(3.2) **Theorem.** Any non-degenerate monotone image of an interval is homeomorphic with the interval.

Proof. Let f(J) = E be monotone, where J = (0, 1) and E is nondegenerate. Let I(1/2) be the closure of the interval $J - f^{-1}f(0) - f^{-1}f(1)$ and let x(1/2) be its mid point. Similarly let $I(1/2^2)$ and $I(3/2^2)$ be the closures of the left and right intervals remaining on the deletion of $f^{-1}f[x(1/2)]$ from I(1/2) and let $x(1/2^2)$ and $x(3/2^2)$ be their respective mid points. Likewise $I(1/2^3)$, $I(3/2^3)$, $I(5/2^3)$, $I(7/2^3)$, are the closures of the intervals into which $I(1/2^2)$ and $I(3/2^2)$ are divided by removing $f^{-1}f[x(1/2^2)]$ and $f^{-1}f[x(3/2^2)]$ ordered from left to right, and so on indefinitely. In this way we define a collection of intervals $I(m/2^n)$ and their mid points $x(m/2^n)$ for all dyadic rational numbers $m/2^n$, $0 \le m \le 2^n$, so that the length of $I(m/2^n)$ is $\le 1/2^{n-1}$.

Now for any dyadic rational $m/2^n$ on J we define $h(m/2^n) = f[x(m/2^n)]$. We next show that h is unformly continuous. Let $\epsilon > 0$ be given. By uniform continuity of f there exists a $\delta > 0$ such that for any interval H in J of length $< \delta$, f(H) is of diameter $< \epsilon/2$. Let n be chosen so that $1/2^{n-1} < \delta$. Then if t_1 and t_2 are points of the set D of dyadic rationals with $|t_1 - t_2| < 1/2^n$, there is at least one point $t = j/2^n$ such that for each i (i = 1, 2), t is an end point of an interval T_i of the nth dyadic subdivision of J containing t_i . If S_1 and S_2 are the corresponding intervals to T_1 and T_2 in the set $I(m/2^{n+1})$, since each is of length $< \delta$ we have

$$h(t_i) + h(t) \subset f(S_i), \ i = 1, 2, \ \text{and} \ \delta[f(S_1) + f(S_2)] < \epsilon$$

since $\delta[f(S_i)] < \epsilon/2$, i = 1, 2. Accordingly, $\rho[h(t_1), h(t_2)] < \epsilon$ and h is uniformly continuously on D.

Let h be extended continuously to $\overline{D} = J$. Then h(J) = f(J) = E, because for each n the union of the intervals $I(m/2^n)$ maps onto E under f, so that the images of the mid points of all these intervals for all n, i.e., the set h(D), is dense in E. Finally, h is (1–1). For if x_1 and x_2 are distinct points of J, there exists a point $t = j/2^n$ between x_1 and x_2 with $h(t) \neq h(x_1)$. Then if H_1 and H_2 are the closed intervals into which J is divided by $f^{-1}h(t)$ where $x_1 \in H_1$, $f(H_1) \cdot f(H_2) = h(t)$ by monotoneity of f and thus $h(H_1) \cdot h(H_2) = h(t)$ since $h(H_i) \subset f(H_i)$ by definition of h. Accordingly $h(x_1) \notin h(H_2)$ so that $h(x_1) \neq h(x_2)$. Thus h(J) = E is a homeomorphism.