
Mizar’s Soft Type System

Freek Wiedijk

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract. In Mizar, unlike in most other proof assistants, the types are
not part of the foundations of the system. Mizar is based on untyped set
theory, which means that in Mizar expressions are typed but the values
of those expressions are not.
In this paper we present the Mizar type system as a collection of type
inference rules. We will interpret Mizar types as soft types, by translating
Mizar’s type judgments into sequents of untyped first order predicate
logic. We will then prove that the Mizar type system is correct with
respect to this translation in the sense that each derivable type judgment
translates to a provable sequent.

1 Introduction

1.1 Problem

The activity of checking mathematical proofs for correctness using a computer
is called ‘formalization of mathematics’. Systems for doing this are called proof
assistants [12]. There are three main classes of proof assistants: the ones based on
Church’s higher order logic (e.g., HOL, Isabelle/HOL, ProofPower, and maybe
also systems like PVS), the ones based on Martin-Löf’s type theory (e.g., Coq,
NuPRL, Agda, Epigram), and the proof assistants based on Cantor’s set theory
(e.g., Mizar, Metamath, Isabelle/ZF, the B method). These three ‘cultures’ are
quite different, and people from different cultures sometimes find it hard to get
a clear view on what people from the other cultures are doing. The primary
aim of this paper is to make the set theoretical system Mizar (and in particular
its type system) more understandable to people from the type theoretical and
higher order logic communities.

The Mizar proof assistant [7] has been in development in Bia lystok, Poland,
from the seventies until today, by a team led by Andrzej Trybulec. The current
version of the system is called PC Mizar and is at version 7. It was originally
released in 1989, and is still being actively developed. The library of formal-
ized mathematics that accompanies the Mizar system is called MML (for Mizar
Mathematical Library). It is the largest library of formalized mathematics that
is currently in existence. At the time of writing it consists of 1.9 million lines
of Mizar text, and is the collaborative work of almost two hundred people (the
so-called ‘Mizar authors.’) The large size of the MML library is partly a reflec-
tion of the fact that Mizar only gives one moderate automation. Also the Mizar

2 Freek Wiedijk

library contains quite a bit of rather obscure mathematics. Still the Mizar library
is undoubtedly one of the most interesting libraries of formalized mathematics
in the world. The MML contains a formalization of a graduate-level textbook on
the theory of continuous lattices, which is being translated quite faithfully into
the Mizar language. (This project, which is being led by Grzegorz Bancerek, is
currently two thirds finished.)

The Mizar system is based on first order predicate logic with on top of that
a slight extension of Zermelo-Fraenkel set theory (ZF). To be precise: the system
only implements first order predicate logic (together with ‘schematic’ axioms and
theorems1 – to be able to deal with the ‘replacement’ axiom scheme of ZF – and
with a Hilbert choice operator that is hard-wired into the way the system deals
with underspecified functions), but the MML library is based on set theory (all
of the 1.9 million of lines are fully checked for correctness against only a handful
of set theoretical axioms.) It is irrelevant for the rest of the paper exactly which
set theory the Mizar library is based on, but to be specific: Mizar’s set theory is
called Tarski-Grothendieck set theory. It is ZF set theory with one extra axiom
added (where ‘∼’ means that the two sets have the same cardinality):

∀N∃M
(

N ∈ M ∧
∀X∀Y (X ∈ M ∧ Y ⊆ X⇒Y ∈ M) ∧
∀X(X ∈ M ⇒∃Z(Z ∈ M ∧ ∀Y (Y ⊆ X⇒Y ∈ Z))) ∧
∀X(X ⊆ M ⇒X ∼ M ∨ X ∈ M)

)

This axiom states that there are arbitrarily large universes, or, in other words,
that there are arbitrarily large strongly inaccessible cardinals. From it one can
derive the Axiom of Choice (even without that axiom being hard wired into
the logic.) I do not know why Mizar has selected exactly this set theory for its
foundation. Maybe one of the reasons was that the universes are useful when
one wants to do category theory.

Set theory in the style of Cantor, like ZF set theory or von Neumann-Bernays-
Gödel set theory (NBG), customarily is an untyped theory. Most often there is
just one ‘sort’, the sort of sets. At most there will be two sorts, with the second
sort being the sort of ‘proper classes’. However, the Mizar system is a typed
system: it implements a type system on top of its first order predicate logic.
And not only does it have a type system, its type system is very powerful, and
has many interesting features. In particular: it does support dependent types,
which are very useful if one wants to formalize abstract mathematics.

This raises the question of what the type system of Mizar ‘means’: what the
relation is between the typed version of set theory that one gets in Mizar and
the untyped set theories like ZF that one finds in logic textbooks. This is the
question that this paper will address.

1.2 Approach

There are at least two ways in which to give an interpretation to Mizar’s types:

1 Mizar’s notation for set comprehension – in the Mizar community called the
‘Fraenkel-operator’ – is a alternative version of this.

Mizar’s Soft Type System 3

1. Either one interprets the types of Mizar as classes of sets. In that case the
set theory of Mizar will be taken to be a set theory like NBG set theory,
where proper classes are first class objects.
In this approach the interpretation of the Mizar type ‘Ring’ will be the class
of rings, while the (dependent) type ‘LeftMod of’ will be interpreted by the
‘class function’ that maps each element of this class of rings to the class of
the left modules over it. This interpretation of ‘LeftMod of’ therefore maps
each element of a proper class to a different proper class.

2. Alternatively one can interpret the types of Mizar as predicates2 that the
system will keep track of automatically. This approach sometimes is called
soft typing3, which is the terminology that we will adopt for it in this paper.
In this approach each reference to the type ‘Ring’ will be interpreted as ac-
tually being about a unary predicate ‘is_Ring’, while the type ‘LeftMod of’
will be interpreted as actually talking about a binary predicate ‘is_LeftMod_
of’.

In this paper we will focus on the second approach, and will not pursue the first
possibility. This second approach has the attractive property that it does not
need set theory. It allows one to give a meaning to the types of typed first order
predicate logic (and even with types that are as powerful as the ones that one
find in Mizar), even in the case that the theory in that logic is not set theory.

Mizar uses types in various ways. First, they annotate all variables that occur
in a Mizar text: both for bound variables in formulas and for variables in a proof4

there is a type. For instance, one writes

for n being Nat holds ...

when one universally quantifies over a variable n that has the type Nat (the type
of natural numbers), and one might write

let n be Nat;

if one is reasoning in a proof about a variable of type Nat.
But types also can be used to create a formula, that states that an expression

has a certain type. For instance one can write that

i is Nat;

Here the keyword ‘is’ is put between a term and a type. This specific example
means that the value of the expression ‘i’ (which for instance could be a variable

2 More generally: a dependent type with n parameters will be interpreted as an n+ 1-
ary predicate.

3 This term originates in the programming languages community [2], where it is used
with a somewhat different meaning. In that context it means that you statically type
as much as possible, and insert run-time checks for what cannot be statically typed.

4 Although in logic these are considered variables, in the Mizar community they are
often looked at as constants that are local to the proof. In the Isabelle community
these are called fixed variables.

4 Freek Wiedijk

of type ‘Integer’) satisfies the defining property of the type ‘Nat’, i.e., this states
that i is non-negative.

This second way of using types does not have a direct counterpart in most
of the proof assistants from the higher order logic and type theory traditions.
There a type judgment is on a different level from the statements that one reasons
about: in those systems type judgments are outside the logic, while statements
are in the logic. But ‘soft types’ cross this boundary.

Apart from using types for reasoning, Mizar also uses types to disambiguate
expressions that involve overloaded notation. Although this feature is very useful
(for instance in Mizar a notation like X + Y can mean many different things,
depending on what the types of X and Y are) we will not go into this use of
Mizar types in this paper.

To reiterate: the interpretation that we give to Mizar types will be to associate
a ‘hidden’ predicate which each type, and to consider references to types to really
be about these hidden predicates. We will consider the Mizar type system as
being an engine that automatically – behind the scenes – generates statements
involving those predicates. For instance, if we call the predicate that corresponds
to the ‘Nat’ type ‘is_Nat’, then the three example lines of Mizar on the previous
page will be interpreted as being an abbreviation of:

for n being set holds (is_Nat(n) implies ...)

let n be set; assume is_Nat(n);

is_Nat(i)

Now we have statements in single sorted predicate logic where all variables are
in the sort ‘set’.

1.3 Related Work

There already is a paper about the Mizar type system by Grzegorz Bancerek [1].
However, the presentation of the type system in that papers is quite different
from the one that is used here. Also, the interpretation of the types in an ‘algebra
of types’ is closer to the first approach that we mentioned on page 3 than to the
second approach that we are pursuing here. Andrzej Trybulec also has such an
approach, using the notion of what he calls dependent type algebras.

The work of Ingo Dahn [3] and the work of Josef Urban [9, 8, 10] on translating
Mizar into a form that is digestible by first order theorem provers, is based on
the same interpretation of Mizar types as soft types that we present in Section
5. In the work of Josef Urban [10] also occurs the view of the Mizar type checker
in ‘logic programming’ style, which is how we interpreted our typing rules in
Section 4.

There are other theorem provers that use soft types as a way of pushing the
type system of first order predicate logic beyond the customary ‘many-sorted’
variant of first order predicate logic, where one only has a finite number of types
without any further structure. For instance it is used in the SPASS first order
theorem prover, see [11].

Mizar’s Soft Type System 5

Joe Hurd showed how to have a layer of soft typing on top of a higher order
system [5]. PVS also can be considered to be such a system. However, in PVS
the soft typing is not actually a separate layer.

1.4 Contribution

The contribution of this paper is threefold:

– It gives a presentation of the Mizar type system as a collection of type
inference rules, which is the style that is standard in the type theoretical
research community. This presentation of the Mizar type system is new.

– It gives an interpretation of Mizar’s types by systematically translating type
judgments to sequents of untyped first order predicate logic. This interpre-
tation was already implicitly present in the work of Ingo Dahn and Josef
Urban, but the way it is made explicit in this paper, and the focus that we
have on interpreting it as the semantics of the Mizar type system, is new.

– It shows that this interpretation is correct, in the sense that for any type
judgment that is generated by the Mizar type system, the corresponding
translation is provable.

1.5 Outline

The structure of this paper is as follows. In Section 2 we present the notation
that we will use for Mizar’s type judgments. In Section 3 we give a non-trivial
example of such a judgment, which we both present in our notation and in the
usual Mizar syntax. In Section 4 we present the type inference rules of the Mizar
type system. In Section 5 we prove that these rules are correct with respect to
a translation into untyped logic. Finally in Section 6 we conclude, and mention
some questions for further research.

2 Judgments

In Mizar types have various uses. In particular, they also play an important
rôle in the logical language of the system, because type judgments are one of
the kinds of atomic formula. However, from now on we will focus on the type
system on its own, separately from the logic. That is, we will now just focus
on the mechanism that ascribes types to terms.5 In the Mizar system, this is

5 This might seem to be a strong restriction. In particular the reader might wonder
how the type system fits in with the underlying set theory. (In fact, the Mizar type
system is completely independent of set theory. The Mizar system and its type theory
can be used with any first order theory.)

If one translates a Mizar formalization into standard ‘unsorted’ first order
predicate logic (as is done in [9]), then basically three kinds of statements are
involved. First, there are the statements that actually occur in the Mizar text, which
are ‘translated’ by relativizing all quantifiers to the predicates that correspond to

6 Freek Wiedijk

implemented in the part of the system that is called ANALYZER. (The logic is
implemented in the part called CHECKER.6)

We will now describe the syntax that we will use for Mizar type judgments.
The notation that we will use is specific to this paper. It will make the typing
rules of Section 4 much more compact than if we had used the Mizar input
syntax. For a non-trivial example of a typing sequent, both in our syntax as well
as in the Mizar input syntax, see Section 3.

In our judgments we will have four kinds of variables. Actually, three of the
four kinds are not considered to be variables in the Mizar system, but because
we bind these symbols in the context part of the judgments7 we will consider
them to be variables of the type judgment. These kinds of variables are:

x term variable
f ‘functor’ = function symbol
α ‘attributes’ = type modifier
M ‘mode’ = type symbol

(The words ‘functor’, ‘attributes8’, ‘mode’ and (below) ‘radix type’ are Mizar-
specific terminology.9)

Apart from these variables, we will use one special symbol, the asterisk, for
the root type of Mizar, of which all other types are subtypes:

the types. Second, there are the statement that give the definition of the various
predicates, functors, modes and attributes. In the Mizar file these are implicitly
given by the keywords ‘means’ or equals’. Third, there are the statements that
originate in the type system: the statements occurring in the translations of the
type judgments as described in Section 5. Apart from the statements of the second
kind, all these statements have a proof in the Mizar file.

This means that although it might seem in Section 4 that one is allowed to arbi-
trarily build a Mizar context, if one wants to have that context in an actual Mizar
text, then one will need to prove the translation in the style of Section 5 of that
context.

6 Note that neither ANALYZER nor CHECKER has a small ‘kernel’, as is common
in LCF-style systems. To trust the Mizar system, one will need to trust the full code
base.

7 Actually, many of these variables will occur multiple times in the context, because
of the presence of redefinitions and clusters. The first occurrence of the variable –
corresponding to its original introduction in the Mizar text – is the binding one.

8 Most systems do not have anything like the attributes of Mizar, which are type
modifiers that behave a bit like intersection types. See Section 3 below for an example
that shows how attributes are used. In that example the type ‘int’ of the integers has
attributes ‘pos’ and ‘neg’ that allow one to talk about the positive and the negative
integers. For example the type ‘pos int’ contains the positive integers. The elements
of that type are the objects that both satisfy the defining statement of the ‘int’ type
and that of the ‘pos’ attribute.

9 Words like ‘functor’ and ‘radix’ are used with quite different meanings outside of
the context of Mizar, so our use of these words might be confusing. Maybe ‘function
symbol’ or ‘operator’ for ‘functor’ and ‘base type’ for ‘radix type’ would be more
appropriate. However, we decided not to depart from standard Mizar terminology.

Mizar’s Soft Type System 7

∗ the root type

In Mizar input syntax this type is called ‘set’ because it is the type of all sets. It
also used to be called ‘Any’. (In our interpretation of types as unary predicates
it corresponds to the predicate that is constantly true.10)

Mizar also has predicate symbols, which are not treated in this paper. The
reason for leaving them out is that although the arguments to the predicates are
typed, the predicates will not play any part in generating the types.

Next, here is the grammar that gives the various notions that occur in our
type judgments:

t ::= x | f(~t)

R ::= ∗ | M(~t)

a ::= α | ᾱ

T ::= ~a R

D ::= x : T

J ::= · | t : T | T ≤ T | ∃T | α/T

∆ ::= ~D

Γ ::=
−−−−→
[∆](J)

In this grammar t are the terms, R are the radix types, a are the adjectives (these
are either an attribute α or the negation of an attribute ᾱ), T are the types, D
are the declarations, J are the judgment elements, and ∆ and Γ are the two
parts of the context of a type judgment. The full type judgments that we will
derive with our typing rules will have the shape:

Γ ; ∆ ⊢ J

In this judgement Γ corresponds to the type information of a series of Mizar
definitions and registrations. The ‘local context’ ∆ corresponds to the types of
the variables that have been introduced inside a Mizar definition or proof. We
call Γ the global context and ∆ the local context of the judgment.

In the grammar from this section we use vector notation. For instance, an
expression like [~x : ~T](f(~x) : T ′) should be read as [x1 : T1, . . . , xn : Tn]
(f(x1, . . . , xn) : T ′). Furthermore all expressions should only be considered ‘mod-
ulo α-equivalence’, so [x : T](f(x) : T ′) and [y : T](f(y) : T ′) are really consid-
ered to be the same. Finally the ‘clusters of adjectives’ ~a in front of a type are
considered only as sets. In other words, the expression α1ᾱ2 is considered to be
equivalent to ᾱ2α1, α1α1ᾱ2, α1ᾱ2ᾱ2, and so on.

The instances of the notion of judgment elements J have the following inter-
pretations:

10 In the typing rules of Section 4 the root type plays an essential rôle. One can only
introduce new radix types to the context if one already has a type (which will be its
supertype). So without the root type the rules of Section 4 would not work, as there
would not be a starting point for introducing types.

8 Freek Wiedijk

t : T t has type T
T1 ≤ T2 T1 is a subtype of T2

∃T T is a non-empty type
α/T α is an attribute of the type T

In Mizar input language t : T is written as ‘t be T ’ or ‘t being T ’, and T1 ≤ T2

is written as ‘T1 -> T2’.

The centered dot ‘ · ’ is used if one just wants to state that a context is well-
formed. (To indicate that a type T is well-formed one either uses T ≤ T or ∃T ,
depending on whether one already knows that the type is non-empty or not.)

3 Example

We now present an example that demonstrates the various features of the Mizar
type system. The following type judgment11 is derivable using the rules of Sec-
tion 4:

int ≤ ∗, ∃ int,
pos/int,
neg/int,

pos int ≤ neg int,
∃ pos int,

∃ pos neg int,
z : int,

z : neg pos int,
[n : int](S(n) : int),
[n : int](P(n) : int),

[n : neg int](S(n) : pos int),
[n : pos int](P(n) : neg int),

[n : neg int](list(n) ≤ ∗), [n : neg int](∃ list(n)),
nil : list(z),

[n : neg int, x : ∗, l : list(n)](cons(n, x, l) : list(S(n))),
[n : pos int, l : list(n)](car(n, l) : ∗),

[n : pos int, l : list(n)](cdr(n, l) : list(P(n)))
;

x : ∗
⊢

cdr(S(z), cons(z, x, nil)) : list(P(S(z)))

This example involves types int and list for integers and lists, the latter being a
dependent type with the length of the list as the argument. It has attributes pos

and neg on the type of integers for positive and negative integers. Furthermore it
has functions S and P on the integers for successor and predecessor and functions

11 We put the first two judgment elements ‘int ≤ ∗’ and ‘∃ int’ on a single line, as in
the Mizar text it corresponds to a single definition.

Mizar’s Soft Type System 9

nil, cons, car and cdr for the lists.12 The local context of the judgment is just the
variable declaration x : ∗, and the statement of the judgment is that the term
‘cdr(S(z), cons(z, x, nil))’ has among its collection of types the type ‘list(P(S(z)))’.

The judgment that we just presented has the shape

Γ ; ∆ ⊢ J

of which the part Γ corresponds to a series of definitions and registrations. Here
is what this Γ looks like in Mizar syntax:

definition

mode int -> set means ...; existence ...

end;

definition let n be int;

attr n is pos means ...

attr n is neg means ...

end;

registration

cluster pos -> non neg int; coherence ...

end;

registration

cluster pos int; existence ...

cluster non pos non neg int; existence ...

end;

definition

func z -> int means ...

end;

registration

cluster z -> non neg non pos; coherence ...

end;

definition let n be int;

func S n -> int means ...

func P n -> int means ...

end;

registration let n be non neg int;

cluster S n -> pos; coherence ...

12 These are not the names that are used in the MML for these notions. There int is
called Integer, list is called FinSequence (although the version that depends on the
length of the list like in the example is called Tuple, and that type also depends on
the set from which the elements are taken). The attributes pos and neg are called
positive and negative, and nil is called {}. The functions S and P do not exist in
the MML, S(n) is just written as n + 1 and P(n) is just n − 1. The list functions
do not exist either: cons(x, l) is written <*x*>^l, car(l) is written l.1, and cdr(l) is
written l/^1.

The name neg in the MML is not an attribute symbol but a functor symbol, for
intuitionistic negation.

10 Freek Wiedijk

end;

definition let n be pos int;

redefine func P n -> non neg int; coherence ...

end;

definition let n be non neg int;

mode list of n -> set means ...; existence ...

end;

definition

func nil -> list of z means ...

end;

definition let n be non neg int; let x be set; let l be list of n;

func cons(x,l) -> list of S n means ...

end;

definition let n be pos int; let l be list of n;

func car l -> set means ...

end;

definition let n be pos int; let l be list of n;

func cdr l -> list of P n means ...

end;

For a version of these definitions that has been completed with statements
and proofs in the place of the dots see <http://www.cs.ru.nl/~freek/mizar/

example.miz> and <http://www.cs.ru.nl/~freek/mizar/example.voc>.13

Note that most of the items in this list of definitions and registrations have
proof obligations. This means that they do not, like in the judgments that we
show in this paper, behave like assumptions, but that they really are statements
that are proved from the existing theory. For example, the part of the context

[n : pos int](P(n) : neg int),

that is the ‘redefinition’ of the predecessor function to give its value the more
specific type ‘neg int’ when it is known that the argument has the type ‘pos int’
is in the Mizar formalization written as

definition

let n be pos int;

redefine func P n -> non neg int;

coherence

proof

. . .
hence P n is non neg int by . . .
end;

end;

13 Note that from the point of view of the MML, this is a very silly example as it just
defines a lot of stuff that is present already, only using different names.

Mizar’s Soft Type System 11

where the ‘P n’ in the hence line refers to the earlier definition of the P function.
This means that the dots will have to be a proof that amounts to showing that
from n > 0 it follows that n − 1 ≥ 0. Under the translation from Section 5 this
part of the typing context turns into

∀n
(

pos(n) ∧ int(n) ⇒ ¬neg(P(n)) ∧ int(P(n))
)

and in a real Mizar formalization that statement will have to be proved.
Similarly the other definitions and registrations have appropriate proof obli-

gations (the only judgment elements in the context of the example that do not
have proof obligations are the attribute definitions.)

4 Rules

We will now present the Mizar type system as a collection of typing rules. These
rules present a slightly simplified version of the Mizar type system:

– There are no structure types.
Structure types are the ‘record types’ of Mizar. (For an interesting discussion
of how structure types can be understood in terms of the underlying set
theoretical foundations of the Mizar system, see [6].)

– In the real Mizar system, symbols can be overloaded. Here we suppose that
all symbols have been sufficiently disambiguated. That is, the typing rules
that we are presenting should only be instantiated according to the Baren-
dregt convention (variables should never be ‘hidden’ by later variables.)

– In the real Mizar type system, a redefinition takes priority over the definitions
that come before it in the context. However, in this version of the type system
the order of the definitions is not taken into account when generating type
judgments.

– When reasoning, the set of types of a Mizar expression will be closed under
available equalities. For instance, if one of the statements that justifies the
inference is n = n′ and an expression has type list(n), then it also will be
assigned type list(n′). This kind of equality reasoning is not present in our
version of the Mizar type system.

Note that a Mizar term generally does not have just one type (for instance, every
well typed expression will always also have the type ∗), and can even get a quite
large collection of types.

One can consider these rules to be something like a ‘logic programming’
description of the Mizar type checker:

;⊢ ·

Γ ; ∆ ⊢ ~t : ~T [~x := ~t]

Γ ; ∆ ⊢ J [~x := ~t]
[~x : ~T](J) ∈ Γ ; ∆

Γ ; ∆ ⊢ ∃T

Γ ; ∆,x : T ⊢ ·

12 Freek Wiedijk

Γ ; ∆ ⊢ ·

Γ ; ∆ ⊢ ∗ ≤ ∗

Γ ; ∆ ⊢ ·

Γ ; ∆ ⊢ ∃ ∗

Γ ; ∆ ⊢ T ≤ T ′

Γ ; ∆ ⊢ T ≤ T

Γ ; ∆ ⊢ T ≤ T ′ Γ ; ∆ ⊢ T ′ ≤ T ′′

Γ ; ∆ ⊢ T ≤ T ′′

Γ ; ∆ ⊢ t : T Γ ; ∆ ⊢ T ≤ T ′

Γ ; ∆ ⊢ t : T ′

Γ ; ∆ ⊢ T ≤ T ′ Γ ; ∆ ⊢ ∃T

Γ ; ∆ ⊢ ∃T ′

Γ ; ∆ ⊢ α/T

Γ ; ∆ ⊢ αT ≤ T

Γ ; ∆ ⊢ α/T

Γ ; ∆ ⊢ ᾱT ≤ T

Γ ; ∆ ⊢ T ≤ T ′ Γ ; ∆ ⊢ aT ′ ≤ T ′

Γ ; ∆ ⊢ aT ≤ T

Γ ; ∆ ⊢ T ≤ T ′ Γ ; ∆ ⊢ aT ′ ≤ T ′

Γ ; ∆ ⊢ aT ≤ aT ′

Γ ; ∆ ⊢ T ≤ aT ′ Γ ; ∆ ⊢ T ≤ a′T ′

Γ ; ∆ ⊢ T ≤ aa′T ′

functor definition:
Γ ; ~x : ~T ⊢ ∃T ′

Γ, [~x : ~T](f(~x) : T ′); ⊢ ·
f 6∈ Γ

mode definition:
Γ ; ~x : ~T ⊢ ∃T ′

Γ, [~x : ~T](M(~x) ≤ T ′), [~x : ~T](∃M(~x)); ⊢ ·
M 6∈ Γ

attribute definition:
Γ ; ∆ ⊢ ∃T ′

Γ, [∆](α/T ′); ⊢ ·
α 6∈ Γ

existential cluster:
Γ ; ∆ ⊢ ~a T ′ ≤ T ′ Γ ; ∆ ⊢ ∃T ′

Γ, [∆](∃~a T ′); ⊢ ·

conditional cluster:
Γ ; ∆ ⊢ ~a T ′ ≤ T ′ Γ ; ∆ ⊢ ~a′ T ′ ≤ T ′

Γ, [∆](~a T ′ ≤ ~a′ T ′); ⊢ ·

functorial cluster:
Γ ; ∆ ⊢ t : T ′ Γ ; ∆ ⊢ ~a T ′ ≤ T ′

Γ, [∆](t : ~a T ′); ⊢ ·

functor redefinition:

Γ ; ~x : ~T ⊢ ∃T ′′ Γ ; ~x : ~T ⊢ T ′′ ≤ T ′′′

Γ ; ~x′ : ~T ′, ~x : ~T ⊢ f(~x) : T ′′′

Γ, [~x′ : ~T ′, ~x : ~T](f(~x) : T ′′); ⊢ ·

mode redefinition:

Γ ; ~x : ~T ⊢ ∃T ′′ Γ ; ~x : ~T ⊢ T ′′ ≤ T ′′′

Γ ; ~x′ : ~T ′, ~x : ~T ⊢ M(~x) ≤ T ′′′

Γ, [~x′ : ~T ′, ~x : ~T](M(~x) : T ′′); ⊢ ·

Mizar’s Soft Type System 13

The side-conditions ‘. . . 6∈ Γ ’ of the three definition rules mean that the symbol
does not occur anywhere in the context Γ . The ‘extra arguments’ ~x′ in the
redefinition rules and generally are the empty vector.

In Mizar the types of actual terms always have to be non-empty.14 This
explains all the assumptions of the form ∃T that occur in these rules. However,
note that clusters sometimes involve types that have not been shown to be non-
empty.

5 Correctness

We will now translate the typing judgments of our Mizar type system into se-
quents of single sorted first order predicate logic.15 We will do this in two phases:

– First we introduce an annotated version of the Mizar type system, in which
all the attributes have explicit arguments. This is exactly the same system
that we already presented, but each attribute α now gets a list of arguments.
These arguments are the arguments that determine the type on which the
attribute was defined.

The grammar of the judgments stays exactly like it was, except that the rule
for an adjective becomes:

a ::= α(~t) | ᾱ(~t)

The derivation rules also stay all the same, apart from the rules that explic-
itly involve an attribute symbol:

Γ ; ~x : ~T ⊢ ∃T ′

Γ, [~x : ~T](α(~x)/T ′); ⊢ ·
α 6∈ Γ

Γ ; ∆ ⊢ α(~t)/T

Γ ; ∆ ⊢ α(~t) T ≤ T

Γ ; ∆ ⊢ α(~t)/T

Γ ; ∆ ⊢ ᾱ(~t) T ≤ T

We now have the following theorem, that we present here without proof:

14 There is no good mathematical reason for this restriction. It does lead to higher
quality formalizations, as the formalizer will need to think about whether the types
are empty or not. Also, it of course simplifies the implementation of the inference
checker. On the other hand it sometimes leads to unnatural mode definitions (like
the infamous definition of ‘Element of’).

15 In fact the Mizar typing rules can be motivated from this translation. The Mizar type
system is designed to combine two opposite goals: to have the system automatically
infer as many type judgments as possible for which the translation is provable; but
on the other hand to have a type system in which all typing judgments can be
efficiently inferred.

14 Freek Wiedijk

Theorem 5.1. For every derivable type judgment of the non-annotated ver-
sion of the Mizar type system, there exists a corresponding type judgment of
the annotated version of the Mizar type system which only differs in that
after the attributes arguments have been added.)

Note that the annotated version of the judgment is not always unique. This
is the reason that the Mizar implementation internally keeps track of these
‘hidden arguments’ of the attributes. (There has been discussion in the Mizar
community about whether these arguments maybe also should be allowed to
be explicit.)

– Now that we have annotated versions of the Mizar type judgments, translat-
ing them into first order logic is easy. We define a translation | · | that maps
our system into first order logic:

|∗|(t) := ⊤

|M(~t′)|(t) := M(t, ~t′)

|α(~t′)|(t) := α(t, ~t′)

|ᾱ(~t′)|(t) := ¬α(t, ~t′)

|a1 . . . an R|(t) := |a1|(t) ∧ . . . ∧ |an|(t) ∧ |R|(t)

|t : T | := |T |(t)

|T ≤ T ′| := ∀x (|T |(x) ⇒ |T ′|(x))

|∃T | := ∃x (|T |(x))

|α/T | := ⊤

|[x1 : T1, . . . , xn : Tn](J)| := ∀x1 . . . ∀xn(|T1|(x1) ∧ . . . ∧ |Tn|(xn) ⇒ |J |)

|
−−−−→
[∆](J);

−→
J ′ ⊢ J ′′| :=

−−−−−→
|[∆](J)|,

−→
|J ′| ⊢ |J ′′|

In the first order logic, we take the symbols for types and attributes to be
predicate symbols, where the arity as a predicate symbol is one more than
the original arity. The idea is that if T is a type, then |T |(t) corresponds to
the Mizar statement ‘t is T ’. This explains the order that we chose for the
arguments of the symbol taken as a predicate.
(The translation of α/T as just ‘true’ might be unexpected. One might expect
the translation to be:

|α/T | := ∀x (|α|(x) ⇒ |T |(x))

However, we decided not to do this, as it would be strange to require |α|(t)
to imply |T |(t), but not to require the same property for |ᾱ|(t) (ᾱ also being
an adjective of T). Our translation is interpreting adjectives in the spirit of
intersection types.16)

16 It might be surprising that an attribute can be given whatever radix type one likes.
This corresponds to the fact that in Mizar an attribute definition does not need
any proof (it does not have a ‘correctness condition’): the defining statement of an
attribute can be any formula, without any restriction. Note also that there is no
such thing as an ‘attribute redefinition’.

Mizar’s Soft Type System 15

The following theorem now also is easy:

Theorem 5.2. If Γ ; ∆ ⊢ J is a judgment of the annotated version of the
Mizar type system, then |Γ ; ∆ ⊢ J | is a provable sequent of first order pred-
icate logic.

Proof. Induction on the derivation of the judgment: each rule of the type
system corresponds to a small derivation in first order logic. �

6 Conclusion

6.1 Discussion

One of the nicest things about interpreting the Mizar type system as a system
of soft types, is that it shows that the Mizar type system, with all its power, can
easily be added ‘on top’ of any existing proof assistant.17 It is mainly a matter
of defining selected predicates to take the rôle of the types and then to:

– Implement automatic inference of statements about these predicates along
the lines of the rules in Section 4.

– Add a layer of parsing and pretty-printing to the system to have syntax for
the predicates as types. In this layer the implicit arguments that are common
in dependently typed systems can be implemented.

This way even the systems from the HOL family of proof assistants [4] can have
dependent types!

In fact, even in systems like Coq that have a rather powerful type system
already, one often sees the tendency to use ‘soft’ types on top of the ‘hard’
types that are already in the system. For instance, in the C-CoRN library from
Nijmegen, there is a formalization of integration theory, where instead of using
a type for continuous partial functions, there are lines in the development that
look like:

Variables a b : IR.

Hypothesis Hab : a [<=] b.

Variable F : PartIR.

Hypothesis contF : Continuous_I Hab F.

and then the operation called ‘Integral’ takes the predicate ‘contF’ as one of
its arguments. Clearly this is a rough version of soft typing.

Similarly, a development of Galois theory by Georges Gonthier and Sean
McLaughlin (developed in the Microsoft/INRIA institute in Paris) is using a
style of having ‘soft types on top of Coq’.

17 The work of Joe Hurd [5] already is a version of this (although it of course does not
implement the full Mizar type system.)

16 Freek Wiedijk

6.2 Future work

There are various interesting questions that might be pursued as a continuation
of the research presented in this paper:

– A type system really should be decidable, but we have not established this
property for the type system that we presented here. The implementation of
the type system in the Mizar type checker clearly seems to have this property,
but then the rules that we presented in this paper do not exactly match the
type system as it is implemented in the actual system.
It is clear that a naive implementation of our version of the Mizar type
system will not work. The redefinition:

redefine mode Element of n -> Element of n + 1;

(which is allowed in the actual Mizar system!) will with our version of the
typing rules give rise to infinite collections of types.18 This example also
shows that a direct Prolog-style implementation of the rules from Section 4
will not always terminate. However, it is might be the case that a less naive
algorithm than just generating all possible types for an expression still can
implement a type checker for the typing rules from Section 4.

– We have proved that the type system that we present in this paper is correct,
but one also could consider the question of whether it is complete. The
theorem to be proved for this would be that if a sequent is a translation
of a typing judgment in our system of which the context is already a correct
context, and if that sequent is provable in first order predicate logic, that
then in fact the typing judgment is derivable in the type system.
We have not yet tried to prove this property, but thus far we do not know
of a counter-example either.

– It might be interesting to make the rules that we presented here more re-
alistic, by for example adding structure types or equalities between terms.
Maybe even more interesting would be to precisely analyze the differences
between our version of the type system, and the corresponding fragment
of the type system the way it is implemented in the actual Mizar system.
The interesting question would be whether the differences might easily be
removed (either by adapting the typing rules, or by changing the implemen-
tation), or whether the differences are essential for giving the implementation
of the type checker a reasonable performance.

Acknowledgments. It will be clear that this paper was inspired by the papers of
Fairouz Kamareddine. When I wrote this paper I had Herman Geuvers in mind
as my target audience: I hope that this paper managed to communicate the Mizar
type system to him. Furthermore many thanks to Josef Urban, Makarius and
the anonymous referees of the TPHOLs conference for their helpful comments
on a draft version of this paper.

18 We got this example from Josef Urban.

Mizar’s Soft Type System 17

References

1. Grzegorz Bancerek. On the structure of Mizar types. Electronic Notes in Theoret-
ical Computer Science, 85, 2003.

2. R. Cartwright and M. Fagan. Soft typing. In Proceedings of the SIGPLAN ’91
Conference on Programming Language Design and Implementation, pages 278–292,
1991.

3. Ingo Dahn. Interpretation of a Mizar-Like Logic in First-Order Logic. In FTP
(LNCS Selection), pages 137–151, 1998.

4. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL. Cambridge Uni-
versity Press, Cambridge, 1993.

5. Joe Hurd. Predicate subtyping with predicate sets. In Richard J. Boulton
and Paul B. Jackson, editors, 14th International Conference on Theorem Prov-
ing in Higher Order Logics: TPHOLs 2001, volume 2152 of LNCS, pages 265–280.
Springer-Verlag, 2001.

6. Gilbert Lee and Piotr Rudnicki. Alternative Aggregates in Mizar, 2007. To be
published in Mathematical Knowledge Management 2007.

7. Micha l Muzalewski. An Outline of PC Mizar. Fondation Philippe le Hodey, Brus-
sels, 1993. 〈http://www.cs.ru.nl/~freek/mizar/mizarmanual.ps.gz〉.

8. Josef Urban. MPTP 0.1: System Description. ENTCS, 86(1), 2003.
9. Josef Urban. Translating Mizar for First Order Theorem Provers. In MKM, volume

2594 of Lecture Notes in Computer Science, pages 203–215. Springer, 2003.
10. Josef Urban. MoMM – Fast Interreduction and Retrieval in Large Libraries of

Formalized Mathematics. International Journal on Artificial Intelligence Tools,
15(1):109–130, 2006.

11. C. Weidenbach. SPASS: Combining superposition, sorts and splitting, 1999.
12. Freek Wiedijk, editor. The Seventeen Provers of the World, volume 3600 of LNCS.

Springer, 2006. With a foreword by Dana S. Scott.

