
A large routine

Freek Wiedijk

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 212, 6525 EC Nijmegen, The Netherlands

Abstract. This is a short text that I wrote for the Liber Amicorum
for Jan Bergstra [1], presented at his retirement in December 2016. It
speculates about a program that Alan Turing wrote in 1949.
The version for the Liber used a tiny font and very long lines to fit
everything on the two pages I had available. This is a version with a
more reasonable layout. It also has references, and an added appendix
with the source code of the program.

It is not widely known, but already in June 19491 Alan Turing had the main
concepts that still are the basis for the best approach to program verification
known today, and for which Tony Hoare developed a logic in 1969 [3]. In his
three page paper Checking a large routine [8,15], Turing describes how to verify
the correctness of a program that calculates the factorial function by repeated
additions. He both shows how to use invariants to establish the correctness of
this program, as well as how to use a variant to establish termination.

In the paper the program is only presented as a flow chart. A modern C
rendering is:

int fac (int n)

{

int s, r, u, v;

for (u = r = 1; v = u, r < n; r++)

for (s = 1; u += v, s++ < r; )

;

return u;

}

Turing’s paper seems not to have been properly appreciated at the time. At the
EDSAC conference where Turing presented the paper, Douglas Hartree criticized
that the correctness proof sketched by Turing should not be called inductive.
From a modern point of view this is clearly absurd.

Marc Schoolderman first told me about this paper (and in his master’s thesis
[12] used the modern Why3 tool [2] of Jean-Christophe Filliâtre to make Turing’s
paper fully precise; he also wrote the above C version of Turing’s program). He

1 Two years before Jan Bergstra was born.



2 Freek Wiedijk

then challenged me to speculate what specific computer Turing had in mind in
the paper, and what the actual program for that computer might have been.

My answer is that the ‘EPICAC’2 of this paper probably was the Manchester
Mark 1. Given that Turing at that time was Deputy Director of the Computing
Laboratory in Manchester, this is not very surprising. Further arguments for this
are that the paper talks about 40-bit words, and that it uses storage locations
27–31 called ‘lines’ for the variables.

Of the computers at that time only the ones in development in Manchester
and at the IAS in Princeton had 40-bit words. Turing had written his PhD the-
sis in Princeton, and undoubtedly knew about the IAS machine, but he was
much more closely involved with the Manchester machines. Also, in 1949 the
Manchester machines already were operational, while the IAS machine only be-
came operational in 1951. The Manchester machines had three generations: the
Manchester SSEM (Small-Scale Experimental Machine) ‘baby’ (32-bit, opera-
tional June 1948), the Manchester Mark 1 (40-bit, operational April 1949) and
the commercial Ferranti Mark 1 (40-bit, operational February 1951). Turing
wrote in 1950 a very nice and surprisingly modern manual [9,16,17] for this last
machine (which unlike Ferranti he calls ‘Mark II’, as in his opinion ‘Mark I’ al-
ready had been used). This manual also describes the earlier Manchester Mark 1
in an appendix, where it is called the ‘Pilot machine’.

The question then is which of the two 40-bit Manchester computers Turing
had in mind in his ‘large routine’ paper. These machines are very similar, but
in 1949 the newer machine was not yet operational. There is another argument
for the earlier machine: in both machines the addresses are twice the ‘storage
locations’ that Turing uses in his paper (there is no space to fit a full word
between two consecutive addresses), which means that Turing is not talking

2 EPICAC is a fictional computer from the short story ‘EPICAC’ [18] by Kurt Von-
negut, which was published November 1950, only one year after Turing’s paper (and
filmed for television in 1974 [10], 1992 [20] and 2008 [14]). The EPICAC computer
also occurs in Vonnegut’s 1952 debut novel Player Piano [19], which is about the
effects of robotisation on society. The name EPICAC is a play on ENIAC (the
first general-purpose electronic computer, operational February 1946; computers of
that era had names in this style: EDSAC, BINAC, CSIRAC, SEAC, SWAC, ED-
VAC, UNIVAC, ILLIAC, MANIAC – the suffix ‘AC’ generally stands for ‘Automatic
Computer’) and ipecac (a syrup with roots of the ipecacuanha plant, used to induce
vomiting in case of poisoning). In the story, a man and a woman get romantically
involved while working late at night with the EPICAC computer, and at the end of
the story the computer provides the man with a lifetime support of love poems. This
story matches real life in some respects: Conway Berners-Lee and Mary Lee Woods
worked late at night with the Ferranti Mark 1 computer in 1953 and married in 1954
(their son invented the World Wide Web in 1991), while for this same computer in
1952 a program was developed by Christopher Strachey that produces love letters
[13]. (Strachey also wrote the first program for the game of draughts [7], and the
first program for computer music; in 1965 he became the first director of the Pro-
gramming Research Group in Oxford, where he developed denotational semantics in
collaboration with Dana Scott.) The ‘love letters’ program has been revived as an
art project by David Link in 2009 [4,5,6].



A large routine 3

about addresses. The storage of the Ferranti machine on a Williams tube consists
of two columns next to each other, where ‘words’ are two successive half-lines in
a single column. But the older machine has the 40-bit words spanning the whole
width of the tube, which means that in that case Turing just numbered the five
bottom-most of those ‘lines’ in his paper. For this reason it seems more natural
to consider a program for the earlier Manchester Mark 1.

The architecture of the Manchester Mark 1 has 40-bit words, but the accu-
mulator has 80 bits, and the memory is addressed in 20-bit ‘bytes’ (when fetching
a full word from memory the lowest address bit is ignored, hence addresses are
always aligned). The ‘nibbles’ of the machine are 5-bit, and are written using
the ITA2 variant from 1924 of the Baudot punched tape code patented in 1874
(where additional symbols /, @, :, 1

4 , " and £ represent the ‘non-printing char-
acters’). Turing does not use symbolic syntax for machine code and just writes
each 20-bit instruction as four ITA2 characters. See for nice examples of pro-
grams written in this style the listings linked from [11].

The Manchester Mark 1 instruction set is very simple. An instruction has an
opcode – of the 32 opcodes, our reconstructed program only uses seven – and
an address field. The instruction layout (in little endian bit order) is:

address unused opcode

0 4 5 9 10 14 15 19

0 7 8 14 15 19

-



H 00101 A← [a]
M 00111 A← A + [a]
X 10111 A← A− [a]
D 10010 [a]← A
R 01010 skip next instruction if A ≥ 0
L 01001 go to instruction at address a + 2
N 00110 halt

In this, A is the accumulator, a is the address, and [a] the 40-bit word at that
address in memory. After an instruction is executed, the program counter (where
the lower bit is not ignored) is increased by two, so execution will proceed on
the same side on the tube.

Here then, is a reconstruction of Turing’s ‘large routine’ for the Manchester
Mark 1, both the source code in paper tape format, and the resulting state of
the machine as seen on a Williams tube:



4 Freek Wiedijk

The program is in the top half of the tube, in two columns, and the variables
are at the bottom. The input n = 10 = 10102 is in line 29, while the output
u = 10! = 11011101011111000000002 is in line 30.

References

1. Inge Bethke, Bert Bredeweg, and Alban Ponse, editors. Liber Amicorum voor / for
Jan A. Bergstra. Informatics Institute, University of Amsterdam, 2016.

2. François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond,
and Andrei Paskevich. The Why3 platform, 2016. http://why3.lri.fr/.

3. Cliff B. Jones. Turing and Software Verification. Technical Report CS-TR-1441,
Computing Science, Newcastle University, 2014.

4. David Link. There Must Be an Angel. On the Beginnings of the Arithmetics of
Rays. In Siegfried Zielinski and David Link, editors, Variantology 2: On Deep Time
Relations of Arts, Sciences and Technologies. Walter König, Cologne, 2006.

5. David Link. LoveLetters 1.0, 2009. http://www.alpha60.de/art/love_letters/.
6. David Link. Das Herz der Maschine. dOCUMENTA (13): 100 Notizen - 100

Gedanken, No. 037. Hatje Cantz Verlag, Berlin, 2011.
7. David Link. Programming ENTER: Christopher Strachey’s Draughts Program.

Resurrection, 2012.
8. F. L. Morris and C. B. Jones. An Early Program Proof by Alan Turing. IEEE

Ann. Hist. Comput., 6(2):139–143, 1984.
9. Brian Napper. Computer 50: The University of Manchester Celebrates the Birth

of the Modern Computer, 2010. Website. http://www.computer50.org/.
10. Liam O’Brien (writer) and John Badham (director). Rex Harrison Presents Stories

of Love: segment ‘Epicac’, 1974.

http://why3.lri.fr/
http://www.alpha60.de/art/love_letters/
http://www.computer50.org/


A large routine 5

11. Huw Owen Pritchard and Frank Summer. Ferranti Mark I computer programmes,
1951–1953. Website. http://curation.cs.manchester.ac.uk/computer50/www.
computer50.org/mark1/Huw-Pritchard/FERRANTI/ferranti.html.

12. Marc Schoolderman. Verification of Goroutines using Why3. Master’s thesis,
Institute for Computing and Information Sciences, Radboud University Nijmegen,
2016.

13. Christopher Strachey. The ‘Thinking’ Machine. Encounter, pages 25–31, October
1954.

14. Will Tully (writer, director). Epicac, 2008.
15. Alan Turing. Checking a large routine. In Report of a Conference on High Speed

Automatic Calculating Machines, pages 67–69. University Mathematical Labora-
tory, Cambridge, 1949. http://www.turingarchive.org/browse.php/b/8.

16. Alan Turing. Programmers’ Handbook for the Manchester Electronic Computer
Mark II, 1950. http://www.turingarchive.org/browse.php/B/32, transcribed as
[17].

17. Alan Turing and Robert S. Thau (transcriber). Alan Turing’s Manual for the
Ferranti Mk. I, 2000. http://www.panix.com/~rst/turing.pdf.

18. Kurt Vonnegut. ‘EPICAC’. In Welcome to the Monkey House. Dial Press, New
York, 1950.

19. Kurt Vonnegut. Player Piano. Charles Scribner’s Sons, New York, 1952.
20. Kurt Vonnegut (writer). ‘Monkey House’, Season 2, Episode 1: Epicac, 1992.

http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/mark1/Huw-Pritchard/FERRANTI/ferranti.html
http://curation.cs.manchester.ac.uk/computer50/www.computer50.org/mark1/Huw-Pritchard/FERRANTI/ferranti.html
http://www.turingarchive.org/browse.php/b/8
http://www.turingarchive.org/browse.php/B/32
http://www.panix.com/~rst/turing.pdf


6 Freek Wiedijk

Source code of the routine

For this paper, I wrote an emulator for a relevant small fragment of the Manch-
ester Mark 1. The source code for this emulator can be found on the web at:

http://www.cs.ru.nl/~freek/pilot/pilot.c

Marc Schoolderman extended this with the feature that if it is compiled with
the symbol VT100 defined, then the emulator will insert terminal escape codes
to make the output look like a Williams tube.

The input for this emulator corresponding to Turing’s program as recon-
structed in this paper, is:

// G/ /H // // ; A’ = [1] E/

@/ ME /D VE /M ; [u]’ = A F: A’ = A + [v] A/

:/ OE /D ME /D ; B: [r]’ = A [u]’ = A’ S/

I/ ME /H PE /H ; A’ = [u] A’ = [s] U/

8/ VE /D G/ /M ; [v]’ = A A’ = A + [1] D/

R/ OE /H PE /D ; A’ = [r] [s]’ = A J/

N/ GE /X OE /H ; A’ = A - [n] A’ = [r] F/

C/ // /R PE /X ; skip if A < 0 A’ = A - [s] K/

T/ // /N // /R ; halt skip if A < 0 Z/

L/ G/ /H V/ /L ; A’ = [1] C’ = [E] W/

H/ PE /D OE /H ; [s]’ = A A’ = [r] Y/

P/ ME /H G/ /M ; E: A’ = [u] A’ = A + [1] Q/

O/ G/ /L M/ /L ; C’ = [F] C’ = [B] B/

G/ E/ // // // ; 1 = F - 2

M/ @/ // // // ; 2 = B - 2

V/ H/ // // // ; 20 = E - 2

PE // // // // ; s

OE // // // // ; r

GE R/ // // // ; n = 10

ME // // // // ; u

VE // // // // ; v

This input also can be found on the web at:

http://www.cs.ru.nl/~freek/pilot/fac.pi

Finally the two pictures from this paper (processed versions of the input and
output described here) are on the web at:

http://www.cs.ru.nl/~freek/pilot/tape.pdf

http://www.cs.ru.nl/~freek/pilot/tube.pdf

http://www.cs.ru.nl/~freek/pilot/pilot.c
http://www.cs.ru.nl/~freek/pilot/fac.pi
http://www.cs.ru.nl/~freek/pilot/tape.pdf
http://www.cs.ru.nl/~freek/pilot/tube.pdf

