vars to all applicative subterms: y x and $y(\lambda z.y x)$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.\underbrace{y^{\beta}(\lambda z^{\gamma}.\underbrace{y^{\beta}x^{\alpha}})}_{\varepsilon}$$

- 3. Generate equations between types, necessary for the term to be typable: $\beta = \alpha \rightarrow \delta$ $\beta = (\gamma \rightarrow \delta) \rightarrow \varepsilon$
- 4. Find a most general unifier (a substitution) for the type vars that solves the equations: $\alpha := \gamma \rightarrow \varepsilon$, $\beta := (\gamma \rightarrow \varepsilon) \rightarrow \varepsilon$, $\delta := \varepsilon$

Consider $\lambda x. \lambda y. y (\lambda z. y. x)$

1. Assign type vars to all variables: $x : \alpha, y : \beta, z : \gamma$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

2. Assign type vars to all applicative subterms: y x and $y(\lambda z.y x)$:

$$\lambda x^{\alpha}.\lambda y^{\beta}.\underbrace{y^{\beta}(\lambda z^{\gamma}.\underbrace{y^{\beta}x^{\alpha}})}_{\varepsilon}$$

- 3. Generate equations between types, necessary for the term to be typable: $\beta = \alpha \rightarrow \delta$ $\beta = (\gamma \rightarrow \delta) \rightarrow \varepsilon$
- 4. Find a most general unifier (a substitution) for the type vars that solves the equations: $\alpha := \gamma \rightarrow \varepsilon$, $\beta := (\gamma \rightarrow \varepsilon) \rightarrow \varepsilon$, $\delta := \varepsilon$
- 5. The principal type of $\lambda x.\lambda y.y(\lambda z.yx)$ is now

$$(\gamma \rightarrow \varepsilon) \rightarrow ((\gamma \rightarrow \varepsilon) \rightarrow \varepsilon) \rightarrow \varepsilon$$

 $\lambda x.\lambda y.x(yx)$

Which of these terms is typable?

- $ightharpoonup M_1 := \lambda x.x (\lambda y.y.x)$
- $ightharpoonup M_2 := \lambda x. \lambda y. x (x y)$
- $M_3 := \lambda x. \lambda y. x (\lambda z. y x)$

Which of these terms is typable?

- $ightharpoonup M_1 := \lambda x.x (\lambda y.y.x)$
- $M_2 := \lambda x. \lambda y. x (x y)$
- $ightharpoonup M_3 := \lambda x. \lambda y. x (\lambda z. y. x)$

Poll:

- A M_1 is not typable, M_2 and M_3 are typable.
- B M_2 is not typable, M_1 and M_3 are typable.
- C M_3 is not typable, M_1 and M_2 are typable.

- ▶ A type substitution (or just substitution) is a map S from type variables to types with a finite domain such that variables that occur in the range of S are not in the domain of S.
- ▶ A substitution *S* is written as $[\alpha_1 := \sigma_1, \dots, \alpha_n := \sigma_n]$ where
 - ightharpoonup all α_i are different
 - $ightharpoonup \alpha_i \notin \sigma_j$ (for all i, j).

- ▶ A type substitution (or just substitution) is a map S from type variables to types with a finite domain such that variables that occur in the range of S are not in the domain of S.
- ▶ A substitution *S* is written as $[\alpha_1 := \sigma_1, \dots, \alpha_n := \sigma_n]$ where
 - ightharpoonup all α_i are different
 - $ightharpoonup \alpha_i \notin \sigma_j$ (for all i, j).
- ▶ We write τS for substitution S applied to τ .
- We can compose substitutions: S; T. (So we have $\tau(S; T) = (\tau S)T$.)

- ▶ A type substitution (or just substitution) is a map S from type variables to types with a finite domain such that variables that occur in the range of S are not in the domain of S.
- ▶ A substitution *S* is written as $[\alpha_1 := \sigma_1, \dots, \alpha_n := \sigma_n]$ where
 - ightharpoonup all α_i are different
 - $ightharpoonup \alpha_i \notin \sigma_j$ (for all i, j).
- ▶ We write τS for substitution S applied to τ .
- We can compose substitutions: S; T. (So we have $\tau(S; T) = (\tau S)T$.)
- A unifier of the types σ and τ is a substitution that solves $\sigma = \tau$, i.e. an S such that $\sigma S = \tau S$

- ▶ A type substitution (or just substitution) is a map S from type variables to types with a finite domain such that variables that occur in the range of S are not in the domain of S.
- ▶ A substitution *S* is written as $[\alpha_1 := \sigma_1, \dots, \alpha_n := \sigma_n]$ where
 - ightharpoonup all α_i are different
 - $ightharpoonup \alpha_i \notin \sigma_j$ (for all i, j).
- ▶ We write τS for substitution S applied to τ .
- We can compose substitutions: S; T. (So we have $\tau(S; T) = (\tau S)T$.)
- A unifier of the types σ and τ is a substitution that solves $\sigma = \tau$, i.e. an S such that $\sigma S = \tau S$
- A most general unifier (mgu) of the types σ and τ is the "simplest substitution" that solves $\sigma = \tau$, i.e. an S such that
 - $\triangleright \sigma S = \tau S$
 - for all substitutions T such that σ $T = \tau$ T there is a substitution R such that T = S; R.

Principal Types: solving a list of equations

All notions generalize to lists of equations

$$\mathcal{E} = \langle \sigma_1 = \tau_1, \dots, \sigma_n = \tau_n \rangle$$

instead of a single equation $\sigma = \tau$.

▶ A unifier of \mathcal{E} is a substitution S such that $\sigma_i S = \tau_i S$ for all i.

Principal Types: solving a list of equations

All notions generalize to lists of equations

$$\mathcal{E} = \langle \sigma_1 = \tau_1, \dots, \sigma_n = \tau_n \rangle$$

instead of a single equation $\sigma = \tau$.

- ▶ A unifier of \mathcal{E} is a substitution S such that $\sigma_i S = \tau_i S$ for all i.
- ightharpoonup A most general unifier (mgu) for \mathcal{E} is an S such that
 - $\triangleright \sigma_i S = \tau_i S$ for all i
 - for all substitutions T such that $\sigma_i T = \tau_i T$ for all i, there is a substitution R such that T = S; R.

THEOREM There is an algorithm U that, given a list of equations $\mathcal{E} = \langle \sigma_1 = \tau_1, \dots, \sigma_n = \tau_n \rangle$ outputs

- ightharpoonup A most general unifier of \mathcal{E} if these equations can be solved.
- ightharpoonup "Fail" if \mathcal{E} can't be solved.

THEOREM There is an algorithm U that, given a list of equations $\mathcal{E} = \langle \sigma_1 = \tau_1, \dots, \sigma_n = \tau_n \rangle$ outputs

- ightharpoonup A most general unifier of $\mathcal E$ if these equations can be solved.
- ightharpoonup "Fail" if \mathcal{E} can't be solved.

PROOF

- $U(\langle \alpha = \alpha, \ldots, \sigma_n = \tau_n \rangle) := U(\langle \sigma_2 = \tau_2, \ldots, \sigma_n = \tau_n \rangle).$
- ▶ $U(\langle \alpha = \tau_1, \dots, \sigma_n = \tau_n \rangle) :=$ "Fail" if $\alpha \in FV(\tau_1)$, $\tau_1 \neq \alpha$.
- $U(\langle \sigma_1 = \alpha, \ldots, \sigma_n = \tau_n \rangle) := U(\langle \alpha = \sigma_1, \ldots, \sigma_n = \tau_n \rangle)$

THEOREM There is an algorithm U that, given a list of equations $\mathcal{E} = \langle \sigma_1 = \tau_1, \dots, \sigma_n = \tau_n \rangle$ outputs

- ightharpoonup A most general unifier of \mathcal{E} if these equations can be solved.
- "Fail" if \mathcal{E} can't be solved.

PROOF

- $U(\langle \alpha = \alpha, \dots, \sigma_n = \tau_n \rangle) := U(\langle \sigma_2 = \tau_2, \dots, \sigma_n = \tau_n \rangle).$
- lacksquare $U(\langle \alpha = \tau_1, \dots, \sigma_n = \tau_n \rangle) := "Fail" if <math>\alpha \in FV(\tau_1), \ \tau_1 \neq \alpha$.
- $U(\langle \sigma_1 = \alpha, \ldots, \sigma_n = \tau_n \rangle) := U(\langle \alpha = \sigma_1, \ldots, \sigma_n = \tau_n \rangle)$
- ▶ $U(\langle \alpha = \tau_1, \dots, \sigma_n = \tau_n \rangle) := [\alpha := V(\tau_1), V]$, if $\alpha \notin FV(\tau_1)$, where V abbreviates $U(\langle \sigma_2[\alpha := \tau_1] = \tau_2[\alpha := \tau_1], \dots, \sigma_n[\alpha := \tau_1] = \tau_n[\alpha := \tau_1] \rangle)$.

Theorem There is an algorithm U that, given a list of equations $\mathcal{E} = \langle \sigma_1 = \tau_1, \dots, \sigma_n = \tau_n \rangle$ outputs

- ightharpoonup A most general unifier of $\mathcal E$ if these equations can be solved.
- ightharpoonup "Fail" if \mathcal{E} can't be solved.

PROOF

- $U(\langle \alpha = \alpha, \dots, \sigma_n = \tau_n \rangle) := U(\langle \sigma_2 = \tau_2, \dots, \sigma_n = \tau_n \rangle).$
- $V(\langle \alpha = \tau_1, \dots, \sigma_n = \tau_n \rangle) := \text{"Fail" if } \alpha \in FV(\tau_1), \ \tau_1 \neq \alpha.$
- $U(\langle \sigma_1 = \alpha, \dots, \sigma_n = \tau_n \rangle) := U(\langle \alpha = \sigma_1, \dots, \sigma_n = \tau_n \rangle)$
- ▶ $U(\langle \alpha = \tau_1, \dots, \sigma_n = \tau_n \rangle) := [\alpha := V(\tau_1), V]$, if $\alpha \notin FV(\tau_1)$, where V abbreviates $U(\langle \sigma_2 [\alpha := \tau_1] = \tau_2 [\alpha := \tau_1], \dots, \sigma_n [\alpha := \tau_1] = \tau_n [\alpha := \tau_1] \rangle)$.
- $U(\langle \mu \to \nu = \rho \to \xi, \dots, \sigma_n = \tau_n \rangle) := U(\langle \mu = \rho, \nu = \xi, \dots, \sigma_n = \tau_n \rangle)$

Principal type

DEFINITION σ is a principal type for the untyped closed λ -term M if

- $ightharpoonup \vdash M : \sigma \text{ in } \lambda \rightarrow \text{à la Curry}$
- for all types τ , if $\vdash M : \tau$, then $\tau = \sigma T$ for some substitution T.

Principal Type Theorem

THEOREM There is an algorithm PT that, when given an (untyped) closed λ -term M, outputs

- ▶ A principal type σ for M if M is typable in λ → à la Curry.
- ▶ "Fail" if M is not typable in λ → à la Curry.

Principal Type Theorem

THEOREM There is an algorithm PT that, when given an (untyped) closed λ -term M, outputs

- ▶ A principal type σ for M if M is typable in $\lambda \rightarrow \grave{a}$ la Curry.
- ▶ "Fail" if M is not typable in λ → à la Curry.

PROOF In the algorithm we

- first label the bound variables and all applicative sub-terms with type variables, and we give the candidate type τ ,
- then we generate the equations that need to hold for the term to be typable,
- then we compute the mgu of this set of equations and we obtain the substitution S or "Fail",
- ▶ then we have as output the principal type τS or "Fail".

The proof that this output indeed correctly computes the principal type can be found in the literature.

Conclusion

Today we saw

- ightharpoonup A proof of the Church-Rosser property for the untyped λ -calculus
- ► Key technique: parallel reduction
- We also an algorithm to assign types to untyped λ -terms
- ▶ Important: this algorithm finds **principal types**