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Abstract. The mathematical proof checker Mizar by Andrzej Trybulec uses a proof
input language that is much more readable than the input languages of most other
proof assistants. This system also differs in many other respects from most current
systems. John Harrison has shown that one can have a Mizar mode on top of a
tactical prover, allowing one to combine a mathematical proof language with other
styles of proof checking. Currently the only fully developed Mizar mode in this style
is the Isar proof language for the Isabelle theorem prover. In fact the Isar language
has become the official input language to the Isabelle system, even though many
users still use its low-level tactical part only.

In this paper we compare Mizar and Isar. A small example, Euclid’s proof of
the existence of infinitely many primes, is shown in both systems. We also include
slightly higher-level views of formal proof sketches. Moreover a list of differences
between Mizar and Isar is presented, highlighting the strengths of both systems
from the perspective of end-users. Finally, we point out some key differences of the
internal mechanisms of structured proof processing in either system.

Keywords: Formalized mathematics, structured proof languages, proof sketches.

1. Introduction

1.1. Overview

We compare two systems for formalizing mathematics in the computer:
the Mizar system by Andrzej Trybulec from BiaÃlystok, Poland (Rud-
nicki, 1992; Trybulec, 1993; Muzalewski, 1993; Wiedijk, 1999), and
the Isar interface by Markus Wenzel from Munich, Germany (Wenzel,
1999; Wenzel, 2002a; Wenzel, 2002b) to the Isabelle system by Larry
Paulson and Tobias Nipkow (Paulson, 1994; Nipkow et al., 2002). From
the perspective of recipients of formal proof documents, human read-
ers, the proof languages of both systems appear very similar. The key
differences (concerning the underlying concepts and various technical
issues) become more relevant once that users wish to compose their own
formalizations, or explore the internal principles of structured proof
processing.
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The names of the systems can be used on four different levels (e.g.,
in the sentence ‘in Isar the Hahn-Banach theorem is available’ the word
‘Isar’ is used as referring to the Isabelle/HOL library):

the Mizar language the Isar language

the Mizar system the Isabelle system

the Isabelle/HOL logic

the Mizar library the Isabelle/HOL library

These four levels are conceptually unrelated: there could be multiple
implementations of the Mizar and Isar languages, there are many logics
for the Isabelle logical framework, and one could write different libraries
for both systems. However, in practice all four levels are used together,
as a whole. Almost all users of Mizar or Isar are using the current ver-
sion of language, system, logic and library. Therefore, when discussing
Mizar and Isar from a user’s point of view, the Mizar and Isar languages
should not be separated from the corresponding systems. For this same
reason we will use the term ‘Isar system’ to refer to the Isabelle system
with the Isar proof language, and with the Isabelle/HOL logic and
library. (Although the Isar language can be used with all Isabelle logics,
the large majority of Isabelle users work in Isabelle/HOL.)

In this paper we compare the current states of the Mizar and Isar
systems. Both systems are under active development and probably will
change significantly in the coming years. This paper should be seen as
a snapshot of the current situation.

The intended audiences for this paper are those who want to know
more about Mizar and Isar and the people who work on the implemen-
tation of Mizar or Isar or of a similar declarative proof assistant. We
think that systems can benefit from the experiences of other systems.

The aims of this paper are:

− To compare the Mizar and Isar proof languages. We demonstrate
the similarity between proofs in these two languages through a
simple example from number theory (Sections 2 and 3), but we
also show that the internal principles of processing those proofs
are significantly different in both systems (Section 5).

− To compare the Mizar and Isar systems from the experience of the

end-user. We give a high level comparison of the Mizar and Isar
systems from a user’s point of view, by pointing out the relative
strengths and weaknesses of both systems (Section 4).

− To attract more attention to declarative provers. The declarative
proof style of the Mizar and Isar languages can draw more peo-
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ple to formal proofs. The small example that we present in both
languages acts as a gentle introduction to declarative proof.

1.2. Related work

The concept of human-readable formal proof was pioneered by de Bruijn,
who coined the term ‘mathematical vernacular’ (de Bruijn, 1987) for a
formal language that has a structure similar to informal mathematical
text. However on the surface de Bruijn’s MV language still looks more
like a formal language than like natural language. Recently research
into ‘declarative’ proof assistants (as opposed to the ‘procedural’ proof
assistants that have been exercised for several decades now) has become
popular. Declarative systems not only follow the structure but also
the language of informal mathematics. Apart from the Mizar and Isar
developments, in recent years research into the declarative proof style
has resulted in several experimental systems.

The ‘Mizar mode for HOL’ (Harrison, 1996) provides an alterna-
tive interface for interactive proof composition in HOL (notably HOL
Light), transferring useful ideas from the Mizar proof language into the
tactical setting of HOL. Harrison introduces separate concrete syntax
for structured proof commands that are translated to special tactics in-
side, which perform basic transformations according to natural deduc-
tion schemes of raw first order logic. Harrison also spends substantial
effort on automated reasoning support, for solving ‘trivial’ situations
implicitly (the concrete procedure may be exchanged by the user). The
Mizar mode also covers a calculational reasoning style, which refers to
a collection of mixed transitivity rules declared in the context (using
=/</≤ or similar relations). The system has been sufficiently devel-
oped to conduct some example proofs from classical analysis, covering
a few pages of text. It has not been applied any further, though.

DECLARE (Syme, 1997; Syme, 1998) is a stand-alone prototype
system for ‘declarative’ proof development, which acts like a compiler
for formal documents consisting of theory specifications and struc-
tured proof outlines. The proof language is based on three main princi-
ples, namely ‘first-order decomposition and enrichment’, ‘second-order
schema application’, and ‘appeals to automation’. DECLARE has been
advertised as ‘three tactic theorem proving’ (Syme, 1999). The system
draws from the general experience of the HOL family (and Harrison’s
Mizar mode), but renounces established principles like full reduction
to basic logical principles inside. DECLARE has been successfully ap-
plied by its author in some significant case-studies on Java type-safety
and operational semantics (Syme, 1998). In fact, many concepts of
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DECLARE have been specifically designed towards such applications
of language modeling, with particular support for inductive definitions
and proof schemes. DECLARE did not aim at more general applica-
tions, and has not been evaluated any further in practice (the system
is not publicly available anyway).

The ‘Structured Proof Language’ (SPL) (Zammit, 1999a; Zammit,
1999b) aims at providing another interface for proof construction in
mainstream HOL, drawing from Mizar ideas and the experience with
Harrison’s Mizar mode. SPL has been intended for larger scale appli-
cations, just like DECLARE, but is more careful to stay within the
logical foundations of HOL. All high-level concepts of SPL are reduced
to primitive HOL tactics. Zammit also spends significant effort on pow-
erful first-order proof tools in HOL, in order to support reasoning in
large steps. Another focus is on implicit simplifications (via rewriting).
The SPL/HOL system has been evaluated by its author by formalizing
some portions of group theory, attempting to achieve the same level of
abstraction seen in the informal proofs of a given textbook.

‘Mizar Light for HOL Light’ (Wiedijk, 2001) represents a minimal
system experiment that achieves a readable view on first-order tactical
proof schemes, mainly by exhibiting propositions explicitly in the text
instead of implicitly in goal configurations. It shows that it is not nec-
essary to change the notion of proof state of a goal oriented system to
be able to support declarative proofs.

Systems in the important class of ‘teaching tools for formal logic’
often provide readable textual representations of proofs as well, al-
though most seem to prefer graphical views. Typically, such systems
are restricted to primitive inferences in pure logic, where users may oc-
casionally specify their own set of rules, but advanced proof procedures
are unavailable.

The teaching tool ProveEasy (Burstall, 1998) provides an interactive
editor for primitive natural-deduction proof texts presented in a strictly
backward manner. The underlying structure is oriented towards the
well-established λ-calculus view of type theory. Here the main idea is
to make the types of sub-terms (local propositions) visible in the text.

Tutch (Abel et al., 2001) is a strictly text-oriented proof-checker
intended for teaching constructive logic. The system deliberately ex-
cludes any kind of user interface, but acts like a batch-mode compiler
of proof texts written in plain ASCII. Thus students are encouraged
to focus on the task of actually writing proofs, rather than play with
fancy point-and-click interfaces. Proof steps in Tutch range from prim-
itive natural deduction to more abstract arrangements of the ‘assertion
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level’. Nevertheless, the system refrains from arbitrary proof search,
but implements an efficient algorithm for structured proof checking.

2. Example: there are infinitely many prime numbers

In a talk at the Dutch proof tools day 2002 in Utrecht, Herman Geuvers
presented two slides that were meant to show the difference in style
between informal and formal proofs. The informal proof on the first
slide looked like this:

A romantic proof

Theorem There are infinitely many primes:
for every number n there exists a prime p > n

Proof [after Euclid]
Given n. Consider k = n! + 1, where n! = 1 · 2 · 3 · . . . · n.
Let p be a prime that divides k.
For this number p we have p > n: otherwise p ≤ n;
but then p divides n!, so p cannot divide k = n! + 1,
contradicting the choice of p. QED

The formal proof on the other slide was a big and unreadable ‘proof
term’ (taken from a Lego formalization by Mark Ruys):

A ‘real’ proof (proof-object)

Proof-object [Formalization: Ruys]

λn:|IN|.[≤= ap2 IN IN Ω lessEq][<= ap2 IN IN Ω lessE][k=succ(fac n)

] has prime factor k(≤ elim 2(fac n)(le one fac n))(∃y:|IN|.(n<y & y

≤k & prime(y)))(λy:|IN|.λP :is prime factor y k.[D=fst(y|k)(prime(y)

)P ][Q=snd(y|k)(prime(y))P ][H=fst(1<y)(Πu:|IN|.(1<u)→(u<y)→(u

6 |y))Q]ExIntro(|IN|) y (λv:|IN|.(n<v & v≤k & prime(v))(pair(n<y & y

≤ k (prime(y))(pair(n<y) (y≤k)(< intro y n (λF :y≤n.< irrefl 1 (

extenRel IN IN < 1 (Eq refl IN 1)y 1 (divides lemma 3 y (fac n) (

fac divides y n(≤ intro 2 y (< succ intro 1 y H))F )D)H)⊥))(

divides lemma 1 y k D (y≤k (Id (y≤k)) (λG:Eq IN k 0.Succ not zero (

fac n)G (y≤k)))) Q))(∃y:|IN|.(n<y & prime(y)) (λy:|IN|.λH:n<y & y≤k

& prime(y).ExIntro(|IN|) y(λw:|IN|.(n<w & prime(w))(pair(n<y) (

prime(y)) (fst(n<y) (y≤k)(fst(n<y & y≤k)(prime(y)) H))(snd(n<y

& y≤k) (prime(y))H))))))))

But a formal proof does not need to look like this! In a Mizar-style
proof language the formal proof of this theorem will be quite similar to
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the ‘informal’ version from Herman’s first slide. Subsequently we will
use this example (the infinity of the set of prime numbers) as the proof
for which we will show both Mizar and Isar versions.

2.1. Mizar version of the formalization

Here is the final part of a Mizar formalization of the ‘romantic proof’.
The full Mizar formalization is 44 lines long. It builds on the Mizar
Mathematical Library (http://mizar.org/JFM/), which is part of the
Mizar system. Here we have used Mizar version 6.1.10.

reserve n,p for Nat;

theorem Euclid: ex p st p is prime & p > n

proof

set k = n! + 1;

n! > 0 by NEWTON:23;

then n! >= 0 + 1 by NAT_1:38;

then k >= 1 + 1 by REAL_1:55;

then consider p such that

A1: p is prime & p divides k by INT_2:48;

A2: p <> 0 & p > 1 by A1,INT_2:def 5;

take p;

thus p is prime by A1;

assume p <= n;

then p divides n! by A2,NAT_LAT:16;

then p divides 1 by A1,NAT_1:57;

hence contradiction by A2,NAT_1:54;

end;

theorem {p: p is prime} is infinite

from Unbounded(Euclid);

Note that the proof of the first theorem has to contain low level ‘alge-
braic facts’ like n! >= 0 + 1, k >= 1 + 1, p <> 0 and p > 1. Apart from
the part of the text that is shown, the Mizar formalization contains an
‘environ’ header and a proof of the following rule scheme:

scheme Unbounded {P[Nat]}: {n: P[n]} is infinite

provided for m ex n st P[n] & n > m;

It is proved from a similar theorem from the Mizar library.

The Mizar system is not interactive. One runs the main executable
mizf like a batch-mode compiler and it inserts the error messages, if
any, as comments inside the original Mizar source text.
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2.2. Isar version of the formalization

Here is the final part of an Isar formalization of the ‘romantic proof’
again. The full Isar formalization is 95 lines long. It includes the theory
Main from the standard Isabelle/HOL library (http://isabelle.in.
tum.de/library/HOL/), as well as the theory Factorization by Thomas
Rasmussen (from the Isabelle examples). Here we use Isabelle2002.

theorem Euclid : ∃ p ∈ prime. n < p

proof −
let ?k = n! + 1
obtain p where prime: p ∈ prime and dvd : p dvd ?k

using prime-factor-exists by auto

have n < p

proof −
have ¬ p ≤ n

proof

assume p ≤ n

with prime-g-zero have p dvd n! by (rule dvd-factorial)
with dvd have p dvd ?k − n! by (rule dvd-diff )
then have p dvd 1 by simp

with prime show False using prime-nd-one by auto

qed

then show ?thesis by simp

qed

from this and prime show ?thesis ..

qed

corollary ¬ finite prime

using Euclid by (fastsimp dest !: finite-nat-set-is-bounded simp: le-def )

Note that the Isabelle library does not know the > relation. Therefore,
instead of writing p > n one has to write n < p. Also the relationship
between < and ≤ is not hard-wired into the system, making an extra
level of proof . . . qed in the proof of n < p necessary here. The
fastsimp method that is used in the proof of the final corollary is not
one of the three most commonly used ones: simp, blast and auto. The
corollary may also have been proved with a three step Isar proof that
only uses the auto method.

Apart from the part of the text that is shown here, the Isar formal-
ization contains the definition of the factorial function and the following
five lemmas (including hints for automated tools):

lemma [iff ]: 0 < n!

lemma dvd-prod [iff ]: n dvd prod (n # ns)
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lemma prime-factor-exists: 1 < n =⇒ ∃ p ∈ prime. p dvd n

lemma dvd-factorial : 0 < m =⇒ m ≤ n =⇒ m dvd n!

lemma finite-nat-set-is-bounded :
finite M =⇒ ∃n::nat . ∀m ∈ M . m ≤ n

Isar is an interactive system. The preferred interface to Isar is Proof
General (Aspinall, 2000), which is the ‘proof assistant mode’ for the
(X)Emacs editor. When editing an Isar formalization, at each point in
the text the interface shows relevant bits of the proof state.

2.3. Relating the two languages

The Mizar and Isar languages use different keywords for similar notions.
Here is a rough translation table that relates major language elements.

Mizar Isar

let fix

assume assume

set let

set def

consider . . . such that obtain . . . where
take no equivalent

per cases . . . proof . . . qed
suppose next assume

no keyword have

thus show

hence then show

thesis ?thesis

proof . . . end proof . . . qed
@proof . . . end sorry

now . . . end { . . . }
then then

then . . . by with

by from

by using

; .

; ..

; by auto

from . . . ; by (rule . . . )

Note that the mapping between language elements is not exact. For
instance the distinction between by and from (the first is first order
while the second is higher order) is not reflected in the Isar equivalent.

romantic.tex; 18/09/2002; 15:27; p.8



9

Also note that in the translation of Mizar’s ‘by . . . ;’ to Isar’s ‘using
. . . by auto’, we have actually separated ‘by’ and ‘;’. However in Mizar
these two parts are not considered to have separate meanings (in fact
‘;’ is just a syntactic terminator).

Despite the similarities between the two languages, we observe some
stylistic differences, stemming from different philosophies of language
design. The Isar proof language is compositional, it emerges in bottom-

up fashion from only a few basic primitives following pure principles
of natural deduction — according to the existing Isabelle framework
(Paulson, 1989). In contrast, Mizar does not particularly try to reduce
everything to a few primitive language elements.

Without going into details, just consider the following examples:

1. Mizar’s let . . . such that is almost equivalent to a combination
of let and assume, but not exactly. In the first case one is not
allowed to follow the step by a then, while in the second case
one is. According to Isar’s philosophy, the first really should be
an abbreviation of the second, providing a more uniform language
view (Wenzel, 2002a, §5.3).

2. Mizar has built-in automated justification of by, while Isar uses ex-
plicit references to particular proof methods such as the automated
simp, blast, auto, or single-step rule applications. Therefore the
combination ‘by auto’ becomes a canonical automated justification,
while ‘by (rule . . . )’ corresponds to rule scheme applications, which
are treated separately in Mizar.

Also note that the above table merely covers the ‘logical’ parts of the
two languages. Both Mizar and Isar also support a notion of ‘algebraic
reasoning’, using chains of equalities (and inequalities in Isar). See also
(Bauer and Wenzel, 2001) for further discussion of this particular aspect
of structured proofs.

3. A higher-level view: formal proof sketches

Formal proof sketches address the issue of presenting formal texts in a
more abstract manner, and support top-down development.

In this section we present proof skeletons in the formal languages
of Mizar and Isar that are as close as possible to the informal natural
language proof on page 5. Also, in this section we show the full files
including the headers, instead of only showing the final theorem.
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3.1. Mizar version of a formal proof sketch

The Mizar system is able to continue to check a text after it finds the
first error. A Mizar text that contains only justification errors, which
can be eliminated by adding more text, is in (Wiedijk, 2002) called a
formal proof sketch. Here is a formal proof sketch that corresponds to
the Mizar formalization in Section 2.1. It is the full text of the formal
proof sketch, including the ‘environ’ header.

environ

vocabulary FINSET_1, FILTER_0, QC_LANG1, ARYTM_3;

notation INT_2, FINSET_1, ARYTM, NAT_1, NAT_LAT;

constructors NAT_1, NAT_LAT;

clusters ARYTM, NAT_1;

requirements SUBSET, ARYTM;

begin

reserve n,p for Nat;

theorem ex p st p is prime & p > n

proof

set k = n! + 1;

consider p such that

*4 → p is prime & p divides k;

take p;

*4 → thus p is prime;

assume p <= n;

*4 → p divides n!;

*4 → p divides 1;

*1 → thus contradiction;

end;

*4 → theorem {p: p is prime} is infinite;

Mizar gives six justification errors for this text. These have been indi-
cated by arrows in the left margin. The numbers in front of the arrows
are the error codes. The explanation of error *1 is ‘It is not true’
and the explanation of error *4 is ‘This inference is not accepted’.
Those two errors are the two justification errors of the Mizar system.

3.2. Isar version of a formal proof sketch

The Isar system stops checking after the first error that it finds. How-
ever, one can skip justification errors by inserting the ‘fake proof’ sorry.
Therefore, the Isar system also can be used to write and check formal
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proof sketches. Here is a formal proof sketch that corresponds to the
Isar formalization in Section 2.2. The sorry elements are pretty-printed
as ‘〈proof 〉’. This is the full text of the formal proof sketch, including
the ‘theory . . . end’ brackets.

theory Sketch = Main + Factorization:

consts fact :: nat ⇒ nat ((-!) [1000] 999)
primrec

0! = 1
(Suc n)! = n! ∗ Suc n

theorem ∃ p ∈ prime. n < p

proof −
let ?k = n! + 1
obtain p where p ∈ prime and p dvd ?k

〈proof 〉
have n < p

proof −
have ¬ p ≤ n

proof

assume p ≤ n

then have p dvd n! 〈proof 〉
then have p dvd 1 〈proof 〉
then show False 〈proof 〉

qed

then show ?thesis 〈proof 〉
qed

then show ?thesis 〈proof 〉
qed

corollary ¬ finite prime 〈proof 〉

end

4. The user experience: eighteen differences

We will now list eighteen differences between the Mizar and Isar sys-
tems. For each of these differences we will state which system (in our
opinion) is the more attractive one. In nine cases it will turn out to
be the Mizar system, and in nine cases it will turn out to be the Isar
system. But of course not all differences are of the same importance.
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4.1. Better documentation: Isar

The Isar system has much better documentation than the Mizar system.
For Mizar there are introductory texts, like (Muzalewski, 1993), but

they are too brief to be of real use, and they generally describe old
versions of the system.

The Isabelle/Isar documentation is clear and thorough. There is a
tutorial for Isabelle/HOL (Nipkow et al., 2002) and there are reference
manuals for Isabelle (Paulson, 2002a), Isar (Wenzel, 2002b) and for
further logics of the system, notably FOL and ZF (Paulson, 2002b). All
of these are distributed with Isabelle (http://isabelle.in.tum.de/
dist/). The tutorial for Isabelle/HOL is also available as a printed book
from Springer. Finally there is Wenzel’s PhD thesis (Wenzel, 2002a)
that describes the development of Isar in detail, including many prac-
tical proof patterns, as well as some reference applications. A dedicated
Isabelle/Isar tutorial for beginners is still missing.

4.2. Available on more platforms: Isar

The Isar system is available on more different kinds of platforms than
the Mizar system.

The Mizar system is written in Borland Delphi Pascal and has been
ported to Free Pascal. Those compilers cannot generate code for many
machines. Therefore, the Mizar system is only available on Intel systems
(both Windows and Linux). Some old DOS legacy is still visible, e.g.
the limitation of Mizar article names to 8 characters. The binaries of
the Mizar system can be freely downloaded on the Internet. The source
of the Mizar system is only available to members of the Association of
Mizar Users.

The Isar system is written in standard ML. The Isabelle2002 system
can be run on all major Unix platforms, including Intel, Sun and Apple.
The binaries and source of the Isabelle system can be freely downloaded
on the Internet.

4.3. More users: Mizar

The Mizar language has more serious users than the Isar language.
It is easy to determine who are the serious Mizar users. Those

are exactly the people who have contributed an ‘article’ to the Mizar
Mathematical Library. In the Mizar community these are called ‘Mizar
authors’. A Mizar article is a significant piece of Mizar text. To write a
Mizar article one needs to understand the Mizar language thoroughly:
even authors who are not active anymore can still be considered to be
Mizar experts. Currently there are more than 120 Mizar authors.

romantic.tex; 18/09/2002; 15:27; p.12



13

The Isar proof language is now the official input language of the
Isabelle system. However, most Isabelle users only use the ‘improper
commands’ apply and done of the Isar language, effectively writing an
‘old style’ tactic proof encapsulated in a thin Isar wrapping. Presently
only few people write ‘new style’ Isar proofs, although some substan-
tial applications are distributed with Isabelle2002, such as the Hahn-
Banach Theorem for real vector spaces (Bauer and Wenzel, 2000).

4.4. Bigger mathematical library: Mizar

The Mizar system has a bigger library than the Isabelle/Isar system.
It is difficult to measure the size of a formal library in an objective

way. However, even from the small example from Section 2 it is clear
that the Mizar system has more background theory available than the
Isabelle system, as far as classical mathematics is concerned.

For the Mizar proof above, only one lemma needed to be proved,
while for the Isar proof five lemmas were needed. Also the Mizar library
already has the definition of the factorial function, while the Isabelle
library does not have it as a standard function. Finally, for the example
the Mizar library was sufficient, while the Isar library needed to be
supplemented by a theory about factorization.

The size of the Mizar library is about 50 megabytes, while that of
Isabelle is about 10 megabytes (including the sources of the system and
the example theories).

4.5. Better library lookup: Isar

The Isar system has better support for finding theorems in the library
than the Mizar system.

The main difficulty when writing mathematical formalizations is
finding the relevant theorems in the library. For the Mizar system most
people use the grep program for this. There are more specific tools,
like Grzegorz Bancerek’s MML Query (http://megrez.mizar.org/
mmlquery/), but they are not easy to understand and they are not
integrated into the official Mizar system.

The Isabelle/Isar system, being interactive, provides a ‘live’ view
of the current theory context. Its thms-containing command finds
theorems in the library: for example, thms-containing x < y x ≤ y

retrieves all facts involving the < and ≤ relations. This is a much more
structured way to look for theorems than the grep program.
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4.6. Shorter formalizations: Mizar

The Mizar language gives slightly shorter formalizations than the Isar
language. (This is the least objective of the choices in this list.)

Basically the Mizar and Isar languages are very similar and will
lead to proofs that have similar length. However, when looking at the
examples from Sections 2 and 3, the Mizar proofs seem a bit more
terse. For instance the Isar justification ‘using prime-factor-exists by

auto’ is longer than the Mizar justification ‘by INT_2:48;’. Also the
Isar formalization from Section 2.2 has more than twice as many lines
as the Mizar formalization.

There are two effects causing a difference in size between Mizar and
Isar formalizations. These two effects counteract each other. In the
Mizar library much more has been proved already, leading to shorter
Mizar formalizations. But the standard Isabelle/Isar proof methods
are more powerful than Mizar justifications (see 4.9 below) leading to
shorter Isar formalizations.

4.7. Simpler proof state: Mizar

The Mizar system has a much simpler proof state than the Isar system.
The Isar system divides the proof state in a ‘static’ and a ‘dynamic’

context, and it also contains a set of ‘using this’ facts to move infor-
mation from the static to the dynamic world. However, in the way
that the Isar proof state is used, the static and dynamic contexts are
duplicates of each other. To prove a subgoal one has to build a copy
of the corresponding part of the dynamic context in the static context.
Then when giving the show command the system verifies whether both
contexts are compatible. If this turns out not to be the case, then the
user gets an error message and has to search for himself which of the
preceding assume lines caused the incompatibility. The duplication of
contexts does not give fundamental advantages concerning basic goal
refinement steps, but provides a slightly more ‘declarative’ view.

In Mizar there is only a single context, which is closer to the tradi-
tional goal-oriented concept of stepwise problem refinement.

4.8. Simpler module system: Isar

The Isabelle/Isar system has a much simpler module system than the
Mizar system.

In the Mizar system one has to give an ‘environ’ header that spec-
ifies the articles from the library that are going to be used. For each of
the various notions that an article exports (notation, definitions, theo-
rems, etc.), the environ contains a separate import list. Generally those
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lists contain more or less the same articles. Also, the Mizar environ

refers to two kinds of modules, the articles and the vocabularies. Both
use different name spaces. In practice it turns out to be difficult to get
a Mizar environ right.

In the Isar system one just gives a single list of theories to be im-
ported. Also the import of theories is transitive. This gives a much
simpler module system.

4.9. More powerful justifications: Isar

The Isar system has more powerful justifications than the Mizar system.
In Mizar there are only two justification methods: the by justification

and the from justification. Both methods have been hard-wired into the
system, and have intentionally been kept simple. Therefore they can be
checked in a fast way and have a relatively clear semantics.

In Isar there are many justification methods, and a user can add
justification methods of his own to the system. The most common ones
are rule, simp, blast, auto and arith. These proof tools are generally
more powerful than the Mizar justification methods. This explains why
the ‘algebraic facts’ (n! >= 1, k >= 2, p <> 0, p > 1) from the Mizar
proof do not need to be stated explicitly in the Isar proof.

4.10. Simpler justifications: Mizar

Mizar justifications are easier to work with than the Isar justifications.
The Mizar justifications only use by (light-weight automated rea-

soning) or from (single rule scheme application). That means that if a
certain justification does not work, then there is nothing to be done on
the justification level. This actually makes writing proofs easier, since
one focuses on the steps in the proof and not on internal details.

In Isar there are two ways to write proofs: the old way of ‘un-
structured scripts’ and the new way of ‘structured texts’. The old
way consists of applying tactics to the goal, using sequences of the
apply command followed by the done command. The new way consists
of writing Mizar-style proofs. But in fact when writing proofs in the
new way, one still generally discovers the justifications in the old way,
before turning the (local) tactic proof that one discovered into a single
by justification. In development one still uses the apply command,
although this does not show in the final proof text. This means a lot of
experimentation with various tactics and their parameters, focusing on
the machinery of the justifications and not on the mathematics of the
proof. Because of the diversity of Isar justifications, users are tempted
to spend considerable effort into tweaking the final text!
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4.11. Easier to work with incomplete text: Mizar

Mizar can deal better with incomplete text than the Isar system.
The Mizar system will keep checking a text no matter what errors

it encounters (as long as the ‘environ’ header is correct, but that is a
different matter). It will recover from syntax errors, type errors, missing
definitions, justification errors. This means that if one is in the middle
of a complicated proof (even one that is not syntactically correct yet),
one can switch to a different part of the file after that complicated
proof, and continue to do useful work there.

For instance, consider the following fragment of a Mizar text, in
which the proof of the scheme has not yet been finished:

scheme Unbounded {P[Nat]}: {n: P[n]} is infinite

provided

A1: for m ex n st P[n] & n > m

proof

::> *214

now let m;

::>*214

consider n’ such that

A2: P[n’] & n’ > m by A1;

take n’;

::> *215,215

theorem Euclid: ex p st p is prime & p > n

::> *70

proof

set k = n! + 1;

n! > 0 by NEWTON:23;

etcetera

::> 70: Something remains to be proved

::> 214: "end" missing

::> 215: No pairing "end" for this word

All errors in this example are related to the fact that the scheme
Unbounded is not finished. The remaining text is checked as expected.

The Isar system cannot do anything like this. One can skip missing
justifications with the sorry command. For all other errors, one needs
to change the text (for instance by putting it in comment brackets) to
make it correct, before being able to work on text after the error. This
is less convenient than the way Mizar treats errors. Here we experience
a disadvantage of Isar’s incremental approach vs. Mizar’s batch-mode.
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4.12. More feedback from the system: Isar

The Isar system gives more feedback to the user than the Mizar system.
The Mizar system will only give natural numbers to the user: error

codes and the positions in the file to which these codes apply. For
instance, the errors in the formal proof sketch from Section 3 correspond
to the 18 natural numbers:

16 26 4

18 16 4

20 13 4

21 12 4

22 19 1

25 35 4

(The meaning of these is: line numbers, offsets into the line, and error
codes.) In practice it is often not very convenient just to be told codes,
because with more specific information the errors would be easier to
understand. In particular it would be good to know what the thesis

is at specific points in the text (in other systems called the ‘goal’).
The Isar system is a full-fledged interactive tactic-based prover. It

is able to print a large amount of information at any point in the text,
including the goal that has to be proved. For instance, just before the
‘with prime show False’ line in the example of Section 2.2, the proof
state of the Isar system looks like this:

proof (state): step 19

fixed variables: n, p = p

prems:

p ∈ prime

p dvd n! + 1

p ≤ n

this:

p dvd 1

goal (have, 1 subgoal):

¬ p ≤ n

1. p ≤ n =⇒ False

4.13. Logically more general: Isar

The Isar language can represent proofs of many different logics, unlike
the Mizar language which only can represent proofs of classical first
order predicate logic.
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The proof steps of the Mizar language are the natural deduction
steps of first order predicate logic, including built-in classical principles.

Isabelle is a logical framework where the logic can be chosen by
the user. The Isar language works on the generic level of the meta-
logic, and is compatible with common object-logics (e.g. HOL, HOLCF,
FOL, ZF). For instance, the obtain element (which corresponds to
Mizar’s consider) directly refers to Isabelle’s meta-logic, bypassing
any particular notion of existential quantifier in the object-logic.

4.14. More mathematical type system: Mizar

The Mizar type system is much richer and much more mathematical
than the type system that Isar inherits from Isabelle.

Mizar has structure types, dependent types, various kinds of sub-
typing and type modifiers called attributes. Mizar uses the types for
automatic deduction and for overloading of predicates and operators.

Isar uses the HOL type system. In particular it does not have depen-
dent types. Dependent types are very important to be able to model
mathematical practice in a natural way, but prevent conveniences like
Hindley-Milner type inference.

4.15. Simpler type system: Isar

Isar types are easier than Mizar types.
The Mizar type system is difficult to use. Regularly one needs ‘clus-

ters’ or ‘redefinitions’ in the environment to get the typing of expres-
sions right. Finding these clusters and redefinitions in the Mizar library
takes a significant amount of time.

The Isabelle types are much simpler than the Mizar types, and rarely
cause problems for the user. Occasionally Isabelle’s type inference can
lead to confusion when the inferred types turn out to be more general
than has been anticipated by the user.

4.16. Better support for mathematical symbols: Isar

Isar offers the use of mathematical symbols while Mizar does not.
Until recently Mizar articles contained symbols from the high ASCII

part of the DOS character set. These symbols have been eliminated
from the Mizar library and currently Mizar articles only use standard
ASCII characters.

Isar formalizations contain many mathematical symbols. Using the
Emacs + Proof General combination these can be displayed on screen
by the X-Symbol package (http://x-symbol.sourceforge.net/). In
the final pretty-printed document, these symbols are printed using the
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LATEX typesetting system. In the Isar files symbols are represented using
special escape sequences. For instance the statement of the theorem
from Section 2 is represented in the ASCII file as:

theorem Euclid: "\<exists>p \<in> prime. n < p"

4.17. Less meaningless typographic noise: Mizar

Mizar texts contain less mathematically meaningless symbols than Isar
texts.

In Isar formalizations there are some low-level ‘noise’ characters that
do not mean anything mathematically. There are quotes (") around
formulas (they are not shown in the pretty-printed version of Isar but
are seen in the input and need to be typed), there are question marks
(? ) for term bindings, there are minuses (−) and dots (. and ..).

4.18. More natural language-like: Mizar

Mizar texts resemble natural language more than Isar texts.
In Mizar both the proof steps and the formulas use English key-

words. In Isar the formulas are written with symbols. This causes Mizar
texts to be closer to mathematical English. For instance, in Mizar one
might write:

assume that for n being natural number such that . . .

while in Isar this would look more symbolic:

assume ∀n::nat . . . .

The ratio of verbal expressions versus formulas is a matter of taste.
Traditional mathematics used to be mostly verbal for several hundred
years, even for expressions like ‘a = b + c’.

5. Internal mechanisms: key differences of proof processing

We shall now take a closer look at the internal machinery of both
systems, in order to gain some understanding of the basic principles
underlying structured proof processing encountered here. Mizar and
Isar differ considerably inside, despite the similar high-level view of
final proof texts shown to the recipients.

Roughly speaking, Mizar is based on procedural transformations

of a pending proof problem, with primitive elements stemming from
classical first-order logic. In contrast, the most fundamental Isar op-
erations are applicative refinements of pending problems according to
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the built-in principle of higher-order resolution (and unification) of the
Isabelle/Pure framework.

Subsequently, the fact (∃x. ∀y. P x y) −→ (∀v. ∃u. P u v) shall serve
as an example. This is sufficiently characteristic for quantifier reason-
ing, since both introductions and eliminations of ∀ and ∃ are involved.

5.1. Mizar

Technically, a Mizar proof consists of a claim at the head (theorem
or local statement etc.), together with a body consisting of several
transformations of the remaining problem. Within the body, the special
proposition thesis is updated dynamically to reflect the pending goal;
at the same time a context of local variables and facts is being built
up. In the example below we indicate the course of value of thesis.

theorem (ex x st for y holds P[x,y]) implies

(for v holds ex u st P[u,v])

proof

assume ex x st for y holds P[x,y];

:: thesis = for v holds ex u st P[u,v]

then consider x such that A: for y holds P[x,y];

:: thesis unchanged
let v;

:: thesis = ex u st P[u,v]

take x;

:: thesis = P[x,v]

thus P[x,v] by A;

:: thesis = empty conjunction
end;

(The combination assume ex x st . . . then consider x such that . . .
can be abbreviated as given x such that . . . but for clarity we have not
done this.) Mizar proof body elements may be understood as standard
transformations according to well-known principles of natural deduc-
tion. This simplified model of Mizar’s approach to structured proof
processing has been elaborated further in (Wiedijk, 2000). Neverthe-
less, Mizar’s built-in procedure actually admits slightly more involved
transformations, based on a theory of so-called ‘semantic correlates’,
which provides a certain algebraic view on top of classical first-order
logic.

For example, α-conversion of bound variables works as expected
(above we have sticked to the original names x, y, u, v nevertheless).
Moreover, conjunctions may be considered as split, both in assumptions
and conclusions (so assume A & B is the same as assume A followed by
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assume B, which is the same as assume A and B). Further equivalences
allow to swap a final thus not A with the combination assume A . . .
thus contradiction.

Unfortunately, Mizar’s semantic correlates do not cover commutativ-
ity, so the order of basic transformations in the above proof is essentially
dictated by that of the initial statement. The arrangement in the body
may not just swap assumptions or skip unused ones. In practice, one
would often wish to change the order that local facts emerge, arriving at
a mostly linear chain that reflects the course of reasoning in the body,
rather than the original goal statement. Failing to do so, one typically
requires additional labels and references, which are apt to spoil the
structure of Mizar texts.

5.2. Isar

In Isar a proven fact consists of a claim at the head (similar to Mizar),
followed by a proof according to Isar’s formal syntax. In general this
consists of an initial proof step (with optional method specification),
followed by a sequence of body statements, followed by a terminal qed
step (again with optional method). Isar’s by (with one or two method

arguments) merely abbreviates a proof with an empty body.
The initial and terminal methods are the only places where arbitrary

operational transformations of the pending problem may take place, say
an initial induction followed by a terminal method to solve any remain-
ing sub-problems automatically. Within the body text, the only way to
affect the pending goal configuration is via explicit show statements.
This format is again illustrated by our example of quantifier reasoning.

lemma (∃ x . ∀ y . P x y) =⇒ (∀ v . ∃ u. P u v)
proof

— rule (
∧

v . ∃ u. P u v) =⇒ (∀ v . ∃ u. P u v)
fix v

assume ∃ x . ∀ y . P x y

then obtain u where ∀ y . P u y ..

— rule
∧

C . (∃ x . ∀ y . P x y) =⇒ (
∧

u. (∀ y . P u y) =⇒ C ) =⇒ C

then have P u v ..

— rule (∀ y . P u y) =⇒ P u v

then show ∃ u. P u v ..

— rule P u v =⇒ (∃ u. P u v)
— composition

∧

v . (∃ x . ∀ y . P x y) =⇒ (∃ u. P u v)
qed

The notation used for rule statements is that of the Isabelle/Pure
framework (Paulson, 1989):

∧

and =⇒ refer to meta-level universal
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quantification and implication, respectively. Both goal states and in-
ference rules are represented as ‘Hereditary Harrop Formulae’ built
from these connectives; the general form may be specified inductively
as H =

∧

x1 . . . xm. H1 =⇒ . . .Hn =⇒ A, for atomic propositions A.
This is a natural generalization of Horn clauses A1 =⇒ . . . An =⇒ A.
The internal Isabelle machinery uses a generalization of Prolog-style
backwards resolution as the most basic reasoning principle.

The implicit rule applications indicated in the above example are
easily recognized as instances of ∀ introduction, ∃ elimination, ∀ elim-
ination, and ∃ introduction, respectively. The final composition step
fits the result of the show into the enclosing goal; the local context of
fix-assume has already been discharged in the obvious manner.

The key idea underlying the Isar interpretation process is to provide
a structured discipline to drive standard inferences of the underlying
Isabelle/Pure framework (arbitrary automated proof tools may enter
the scene much later). As it happens, the Isabelle kernel is able to record
the resulting course of internal inferences as proof-objects in canonical
λ-term representation (Berghofer and Nipkow, 2000). For our proof this
looks as follows:

λH : ∃ x . ∀ xa. P x xa.

allI · TYPE ( ′b) · (λv . ∃ x . P x v) ·
(λv . exE · TYPE ( ′a) · (λx . ∀ xa. P x xa) · ∃ x . P x v · H ·

(λu H : ∀ x . P u x .

exI · TYPE ( ′a) · (λu. P u v) · u ·
(allE · TYPE ( ′b) · P u · v · P u v · H · (λH : P u v . H ))))

Thus Isabelle/Isar is able to cover both human-readable and founda-
tionally clean representations of formal proofs. Observe how the latter
has lost much ‘redundant’ structure of the original text (due to internal
β-normalization.

Similar to Mizar, Isar proof processing involves a number of liberal-
ities in the arrangement of proof body elements, but is biased towards
the generic concepts of the Isabelle/Pure framework rather than clas-
sical principles. These proof text equivalences directly correspond to
basic facts of the meta-logic, including α-conversion of parameters
(
∧

x. P x) ≡ (
∧

y. P y), permutation of parameters (
∧

x y. P x y) ≡
(
∧

y x. P x y) and assumptions (A =⇒ B =⇒ C) ≡ (B =⇒ A =⇒ C),
commutation of parameters and assumptions (A =⇒ (

∧

x.B x)) ≡
(
∧

x.A =⇒ B x). Moreover, the composition phase of fitting the result
of fix-assume-show back into a goal admits projection of the context,
i.e. the body may have omitted unused assumptions. Sub-goals may
usually be solved in any order, too.
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In practice, Isar proof texts require much less labeling of intermedi-
ate facts than Mizar.

Generally speaking, the proof composition scheme of Isar is some-
what more ‘generic’ and ‘declarative’ than Mizar. On the other hand,
Isar is reluctant to let the user operate directly on pending problems, re-
sulting in slower progress of consecutive transformations. Here Isar typ-
ically requires additional local statements (with separate sub-proofs).
This has only been avoided in the above example, since we have used
=⇒ of the meta-logic at the outermost level (conforming to common
Isabelle practice); using −→ of the object-logic would have demanded
an additional assume-show layer in the beginning, to accommodate
implication introduction.

6. Conclusion

We have compared the proof languages of the Mizar and Isar systems,
listing various properties of those systems, and showing their relative
strong points. By presenting a small but realistic mathematical example
in both systems side by side, we hope to have escaped the common delu-
sions of artificial ‘benchmark problems’. Our formalizations of Euclid’s
proof of the existence of infinitely many primes is intended to represent
quite typical applications of either proof system.

The system evaluation shows that both Mizar and Isar provide a
solid environment for formalized mathematics. Despite the rather dif-
ferent background and design philosophies, the end user experience
is quite similar in general. Recall that only the differences have been
pointed out explicitly.

Mizar provides proven technology for formalizing classical mathe-
matics, with a huge body of ‘articles’ being collected over the last 10 to
20 years. Isar takes the existing Isabelle framework as a starting point
to achieve a generic environment for human-readable proof documents,
where classical mathematics is just one potential application domain.

Certainly, both systems have their inherent advantages and disad-
vantages. Speaking in terms of the system itself, the best choice for
users is probably a matter of taste. In reality, the availability of existing
background theory and proof tools is probably more important.

Concerning future work, it would be interesting to study how much
of the advantages of Mizar can be added to Isar, and vice versa. The
present paper may serve as a guideline for any such efforts towards
better acceptance of formalized mathematics in broader circles, by
providing convincing computer assistance.
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